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Abstract

The aim of this paper is to examine whether a hybrid approach of parallel com-
puting, a combination of the message passing model (MPI) with the threads model
(OpenMP) can deliver good performance in streamer discharge simulations. Since one
of the bottlenecks of almost all streamer models is the solution of Poisson’s equation,
we focused on several direct solvers, which can solve large sparse systems in parallel.
For this purpose, our basic thought was to concentrate on ’easy to get’ performance
improvements, or, without rewriting of the code.

We have investigated in PARDISO, a shared memory solver, and CLUSTER_SPARSE_
SOLVER and MUMPS, which both can apply hybrid parallelism; the latter two solvers
can be called from a single core and do not require minor awareness of MPI. We
show their performance for solving two- and three-dimensional Poisson’s equations
on the Dutch national supercomputer, called Cartesius. A runtime study of a code
developed for streamer propagation nearby a dielectric rod is included. We discuss
various issues that appear to be critical in a mixed MPI-OpenMP environment.

1 Introduction

Simulation of streamer discharges is quite challenging, because of the multiscale
aspect in time and space. The multiscale aspect requires very time-dependent sim-
ulations: in atmospheric air the smallest time scales are of order 10~'3 and 101!
seconds, see Teunissen [27]. Secondly, streamer discharges are spatially multiscale
phenomena, see [7, 27, 18, 19]. The space charge layer at the head of streamer is
very thin and curved, of the order of a few micrometers in atmospheric air.

Small time scales influence the cost of simulations, because the electric field in
such simulations has to be recomputed at every time step. An often used approach
is to compute the electric potential by solving the Poisson equation. A lot of solvers
for the Poisson equation exist, but their suitability for streamer simulations largely
depends on the speed of solving large problems.

There are three typical methods for solving these systems: 1) iterative methods
such as multigrid solvers. For instance, geometric multigrid can solve the Poisson



equations very efficiently (O(N) in time), 2) direct methods such as FISHPACK,
PARDISO, MUMPS, and CLUSTER_SPARSE_SOLVER, 3) hybrid methods, that combine
both direct and iterative techniques. In this paper we focus on direct methods.

For years FISHPACK played an important role in the simulation software of the
Multidynamics (MD) group at CWI. FISHPACK is a collection of Fortran programs
and subroutines that solves second- and fourth-order finite difference approxima-
tions to separable elliptic Partial Differential Equations (PDEs). The solver uses
the cyclic reduction algorithm. Its speed compared to other solvers is very high. A
disadvantage of FISHPACK is that it is not developed for modern computer architec-
tures with many cores per node and lots of nodes, while these computers promise to
be extremely suited for long simulations on streamer discharges. Another drawback
is that FISHPACK can not deal with large grids, because of numerical instabilities
due to round-off errors.

Initially, we were looking for fast sequential solvers for simple desktop computers,
but later on also for parallel solvers for state-of-the art cluster computers. The
goal of this work is to avoid any deep restructuring or rewriting of the code. The
performance of two packages are examined, which can deal with MPI [10, 25] and
OpenMP [9] and a mix of both.

All experiments have been executed on the Cartesius, the Dutch national super
computer. After describing the Cartesius in section 2, we discuss in section 3 the
Poisson solvers. All solvers belong to the category of direct methods, all consisting
of three phases: analysis, factorization and solve. In section 4, we describe a special
kind of two- and three dimensional Poisson’s equations with known analytical solu-
tion, which enables to measure the convergence speed. Numerical experiments on
this type of symmetric Poisson’s equations are discussed in section 5. Besides the
academic example in section 5, we focus on the performance of a code developed in
our research group. This 2D code, written by Dubinova [7], called DIELightning, has
been developed during the project Creeping sparks to gain insight into the physics
of surface discharges by studying streamers near dielectrics. Section 6 provides tim-
ing results based on short runs with the multithreaded and parallel packages MUMPS,
PARDISO and CLUSTER_SPARSE_SOLVER. Finally, in section 7 we summarize the results
obtained at the Cartesius and will end up with some conclusions.

2 System overview of Cartesius

Cartesius is the Dutch national supercomputer. In November 2016, the Cartesius
was ranked number 97 on the TOP500, the list shows the 500 most powerful com-
mercially available computer systems. It is a general purpose capability system with
many cores, large memory (130 TB memory), and a fast interconnection between
nodes. In this report, we examine the role Cartesius can play in simulating streamer
discharges,

e is there a good alternative to FISHPACK (see section 3.1.1)7

e is it easy to use more nodes?

e does the functionality of the Math Kernel Library MKL offer interesting solu-
tions for solving Poisson’s equation?

In this paper, we focus on these questions.
We begin with an overview of the composition of the Cartesius: Starting De-
cember 2016, Intel® Broadwell nodes became available on the Cartesius. Broadwell



Node Type Number Cores CPU Clock Memory

thin (Broadwell) 177 32 E5-2697A v4 2.6 GHz 64 GB
thin (Haswell) 1080 24 E5-2690 v3 2.6 GHz 64 GB
thin 540 24 E5-2695 v2 2.4 GHz 64 GB
fat 32 32 E5-4650 2.7 GHz 256 GB
gpu 64 16  E5-2450 v2 2.5 GHz 96 GB

CPUs are similar to the Haswell CPUs in Cartesius, but they are more energy efli-
cient and they have a higher memory bandwidth. The most important difference is
that Broadwell nodes have 32 CPU cores, whereas all other thin nodes have 24 CPU
cores. More CPU cores per node enables to run more MPI tasks, or to use more
threads in multi-threaded programs. All experiments of section 5 are performed on
Haswell nodes, and those of section 6 on Broadwell nodes.

In the context of a task being performed on a computer, wall-clock time is a
measure of the real time that elapses from start to end, including time that passes
due to programmed (artificial) delays or waiting for resources to become available.
The wall-clock time is measured with function omp_get_wtime, returning an elapsed
time on the calling processor. We measured a resolution time of 10~¢ seconds for
omp_get_wtime.

3 Software packages

In recent years, with the advent of multicore machines, interest of software devel-
opers has shifted towards multithreading existing software in order to maximize
utilization of all the available cores. The packages designed for parallel comput-
ing and described in this paper take advantage of multithreading, some of them in
combination with MPI.

The aim of this paper to test multithreaded and MPI packages in existing codes
with the restriction to avoid any deep restructuring or rewriting of codes. Moreover,
in our codes we use accelerating math processing routines of the Intel® MKL li-
brary [1], that increase application performance and reduce development time. Core
mathematical functions of MKL include BLAS, LAPACK, ScaLAPACK, sparse solvers, fast
Fourier transforms, and vector mathematical. The routines in MKL are optimized
specifically for Intel® processors.

In this section we describe five packages that can solve Poisson’s equation. We
start with two sequential packages, FISHPACK and LAPACK, followed by packages
designed for parallel computing on shared and distributed memory systems.

3.1 Poisson solvers

3.1.1 FISHPACK

To celebrate the 300th anniversary of the appointment of Johann Bernouilli as pro-
fessor at the University of Groningen, in 1995, a one-day workshop entitled ”Laplace
Symphony” took place as one of the scientific activities. The comparison of solvers
for a number of Laplace-like equations was the main activity of the workshop. The
CPU time of several advanced solvers measured on the same computer are pre-



sented in [5]. For the 2D problem FISHPACK gives by far the best results, this pack-
age optimally exploits the symmetry and solves the systems of linear equation more
than 10 times faster than the other well-known solvers, including UMFPACK/SuperLU,
ILUT/Bi-CGSTAB(SPARSKIT), but also a ICCG solver with diagonal and hyperplane
ordering, a MILU (modified ILU) solver, Nested Grids ILU (NGILU) and MGD9V, a
multigrid method. Also for the three-dimensional problem, FISHPACK is more than
a factor of 10 faster than the second best method.

Therefore our research group has used FISHPACK for time-consuming simulations
to solve the Poisson equation. However, one of the major limitations of this solver
is its inability to deal accurately with large grids (> 1400 x 1400), due to numerical
instabilities. Another drawback of FISHPACK is that it can only be used for matrices
that can be represented by stencils with constant coefficients. In her thesis Montijn
[19] illustrates the error for the Laplace equation in a radially symmetric coordinate
system of the single respectively double precision computations. Also Li [18] dis-
cusses the inaccuracy of the FISHPACK solver; he tests a Laplace equation in a 3D
system with this solver.

Teunissen mentioned in his thesis [27], that the Poisson equation for the electric
field is solved in all models at each time step with the same fast electric solver [26],
on a uniform grid of 256 x 256 x 512. For a smooth system and double precision
arithmetic his results up to 500 x 500 x 500 are accurate (less than 1076 ), but for
larger problems he runs into the limits of FISHPACK.

3.1.2 LAPACK

LAPACK (Linear Algebra Package) [3] is a standard software library for numerical
linear algebra. It includes routines to implement the associated matrix factoriza-
tions such as LU, QR, Cholesky and Schur decomposition. DGBTRF ! computes an
LU factorization of a real m-by-n band matrix A using partial pivoting with row
interchanges, whereas DGBTRS uses the LU factorization to compute the solution
matrix/vector, depending on the number of right-hand sides. In LAPACK terms, A
is a band matrix with KL subdiagonals and KU superdiagonals, when the distance
between the main diagonal and the outer subdiagonal is KL and to the outer upper-
diagonal is KU. This implies that also the zero diagonals between the outer lower and
outer upper diagonal are part of the band matrix, resulting in a dense matrix. The
2D Poisson matrix DGBTRF counts 2n, + 1 diagonals, in case of a n, X n, domain.
Actually, the 2D Poisson matrix counts only five nonzero diagonals, whereas the 3D
Poisson matrix has nine nonzero diagonals; these matrices can be called sparse.

3.1.3 PARDISO

Shared memory PARDISO has been optimized by applying multithreading. In [15], it
is shown that the execution time reduces with the increase of the number of threads.
It is also reported that super-linear acceleration can take place when increasing
the number of OpenMP threads. The solver [23, 22, 24, 21, 17] was developed by
Olaf Schenk, and Intel® MKL has incorporated it into the Intel® MKL library [1].
PARDISO calculates the solution of a set of sparse linear equations with multiple
right-hand sides, AX = B, using an OpenMP, or multithreaded LU, LDL” or LL”
factorization, where A and X, B are n by n and n by nrhs matrices, respectively.

LGB denotes General Band matrix



In our experiments, nrhs is always one. PARDISO supports a wide range of sparse
matrix types on shared-memory multiprocessing architectures. It computes the
solution of real or complex, symmetric, structurally symmetric or non-symmetric,
positive definite, indefinite or Hermitian sparse linear systems of equations. For our
implementation of Poisson’s equation we have to do with real symmetric indefinite
and real unsymmetric matrices.

The PARDISO solver [24] first computes a symmetric fill-in reducing permutation
P based on either the minimum degree algorithm or the nested dissection algorithm
from the METIS package [16], followed by the parallel left-right looking numerical
Cholesky factorization PAPT = LLT or PAPT = LDL™ for symmetric, indefinite
matrices, or PAPT = LU for unsymmetric matrices. The solver uses diagonal
pivoting or 1x1 and 2 x 2 Bunch-Kaufman pivoting for symmetric indefinite matrices
and an approximation of X is found by forward and backward substitution and
iterative refinement.

We realize the Intel® MKL version of PARDISO is based on an older version
of PARDISO; the recent version is PARDISO 5.0.0 Solver Project, see http://
www.pardiso-project.org. Although, a lot of new features and improvements of
PARDISO are not available in the Intel® MKL library, we use the MKL implementation,
because it is easy to use and clearly described.

3.1.4 CLUSTER_SPARSE_SOLVER

The CLUSTER_SPARSE SOLVER implementation [15, 13, 14] distributes a tree node
between different computational nodes and handles elements of a factorized matrix
by different MPI processes using OpenMP on each process. Experiments demonstrate
that it is recommended to exploit the computational threads on the nodes to the
maximum and not to have several computational processes per node.

Quite recently, a hybrid implementation of PARDISO, has been implemented and
added to the MKL library, called CLUSTER_SPARSE_SOLVER. It combines MPI technology
for data exchange between parallel tasks running on different nodes, and OpenMP
technology for parallelism inside each node. In 2014, when we decided to use the
MKL version of PARDISO, it was not yet possible to use the hybrid implementation with
parallelism over the nodes. Instead we use the MKL routine CLUSTER_SPARSE_SOLVER
also based on work by the team of Olaf Schenk, which performance is described by
Kalinkin [15].

3.1.5 MUMPS

MUMPS (MUltifrontal Massively Parallel sparse direct Solver) [8], originally designed
by Duff and Reid in 1983, is a software application for the solution of large sparse
systems of linear algebraic equations. The initial matrix will be represented as
”elimination-tree” or ”assembly tree” [8, 15], with the number of leafs equal to the
number of processes. It is a free implementation of the multifrontal method, which
is a version of Gaussian elimination for large sparse systems of equations. MUMPS
is still maintained and supported by a group of CERFACS, IRIT-ENSEEIHT, and
INRIA and it is still extended and improved. The latest version, release (July
2016) : 5.0.2 is suitable for hybrid shared-distributed memory architectures, with
parallelism by multithreading and by MPI. It is written in Fortran 90 and it uses
BLAS and ScaLAPACK [4] kernels for dense matrix computations. Many recent MUMPS



related publications can be found on the MUMPS website [2].

3.2 Decomposition and solution phases

To solve a positive indefinite symmetric system
Ax = b, (1)

we factorize A into
A=LDL". (2)

For the unsymmetric case A will be factorized as
A=1LU. (3)

As the solution process for the unsymmetric matrix passes the same phases, we
concentrate on the positive indefinite symmetric matrix. The implementations of
the direct solvers mentioned before, except for FISHPACK, consist of several stages:

o Matrixz reordering and symbolic factorization: The initial matrix A will be
reordered to reduce the fill-in in factor L, and a dependency tree representation
of matrix A will be created.

e Numeric factorization: In this phase the factorization takes place where the
total number of nonzero elements is computed in LLT. We note that the
process of numeric factorization is the most time-consuming part of the solution
of (1).

o Forward and backward substitution This phase consists of three steps: 1) the
forward step to solve Ly = b, 2) the diagonal step to solve Dz = y and 3)
finally the backward step LTz = z, where z is the solution vector.

An advantage of the phasing out of solving (1) is that for constant matrices A,
but different right-hand side vectors x, the first two phases, the matrix reordering
and numerical factorization, have to be performed only once. This leaves the last
phase of for- and backward substitution as the most important one. We remark
that FISHPACK does not distinguish such separate stages, reuse of previous (cyclic
reduction) steps is not possible.

4 Poisson’s equations with known analytical solu-
tion

In this section, we concentrate on the two dimensional Poisson equation

AU (z,y) = q(x,y) (4)
on a rectangular domain [0,1] x [0,1] , and the three-dimensional Poisson equation
AU(z,y,2) = q(x,y, 2) (5)

on a cubic domain [0, 1] x [0, 1] x [0,1]. We apply a 4- and 6-point centered, second
order difference scheme, respectively. We use the method of manufactured solutions:



from an analytic solution the right-hand side and boundary conditions are computed.
For the two-dimensional problem we choose the analytical solution

Uz,y) = e C@=20)*+u=v0)") 410 (6)
on a uniform grid defined on z € [0,1],y € [0, 1], obtaining

AU(z,y) = [-40+4C%((x — z0)* + (y — y0)?)] X
o= Cl(a=0)*+(y-90)*) )

Analogously, for the three-dimensional case, we select
U((p’ Y, Z) — 6*0((I*$0)2+(y*yo)2+(2:*z0)2) +1.0 (8)
on a uniform grid defined on x € [0,1],y € [0, 1], z € [0, 1] obtaining

AU(.’E, Y, Z) = [_4C + 402((.’E - £C0)2 + (y - y0)2 =+ (Z - 20)2] X (9)
e~ C(@=0)*+(y—y0)* +(2—20)%)

For the value C in equations (6) and (8) we choose C' € {10°,10%,10%,10°}, to
vary from a smooth into a narrow peaked solution, see figure 1. The Gaussian curve
can be shifted too, to increase the complexity of the problem. Unless otherwise
specified, we use xg = yg = 0.5 for the 2D case, and, g = yo = z9 = 0.5 for the 3D
case.

4.1 Implementation of Poisson’s equation

Let us consider a one-dimensional cell centered uniform grid with nodes

1
mi:(i—i)h;izl,---,M;hzl/M. (10)
Applying Dirichlet boundary conditions we need in xg = f%h andin xp41 = 1+ %h,

the virtual values uy and upsy1, such that

1 1
§(u0+u1):’yo and §(UM+’LLM+1):’}/M. (11)

Following [11] we obtain the following semi-discrete system

uy’ = %(—3’&1 +UQ) +%70a
w! = (w1 — 2ui + i), 2<i<M-—1, (12)
UM/ = #(UM—I —3UM) +%7Ma

The matrix formulation for the 1D Poisson equation reads

[ —3 1 i [ by + %’Yo i
1 -2 1 by
1 1 -2 1 bs
A= w3 ' , b= ' , (13)
1 -2 1 bar1
L 1 -3 ] Lbar + 2™




(a) C =10°
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(c) C =10*

(d) ¢ =10°

Figure 1: The analytical solution (6) for different values of C for o = yo = 0 on

domain [—0.5,0.5] x [-0.5,0.5]

where matrix A of size M x M is constant for a fixed grid size, and the right-hand side
vector b depends on the boundary values. We note that the matrix A is symmetric
positive indefinite. Analogously, we calculate the matrix formulation for the 2D
Poisson equation A of size M2 x M?2. The matrix A can be partitioned into block

matrices. We distinguish two different main diagonal block matrices

[ —6 1
1 -5
1

1
-5 1
1 -5

(14)



Then the matrix A can be written as

(R
I

~ W~
N~
~

1 S 1
- 1 R_
where I denotes the identity matrix.
For the 3D case we distinguish three diagonal blocks, analogously to matrix A
in equation (15)

e [-9—-8-8 --—8—8—9] for cells on edges
o [-8 e —8] for cells on surfaces
e [-7—-6-6---—6 —6 —7] for inner cells

supplemented with two sub diagonal identity blocks on distance n, and n2 and two
super diagonal blocks on the same distance.

The formulation of the boundary conditions outside of the matrix A, but inside
the right-hand side vector b, has the advantage that the factorization of matrix A
has to be calculated only once. As we show in section 5, this formulation costs an
enormous amount of computing time. This applies to all solution methods discussed
in section 3, except for FISHPACK, which solves the system inseparable.

5 Numerical experiments on 2D and 3D Poisson’s
equations

The experiments with the different solvers in this section were carried out on the
Haswell nodes of Cartesius with 24 cores. The Intel Fortran compiler 15.0 was
used. We start giving the results with the two-dimensional Poisson equation (4)
and analytic solution (6) with the results for different C' values. The higher the
value of C, the more difficult the problem is to solve. In figure 2.a we show the
Euclidean norm of the computed error for C € {10°,102,10%,10°} on several grid
sizes. For C' = 10* and C = 109, it seems that the solution is computed exactly
for ”larger” grid size, h = 1/8 and h = 1/16. However, we presume that the grid
size is not small enough to recognize the peak in the solution. For smaller grid
sizes the residual values are following parallel lines. The smallest residual values are
obtained for C' = 10°, as might be expected. Let & = |2, — Tczact| be the difference
vector between the computed z. and exact solution Zeyqct, then we distinguish two
residuals

Ry = [|2] o, and Ro = ||z|,. (16)

Each convergence figure indicates which residual is displayed. Figure 3 shows the
difference between both residuals for MUMPS results of the 2D Poisson problem. It
appears that the C-values do not influence the wall-clock time for the reordering,
factorization, and solution, as shown in figure 2 for the PARDISO experiments. The
same is true for the other solution packages.
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Figure 2: Figure (a) demonstrates the convergence behavior of PARDISO for different

values of C, see (4).

Figures (b),(c) and (d) show the timing results on a single

Haswell node, OMP_NUM_THREADS = 24, for the reordering, factorization, and solution
phases, respectively.
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Figure 4: The wall-clock timings for the 2D Poisson solution (without time for
factorization/reordering) on a Haswell node and the convergence results for the 2D
Poisson problem for four solvers: LAPACK, FISHPACK, PARDISO and MUMPS

5.1 Results on 2D Poisson’s equation

In figure 4a we benchmark four direct methods that can be used to solve the Poisson
equation of the form Ax = b on a single node. In case of a two dimensional problem,
matrix A is a band matrix with five diagonals, where the outer diagonals are on
distance n, of the main diagonal. For n, = n, being the size of the square domain,
the main diagonal of matrix A has n2 elements.

e LAPACK [3] : the general band solvers DGBTRF (for the factorization) and DGBTRS

(for the solution) have been called. Due to the fill in, the maximum problem
size is reached for n, = 1300. Obviously, the wall-clock time to solve the
problem with LAPACK’s band solver is much larger than for the FISHPACK and
PARDISO. We may conclude that this general band solver is not a good choice
to solve Poisson’s equation.

FISHPACK: is one of the fastest methods to solve Poisson’s equation, however
the solution obtained by FISHPACK is only accurate for small matrices, i.e.,
with n, < 1400, see figure 4b. Unfortunately, no warning is given about the
accuracy for larger values. We remark that FISHPACK does not distinguish
several stages for reordering, factorization, and solution, this yields that the
timing results includes the three stages.

PARDISO (see section 3.1.3) : its wall-clock time is comparable with that of
FISHPACK when running on a single thread. In case 12 or 24 threads are being
used, PARDISO is much faster (nearly 5 times) than FISHPACK. We note that
the maximum problem size (on a single node 5600 x 5600) is not limited by
the accuracy, as for FISHPACK, but by the available memory.

MUMPS (see section 3.1.5) is less efficient than PARDISO, even when all cores are
used for OpenMP parallelism. We note that the maximum problem size on a
single node is 7200 x 7200. In the next section we will see that MUMPS hardly
benefits of OpenMP, but of MPI, when solving Poisson’s equations.
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5.2 Results on 3D Poisson’s equation

The 3D experiments are performed on cubed domains for

ng = n, =n, € {64,80,96,112,128, 160, 192,224, 256}. On a single node the max-
imum problem size is 160 x 160 x 160. The figures in this section show the results
for the maximum realizable problem size.

In figure 5 we focus on the timing results of the 3D Poisson equation performed by
the CLUSTER_SPARSE SOLVER (left) and MUMPS (right) implementation. The upper
figures show the convergence behavior. Apparently, this behavior is similar, but
CLUSTER_SPARSE_SOLVER can tackle larger problems for equal number of nodes. As
might be expected, the residual does not depend on the number of nodes involved.
The timing results of the different stages, c.f., section 3.2, are shown:

1. the reordering phase: CLUSTER_SPARSE_SOLVER: For small number of nodes
(less or equal to 8) the profit of using more nodes translates into a lower wall-
clock time. For larger number of nodes this gain is less significant, probably
due to more communications between the nodes. The smallest grid size for
the three-dimensional Poisson problem obtained is 1/256 for py = 32 and
pny = 64, where py denotes the number of nodes. For MUMPS it appears that
this phase is completely sequential, as described in [20]; the main limitation to
run larger problems comes from the memory needed during this phase. The
largest possible problem size for MUMPS on 64 nodes amounts 224 x 224 x 224.

2. the factorizing phase: This phase is by far the most time consuming part of
the solution process. From figure 5e and 5f we observe that an increase of
the number of nodes decreases the wall-clock time. Fig. 7a shows the speedup
achieved for the MUMPS factorization, that of CLUSTER_SPARSE_SOLVER is com-
parable. Speedup is the ratio of performance between two runs of the same
code, with different number of nodes

Sp = (17)

Ty
T,
where T}, is the time needed on p nodes.

3. the solution phase: For the kind of problems we want to solve, this phase is
the most important one, because we need this part of the solution process
countless times, compared to the reordering and factorizing part. Since in
figures bg and 5h the x- and y-axis are identical, we may conclude that the
solution process of MUMPS is faster than that of CLUSTER_SPARSE_SOLVER when
using 24 cores.

Figure 6 displays the difference using CLUSTER_SPARSE_SOLVER for the solution
phase between using 12 and 24 threads per node. The results does not much differ,
often the results obtained when only 12 cores used are faster and less error-prone.
Using 16 nodes with 12 cores each, the maximum problem size is 256 x 256 x 256,
whereas using 24 cores per node the maximum allowed problem size is 224 x 224 x 224.
But it also happens that involving more cores results into a larger problem size.

5.3 Conclusions

Summarizing, for large systems both FISHPACK and LAPACK are not apt for solving
Poisson’s equation, because the results are incorrect (FISHPACK), or, their memory

12
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Figure 5: Convergence behavior and wall-clock times for the three phases of
CLUSTER_SPARSE_SOLVER and MUMPS varying the number of nodes. The experiments
are performed on Haswell nodes with OMP_NUM_THREADS = 24. Along the y-axis the
wall clock time is shown, which differs for each phase.
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consumption is too high (LAPACK), cf. section 5.1. Moreover, both solvers are not
designed for parallel computing. A parallelized alternative for LAPACK is ScaLAPACK
[4], but this one is not considered in this paper, while also the general band solver
of ScaLAPACK is not suited for this kind of sparse not narrow-banded systems.

More promising results are obtained by CLUSTER_SPARSE_SOLVER and MUMPS. For
both solvers it holds that they do not require special knowledge of OpenMP and
MPI parallelism to accelerate codes including large sparse systems of linear equa-
tions. It goes without saying, that restructuring the codes by applying MPI, and,
to a lesser extent, OpenMP will result in better performance. For instance in the
recent code, the systems to be solved are stored on a single node and distributed
by CLUSTER_SPARSE_SOLVER or MUMPS, which restrict the maximum attainable prob-
lem size. Since the reordering process of MUMPS is a purely sequential, we wonder
whether it can solve much larger systems. However, this is out of the scope of this
paper, where we concentrate on ’easy to get’ performance improvements.

6 Numerical experiments with DIELightning

In direct solvers, factorization time is the dominant cost whereas solve time is not,
at least not in case of a small number of right-hand sides. But this cost becomes
dominant in cases where the number of right-hand sides is large, or when an applica-
tion iterates on successive solves without refactoring the matrix. In this section we
focus on a two-dimensional problem from practice, a streamer discharge simulation
code, developed in our research group, in order to profile the most time-consuming
parts and to reduce computation time.

The DIELightning code [7], developed by Anna Dubinova during the project
Creeping sparks is a program to simulate streamer propagation in an axisymmetri-
cal plate-to-plate geometry. Figure 8, made by Dubinova, shows the electric field
and electron density of a positive streamer. Also for this code it applies that the
greatest challenge is to solve Poisson’s equations. She has chosen to solve the sys-
tems using MUMPS, a good and reliable package. Her results have been achieved on
local shared memory machines each with eight cores, specially purchased for this
purpose, because a single run can take more than a week. On these machines MPI
was not installed and IFORT compilers were not available. Instead GNU-compilers
have been applied, and acceleration has been achieved by OpenMP.

MUMPS can combine MPI and multithreading and apparently, the solve process of
2D Poisson’s equations has more advantage of MPI parallelism than of multithread-
ing. The multifrontal approach of MUMPS for this kind of systems results in small
matrices, too small to benefit from multithreaded BLAS.

In the DIELightning code different systems of Poisson’s equations

have to be solved, where N can be tens of thousands. The right-hand side vectors
b;(t;) depend on the simulation time, while the matrices A; do not change. Suppose
the computational domain is of size M,. — by — M, where M, denotes the number of
cells in the radial direction, and M, denotes the number of cells in the z direction.
Let M = M, x M, then A; is of size M x M. System (18) with ¢ = 1,5 = 0 is
solved to calculate the initial background electric field. This happens only once at
the initialization phase.
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PARDISO
# threads 32 16 8 4 2 1
factor(4x) 7.64 7.61 7.57 7.60 | 7.57 7.51
solve(2x) 0.12 0.11 0.11 0.11 | 0.11 0.11
solve(248x) 9.12 9.02 9.05 8.96 | 8.91 8.95
PARDISO 16.77 16.64 16.62 16.56 | 16.49 | 16.47
left over 4.96 4.39 4.39 4.52 4.96 5.63
after 101 time steps 21.73 21.03 | 21.01 21.09 | 21.45 | 22.10
Tio 1.35 1.35 1.29 1.29 1.33 1.40
CLUSTER_SPARSE_SOLVER
# MPI processes 1 2 4 8 16 32
# threads 32 16 8 4 2 1
factor(4x) 6.55 3.09 2.70 3.07 4.11 6.07
solve(2x) 0.03 0.18 0.08 0.06 0.05 0.04
solve(248x) 2.29 11.97 4.66 3.49 5.17 3.35
CLUSTER_SPARSE_SOLVER 8.85 15.07 7.36 6.56 9.28 9.42
left over 4.85 4.31 4.61 5.33 7.74 | 13.70
after 101 time steps 13.69 19.38 11.97 | 11.89 | 17.02 | 23.12
Tio 0.67 1.56 0.88 0.84 1.24 1.64
MUMPS
# MPI processes 1 2 4 8 16 32
# threads 32 16 8 4 2 1
factor(4x) 10.69 11.87 10.09 8.69 8.48 7.96
solve(2x) 0.87 1.71 1.14 0.61 0.54 0.31
solve(248x) 71.02 | 142.20 | 110.44 | 50.90 | 40.38 0.89
MUMPS 81.72 | 154.10 | 120.53 | 59.60 | 48.87 8.86
left over 5.12 4.65 4.93 5.55 7.70 | 13.40
after 101 time steps 86.83 | 158.75 | 125.45 | 65.16 | 56.57 | 22.26
Tio 7.34 14.15 11.14 5.44 4.60 1.34

Table 1: Problem I. Time (seconds) spent in the factor and solve phases with mixed
MPI and OpenMP on a single Broadwell node. CLUSTER_SPARSE_SOLVER and MUMPS
are using 32 cores on a single node. The red values correspond with the longest
time and the green ones with the shortest time.
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Figure 8: Electric field and electron density of a positive streamer in air at 150
mbar. The streamer starts at an electrode with a voltage of 10 kV. The rod is not
present.

The matrices A;, i = 2,3,4 are of size M x M /2. Every time step t;,7 =0,--- , N,
system Asxo(t;) = ba(t;) is solved to update the electric field in radial and z-
direction. The matrices A3 and A4 match with the calculation of the photoioniza-
tion; the systems are solved every 10th time step in our experiments. Since the
matrices A;,7 = 1,--- ,4 are constant, the analysis, reordering and factorization of
the matrices has to be calculated only once per simulation. Noteworthy, in case of
applying AMR, all systems has to be refactorized for each new grid configuration.
We remark that the largest system (i = 1) limits the size of the domain, but because
this system is solved just once at initialization to calculate the initial background
electric field, one may consider to solve this system out-of-core (disk is used as an
extension to main memory). Both MUMPS and CLUSTER_SPARSE_SOLVER offer this
slow but smart facility.

6.1 Description of Problems and Tjj

In contrast with the experiments in section 5 the systems (18) are unsymmetric. In
table 1, we distinguish two different sets of input parameters, one the default set as
offered by DIELightning, with M, = 500 and M, = 1000, referred to as Problem I,
and another input set with other parameters and with M, = 800 and M, = 6000,
referred to as Problem II. Next, we increase the value of M, to 24000, referred to as
Problem III, causing a growth of the Poisson system size by a factor 4. Finally, the
largest problem size in our experiments is M, = 3200 and M, = 24000 (Problem
IV). Here, the radial grid size and grid size are divided by 4, making the system to
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solve 16 times larger than of Problem II.

In streamer discharge modeling the calculation of photoionization is accompa-
nied by calculations of the electrical potential with one of sparse solvers PARDISO,
CLUSTER_SPARSE_SOLVER or MUMPS. The tables of this section display: The next ta-
bles display:

o factor(4x): the reordering and factorization time of all systems
e solve(2x): the solution time of all M x M systems

e solve(248x): the solution time of all M x M/2 systems performed during 101
time steps, where the photoionization update has been calculated every 10th
step

e SOLVER: time spent by one of the Poisson’s solvers: PARDISO, CLUSTER_SPARSE_
SOLVER and MUMPS, respectively

e left over: the remaining time spent by the program

e after 101 time steps: time spent by initialization and performing the first
101 time steps

The simulations have not been executed till the end time T,,,4 was reached, but
are restricted to 101 time steps. The portion of time of the factorization influences
the total time in the tables, whereas for a process with tens of thousand of time
steps the contribution is nearly negligible. As a conclusion the total time listed
in the tables does not indicate which solver, or combination of multithreading and
number of MPI processes is to be preferred.

Therefore, we do not consider only the time spent after 101 time steps, but
estimate the time spent by 10 time steps, T1g, on the basis of extended time mea-
surements. Although the time of factorization is by far the most time consuming
part, it does not count in the estimation time T}, because the factorizations are
executed only once per simulation. However, we would like to record the results,
just in case another application requires a regular update of the factorization. All
results showed in this section were obtained on Broadwell nodes of the Cartesius.
The bold values in the tables in the next sections correspond to the most efficient
combination of threads and MPI processes.

6.2 Timings results of problem I

Table 1 contains the timing results of problem I with the default set of input pa-
rameters as offered by DIELightning. The results on a single node are listed for
PARDISO, CLUSTER_SPARSE_SOLVER and MUMPS.

e Since the PARDISO solver is a shared-memory multiprocessing parallel direct
sparse solver, not using MPI, we show the results at a varying number of
threads. It appears that the shortest wall-clock time is achieved using 8
threads. Also the best estimated time Tiq is achieved for 8 threads, but the
differences are minimal. This applies to almost all intermediate results, ex-
cept the ’left over’ time on a single thread is somewhat larger that using more
threads. This means that the parallelization of loops by OpenMP, in parts of
the program outside calls to PARDISO, is paying off.

e The results of CLUSTER_SPARSE_SOLVER produce a much more varied picture,
even on a single node. The experiments are chosen such that the multiplication
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of the number of MPI processes and the number of threads is always 32, being
the number of cores on Broadwell nodes. The combination of 8 MPI processes
and 4 threads means that each MPI process uses 4 threads. The factorization
is optimal for 4 MPI processes, whereas the solution process (solve(2x) and
solve(248x)) profit from the maximum number of threads. The same is true
for ’left over’, the less threads the less advantage can be taken of OpenMP in
other parts of the program. The single thread case results in a ’left over’ time
much larger than the solve time. The best performance is obtained for applying
only OpenMP. Obviously, the CLUSTER_SPARSE_SOLVER implementation is twice
as fast as the PARDISO implementation, although no MPT is applied.

e It is clear that MUMPS gains from parallelism by MPI. The solve process with
32 MPI processes is significantly faster compared to the other packages, but by
the expensive ’left over’ time, the overall performance, the estimated time T7q
is slower. Note that the time spent by MUMPS exhibits large differences. Later
in the discussion on problem II we come back to this phenomenon.

For this relatively small problem, amazingly enough, it is preferable to use
CLUSTER_SPARSE _SOLVER without applying MPI, rather than the PARDISO variant
developed for shared memory applications.

6.3 Timings results of problem II

Problem II is similar to problem I, except that the set of input parameters differs,
resulting amongst other things into a larger problem. DIELightning has been de-
signed to calculate accurately positive streamer propagation along a dielectric rod.
One of the input parameters determines whether such a dielectric rod is present
(problem II) or not (problem I). The simulations of both problems correspond, ex-
cept that the time step of problem II is smaller, resulting in more steps to be taken
to reach the physical end time. The figures in table 2 have been obtained in a similar
way as for problem I (see the previous section). Again we do not do any specific
effort on the distribution of the systems, the data of all systems is present on just
one node. Only the factor and solve parts by CLUSTER_SPARSE_SOLVER and MUMPS
are taken advantage of MPI parallelism. OpenMP directives have been added to other
parts of the code to gain speedup as well.

e In comparison with the PARDISO results in table 1 the most efficient configura-
tion is achieved for 16 threads and not for 8. The speedup for the estimation
time T7g is about a factor of 1.5 between the fastest and slowest results.

e QOutstanding is the empty column of CLUSTER_SPARSE_SOLVER for 32 MPI pro-
cesses, the execution runs into an error during the factorization. The result for
the (16,2) combination is very promising, much faster than the timing results
of PARDISO, except for the 'left over’ time. This means that we can not ignore
the ’left over’ contribution to the physical end time T¢,q.

e The results of MUMPS on a single node are simply disappointing, especially when
compared to CLUSTER_SPARSE_SOLVER. It looks like MPI conflicts with OpenMP.
In [6] it turned out that Goto BLAS in combination with MUMPS appeared to
conflict with the other OpenMP regions, so that the net performance of MUMPS
with high numbers of threads turned out to be better with other libraries. It
may happen that something similar is the case with the MKL library, that is
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PARDISO
# threads 32 16 8 4 2 1
factor(4x) 95.9 96.0 | 101.9 94.5 97.8 | 101.0
solve(2x) 1.3 1.2 1.5 1.2 1.2 1.5
solve(248x) 99.5 96.0 120.5 95.5 96.6 | 124.0
PARDISO 195.4 192.0 222.5 | 190.0 192.1 | 225.0
left over 42.5 39.1 45.8 41.8 46.9 67.9
after 101 time steps 238.0 231.1 268.3 231.8 239.0 | 292.9
Tio 13.63 12.33 16.73 13.07 | 13.78 | 18.44
CLUSTER_SPARSE_SOLVER
# MPI processes 1 2 4 8 16 32
7 threads 32 16 8 4 2 1
factor(4x) 71.6 35.1 30.1 31.9 42.0 -.-
solve(2x) 0.2 2.1 0.7 0.4 0.4 -.-
solve(248x) 19.7 167.9 54.8 35.7 31.0 -.-
CLUSTER_SPARSE_SOLVER 91.3 203.0 84.9 67.6 73.0 -.-
left over 41.1 47.2 42.3 49.5 70.4 -.-
after 101 time steps 132.5 250.3 127.2 | 117.0 143.4 --
Tio 5.81 20.66 8.30 8.14 4.49 -.-
MUMPS
# MPI processes 1 2 4 8 16 32
# threads 32 16 8 4 2 1
factor(4x) 120.6 98.5 109.4 98.6 141.4 91.9
solve(2x) 8.8 17.6 10.0 7.6 5.1 4.3
solve(248x) 729.4 | 1637.2 943.1 | 498.4 | 585.1 | 408.3
MUMPS 850.0 | 1765.3 | 1052.6 | 597.0 | 726.6 | 500.3
left over 42.0 129.4 48.7 50.3 | 147.4 129.1
after 101 time steps 892.1 | 1805.7 | 1101.3 | 647.3 | 874.1 | 629.4
Tio 74.34 | 161.89 95.71 | 52.70 | 67.46 | 51.80

Table 2: Problem II. Time (seconds) spent in the factor and solve phases with mixed
MPI and OpenMP on a single Broadwell node. CLUSTER_SPARSE_SOLVER and MUMPS
are using 32 cores. The red values correspond with the longest time and the green
ones with the shortest time.

20



# nodes = # MPI processes
# MPI processes 1 2 4 8 16 32
# nodes 1 2 4 8 16 32
# threads 32 16 8 4 2 1
factor(4x) 120.6 | 103.0 94.4 90.3 89.5 88.3
solve(2x) 8.8 6.3 3.6 2.6 2.2 3.0
solve(248x) 729.4 | 584.7 | 322.8 | 158.7 | 160.3 | 119.7
MUMPS 850.0 | 687.8 | 417.2 | 249.0 | 250.0 | 208.2
left over 42.0 | 40.1 40.9 44.7 65.9 67.7
after 101 time steps | 892.1 | 727.9 | 458.1 | 293.7 | 315.8 | 275.9
Tio 74.34 | 60.17 | 34.83 | 19.25 | 19.94 | 16.94
# threads = 32
# MPI processes 1 2 4 8 16 32
# nodes 1 2 4 8 16 32
factor(4x) 120.6 | 104.7 95.4 90.6 89.7 88.7
solve(2x) 8.8 6.3 3.7 2.7 2.0 1.8
solve(248x) 729.4 | 585.3 | 319.0 | 170.9 | 160.3 | 117.3
MUMPS 850.0 | 690.1 | 414.4 | 266.2 | 260.6 | 206.2
left over 42.0 44.8 45.3 44.7 48.8 58.9
after 101 time steps | 892.1 | 734.9 | 457.7 | 311.5 | 309.5 | 265.1
Tio 74.34 | 60.59 | 33.80 | 20.87 | 20.47 | 15.68

Table 3: Problem II. Time (seconds) spent in the factor and solve phases with
mixed MPI and OpenMP using MUMPS. In the upper part of the table the number of
nodes equals the number of MPI processes and the result of multiplying the number
of nodes and number of threads is always 32. In the lower part of the table the
number of threads equals 32. The red values correspond with the longest time and
the green ones with the shortest time.

why we rerun the experiments but now with the number of nodes equal to the
number of MPTI processes. The results can be found in the upper part of table 3.
The results looks much better now, it applies to almost the entire factor and
solve phases, that an increase in the number of MPI processes accelerates the
code. Only the ’left over’ time does not profit of the added nodes. Finally, we
have decided to use on each node all threads, in order to reduce the time of ’left
over’. The overall gain in execution time is not spectacular, see the lower part
of table 3. From the timings presented in section 5, we should expect that at
least the solve time of MUMPS should be less than of CLUSTER_SPARSE_SOLVER.
Unfortunately, this is not the case.

6.4 Timings results of problem III

Initially, we focused on the performance of problem II on a single node, but the
Cartesius is mainly interesting as a supercomputer with many fast nodes. As for
MUMPS has been shown in the previous section, that MPT and OpenMP conflict on a
single node, we want to examine which combination of MPI and OpenMP parallelism
across multiple nodes leads to the best performance for a larger problem, i.e., prob-
lem III. In table 4, we show its results, where the number of nodes equals the number
of MPI processes. For the CLUSTER_SPARSE_SOLVER implementation it hardly pays to
extend the number of nodes, a doubling from 16 to 32 delivers even a small decrease
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# nodes | # threads | # MPI proc. Tio
CLUSTER_SPARSE_SOLVER 1 8 1] 28.05
CLUSTER_SPARSE_SOLVER 2 8 2| 66.07
CLUSTER_SPARSE_SOLVER 4 8 4 | 43.80
CLUSTER_SPARSE_SOLVER 8 8 8 | 42.28
CLUSTER_SPARSE_SOLVER 16 8 16 | 39.15
CLUSTER_SPARSE_SOLVER 32 8 32 | 39.96
CLUSTER.SPARSESOLVER |~~~ 16 | 1] ~ ~~ 16| 35.80 |
MUMPS 1 8 1 | 279.23
MUMPS 2 8 2 | 203.82
MUMPS 4 8 4 | 144.32
MUMPS 8 8 8 | 82.34
MUMPS 16 8 16 | 68.20
MUMPS 32 8 32 | 57.17
MUMPS 16| 1 T 16| 75.98 |

Table 4: Problem III. Estimate time 77y needed for 10 time steps of problem ITI
with mixed MPI and OpenMP using CLUSTER_SPARSE_SOLVER and MUMPS

of Tg. From the CLUSTER_SPARSE_SOLVER output on a single node, we observed
that not CLUSTER_SPARSE_SOLVER, but PARDISO, was called. resulting in the best
performance compared for problem III. Some remarks as ’Cannot allocate memory’
appeared in the output of CLUSTER_SPARSE_SOLVER on two nodes, although the re-
sults agree with runs on more nodes. Although MUMPS displays that doubling the
number of MPI processes leads to a better performance, the speedup from 32 nodes
over 1 node is 4.88, it appears that MUMPS for this application is too slow. A remark
about the number of threads per node: on 16 nodes CLUSTER_SPARSE_SOLVER is
faster when using only one thread per node than 8, while MUMPS benefits from more
threads. Summarizing, we may conclude that the use of CLUSTER_SPARSE_SOLVER is
preferable to MUMPS for this larger application.

6.5 Timings results of problem IV

Finally, we have benchmarked the largest problem, problem IV. The results of MUMPS
are shown in figure 9. Surprisingly, the factor phase seems to be independent of the
number of nodes involved. The speedup achieved for the solve phase amounts 5.4 for
32 nodes, while the speedup for the time spent by performing 101 steps (including
initialization and factorization), is 2.8. In table 5 the Tho values are listed and also
their speedup compared to Tig on a single node.

In section 5, we remarked that the maximum possible problem size can be
achieved when calling the solver CLUSTER_SPARSE_SOLVER in stead of the solver
MUMPS, c.f., figure 5. However, here CLUSTER_SPARSE_SOLVER fails to solve prob-
lem IV with error message 'not enough memory’, even in case of more than one
node.

For problems from practice, like discussed in this section, other rules seem to
apply than for the academic problems of section 5.
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Figure 9: Problem IV. Wall-clock time of factor and solve phase and ’after 101 time
steps’ and spent by MUMPS versus number of nodes. The number of OpenMP threads
equals 8.

MUMPS
# nodes 1 2 4 8 16 32
T1o 983.02 | 764.59 | 567.80 | 420.78 | 309.66 | 243.02
Speedup 1.00 1.28 1.73 2.33 3.18 4.05

Table 5: Problem IV. Estimate time (seconds) Ty for 10 time steps calling MUMPS,
OMP_NUM_THREADS = 8.

7 Conclusions

The aim of our experiments was to examine which role the Dutch national supercom-
puter Cartesius can play for streamer simulations compared to a fast local desktop
machine. Since one of the bottlenecks of almost all streamer models is the solution
of Poisson’s equation, we focused on several packages, which can solve large sparse
systems in parallel. However, our basic thought was to concentrate on ’easy to get’
performance improvements. We want to avoid any deep restructuring or rewriting
of the codes.

The packages discussed in this paper are PARDIS0O, CLUSTER_SPARSE_SOLVER and
MUMPS, all of them can be called from a single node. PARDISO is developed for shared
memory parallelism and may profit from multithreading. CLUSTER_SPARSE_SOLVER
and MUMPS are designed to get the best performance out of current modern hardware
machines, like Cartesius, and apply a hybrid approach of parallel computing: a
combination of the message passing model (MPI) with the OpenMP threads:

e threads perform computationally intensive kernels using local, on-node data.

e communications between processes on different nodes occur over the network
using MPI.

Our experiments could be divided into two groups.

e solving 2- and 3-dimensional Poisson’s equations with known analytic solution.
A clear distinction has been made between the three different phases: analytic
and reordering, factorization and solution phase.
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e profiling of an existing streamer code. On the basis of an estimate of the
wall-clock time is predicted which package delivers the best performance. In
addition to the range of problem sizes, also many combinations of numbers of
OpenMP threads and MPI processes are examined.

First of all we have shown that FISHPACK is no longer the fastest method to solve
the Poisson equation. Furthermore, PARDISO, but also CLUSTER_SPARSE_SOLVER and
MUMPS remain accurately also for large systems, whereas FISHPACK becomes inaccu-
rate for systems larger than 1300 x 1300.

From section 5, it is clear, that neither parallelization nor the method affects
the convergence speed. The maximum problem size is determined by the number
of nodes and for a fixed problem size the computation time decreases when more
nodes are used. Whether we are using 12 or 24 cores per node makes little difference.
The CLUSTER_SPARSE_SOLVER package is more memory efficient in use than MUMPS,
whereby it can solve larger systems on an equal number of nodes. On the other
hand, the solve phase of MUMPS requires less processing time. Disappointing is the
maximum problem size for 3D problems. An adaptive mesh refinement (AMR)
approach, as e.g., AFIVO designed by Teunissen [12], may be more suitable for this
specific type of 3D problems than a direct solver. We remark that the experiments
in section 5, were performed on Cartesian meshes, but the results will be the same
for nonuniform grids. However one exception, FISHPACK can handle only on uniform
grids.

In section 6 we present the timing results of the streamer propagation code
DIELightning, for three different problem sizes. At first we looked at the perfor-
mance on a single node. Haswell or Broadwell nodes with many cores per node (more
than 20) seem to be an option for this type of problems. Unquestionably, for all
investigated problem sizes CLUSTER_SPARSE_SOLVER is favorite considering the T7q
value. It is striking that in case of hybrid parallelism, a number of MPI processes in
combination with a fixed number of threads per node, such that all cores are used,
delivers inconsistent, disappointing timing results.

When we increase the number of nodes up to the number of MPI processes, we
obtain the performance as we expected. We remark that compute nodes on Carte-
sius, with relatively many cores per node, are allocated exclusively to one job at a
time. The usage of complete nodes, even if only part of the cores is used, will be
charged. As a consequence, an increase of the number of nodes leaving the total
number of cores constant, makes the performance less efficient, or, more expensive
in terms of system billing units (SBU’s). Therefore further optimization of the black
box solvers for efficient use of all cores in a node is still needed.
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