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Abstract
This article considers multiagent algorithms that aim to find the best response in strategic interactions by learning about
the game and their opponents from observations. In contrast to many state-of-the-art algorithms that assume repeated
interaction with a fixed set of opponents (or even self-play), a learner in the real world is more likely to encounter the
same strategic situation with changing counter-parties. First, we present a formal model of such sequential interactions, in
which subsets from the player population are drawn sequentially to play a repeated stochastic game with an unknown
(small) number of repetitions. In this setting the agents observe their joint actions but not the opponent identity. Second,
we propose a learning algorithm to act in these sequential interactions. Our algorithm explicitly models the different
opponents and their switching frequency to obtain an acting policy. It combines the multiagent algorithm PEPPER
for repeated stochastic games with Bayesian inference to compute a belief over the hypothesized opponent behaviors,
which is updated during interaction. This enables the agent to select the appropriate opponent model and to compute
an adequate response. Our results show an efficient detection of the opponent based on its behavior, obtaining higher
average rewards than a baseline (not modelling the opponents) in repeated stochastic games.
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1 Introduction

Learning to act in multiagent systems has received attention mainly from game theory, focused on algorithms that con-
verge to the Nash equilibrium [2, 6, 7]; and from reinforcement learning, focused on acting optimally in stochastic sce-
narios with limited a priori information but online observations [5, 11]. However, results are typically based on the
assumption of self-play [3, 7], i.e., all participants use the same algorithm, and a long period of repeated interactions.

In contrast, we focus on sequential interactions (as a variation of repeated stochastic games), i.e., the agent is paired with
stochastically drawn opponents, with whom the agent interacts in short periods while observing joint actions, but with-
out observing the opponent’s identity. This article tackles the problem of finding the best response in this setting, which
requires to hypothesize possible opponent types, and to identify opponents from their behavior. We propose an algo-
rithm that supposes and identifies several common reasoning strategies, and which best-responds in face of residual
uncertainty.

Related work in repeated stochastic games has proposed different learning algorithms [8, 9]. However, it is an open
problem how to act quickly and optimally when facing different opponents, especially when uninformed about such
changes. Bayesian and type based approaches are a natural fit for this kind of setting. A general and highly complex
model are I-POMDPs [12] which are a framework for decision making in uncertain multiagent settings. Bayesian Policy
Reuse (BPR) [15] is a framework for acting quickly in single-agent environments, assuming the availability of a policy
library and prior knowledge of the performance of the library over different tasks. BPR computes a belief over tasks
that is updated at every interaction and which is used to select the policy that maximises the expected reward given the
current belief. Similarly, in this article the agent maintains believes over opponent models. Recently, work on Stochastic
Bayesian Games [1] has compared several ways to incorporate observations into beliefs over opponent types when those
types are re-drawn after every state transition. Our approach is similar in believe structure, but in contrast assumes that
opponents are only redrawn after several repeated stochastic games.

Changes in the environment are also modeled explicitly by learning algorithms for non-stationary environments. Their
goal is to learn an optimal policy and at the same time detect when the environment has changed, updating the acting
policy accordingly. Reinforcement Learning with Context detection (RL-CD) [10] works in single agent tasks with a
changing environment, i.e., different contexts. RL-CD learns a model of the specific task and assumes an environment
that changes infrequently. To detect a new context RL-CD computes a quality measure of the learned models. Similar
problems have been tackled in two-player repeated normal-form games, assuming an opponent with different stationary
strategies to select from during a repeated interaction [13, 14]. The learning agent needs to learn online how to act
optimally against each strategy while detecting when the opponent changes to a different one. While these works might
be the closest state of the art, these approaches do not consider repeated stochastic games, which are central to our
discussion.

We contribute to the state of the art with a framework that we name Opponent Learning in Sequential Interactions (OLSI),
for best responding in repeated stochastic games by maintaining a hypothesized opponent model set. We compute a
belief over this set, updating the belief and the set based on observations. The belief provides a way to compute future
expected rewards more accurately and improves empirical performance, in our evaluation approaching optimality.

2 Problem setting

In contrast to classical RL, which considers one single agent in a stationary environment, Game theory studies rational
decision making when several agents interact in a strategic conflict of interest, formalized as a Game. Note that different
areas provide different terminology. Therefore, we will use the terms player and agent interchangeably and we will refer
to other agents as opponents irrespective of the domain’s or agent’s cooperative or adversarial nature.

Our exposition of the approach is build on games with two players i and �i. A stochastic game comprises a set of stage
games S (also known as states). In each stage s all players choose their part of the joint action a 2 A(s). A game begins
in a state sb 2 S. A joint action a = (ai, a�i) is played at stage s and player i receives an immediate reward ri(s, a),
the world transitions into a new stage s0 according to the transition model T (s, s0, a). Reaching any goal state sg 2 S
terminates the game. The accumulated reward of a game is called an episodic reward.

We formalize Sequential Interactions (SI) as a specific variation of repeated stochastic games, where at each episode
k 2 {1, 2, . . . , K} a process draws a set of players Pk ⇢ I from the population of individuals I to play a finite stochastic
game that yields a reward (accumulated over the game) to each player. After the stochastic game terminates, the sub-
sequent interaction commences. We specifically discuss the setting where the selection process is stochastic (as opposed
to being a strategic choice by the agents), and the population comprises an unknown distribution over types of strate-
gies. We consider Pk and opponent rewards within the stochastic game to be unobservable, while the joint actions are
observable. In addition, neither ri(s, a) nor T (s, s0, a) are known. In our approach, the agent learns explicit models of
ri(s, a), T (s, s0, a) and Pk from observations, and may update its hypothesized model of I .
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3 Opponent learning in sequential interactions

Our approach is based on reinforcement learning and combines Bayesian beliefs over opponent types with PEPPER [8],
which in turn builds on RMAX [4]. We follow the assumptions of these state-of-the-art algorithms such as observing local
immediate rewards but not the opponents’, and knowing the maximum possible reward Rmax for each episode.

The expected future rewards for a joint action a being in state s are defined by:

R(s, a) = r(s, a) +
X

s02S

T (s, s0, a)V (s0) (1)

where V (s0) is the expected future rewards of being in state s0. Note that given r(·), T (·) and V (·), value iteration can be
used to compute Equation 1. Note that these terms are defined in terms of the joint action, and therefore can be combined
with various opponent models to compute expectations and best response policies.

RMAX uses the principle of optimism in face of uncertainty, i.e., initially all states are assumed to result in maximal
reward. To learn r(·) and T (·), Pepper uses frequencies of past games and we compute future rewards V (s), by combining
off-policy (e.g., Q-learning) and on-policy methods. This is, an on-policy estimation based on the observed distribution
of joint actions, using n(s), n(s, a) for the number of visits to state s and the number of times joint action a was chosen
in that state respectively. Then, the on-policy estimation is given by: V on(s) =

P

a2A(s)
n(s,a)
n(s) R(s, a) and the combined

estimation V (s) = �(s)V̂ (s) + (1 � �(s))V on(s). Where V̂ (s) represents an optimistic approximation given by V̂ (s) =
max(V off(s), V on(s)) and where � 2 [0, 1] represents a stationarity measure initialized to one but approaching zero when
the agent gets more experience.1 We use the concept of non-pseudo stationary restarts [8], i.e., when R(s) is observed to
not be pseudo stationary �(s) resets to one. Let n0(s) be the number of visits to stage s since R(s) was last observed to
not be pseudo-stationary, then: �(s) = max

⇣

0, C�n0
(s)

C

⌘

with C 2 N+.

Algorithm 1: Opponent learning in sequential interactions (OLSI) framework
Input: Maximum possible reward R

max

, opponent space H, prior probabilities P (H), switch frequency probability P (s|n)
1 Initialize beliefs �0

(H) = P (H)

2 Initialize V (·) with R
max

3 Random initial policy ⇡
4 for each stochastic game k do
5 Update R(·); see Eq. 1
6 Update policy ⇡ according to �k

(h)

7 Observe state
8 while state is not goal do
9 Select action a

10 Observe state and opponent action a�i

11 Receive immediate reward r
12 Compute opponent model ⇡

h

for each opponent h 2 H
13 Update belief with observation a�i

as �k

(h) =

P (a�i|h)�

k�1

(h)P
h02H P (a�i|h0

)�

k�1

(h

0
)

14 if enough visits to (s, a) then
15 Update rewards, V (·) and transition model
16 Update R(·); see Eq. 1
17 Update policy ⇡ according to �k

(h)

18 �k+1

(h) = P (s|n)�k

(h) + (1 � P (s|n))P (H)

Our proposed framework OLSI is described in Algorithm 1. Note that removing the lines that correspond to the belief
update (lines 1, 13 and 18) and assuming only one opponent model to compute the policy (lines 6, 12, and 17) yields Pep-
per. Our framework thus generalizes Pepper by taking into account multiple different hypothesized opponent models
(policies) at the same time, computing the agent’s best response against the belief over them.

Consider the following common opponent policies: 1) a totally cooperative (friend) opponent, who play its part of
maximizing the agent’s reward (e.g., due to identical rewards for both): ⇡friend = maxa�i

R(s, a), or 2) a competitive
(foe) opponent that aims to minimize the agent’s reward (e.g., in zero-sum games): ⇡foe = mina�i

R(s, a). Additionally,
the agent can 3) learn by observations ⇡freq = n(s,a�i)

n(s) , accounting for mixed types. Note that if the opponent model is
correct, it can be used to compute R(s) that accurately reflects future rewards that only depend on the agent’s action.

1Recall that R(s, a) is initialized to R
max

so it is likely to decrease in early episodes, but eventually will become pseudo-stationary.
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Figure 1: (a) A stochastic game with two players, the learning agent (A) and one opponent (O). The learning agent
receives a reward when it reaches state marked with rA or RA with rA < RA. In case of collision the opponent has
priority over the state. (b) OLSI’s belief over the three opponent types, from games 1-10 OLSI is facing Ofriend, and then
Ofoe for the remaining games. OLSI’s belief accurately represent the opponent identity by being updated at every game
and also taking into account the switching frequency (10 in this case).

The belief is updated within a single stochastic game using the observation a�i (opponent action) and the probability of
that action being generated by each opponent policy using Bayes’ theorem: �k(h) = P (a�i|h)�k�1

(h)P
h02H P (a�i|h0

)�k�1

(h0
)

.

Additionally, OLSI also takes into account the switching frequency of the opponents to update the belief when a game
ends. For this, the agent maintains a probability for the event opponent switch, P (s|n), given that n games have been
played since the last switch. Then, we update the belief as follows: P (s|n)�k�1(h) + (1 � P (s|n))P (H). This is, we
consider the probability of facing the same opponent (keeping the same belief) or if a switch is likely to happen then the
belief moves to a more conservative prior distribution.

4 Experiments

For the sake of clarity we selected a simple setting with intuitive opponents that simplify the interpretation of the behav-
ior and results. We evaluated our proposed algorithm on a stochastic game represented as a grid world. We performed
experiments comparing OLSI, Pepper (with only one opponent model based on frequencies of opponent actions) and
an Omniscient agent that knows how to best respond at all times. Figure 1 (a) depicts a graphical representation of the
stochastic game used in the experiments. There are two players, the learning agent (A) and the opponent (O). The start-
ing positions are marked with their initial. The learning agent receives a reward when it reaches a goal state rA or RA,
with ra < RA. The agents can move upwards or horizontally, and the opponent has the possibility to stay in the same
state; the learning agent moves always to the right and the opponent to the left; to avoid agents getting trapped the grid
is a toroidal world. With every step that does not transition to a goal state the learning agent receives a penalty pmin. In
case of collision the learning agent receives high penalty pmax with pmin < pmax.

Note that the opponent directly influences the possible reward the learning agent can obtain. For example, since the
opponent is closer to RA it can block its way to the learning agent, in which case the best option would be to go for rA.
For the experiments we set rA = 5, RA = 10, pmin = �1, pmax = �5.

We test against a population with two types of opponents, a foe opponent, Ofoe, that aims to block the way to RA and
a friendly opponent, Ofriend, that allows you to pass to RA. First, we present how the belief behaves in a sequential
interaction of 20 stochastic games; during the first 10 games the agent faces Ofriend, thereafter the agent is paired with
Ofoe. Figure 1 (b) depicts the belief of the OLSI agent, which assumes a opponent space composed of three opponents
{Ofriend, Ofoe, Oother}, additionally we modelled the switch frequency using a Gaussian distribution N = (10, 1). OLSI
starts with a uniform prior over the three possible opponents and when the first game ends the belief for Ofriend increases
and remains until round 9 where it slightly decreases since the switch frequency is getting closer to the expected value
of n. The opponent changes to Ofoe at game 11, which is reflected in OSLI’s belief.

Figure 2 (a) compares episodic rewards of OLSI against Pepper and an Omniscient agent in a sequential interaction of
200 stochastic games. The opponent alternates between Ofriend and Ofoe every 10 games. From the figure it can be
noticed that approximately in the first 100 games both OLSI and Pepper are learning and obtaining low rewards in some
games. However, after this period OLSI learns a best response against each of the two possible opponents obtaining RA

against the friendly opponent and rA against the foe opponent. In contrast, Pepper learns a safer policy in which in most
of the times it opts for the rA reward even when facing the friendly opponent. Figure 2 (b) depicts cumulative rewards
of the compared approaches over 10 repetitions of 500 stochastic games against the same alternating opponents. Results

3

Paper M29 55



-60

-50

-40

-30

-20

-10

 0

 10

 50  100  150  200  250  300

Ep
iso

di
c 

re
wa

rd

Stochastic games

OLSI
Pepper

Omniscient

(a)

-500

 0

 500

 1000

 1500

 2000

 2500

 50  100  150  200  250  300  350  400  450  500

Cu
m

ul
at

ive
 re

wa
rd

Stochastic games

OLSI
Pepper

Omniscient

(b)

Figure 2: (a) Episodic rewards of OLSI, Pepper and the Omniscient agent against the same alternating opponents. Pepper
learns to collect rA as a safe response against the population; in contrast, OLSI best responds by identifying the switching
opponents. (b) Corresponding cumulative rewards show OLSI’s asymptotic performance parallels the Omniscient’s.

show that after the learning phase Pepper obtains lower rewards than the Omniscient agent while OLSI achieves parallel
asymptotic performance.

5 Conclusions

This article complements the body of literature on learning algorithms for multiagent systems, which often assumes
self-play or stationary opponents, by considering the scenario of repeated stochastic games against switching opponent
sets. Our first contribution is the formalisation of this setting of sequential interactions. Our second contribution is a
framework, OLSI, for learning in that setting based on reinforcement learning and Bayesian beliefs. OLSI maintains a
belief over the hypothesized opponents, which is used to compute an adequate response. Results in a simple scenario
showed that OLSI achieved near-optimal results, thus outperforming the conservative strategy learned with a single
opponent model. These promising preliminary results suggest to evaluate the effectiveness of OLSI and the effect of
parameters (e.g., priors) on algorithm performance in a wider set of experiments with more complex opponents. Once
results are validated against further benchmarks, this approach may boost reinforcement learning performance in a
broader set of realistic strategic interaction scenarios against changing counter-parties.
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