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ABSTRACT
With the rise of multi-socket multi-core CPUs a lot of ef-
fort is being put into how to best exploit their abundant
CPU power. In a shared memory setting the multi-socket
CPUs are equipped with their own memory module, and ac-
cess memory modules across sockets in a non-uniform access
pattern (NUMA). Memory access across socket is relatively
expensive compared to memory access within a socket. One
of the common solutions to minimize across socket memory
access is to partition the data, such that the data affinity is
maintained per socket.

In this paper we explore the role of memory mapped stor-
age to provide transparent data access in a NUMA environ-
ment, without the need of explicit data partitioning. We
compare the performance of a database engine in a dis-
tributed setting in a multi-socket environment, with a database
engine in a NUMA oblivious setting. We show that though
the operating system tries to keep the data affinity to local
sockets, a significant remote memory access still occurs, as
the number of threads increase. Hence, setting explicit pro-
cess and memory affinity results into a robust execution in
NUMA oblivious plans. We use micro-experiments and SQL
queries from the TPC-H benchmark to provide an in-depth
experimental exploration of the landscape, in a four socket
Intel machine.

Categories and Subject Descriptors
H.4 [Information systems]: performance measures

Keywords
NUMA, memory mapped IO, multi-socket CPUs

1. INTRODUCTION
Most low end servers are equipped with two socket CPUs.

In contrast, most high end servers tend to have four or eight
socket CPUs, in a shared memory setting. The memory
access latency in a two socket CPU is relatively low, however,
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Figure 1: Schematic diagram for Intel Xeon E5-
4657LV2 @2.40GHz CPU

in four and eight socket CPUs it is considerably expensive,
if the memory being accessed is remote.

Figure 1 shows a shared memory four socket CPU system
where each CPU socket is associated with its own mem-
ory module (DRAM), and can also access a remote DRAM
through Quick Path Interconnect (QPI) [3]. The memory
access latency thus varies considerably based on whether
the memory being accessed is local or remote. For example,
the process residing on socket 0 accesses its local memory
much faster than the remote memory on socket 2, as socket
2 is 2 hops away from socket 0. Non-uniform memory ac-
cess (NUMA) [11] is thus a result of different memory access
latency across sockets, in a shared memory system.

The graph in Figure 2 shows such an example for TPC-H
Q1 (Scale factor 100 GB on four socket CPU). We plot an
average of 6 runs (minimal variations are observed between
consecutive runs), clearing the buffer cache between inde-
pendent query executions. The database server process (us-
ing memory mapped storage) is allowed to execute strictly
only on two sockets (0 and 1), by pinning the process’s affin-
ity to both sockets, using the tool numactl [5]. On the other
hand, the memory allocation for the process is allowed to
take place on different sockets (0 to 3), using numactl’s
memory binding option, to emphasize that the locality of
data and the memory access distance matters, and affects
the execution time.

When the memory allocation is local (socket 0 and 1), the
execution time is lowest, as there is minimal cross socket
data access. The execution time is highest when the memory
allocation occurs only on socket 2, as memory on socket 2 is
2 hops away from socket 0, and 1 hop away from socket 1.
The operating system does not allocate memory pages in an
uniform manner across sockets, hence the part of the process
executing on socket 0 tends to access more pages, compared
to process execution on socket 1. This also explains why the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301646628?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 0

 5

 10

 15

 20

 25

 30

 35

0,1 0 0,2 1,2 2 0,3 3

T
im

e
 (

s
e

c
)

Sockets on which memory is allocated

Figure 2: Response time variations for TPC-H Q1
(100GB) on a 4 socket CPU, when the database
server process is spawned across both sockets 0 &
1, while the memory allocation is varied between
sockets 0 to 3.)

execution is second highest when memory allocation occurs
only on socket 3. Memory on socket 3 is only one hop away
from process on socket 0, compared to the process on socket
1. From Figure 2 the execution time for the rest of the
memory allocation affinities is more or less similar.

Database systems try to mitigate the data affinity prob-
lem in NUMA configuration by partitioning the data across
CPU sockets either using range or hash partitioning[13]. For
example, in a star schema, while the fact tables are hori-
zontally range partitioned, the dimension tables being rel-
atively small are replicated. As an example consider a 100
GB data set, where the data is horizontally partitioned in
25 GB piece each, affiliated with the sockets by introducing
corresponding query plan partitions. The thread affinity is
set to the corresponding sockets. This design however re-
quires query plan level changes to introduce data location
aware partitions in the plan, to maintain the data affinity to
the sockets.

The observations from Figure 2 show minimal variations
except for socket2. This motivates us to explore the viability
of an alternate approach using memory mapped storage, to
minimize the need for explicit data partitioning across sock-
ets. Memory mapped IO uses the operating system’s virtual
memory infrastructure to control mapping of disk files to the
memory. Memory mapped IO ensures that only the portion
of the file gets loaded when its access is required. For ex-
ample, during execution of a binary file the first step by the
operating system is to do memory mapping of the disk file.
As and when page faults occur, the corresponding portion
from the file is brought to the memory based on the map-
ping. The same logic could be used to load data from disk
files into memory such that locality with respect to sockets
is maintained. Hence, we expect through memory mapped
storage the operating system could offer an oblivious access
to the data, while maintaining its locality with sockets, in a
NUMA setting [4].

Consider the case of columnar database systems [16, 8,
10], where memory mapped storage could be used to repre-
sent in memory columnar data, backed on disk by a suitable
file representation. During in memory data access the data
is brought to the memory from disk and stays in memory as
long as there is no need to swap it out. As an example of
a possible mapping, consider the case when two select op-
erators work on a column that is partitioned into two equal
halves. If the first operator is scheduled to execute on the
socket 0, then its data is mapped onto the memory module
for the socket 0. Whereas, if the second operator’s execution
is scheduled on socket 1, then its data gets mapped on the
memory module for the socket 1. The operating system thus
tries its best to keep the data affinity to sockets, depending

on the source of access.

Our main contributions are as follows.

1. We show NUMA oblivious query plans provide reasonable
performance compared to NUMA aware partitioned plans.

2. We provide insights into the behavior of memory mapped
columnar storage in a NUMA setting.

3. We show remote memory accesses lead to performance
degradation in NUMA oblivious plans. Treating multi-socket
system as a distributed database system results into mini-
mal remote memory accesses, improving the execution upto
3 times.

The paper is structured as follows. In Section 2 we briefly
describe the NUMA oblivious and NUMA aware plans. In
Section 3 we provide the experiments to analyze the mem-
ory mapped IO behavior in a NUMA setting. In Section
4 we provide a perspective compared to a leading database
system. Section 5 describes the related work. We conclude
in Section 6 citing major lessons learned.

2. NUMA OBLIVIOUS VS NUMA AWARE
PLANS

Columnar database systems are a good experimental plat-
form since the columnar storage could be represented in
a memory mapped file. MonetDB, the only open-source
columnar database system is a good choice, since it uses a
memory mapped columnar storage for base tables and inter-
mediate data. It uses operator-at-a-time execution model,
completely materializing the intermediate results.

We use three separate configurations to test the effect of
NUMA oblivious data partitioning vs NUMA aware data
partitioning. We describe these configurations next.

NUMA oblivious data partitioning: MonetDB uses a
simple heuristic such that a parallel plan is generated from
a serial plan by range partitioning the largest table in the
plan. The number of equi-range partitions equal the number
of the available cores. Operators in MonetDB plans oper-
ate on the range partitioned data, where they get scheduled
on the available cores using the default operating system
scheduling policy (CFS). This scheme represents multi-core
intra-query parallelism, where data partitioning is done at
plan level, without explicit socket knowledge. The operating
system takes care of scheduling the operators on the sock-
ets such that the memory affinity is maintained in a NUMA
setting [11, 4]. This scheme thus does not involve any kind
of explicit NUMA related optimization with respect to ex-
plicit horizontal data partitioning, and hence is termed as
NUMA Obliv.

NUMA aware data partitioning: To explore the effect
of socket aware partitioned data access we use a modified im-
plementation of MonetDB tailored towards the socket based
data locality. The data is partitioned horizontally in 4 pieces
such that the lineitem and the orders table are partitioned
across sockets, while the rest of the tables are replicated.
This modified implementation of MonetDB uses an opti-
mizer that generates socket aware partitioned plans. In-
spired by [20] we use MonetDB in a distributed master slave
architecture. We name this implementation NUMA Distr.

We assign one MonetDB server instance per socket which
acts in a slave configuration, whereas a Master MonetDB
server instance executes on any one of the four sockets. Thus



we have a total of five MonetDB server instances, one of
which is a master and the rest four are slaves. Slaves execute
when master is not executing, hence the presence of a sep-
arate master does not involve resource sharing. The slaves
carry out the execution of partitioned plan corresponding to
their partitioned data, while the master is responsible for
the final aggregation of individual results from each of the
four slaves. Each one of the slaves in turn operates on an
intra-query partitioned plan where maximum partitions are
the number of cores per socket. The intra-query partitioned
plans that each one of the slave uses are generated using the
same NUMA oblivious parallel plan generation logic. Thus
the NUMA Distr mechanism essentially limits the access of
data locally and prevents across socket interference.

We also use another variation of plans which are similar
to NUMA Distr plans in their physical representation, how-
ever in their execution behavior are similar to NUMA Obliv.
In this scheme a single MonetDB instance uses horizon-
tally partitioned data (lineitem and orders tables) across
four sockets. The parallel plans generated in this manner
are socket aware, however since we do not use any kind of
thread binding across sockets, the operating system is free
to schedule the threads based on its default scheduling pol-
icy, thereby making them behave in a NUMA Obliv config-
uration. We name this mechanism as NUMA Shard, be-
cause it works on sharded data like in NUMA Distr scheme,
however without the master slave configuration. This con-
figuration is used to overcome the partitioning problems in
NUMA Obliv configuration, that arises due to lack of par-
titions on the orders table. In Section 3.1 we elaborate it
using TPC-H Q4 as an example.

Summary: Note that all these three configurations use
memory mapped storage, as MonetDB uses memory mapped
files to store columnar base and intermediate data. Though
in NUMA Distr separate database servers execute on each
socket, the individual operators in the plan work on the
memory mapped stored data, restricted to each socket. Hence,
execution performance comparison of these techniques re-
flect the effect of memory mapping.

3. EXPERIMENTS
The hardware comprises of Intel Xeon E5-4657L v2 @2.40GHz

with 4 sockets, 12 cores per socket for a total of 96 threads
(Hyperthreading enabled), L1 cache=32KB, L2 cache=256KB,
and shared L3=30MB, and 1TB four channel DDR3 mem-
ory where each socket is attached to 256 GB memory. The
operating system is Fedora 20. The results are an average
of 6 runs. The buffer cache is cleared 1 between successive
query executions to allocate new memory mapped pages, to
avoid interference from previously pinned pages. As Mon-
etDB uses memory mapped columnar storage for base and
intermediate data, memory mapping is always enabled for
all three configurations, NUMA Obliv, NUMA Shard, and
NUMA Distr.

We use the tools numactl and Intel PCM to get insights
into the effects of local vs remote memory accesses.

Numactl: We use numactl [5] to control the process and
memory allocation affinity to individual sockets. An exam-
ple command to set the database server process affinity to
sockets 0,1 and memory affinity to socket 2 is as follows.

1echo 3 | sudo /usr/bin/tee /proc/sys/vm/drop caches
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Figure 3: Query execution performance of NUMA
oblivious vs NUMA aware partitioned plans, for
scale factor 100.

numactl -N 0,1 -m 2 database server process

Intel PCM: We use Intel Performance Counter Monitor
(PCM) tool [2] to measure the CPU performance events.
PCM is different from frameworks such as PAPI [18] and
Linux Perf [9] because it not only supports core but also
uncore events. The uncore is the part of the processor that
deals with integrated memory controllers, the Intel Quick-
Path interconnect, and the IO hub. We use the executable
pcm-numa to measure the local and remote DRAM access,
of cache-line size unit. Linux Perf [9] tool is used to measure
the CPU migrations.

3.1 SQL query analysis
We use a subset of SQL queries from the TPC-H bench-

mark on a 100 GB data-set, to analyze their execution per-
formance in NUMA oblivious vs NUMA aware partitioned
plans. We then switch to micro-benchmark queries for a fine
grained analysis of the observations from the SQL queries.

Setup: NUMA Obliv setup uses a single instance of Mon-
etDB with varying number of threads, executing on 96 cores,
with default operating system scheduling policy (CFS). The
NUMA aware plan execution setup (NUMA Distr) uses four
instances of MonetDB with 24 threads each, bound to each
one of the four sockets, using numactl tool. The client in-
vokes queries on a separate MonetDB instance which acts as
a master. The other NUMA aware plan setup (NUMA Shard)
also uses a single instance of MonetDB with varying threads,
on 96 cores, with sharded lineitem and orders table. The di-
mension tables are not replicated.

Figure 3 shows query execution time comparison for se-
lected TPC-H queries. We use this query set as it provides
sufficient insights into the overall behavior of the techniques
under comparison.

The first observation is NUMA Distr shows the best ex-
ecution time in all the queries. This is expected because
of minimum cross socket interference due to master slave
configuration.

Next we analyze individual queries by focusing on Q6
first, where NUMA Distr shows around 3 times improve-
ment compared to the other two configurations. Both
NUMA Obliv and NUMA Shard show similar times. Q6 has
a single lineitem table with only select operations, which
get parallelized easily. The difference in execution with
NUMA Distr is due to cross socket traffic, as both
NUMA Obliv and NUMA Shard does not have explicit data
affinity in plans, as their threads get scheduled according to
the default operating system scheduling policy.

NUMA Obliv shows highest time for Q4, due to Mon-
etDB’s parallel plan generation limitation. Q4 has both the
lineitem and the orders table. Orders table is the second
largest table in TPC-H after lineitem table. As MonetDB



 0

 20

 40

 60

 80

 100

12 24 36 48

P
ro

p
o
rt

io
n
 o

f 
m

a
p
p
e
d
 p

a
g
e
s

Number of threads

socket 0
socket 1
socket 2
socket 3

Figure 4: Proportion of memory mapped pages on
each socket when threads and memory allocation per
socket is increased by including sockets one by one,
using numactl, for modified Q6.

optimizer partitions only the largest table for generating a
parallel plan, only the lineitem table is partitioned. Q4 has
a join on the lineitem and the orders table attribute, which
contributes to the lengthy execution as the orders table is
not partitioned. In both NUMA Shard and NUMA Distr
versions both the lineitem and the orders table are parti-
tioned, which explains why both of these configuration are
much faster.

Query 19 illustrates the effect on a more complex query
over two tables, the lineitem and the part table. However,
in NUMA Shard only the lineitem table is being partitioned
into four pieces using row-id ranges. The part table is not
partitioned. This implies that all cores involved in the join
will randomly access the part table, increasing the intra-core
memory accesses. A hash-based partitioning could alleviate
this overhead, but is currently not part of the MonetDB
standard repertoire.

As observed from Q6 and Q19 we expect NUMA Obliv
configuration to be competitive to NUMA Distr configura-
tion provided majority of the tables in the plan are correctly
partitioned. The NUMA Shard configuration is used just to
prove this point, since otherwise as could be seen in Q4,
NUMA Obliv execution looks too expensive. For a drilled
down analysis of the effect of the memory mapped IO in a
NUMA setting, we focus on Q6.

Why focus on Q6? Q6 is a simple query with select op-
eration on the largest table, lineitem. Parallelized select op-
erators are expected to execute with memory affinity main-
tained to sockets due to memory mapped storage. Hence,
analyzing it gives a baseline to analyze the numa effects. We
hypothesize that the difference in timings for Q6 (See Figure
3) is due to cross socket interference. This is confirmed from
Table 1 which shows that NUMA Distr has much less num-
ber of remote memory accesses compared to NUMA Obliv.
Hence, we investigate where do these remote memory ac-
cesses arrive and if they could be curtailed to improve the
NUMA Obliv execution further.

Table 1: Q6 memory accesses (cache line size unit).
#Local accesses #Remote accesses

NUMA Obliv 69 Million (M) 136 M
NUMA Distr 196 M 9 M

3.2 Micro-experiments
We use a modified Q6 from the TPC-H benchmark. Q6

operates on the largest table lineitem. The query is modified
to have only a single select operation, without any output.
It allows us to experiment with the read only aspect of the
memory mapped IO. The query is as follows.

select count(*) from lineitem where l quantity > 24000000;
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Figure 5: a,b)Process and memory affinity to sockets
controlled using numactl, for modified Q6. Buffer
cache cleared.

The select operator acts as a good example to demonstrate
the effects of memory mapped IO in a NUMA setting. It is
easily parallelizable by range partitioning of the data, such
that each partition is operated upon by one select operator.
Since each partition uses a memory mapped storage repre-
sentation, we hypothesize that the operating system would
schedule select operators on sockets, such that the data affin-
ity is maintained, resulting into NUMA obliviousness.

To test our hypothesis we control the socket allocation
for memory and database server process execution. The 4
socket CPU has 12 physical cores and 12 hyper-threads per
socket, in the following order.

Table 2: CPU core allocation across sockets.
Socket 0 Socket 1 Socket 2 Socket 3

Cores 0-11 12-23 24-35 36-47
Cores 48-59 60-71 72-83 84-95

3.2.1 Execution with numactl affinity setting
Setup: The graph in Figure 5a quantifies the remote vs
local memory accesses, when process execution and memory
allocation affinity is set using numactl. The process affinity
is set on the sockets in steps of 12 threads, as per the core
order in Table 2. The memory affinity to sockets is also
allocated in increments of one socket each. For example,
when 12 threads execute on socket 0, the memory allocation
is also pinned to socket 0, whereas when 36 threads execute
on three sockets (as per core order in Table 2), the memory
allocation is pinned to three sockets. The corresponding
command for 36 threads is as follows.

numactl -C 0-11,12-23,24-35 -m 0,1,2 Database Server

First observation in Figure 5a is when 12 threads execute
on the socket0, their remote memory access is almost neg-
ligible, and the entire memory access arrives from the local
memory. As the number of threads increase across the sock-
ets, the local memory access decreases, while the remote
memory access increases until 60 threads are in use. Note
that in Table 2, hyper-threads form the range 48-95. Hence,
60 threads on-wards both remote and local memory accesses
almost stabilizes. Figure 5b, shows the corresponding exe-
cution time, which also almost stabilizes after 60 threads of
execution.

Figure 4 shows the proportion of pages mapped on each
socket as the number of sockets increase. Consider the case,
when 24 threads execute on the socket0 and the socket1.
Since only around 30% pages are mapped on the socket0,
almost two third of the threads executing on the socket0 do
remote memory access to access pages from the socket1, rest
do local access. Since socket1 has all its pages mapped, we
expect all threads on socket1 to do local access. This indi-
cates the remote access is around 1/3rd of the total page ac-
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Figure 6: Without process and memory affinity to
sockets. a,c) Buffer cache cleared. b,d) Buffer cache
not cleared.

cesses, while the local accesses are 4/6th of the total accesses.
However, the numbers from the 24 thread case, in Figure
5a does not reflect it. Remote accesses are higher, than lo-
cal accesses. Digging deeper in /proc/process id/numa maps
shows some of the remote accesses also arrive from the mem-
ory mapped libraries for the database server process.

We also expect some of the remote accesses to arrive due
to cache coherency and thread migrations. As the num-
ber of threads increase, their migrations across sockets also
increase, as shown in Figure 7. Numactl just prescribes
the affinity across sockets, but at run-time the operating
system is still free to do migrations to do load balancing
[4]. For example, when process affinity is pinned to socket0
and socket1, operating system will not schedule threads on
socket2 and socket3, however, it is free to migrate threads
across socket0 and socket1, if the need arises. This explains
why with an increase in the number of threads, the remote
memory accesses increase, while the local memory accesses
decrease.
3.2.2 Execution without explicit affinity setting
Setup: Both Figures 6a and 6b show the number of local
vs remote memory accesses, when the process or memory
affinity is not set using numactl. The only difference being in
6a after each independent run, 2 the buffer caches are cleared
using a kernel utility 3. This is a crucial setting as if caches
are not cleared memory mapped pages might stick around
on previously allocated sockets, preventing their new locality
based allocation. Figures 6a and 6b makes the difference
prominently visible.

Figure 6a shows a pattern similar to Figure 5a, where the
local memory accesses decrease with an increase in the num-
ber of threads. However, the change of both local and remote
accesses for 12,24,36, and 48 threads in 6a is gradual, com-
pared to a sudden change in Figure 5a. This indicates that
when explicit affinity is not set, and when buffer caches are
not polluted, the operating system does a good job of exe-
cuting the process on sockets to maintain data locality. Both
in 6a and 6b, the memory access pattern stabilizes when exe-

2An independent run occurs after 6 runs on the same con-
figuration to take an average.
3echo 3 | sudo /usr/bin/tee /proc/sys/vm/drop caches
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Figure 7: Number of CPU migrations increase as the
number of threads increase, for modified Q6.

cution also uses hyper-threads starting from 60 threads, and
almost matches the memory access pattern in Figure 5a.

Consider the case of 12 threads from Figure 6a, where
the number of local accesses are less compared to Figure 5a.
This is a result of the lack of process and memory affinity
in Figure 6a execution. An important observation is unlike
Figure 5a, the local memory accesses stay dominant than
remote memory accesses until 36 threads, which indicates
the operating system does an overall good job of scheduling.
However, this does not get reflected accordingly in the ex-
ecution times from Figures 5b and 6c, where for 24 and 36
threads, Figure 6a execution time should have been better
than 5a. We are unable to explain this behavior.

Figure 6b offers an interesting perspective as well, as it
shows without setting process and memory affinity to sock-
ets, and without buffer cache cleared, both local and remote
accesses almost stay constant irrespective of the number of
threads in use. However, the execution time (See Figure 6d)
does change and shows best time of around 150 sec, when
60 threads are in use. This seems very good as it indicates,
without much efforts, just by choosing the correct number of
threads, better execution could be obtained. However, find-
ing the correct sweet spot in terms of the number of threads
might not be that easy [1]. On the other hand, execution
time for Figure 5a almost stabilizes after 48 threads are in
use, which seems like a more robust approach.

Summary: Overall, we conclude that setting explicit pro-
cess and memory affinity in NUMA oblivious plans, leads to
a more robust execution as seen from Figure 5b, where the
execution time stabilizes after 48 threads are in use. How-
ever, execution without process and memory affinity, with-
out clearing buffer cache seems a more practical approach,
and Figure 6d shows, it does offer similar execution time, but
finding the exact number of threads to get the best execu-
tion could be tricky [1]. We also observe that the presence of
hyper-threads has a negligible effect on the number of local
and remote memory accesses.
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Why remote memory access is bad? From Figure 8,
the execution performance of modified Q6 in NUMA Distr
configuration is two times better than the NUMA Obliv
configuration. This indicates NUMA Obliv shows relatively
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good performance overall. The loss of performance could
be mainly attributed to the high number of remote memory
accesses in NUMA Obliv. This could be verified as follows.
When the memory access is prominently local as in the case
of 12 threads (See Figure 5a), the execution time is around
320 ms (See Figure 5b). If we divide the time by 4, since
there are 4 sockets, the new time per socket is 80 ms, which
matches with the NUMA Distr execution of modified Q6
from Figure 8.

4. PIPELINED EXECUTION COMPARISON
Comparable performance is a subjective term. In our
context we consider upto 4 times difference as a comparable
performance, whereas an order of magnitude improvement
is considered worth the effort of a new system design.

Vectorwise (version 3.5) is a leading column store analytic
system that uses pipelined vectorized execution. As it uses a
dedicated buffer manager, rather than memory mapped stor-
age, a comparison with Vectorwise (See Figure 9) provides
a perspective of the possible role of NUMA in its execution
performance. The only configuration change we made is to
enable histograms to generate better plans, and set paral-
lelism level=96.

Vector Def is the single instance default parallel execu-
tion without NUMA awareness and without affinity con-
trol. We compare it with MonetDB’s NUMA Shard con-
figuration in Figure 9. Note that NUMA Shard has just
the lineitem and the orders table sharded and represented
accordingly in the plan, however, the plan itself does not
have any socket affinities as a single database instance is
used. Hence NUMA Shard configuration also represents
NUMA oblivious execution (as underlying storage is memory
mapped), which we compare with Vector Def configuration.

Vector Def is relatively faster except for Q4, which hints
at the executions with a NUMA oblivious buffer manager
perform better than the executions with memory mapped
buffers, as in MonetDB. We hypothesize that Vectorwise
performs better even without NUMA awareness, due to its
pipelined vectorized execution, and making it NUMA aware
could improve its execution further. Depending on the query
we observe a wide range of multi-core utilization (as reflected
in CPU idleness using the top command), which we believe
is a result of the cost model based parallel plan generation
in Vectorwise. In [6] the authors illustrate problems of Vec-
torwise scalability beyond 8 cores due to locking and syn-
chronization related overheads. We believe a NUMA aware
approach similar to NUMA Distr would benefit systems like
Vectorwise to scale further, as it incurs minimal changes at
the architectural level.
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Figure 10: Hyper’s parallel execution compared to
MonetDB’s parallel execution (NUMA Distr), for
scale factor 100.

Vectorwise does not have a NUMA aware plan generation.
As we do not have source code access to implement it, to
get a perspective of the NUMA aware partitioned execution,
we partition the lineitem table in four pieces. As query 6 is
the simplest parallelizable query with select operations on
the lineitem table, we measure its execution time on each of
these pieces, and plot the highest time as Vector Distr. We
expect minimal aggregation overhead as the only aggrega-
tion operation is the sum of the four numbers from the four
sockets, which is negligible compared to the individual select
operation’s time. Compared to Vector Def, we observe an
execution improvement of around 2 times.

Hyper’s morsel driven parallelism is NUMA aware, where
morsels from hash partitioned data are fed to the just in
time compiled fused operator pipelines. From [13] Q6 takes
0.17 sec on 100 GB data-set on a 64 core (hyper-threaded)
four socket, Intel Xeon X7560 @ 2.3GHz machine, with max-
imum QPI hop=1. While Hyper’s Q6 execution time is same
as NUMA Distr, its Q4 and Q19 execution is just 2 times
faster, which could be due to less QPI traffic during join,
due to hash based data partitioning in Hyper. Hyper is de-
signed from scratch for optimal multi-core utilization and
uses LLVM [12] generated just in time compiled fused oper-
ator pipelines. However, LLVM code generation also makes
its code base much complex.

In contrast, the promising query execution time for the
queries 4, 6, and 19 by MonetDB’s NUMA Distr approach
prompted us to explore more queries. We plot their execu-
tion time in Figure 10. It shows that the query execution
performance of MonetDB’s NUMA Distr approach is com-
parable to Hyper’s parallel execution performance for the
query set under evaluation. In Figure 10 MonetDB uses 96
threads in total. To match Hyper’s hardware configuration
we restricted MonetDB’s execution to 64 threads. Even with
this change MonetDB’s NUMA Distr numbers do not show
much variations compared to execution times in Figure 10.

Overall, considering its simplicity, NUMA Distr approach
looks promising for existing database architectures to con-
trol the problem of remote accesses, which results into a
lower execution performance.

5. RELATED WORK
In [15] the authors evaluate the memory performance of

NUMA machines. One of the main findings is how guaran-
teeing data locality to sockets need not be optimal always,
due to increased pressure on local memory bandwidth. Au-
thors provide use cases to show how a balance of remote and
local memory accesses tend to balance out bandwidth for an
optimal performance. Our calculations indicate for the Fig-
ure 5a, a local bandwidth of upto 15 GB/sec for 12 threads,



and a cumulative remote bandwidth of upto 20GB/sec in 48
threads. In [17] authors also offer a detailed evaluation of
memory performance in NUMA machines.

In [20] the authors treat the multi-socket system as a dis-
tributed system of individual database servers, in a master
slave configuration. However, unlike our analytic workload,
authors primarily explore the transactional workloads, from
throughput and client scalability perspective. Authors first
elaborate how the traditional databases like MySQL and
PostgreSQL fail to scale with NUMA systems and then pro-
pose a new middle-ware based system called Multimed that
solves this problem, by using multiple database instances in
a master-slave configuration. Data is replicated across all
slaves, such that read only queries are handled by slaves,
whereas the master handles update queries. Resource con-
tention due to latching and synchronization in multi-cores is
avoided by using multiple satellite database servers, instead
of a single server. In our case by using multiple database
servers affiliated with individual sockets, we try to minimize
the remote memory accesses in analytical workloads, which
we show is the prominent reason for the decreased query
execution performance.

In [19] the authors treat sockets as hardware islands and
explore the effect of different shared nothing database de-
ployments from transactional workload perspective. The
work is done in the context of SHORE-MT transactional
system with a distributed transaction coordinator using two-
phase commit protocol. Different possible deployment con-
figurations are considered with different possible island for-
mations, to explore its effects on the throughput of the
transactional workloads by varying parameters such as the
database size, granularity of partitions, skew, etc. This work
is different from our work because we use analytical work-
loads which have different characteristics with long running
queries, unlike transactional workloads where the queries
are short and access a few rows only. We emphasize on
improving the response time of individual queries by using
query parallelization by range partitioning the data, while
the transactional workloads prominently emphasis on the
overall throughput. While the authors of [19] experiment
with different possible database deployment sizes with differ-
ent granularity of partitions, we use only two deployments,
namely shared-everything (NUMA Obliv & NUMA Shard)
and shared-nothing (NUMA Distr), where we partition the
large tables (lineitem & orders) in 4 partitions across the 4
sockets.

The NUMA architecture also influences new operating
system designs. A new architecture, called multi-kernel [7]
treats NUMA machine as a small distributed system of pro-
cesses that communicate via message passing.

In [14] the authors show the case of NUMA aware algo-
rithms, with a focus on data shuffling. A lot of work also
focuses on NUMA aware operators, such as joins.

6. CONCLUSION
We analyzed the role of memory mapping in a NUMA sys-

tem, by comparing NUMA oblivious vs NUMA aware plan
execution in a database engine that uses memory mapped
columnar storage. NUMA oblivious plans that execute using
the operating system’s default scheduling policy show rela-
tively good performance. Remote memory accesses are iden-
tified as the main culprit in NUMA oblivious plans. When
the database engine is used in a NUMA aware configuration

by treating multi-socket CPU as a distributed system, re-
mote memory accesses are minimal, leading to upto 3 times
improvement on the TPC-H queries tested. For the query
set under evaluation, the distributed system based NUMA
aware approach competes with the parallelism approach by
the state of the art systems such as Hyper.
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