@ Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Approximation on partially ordered sets of regular grids
P.W. Hemker and C. Pflaum
Department of Numerical Mathematics

NM-R9611 Juny 31, 1996



https://core.ac.uk/display/301646603?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Report NM-R9611
ISSN 0169-0388

CWwiI

P.O. Box 94079

1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.

SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199



Approximation on Partially Ordered Sets of Regular Grids

P.W. Hemker
cwi
P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
C. Pflaum
Institut fiir Angewandte Mathematik und Statistik
Universitat Wiirzburg, Am Hubland, D-97074 Wiirzburg, BRD

Abstract

In this paper we analyse the approximation of functions on partially ordered sequences of regular grids.
We start with the formulation of minimal requirements for useful grid transfer operators in such a
partially ordered context, and we continue with the introduction of hierarchical decompositions and
the identification of piecewise constant and piecewise linear approximations as special instances of the
tensor product case.

In the second part of the paper we derive error estimates for approximation in different norms on more-
dimensional dyadic sequences of regular and sparse grids. We give special attention to a convenient
notation.
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Note: The major part of this report will be published elsewhere.

1. INTRODUCTION AND NOTATION

1.1. Introduction

Recently, in the research on multigrid methods for problems in three dimensions more and more
attention is paid to semi-coarsening [5, 13, 15, 19] and sparse grid approaches [2, 6, 8, 9, 11, 18, 14].
This can be understood if we notice that the classical multigrid approach, where a linear sequence of
nested grids is used for the approximation on different grids, requires very strong relaxation techniques.
The selection of a suitable relaxation is difficult because of the large number of possible choices, each
with their particular advantages and disadvantages.

In semi-coarsening, where different coarser grids are introduced, each coarsened in a single direction,
the role of the smoothing procedure is reduced, and simpler relaxation procedures can be applied [12].
This makes it attractive to study partially ordered sets of grids, rather than sequentially ordered ones.

Another difficulty, that particularly arises when regular grids are used for the approximation of
functions, is the curse of three dimensions: the number of cells increases cubically with each refinement
in all directions. This results in enormous amounts of degrees of freedom in the approximation, and
in very large systems of algebraic equations to solve. This difficulty can be removed to a large extent
by adaptive refinement, i.e. by adding only those degrees of freedom that contribute significantly to
the improvement of the accuracy. Of course, what degree of freedom adds to the higher accuracy
depends on the choice of the set of basis-functions that span the approximating function space. If, on
a regular rectangular grid, a hierarchical basis is chosen, for a sufficiently smooth function the degrees
of freedom associated with a ”sparse grid” are the optimal choice. The sparse grid can be seen as a
combination of regular grids, each with a different cell aspect ratio.

In this way semi-coarsening multigrid and sparse grid approximations are much related and make
an interesting match.



It appears that the relations between the approximations on the different grids in the partially
ordered set are not always clear [4], and that the requirements for the prolongations and restrictions
between the approximations on the different grids are often chosen in an ad hoc way. In this paper
we study the approximation of functions on partially ordered sets of regular grids (on a grids of
grids). In particular we are interested in the minimal requirements that are needed to introduce the
necessary grid transfer operators. Analysing these requirements results naturally in the introduction
of a hierarchical decomposition of the approximation on the grid of grids, and we are able to show
how the usual approximation by piecewise constant and piecewise linear basis-functions appear as a
special case of tensor product form. At that point we can also introduce an MRA (multi-resolution
analysis) in more dimensions, for a partially ordered set of approximations.

In the next sections we concentrate on the piecewise constant and piecewise linear approximation.
We define their construction in a systematic way and we derive error estimates for the approximations
in different norms.

Studying the approximation on a grids of grids, it appeared that a simple and convenient notation
was lacking and that the data structures that are used in practice to realise the related algorithms,
are rather complicated. Therefore, in the treatment much attention is given to a convenient notation,
that can be used in general for the description and analysis of algorithms on a grid of grids.

Sparse grids yield a way for obtaining an approximation with a high accuracy relative to the number
of degrees of freedom (unknowns) used. This was first observed by Smoljak [16] for numerical integra-
tion and interpolation with trigonometric functions. A different approach of constructing sparse grids
is presented in [18]. This approach uses hierarchical basis functions for interpolation with piecewise
multilinear functions. Error estimates in different norms and with different assumptions are found
in [2, 14, 18]. For obtaining optimal estimates, it is necessary to assume that suitable derivatives of
the functions are bounded. In case of singularities these assumptions may not hold. Then, optimal
estimates can be obtained on adaptive sparse grids, which can be constructed in a natural way with
hierarchical basis functions [2]. High order finite elements on sparse grids were analysed for example
in [17].

1.2. Notation

Let keZ? be a multi-integer in d dimensions, then k = (ki, ka, - - -, kq), with k;€Z fori = 1,2,---,d.
We define relational operators between multi-integers by

k<m & (kg <mp and kp < mg and --- and kg < my),
and analogously we define k < m, k > m, k > m and k = m. Further we define
max(m,n) = (max(m,n;), (max(msg,ng),- -, (max(mqg,nq)),

and min(m,n) similarly. In a few instances we will use these operators with the same meaning for
real vectors & = (z1,---,z4)eR%.

With n = (nq,---, nd)eZd we denote [n| = ni+- - -+nq. We also use the notation o = (0, -, 0) ENd;
21 = (2m1, ... 2nd); QMg = (2Migy, ..., 2Mdgy); nom = Y ic1. gMimg, and ||| = ny - - -ng. Further
we introduce in Z? the unit vectors ex, k = 1,-- -, d, as follows: e; = (1,0,---,0); e = (0,1,0,---,0);

eq =(0,---,0,1), and we use e = (1,---,1). Finally we define E = {e1,---,eq}.

Let either @ = R? be the d-dimensional Euclidean space, or let Q = (0,1)? C R? be the d-
dimensional open unit cube. With any multi-integer neZ? we associate a function space Vn,, e.g. the
space of piecewise constant or piecewise linear (bi-linear, tri-linear, d-linear) functions on a uniform
grid with mesh size h = (hy,---,hq) = (27™,--.,27"4), These grids are uniformly spaced in each
of the d coordinate directions, but possibly with a different mesh size in the different directions. The
volume of these cells is denoted by ||h| = 2~I™|. The functions in Vi, all are constant or d-linear on
each dyadic block or cell

Qp k= [k127™, (k1 + 1)27™] x -+ - X [ka27™¢, (kg +1)27™¢],



and this family of cells forms the grid Qn = {Q, . | U, p C ©Q, kEZd}. The family of cell centers

or cell nodes is denoted by Qp = {2z, | 2 = (K + e/2)2™™; keZ; zZp, €0} Other grids are
obtained by considering the cell vertices or vertexr nodes of the cells in Qp as a grid of points. We
denote these grids by Qf,"l

Apparently, all grids are identified by a multi-integer n; the number |n| is called the level of the
grid n. Notice that —different from classical multigrid theory— we make a clear distinction between
the grid-identification n and the level number |n|.

It is clear that all cells in the grids {2y, are nested in some way. Therefore, also piecewise polynomial
spaces defined on these cells are nested. In the following sections we will formalise this.

We also use the following notation for partial derivatives, with neNg ,

8 ni 6 ng
DT = pruvena — (2 e | — .
(6231) (81‘d>

For the Banach spaces of continuously differentiable functions we use, with neNg, the notation

max  max | D" u(x)| <oo},
o<m<n xeq

cn(Q) = {u

with norm
= pm .
lullen = max  max | D™ u()]
For leNy, we introduce the notation C™!(Q) = Nimi=t CT*+™M(Q). This is a generalisation which
combines C™(Q2) = C™%(Q) with the usual space of [ times continuously differentiable functions
CY(Q) = €91 (). With a CT*(Q) and Cg"’l(Q) we denote the corresponding subspaces with homoge-
neous boundary conditions.
For the Banach spaces of integrable functions, 1 < p < oo, we, similarly, use the notation

> / D™ u ()P < oo

o<m<n

and for the semi-norm and norm

— n — p
|u|Wp—§/ [ pru@p and Julp = 3 b

o<m<n

or, with 0 < k <d,
1/p

lull k= > IDEF a7
® o<m<e,m|=k
For 1eNg, we write Wy»'(Q) = gy, Wy "™ () and we obtain the Sobolev space W;(Q) =

WoH(Q). Again, with a W} ,(Q) and W:'(;l(Q) we denote the corresponding subspaces with ho-
mogeneous boundary conditions. For p = co we use the standard modifications, and for Ws we also
write H.

Thus, for the Hilbert spaces of square integrable functions we use the notation H™(Q) = W(Q),
and for the semi-norm and norm |u|yn = |u|Wn and |[ul| pn = ||u||Wn For 1€Ny, we write H™ l( =

)
Nimj=t H™*™M(Q) and we obtain the usual Sobolev space H'(Q2) = H®!(Q). Again, with a H}(Q)

and Hon’l(ﬂ) we denote the corresponding subspaces with homogeneous boundary conditions.



2. SPACE DECOMPOSITION
2.1. Nested restrictions and prolongations
Let X be a Banach space; e.g. X = C%(2), X = L,(Q) or X = L>°(Q), where Q C R?. Let keZ®
and let

Rp: X -V (2.1)
be a restriction, i.e. a linear surjection. Possibly V3, C X, but this is not necessary. We notice that
for any such Rp,, because of the surjection, there exists the right-inverse or reconstruction

PV - X, (2.2)
such that
RkPk = Ik (2.3)

is the identity operator on Vj,. We notice that P}, is an injection (and hence a prolongation) and
Ran(Pj,) C X, but P}, is not uniquely determined by a given Ry,. In this section we study properties
of such sets of transfer operators {Rk}kezd and {Pk}kezd.

It is a consequence of (2.3) that
I, = PyRy,

is a projection

Iz, : X — Ran(Ilg,) = Ran(P,) C X,

as is

I -1}, : X — Ker(Il,) = Ker(Ryg,) C X,
and we observe that X can be written as a direct sum X = Ran(Py,) @ Ker(Ry,).

DEFINITION 2.1
A set {Rk}kGZd is called a nested set of restrictions (or NSR) iff

k > m = Ker(Rg,) C Ker(Rm,). (2.4)
A set {Pk}kEZd is called a nested set of prolongations (or NSP) iff

k > m = Ran(Pp) D Ran(Pm) . (2.5)

Remark:

It is obvious that for an NSR {R},} a set of corresponding reconstructions is not necessarily an NSP.
On the other hand, given an NSP, the corresponding set of restrictions is not necessarily an NSR.
However, in some cases both the restrictions and their reconstructions may form nested sets. Then we
say that the transfer operators are nested and {V},} forms a nested set of representations of functions

in X.
THEOREM 2.2 Let {Rp}y 74 be a nested set of restrictions, then
with the properties:

(1) Rmmn is a restriction;

(2) RmnBn = Rm; (2.6)
(3) Rmmn = RmPn (independent of the choice of Pp!).



Proof: (i) Define Rlyy, = Rm P}, and R2,, = RmPp. Then we know that Rn P, = In = Rn P},
and hence Von€Vn Rn(Pp — Pj)vn = 0. Because {R}} is an NSR and m < m it follows that
Rm (P}, — P3)vn = 0 and hence Rlpy = R, So that there exists a unique Ryn. This means
that we can write Rmn = RmPn, and Rmn is independent of the choice of Pp.

(ii) RmnBn = RmPnRn = RmIln = Rm on Ran(Pp). Now, because X = Ran(Pp)®Ker(Rp)
we may write VveX : v = v, + v, so that RmnBRnv = EmnBnvp, + BmnBnv, = Rmv, +0 =
Rmu,. Further, because of Ker(Rn) C Ker(Rm) we see Rmv = Rmv, + Rmvn, = Rmuv, +0 =
Rmvy, so that RmnBRnv = Rmvp, = Rmv YveX and hence RmnRn = Rm.

(iii) Because Ry is a surjection, and by (2.6), Rymn is necessarily a surjection. Of course, Rmn
is linear (trivial). Therefore Rmn is a restriction. O

Given an NSR {Rm},,, 74, and a set of corresponding reconstructions {Pm},,, c 74, we introduce,
for m < n,

Notice that there are many possible choices of P for a give Rypp. Of course, some actual properties
of Ppym may depend on this choice!

LEMMA 2.3 Ppm is a right inverse of Rpm:

Proof: Rmnan RmPanPm = Rum - Rm(I - Pann,)Pm == Im + 0, because

Ker(Rn) C KeI‘(Rm) O

COROLLARY 2.4
With n > m:

1. Pnm is a prolongation (i.e. a linear injection);

2. PnmPRmn is a projection Vi — Ran(Pnm) C Vn;

3. In — PnmRmmn is a projection Vp, — Ker(Rmn) C Vn;
4. Vp = Ran(Pnm) ® Ker(Rmn);

5. Pnm : Vim — Ran(Pnpm,) C Vn is a bijection.

LEMMA 2.5 Let {Rk}kGZd be an NSR and let £k > n > I, then with a given set of corresponding

reconstructions {Pk }kEZd we have

Pry = PrnPpy -

Ry, Py, because Ker(Ry,) C Ker(Iln ). Hence Py = Ry, Pj = P, Ppyp- O

LEMMA 2.6 Let {Rk}kezd be an NSR with the corresponding {Pk}kGZd an NSP, then
le:}Puml:Pl'

Proof: PmP,,; = PmBEmPF; = lmP} = Pj. The last equality holding because Ilmu = u for all
UER&H(Hm) = Ran(Pm) D Ran(Pl) O



LEMMA 2.7 Tf {Rk}kEZd is an NSR, then
If, in addition, {Pk}kEZd is an NSP, then also

leiHmleﬂl.

Proof: The first equality follows by Iy, = PRy PmBRm = PRy, Rm = PR = 1Ij, and
the second equality by Il Il; = PmRmPjR; = PmBRmPmP,, Ry, Bm = Pm Py Rjpy Bm =

It {Rk}kezd is an NSR, and if m < n, then a bijection exists between Ran(Pm, ) and a subset of
Ran(Pp). We denote this relation by Ran(Pm) <X Ran(Pp). Le., a function that can be found in
Ran(Pm), can uniquely be associated with a function in Ran(Pp ). This follows because a bijection
exists between Ran(Pp,) and Vi, and between Ran(Ppp) and Viyy; and also a bijection exists between
Vm and Ran(Ppm) C Vn.

Hence, given a Banach space X with a nested set of restrictions {Rk}kGZd, a family of subspaces
Ran(Pp,) exists, with a partial ordering corresponding with the partial ordering of {n}. This means
that, although not necessarily Ran(Ppm) C Ran(Pp), a partial ordering exists such that m < n &
Ran(Pm) X Ran(Pn) © PnmBRmRan(Pm) = RnRan(Pm) C RnRan(Pp).

If {Pk}kezd is an NSP, this partial ordering simply reduces to Ran(Pm) C Ran(Pp). Then, in
the case that Vi C X and we take Pp, to be the natural injection, this means that Ran(Pp) can be
identified with Vi and m < n & Vi C Vi and, thus, we find {Vp} to be a partially ordered family
of subsets of X.

DEFINITION 2.8
Functions fme€Vm and fn€Vn are mutually coherent iff

1fp€Vy with k > m, k> n,
such that fm = R, L ff, and fn = R, 1 /1 -

THEOREM 2.9 Let {Rp}, 74 be an NSR and {Pj};, 7« an NSP. Then, if fm and fn are mutually
coherent, we have
VieZ*withl < m, I < n, we have Ry, fm = Ry, fn - (2.9)

Moreover, under the additional condition that Ilnin(m,n) = llmIln, also the reverse holds: it follows
from (2.9) that fy, and fr, are mutually coherent.

Proof: = First we assume that fy€Vm and fn€Vp are mutually coherent. Then 3f3, €V}, with
k > m, k > n such that fm = R, fr, fn = R, fi, and hence Ry, fm = Ry By fe =
Ryp fr. = Ry Bk f1. = Ry fn, which proves (2.9)

<« Now we assume (2.9). Let k = max(m,n) and take I = min(m,n). We introduce f}, by:

e = Pegmfm+ Prpfn — PRy, fm =
Pemfm + P fn — Py Ryp fn -

Then

Rkl = BmkPrmIm + Ry Prpfn — Ry Pri Ry fn
= RpkPrmim + RmkPk'n,(In - P'anl'n,)fn ’



Now, because k > m and k > n > 1, we know R, 1. Py, = Im (Lemma 2.3).
The additional condition and Lemma (2.7) show IImIln = I = OmIjIln, so that Tm (I —
II; ), = 0. Hence,
Rk Prn(In — PRy ) =
Rm PRy Pn(In — Rn PRy Pp) =
RmPkRk(I - PanPlRl)P’n =

Thus, we find R, . fl. = fm + 0 = fm. Analogously we prove R, fl, = fn. O

2.2. Commutative restrictions and projections

DEFINITION 2.10 A set {Rk}kEZd is called a commutative set of restrictions (or a CSR) iff for all
m,neZ’
Ker(Rn) N Ker(Rm,)
@
Ker(Ryingm,n)) = Ker(Rp)NRan(Pm) . (2.10)
@
Ran(Pn) NKer(Rm)

A set {Pp}p,cga is called a commutative set of prolongations (or a CSP) iff for all m,nel’
Ran(Prin(m,n)) = Ran(Pn) N Ran(Pm) . (2.11)

If {Rk}kezd is a CSR and {Pk}kezd is a CSP, then we say that we have commutative transfer
operators. .

Remark:

It is immediate that each CSR is an NSR and each CSP is an NSP: which simply follows from the
equivalence n < m < n = min(n,m). On the other hand not necessarily every NSP is a CSP nor
every NSR a CSR.

In the next theorem we show how the above definition of a CSR and an NSP lead to commutative
projection operators indeed. To prove the theorem, we first derive a few lemmas.

LEMMA 2.11 If (2.12) holds, then {Rp}, 74 is a CSR.

Proof: Let m,neZ? be arbitrary, and let I = min(m,n), then we know by assumption Iy Iy =
II; = IIpllm. We define M = Span((Ker(Rn) N Ker(Rm)), (Ker(Rn) N Ran(Pm)), (Ran(Pn) N
Ker(Rm))). To prove the lemma we show (i) M C Ker(I;), and (ii) Ker(Il;) C M, and (iii)
M = (Ker(Rn) NKer(Rm)) ® (Ker(Rn) NRan(Pm)) ® (Ran(Pp) N Ker(Rm,))-

To prove (i), let x€M, then © = z, + 2, + z; Wwith z,€Ker(Iln) N Ran(Ilyy), zmeKer(llm) N
Ran(Iln ), z;€Ker(Iln) N Ker(Ilyy). Then Ijz = Dpllmzm + Omldnz, + Omllpz; = IR +
Im0 + IIm 0 = 0. So that zeKer(I;).

To prove (ii), let z€Ker(Il;) be arbitrary and define z,, := IIm (I — lIn)z = Ilmez and z, =
In(I-m)z = Upz and zg := (I Iy —Up+Inlm)z = (I —m —IIn)z. Then a simple calcula-
tion shows: zg € Ker(Rpn)NKer(Rm) and z,, € Ker(Rn)NRan(Pm) and z,, € Ran(Ppn)NKer(Rm,)
and zg + T + 2, = .

To prove (iii), we show that M is a direct sum of the three spanning spaces. For this we have to
prove: if zg € Ker(Rpn) N Ker(Rm) and z,, € Ker(Rpn) N Ran(Pm) and z, € Ran(Pp) N Ker(Rm)
and zg + &, + z, = 0, then zg = 2, = , = 0. This is seen by 0 = g, (I —In)(zo + Zm + Zn) = Tm



and 0 = pn (I — Um)(zo + Zm + &) = ©,,. This implies zg = 0. O

LEMMA 2.12 If (2.12) holds, then {Pk}kGZd is a NSP.

Proof: Let n < m then (2.12) implies Iy Iln = Iy, and hence, for all ze€X we have [l Ilnz =
IInpz. It follows that for all zeX holds IlpzeRan(Ilyy). Therefore Ran(Ily) C Ran(Ily) for all
m,neZ® with n < m. Hence {Pk}kezd is a NSP. O

LeEMMA 2.13 If {Rp}p 7a is @ CSR and {Pp}y 7 is a NSP then (2.12) holds.

Proof: Let ! = min(m,n) and let zeX be arbitrary. We know that X = Ran(Fj) @ Ker(R;)
= Ran(F)) ®(Ker(Rn)NKer(Rm)) ®(Ran(Pn)NKer(Rm)) ®(Ker(Rn)NRan(Pm)) because { Ry, } is
a CSR. Hence, we may split ¢ = z;+z,+zm +, accordingly. Now we know lec = z;and I Inz =
HmHn(ml + o+ + mn) = HmHnml-‘r HmHn.’EO-I- Hmﬂnmm+ Hmﬂnmn = HmHnml+ Hm0+
Omam+ Im0 = ImIlnz;. Because {Pk}kezd is a NSP, we know that z;cRan(Pj) C Ran(Pn)
and z;€Ran(P;) C Ran(Pm); hence IImIlnz; = ;. We conclude that, for arbitrary z€X holds
ImIpnz =2, = Hlm; which proves the lemma. O

THEOREM 2.14 The two following statements are equivalent:
(1) {Rk}kGZd is a CSR, and {Pk}kEZd is an NSP; and
(2)
OmIn = Duingm,n)  ¥Ym,neL’. (2.12)

Proof: The theorem is a direct combination of the three lemmas above. O

It is an immediate consequence of the theorem that operators Il associated with commutative
transfer operators {Rk}kezd and {Pk}kezd do commute:

I Ily = Opingm,n) = Upllm .
Further, combination with Theorem 2.9 gives the following important result.

COROLLARY 2.15
Let {Rk}kEZd be a CSR and {Pk}kGZd an NSP, then fy and fpn, are mutually coherent if and only
i

VieZwithl < m, I < n, we have Ry fm = Ry fn (2.13)

2.3. The merging operator

Now we have seen how information about a function ueX can be represented on Vp, and how the
representations Rpu are related for different neZ’. An important question is how these Rnu, given
for a limited number of neZd, can be used to restore the picture of the original function u as complete
as possible.

We start with the situation where information is available from two representations, viz. in Vi, Vim.
Therefore we introduce the merging operator Ilynn, which selects for an z€X the information that
can be represented by the combined representations in Vi and Vim.

DEFINITION 2.16 The merging operator Ilynn, : X — X is defined by

Omn =m + In — Hpinim,n) - (2.14)



LEMMA 2.17 Let {Rn} and {Pn} be a set of commutative transfer operators, then

1.
2.
3.
IIymn is a projection, (2.17)
4.
Ran(Pn) N Ran(Pm,)
2]
Ran(Imn) = Ran(Pp)NKer(Rm) . (2.18)
S
Ker(Rn) N Ran(Pm)
5.

KeI‘(Hmn) = Ker(Rn) n Ker(Rm) (219)

Proof: The first two statements are trivial by the definition of Iymn . Now set I = min(m,n).
¢ Because [ImIln = lInllm = lyinm,n) we have

Omnllmn = Im +n — Dningm,n)) Im + On = Oningm,n))
= I +1I; - 1; + 10; + 1 — 1I; — 1T; — 1I; + 1T
= Im +1p — 10 = O .

Hence, Ilmn is a projection.

¢ xeRan(Ilmn) implies 3z = = MImnz = lmz + pz — iz = (Im — 1)z + (IIn — 10;)z +
Iz = 2y + 2o + 21 It is clear that this is a decomposition according to the direct sum in (2.18):
zieRan(Il;) C Ran(Ilyn) N Ran(Iln); zneRan(Ilm) and z,eKer(Ilp) because Ilp 2y = Iln (Ilm —
;) = Imin(n,m) — I[jz = 0; and similarly z,€Ran(Iln) N Ker(Ilm).

e On the other hand, if 2 = 2 + 2, + 2, is a splitting according to the direct sum, then II;z =
(21 + 2m + 2n) = W21 + Onlmzm + OmInz, = 21 + Unzy + Dmz, = 2z and (Il — 1)z =
(Om — ) (21 + 2m + 20) = (Im — Op)zi + (I — Op)zm + (Im — )2, = 21 — 21 + O (1 —
In)zm + Im (I —n)zn = Im2m = zm. Analogously (Ilp —II})z = z,. Thus 2z = 2; + 2, + 2, =
0z + (Im — IIj)z + (IIn — IIj)z = (IIm + IIn —II;)z = lImn 2. Hence zeéRan(Ilmn ).

e Assume that 0 = z = z;+2z,+ 2, is a splitting as above, then it follows that 0 = z; = z, = z,, because
0=T10;(2) = (ImIn)(z1 + 2n + 2m) = 2z and 0 = (I, — I0;)(2) = (I = p)m (21 + 2n + 2m) = 2m
and 0 = (Ilp, —10;)(2) = (I = m)n (21 + 2n + 2m) = 2n.

¢ llmn = PmBm + PnRn — PRy, hence Ker(Ilmn) D Ker(Rn) N Ker(Rm) is trivial.

o Ker(llymn) C Ker(Rn) N Ker(Rm) is shown as follows. Let z€Ker(Ilpm ), then 0 = lipmz =
(Ip —1IIj)z + (Il — 1)z + ;2 =: 24 + 2, + 21 This implies 2;€Ran(Il;) and 2, 2, €Ker(Il}), so
that z; = 0 and =, + z, = 0. Further, from z,, = —z,,€Ran(Il;m ) N Ran(lln) = Ran(llyinn,m)) =
Ran(Fy) it follows that z,, = z, = 0, and hence Ker(Ilymn) = Ker(Rn) N Ker(Rm,). O



2.4. The hierarchical decomposition

Further in this section we assume commutative transfer operators.

DEFINITION 2.18 Let {Rn} and {Pn} be a commutative set of transfer operators, then we define
Hmn : X — Ran(Ppax(m,n)) C X, the hierarchical surplus, relative to the grids m and n, by

Hmn = Hmax(m,’n) —IImn . (220)

Remarks:
e The hierarchical surplus is a projection operator.

e The hierarchical surplus, Hmmnu, of a function w represents the amount of information in
u€Vimax(m,n) that cannot be represented on the Span(Ran(Pr ), Ran(Pm)).

e We can also write
Hmn = (Hmax(’n,m) - Hn) (Hmax(’n,m) - Hm) .

DEFINITION 2.19 For a fixed nge{—o0,Z}%, which indicates a coarsest grid, we define for arbitrary
n > ng, neZ?, the operator Qn : X — Ran(Pp) C X, by

d
Qn= [ (In-Tn_e,). (2.21)
i=1
n; # noj

We use the convention that Qng = Ilng. The operator Qn is called the (direct) hierarchical surplus
at grid n.

If noeZ? we call noeZ? the coarsest grid, and, without loss of generality we may assume ng = o.
If a ng; = —oo then no coarsest grid exists.

LEMMA 2.20 Qn, is a projection and QmQn = 0 for all m # n.
Proof: First we show that Qpn, is a projection. For simplicity of notation, we set C' = ng.

OnQn = Iljoinz, (Mn —Tn_¢;) (In —Mn_e¢,)
d Iy — Hn—ejﬂn - Han—ej + Hn—ean—ej)

é 1,n;#c; ( (2.22)
= ] 1,n;#c; (Hn - Hn—ej - Hn—ej + Hn—ej)
= ] 1,nj#c; (Hn - Hn—ej) = Qn
To show that QmQ@Qn = 0 for all m # n, let m # n. Without loss of generality we may assume
n; < m; for some i€{1,...,d}. We consider the case n; # c¢;; the other cases are similar.
OmQn

]___[] (]:[m - ]-_-[m—ej) (Hn - Hn—ej)
= (Im —IIm-e,) (In —n—e,) [[;2 -
(ImIln —Im-_eIln — Omln_e, + Om-elIn-e.) [1;2
(U P | (R S | PO S § PO T ) ) PR
0« Ipi- =0

(2.23)

The indices indicated by dots correspond with those of min(n,m). O
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Remark:
Notice that, for n > Ng, the two-dimensional case the relation (2.21) reads

Qnu = Hnu — Hn_el’lL — Hn_e2u + Hn_eu 5 (224)
where e = (1,1), and in the one-dimensional case we have

Qnu = Hn’u, — Hn_eu . (225)

COROLLARY 2.21
From Definition 2.19 it is immediately obvious that the projection IIy can be decomposed as

M= 3 Qm., (2.26)

Ng<Mm<n

and, hence, Ran(Iln ) = Span(Ran(Qm))ng<m<n. Because of Lemma 2.20 we can write

Ran(llp) = @ Ran(Qm)- (2.27)
Nng<m<n

If Vn C X and Pp is the natural injection, then we see that Ran(Pp) = Ran(lln) = Vn and,
defining the pre-wavelet space Wn, = Ran(Qm,), we find

Vo= @ Wa. (2.28)
ng<m<n

2.5. The tensor product case

Foranyi=1,...,d,let Q; C Rand let Q = ®%,Q; C R? be their Cartesian product. Let X:(9;) be
a function space on ; with functions wu; 4, (z;) so that X;(€;) = Span({i q, }a,;e4,)- Let A = ®% | A;
be the Cartesian product of index sets. Then the tensor product space X () is defined by

d
X(Q) = ®?:1Xi(ﬂi) = SpanH Ujq; - (2.29)
acA =1
It is well known , e.g., that for X;(Q;) = C§°(R), the tensor product space X () is densely embedded
both in C*(R?) and in H'(R?).

Foreach i = 1,...,d, let {R; .}, .7 be a sequence of restrictions (for functions in one dimension)
defined on X;(€2;), with R; » : X;(£) — Vin() C X;(9;), then, similar to X (), for each neZ® we
may define a tensor product space Vi (Q) = @2, V; n, ().

If the elements of V,,(;) are all determined by values associated with Qn,, (2} or Q% ), then we
find a bijection Vi, = Vi (Q) = Vn(Qmn), (or = Vi (Q4,) or = Vi (925,)). This notation indicates that
its elements are determined by their values on the Cartesian product space Qy = ®;-i:1§2m. (or Q,,":L or
DEFINITION 2.22 We define the tensor product restriction Rpn : X(Q2) — Vn () by its action on a
typical basis function

d d
ua(x) = [ [ i (z:) = Rnua(z) = [ Rinstia, () - (2.30)
=1 =1

We also write Ry = ®;Rin,. Since Vp(Q) C X(Q), we can take the natural injection Pp as the
corresponding reconstruction for Rp. This Pp we call the tensor product prolongation.

11



THEOREM 2.23 For each i€{l,...,d} let Q; C R, and let {V; (i)}, c7 form a nested sequence of
subspaces of the function space X (£;), with

Vip(h) C V() C X() for p<ygq, (2.31)

and let each sequence of (one-dimensional) operators {R;n}, 7 form an NSR. If we take for the
corresponding reconstructions {‘Pia"}nGZ the natural injection, then the tensor-product restrictions
{Rn} and prolongations {Pn} form a CSR and a CSP respectively. (So, together they form a
commautative set of transfer operators.)

Proof: By the nesting of the subspaces it is immediate that for each ¢ the set {Pia”}neZ forms an NSP
(Section 2.1). Further, using the fact that the prolongation is the natural injection, we can identify
restrictions R; with the corresponding projections II;, and by Lemma 2.7 we see that for each i we
have IL; pII; o = II; (II; , = II; ,, if p < g. Thus, for each 4 it follows that the sequences {Pi:"}nGZ and
{Rin},cgz are CSP and SCR. Now we prove that {Rn } is an CSR by showing R Rn = Rninim,n)
as follows.

Let I = min(m,n) and let veX () be arbitrary, then we can write

v(@) =Y caua(z)

acA

and

Rmuv(z) = Z caRmua(z) = Z Ca H R miUia;(2s) .
a i

a

Similarly,

RpBRmv(z) = ) .qca Bnll; Rimtia,(z:)
>a call; Rin, Rim;Wia, (%)
> a ca I]; Rimin(ms,ni) Wi,a; (%)
Y aca Buinmn) I1; %, (%)
Rmin(m,’n) E Ca H, Ui,a; (:L',)
Rmin(m,’n) v(m) .

Hence RpnRm = Ruyingm,n), and, thus, lInllm = Hpinm,n). Now Theorem (2.14) shows that
{Rn} is an CSR and {Pp} is an NSP.
To prove that {Pp} is an CSP, we have to show Visinim,n) = Vim N Vp, or

®i Vti,min(m,-,ni) = ®iVYi,m.‘ N ®ivti,ni . (232)

As for each 7 we know that {Visn(ﬂi)}neZ is a nested sequence of subspaces of X;(;), we can construct
a sequentially ordered set of basis functions B; = {u;p}s in X;(€;), such that n; < m; implies
Ui pE€Vin, = Ui p€V; m,. It follows that we have V; ,,,, = Span({u; € B;|u; 1€V; m, }) and similarly

Vvi,min(m,mi) = Span({ui,leBilui,lew,"i n Vvi,mi}) .

So we see
Span IL wig, =
Uj,1; EBi n Vji,min(mi,ni)
Span Hz Ui,m; ﬂ Span Hz Wi,n; 5
Ui m,; eBi n ‘/i,m,' Uin,; GBi n ‘/’i,ni

which is equivalent with (2.32). O

EXAMPLE 2.24 Piecewise constant approximation.
If we consider L¥Y<(Q) = X(Q) and we choose for R;,, the one-dimensional La-projection R;, :
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X(Q) — Vo() € X(9;), where Q; C R and V,(9;) is the space of piecewise constant functions
on dyadic intervals (i.e., if R;, denotes: taking mean values over intervals [j27",(j + 1)27"] in the
i-th coordinate direction), then, for each ¢, the restrictions {R; »}, form a one-dimensional NSR. The
corresponding reconstructions P; , represent piecewise constant interpolation over dyadic intervals.
This makes the prolongations {P; ,}, an NSP.

Then, as a consequence of the above theorem, { R}, } and { P}, } are commutative transfer operators,
i.e., {Rg} is a CSR and {Pg} a CSP.

EXAMPLE 2.25 Piecewise linear approximation.

If we select the restriction R;, : C(€%;) — Vo () C RZ to be: taking function values at dyadic
points j27™ in the interval €; C R, then {R;,}, is an NSR. Corresponding reconstructions P; p,
defined by piecewise linear interpolation over dyadic intervals, make the prolongations {P;,}n an
NSP.

As a consequence of the previous theorem, with C°(€2) = X (), the tensor product operators {Ry}
and { Py}, defined on X (§2), are commutative (are a CSR and a CSP respectively). The restriction Ry,
takes the function values at grid points Q}i, and the prolongation P, makes a multi-linear interpolation
over cells in Qp,.

In the above examples, with Vi C X we took for the reconstruction Py, the natural injection (the
identity in X). In this way we may identify Rp and Iyp. It appears that in both cases, i.e. for the
piecewise constant and the piecewise linear approximation, we have a projection Ily of the form

d d
H'n = H ]:[’ﬂjej y = H ane]- .
7j=1 7=1

Here R, e, : X(©2) — X (1) is the operator on the tensor product space X ({2) such that

d
anejua(m) = Rj,njuj,a,]- (mJ) ' H Ui,a; (:E,)
iZj
In the following section we consider the case of nested subspaces {Vp} with Vi € X and X =
Un Vn, and where all spaces Vg, are spanned by dilations of a single function ¢(x), together with all

its dyadic translations. This leads to the more-dimensional multiresolution analysis or MRA. In this
case the spaces Wy, = Ran(Qm) correspond with more-dimensional wavelet spaces.

2.6. More-dimensional MRA and wavelets

It will be convenient if

(i) we can make an arbitrarily accurate approximation of any function u€X by taking the multi-
integer n large enough. Moreover, it will be convenient

(i) all spaces {Ran(Pp)} or {Vn} have a similar structure, and

(iii) there is a clear relation between the spaces in {Ran(Pp)} or {Vn}.

In order to create such a structure, in this section we introduce the multidimensional multiresolution
analysis. For this purpose we will restrict ourselves to Hilbert spaces. First we introduce the important
notion of frame.

DEFINITION 2.26 A sequence {z,} in a Hilbert space H is a frame if there exist numbers A,B > 0
such that for all ze H we have

Allz|® < (@, z0)|* < Blla||*. (2.33)
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The numbers A, B are called frame bounds . The frame is tight if A = B. The frame is ezact if it
ceases to be a frame whenever any single element is deleted from the sequence. If the sequence {z,}
satisfies (only) the second part of the inequality (2.33) then the sequence is called a Bessel sequence.

Having introduced the exact frame, we can define the partially ordered, more-dimensional multires-
olution analysis. Notice that this is different from the more-dimensional multiresolution analysis
introduced in [1], which considers a sequentially ordered nested set of approximating spaces.

DEFINITION 2.27 Let Q = R? and let X (Q) be a Hilbert space of functions defined on Q. A multidi-
mensional multiresolution analysis of X(Q), is a partially ordered set of closed linear subspaces

{Vn|Vn C X(Q)}TLGZd

with the four properties:

(Ve =10} [JVn=X(®), (2.34a)

n n
f(@)eVn & F(2™z)eVnyim Vn,meZ’, (2.34b)
f(x)eVn & flx —27"k)eVn VYn, keZ?, (2.34c¢)
dpeVo : {¢(xz — k)}keZd is an exact frame for V. (2.34d)

The function ¢(x) in (2.34d) is called the father function or the scaling function of the multireso-
lution analysis.

For © = R? the tensor product Examples 2.24 and 2.25 in Section 2.5 also yield examples of a
multidimensional MRA.

For piecewise constant interpolation we take X (€2) = L2(R?) as the starting point. The charac-
teristic function on the unit cube (the more-dimensional Haar function) is the scaling function ¢.
The set {Vn} contains the spaces of piecewise constant functions on Qy, and a CSR is obtained
by Rn : X(Q) — Vp, the L?-projection. It is obvious that in this case the set {¢(z — k)}j, is an
orthonormal basis and hence an exact frame with bounds A = B = 1.

For piecewise linear interpolation we take X(Q) = H®(R?) as the Hilbert space. The set {Vn}
contains the space of piecewise d-linear functions, determined by their nodal values at Q,":L A CSR
is obtained by Ry, : X(2) — Vn, the piecewise d-linear interpolation at Q,j:,‘ Here, the d-linear finite-
elemen basis function is the scaling function ¢. By Theorem ??? from [10] it is easily seen that in
this case {¢(x — k)}p, is an exact frame, with as frame bounds the extreme eigenvalues of the frame
operator S : L2(Q2) — L?(2) defined by Su = Y, (u, ¢(x — k))¢p(x — k). Bounds for these extreme
eigenvalues are A = 37¢ and B = 1 respectively.

As in the tensor product case, we take for the reconstruction the natural injection Pp : Vi — X
so that Rp = IIp for all neZ’.

More-dimensional wavelets

A wavelet space Wy, C Vi, a closed subspace of Vi which contains those functions in Vi that cannot
be represented in any of the function spaces on the next coarser level, i.e. these functions are in Vp
but not in Span(Vp_e,, -+, Vn—e,).- Thus Wp, C Vg is a closed subspace so that

Vn=Wn @Span(Vn-e,, > Vn-e.) (2.35)

This means that Wy contains the ‘difference information’ that is available in the fine grid Vp, but
not in the span of the coarser grids Vn_e,, Vn—e,, -+ and Vn_e,.
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The space W, is the complement of Span(Vn_e,, -, Vn-e,) in Vn. Of course, this complement
is not uniquely determined. If we want we can make use of the Hilbert space structure and consider
the (unique) orthogonal complement

Wn 1 Span(Vn_el, ey, Vn_ed). (236)

This choice corresponds with Ry : X — Vg being the orthogonal projection. However, in many cases
we will use spaces Wp, that don’t satisfy this orthogonality property!

As soon as we have selected a CSR {Rn}, then corresponding pre-wavelet spaces are defined as in
Section 2.4. These pre-wavelet spaces on an MRA are wavelet spaces.

In the case of an MRA no coarsest grid exists, so that (2.28) gives

Vn =P W;. (2.37)
jsn
Because of property (2.34.a) we can decompose the space X(Q2) in
X = W; (2.38)
JeZ?

so that we can write any ueX () as u = Ejezd w; with w; GWJ-. A restriction Rp, : X(2) — Vn is

now determined by
Rn [ Y wj| =2 w;. (2.39)
J jsm
By Definition 2.19 we recognise the direct hierarchical surplus
Qn: X(Q) - Ran(Qn) = Wn . (2.40)
We see that there is no coarsest grid and we can decompose Rp, as

Bn= Y Q. (2.41)

The four relations (2.34.a) to (2.34.d) imply that also the spaces Wy, are scaled versions of one
space Wo,
f(@)eWn & F(2~x)eWo, VneZ?, (2.42)

and, moreover, that they are translation invariant for the discrete translations 2‘"Zd,
f(x)eWo & f(x — k)eWy. VneZ®. (2.43)
As soon as we find a function v (z) with the property that ¢(x — k), k€Z?, is a basis of We,

then by a simple rescaling we see that (2™ x — k), yields a basis of Wne. Such a function is the
more-dimensional generalisation of a wavelet [3]. Because of (2.38) the full collection

{tn @) | ¥y @) = (2" — k), n,kez?}

is a basis of X (R%).
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3. PIECEWISE APPROXIMATION IN d DIMENSIONS
3.1. Piecewise constant approximation

We approximate ue X (2) = L?

10C(Q) by un€Vn, in the space of piecewise constant functions on (g,
ie.in

Vo = Span({6}) (3.1)

with, for some ¢ > 1 or ¢ = oo,

b (@) = 27152 — ).
o) = T2z, Xpo1(25). (3:2)

with xjo,1)(z) the characteristic function on the unit interval.

This clearly describes a basis for a tensor product space, and we may write

d
Vn = Vn(Q) = Q) Va,; (), (3.3)

Jj=1

the tensor product of spaces V,,;(2;). These V,,; are the spaces of piecewise constant functions with
meshwidth h; = 27" on Q; C R. The corresponding grid of cells on the Cartesian product of {£2;},
is denoted by 2p. The cell centers are denoted by by 7,.

We define the restriction Ry as the projection

Rn: X — VncCcX
U — unp = Rpu,with (3.4)
Up; = un((i+e/2)h)= paald fﬂm, u(€)d9.

This restriction is of type (2.30), and Rpn = Ry, ,....n, can be decomposed as

d
Rn = H ane]- ) (35)

i=1

where R, e, u(x) is the function, piecewise constant in the j-th coordinate direction on a partitioning

Qn, so that
T+(h/2)€;

Roje,u(e) =2 [ u(Er, - 6a) dE;
T—(h/2)€;
for all @ with (2;2™ + 1/2)€Z.

In the special case X = L?(Q), the space X = X(Q) is a Hilbert space, and {¢nJ} is an orthogonal
(orthonormal if ¢ = 2) basis in Vp,. In this case Rp, is the orthogonal projection L2(Q) — Vp. For
Q = R?, the set {Vn} as defined in (3.1)-(3.2) is a typical MRA. This is no longer the case if we
consider a bounded domain 2, but the decomposition as treated in Section 2 still can be used in the
case of a bounded domain.

Tt is easily checked that the more-dimensional wavelet ¢ (x)eWe, corresponding with the piecewise
constant scaling function ¢(x)eVp, from the previous section, is the more-dimensional elementary
checkerboard function given by

0 if a’,‘gQ0,0 ,

V(@) :{ (-0 it 2eQo,0 and 2R . (36)

This function is the tensor product of the Haar-wavelet.
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In wavelet theory the spaces Wy are labeled channels, and the distinct channels are linearly in-
dependent. The first decomposition of an arbitrary function from X () consists in writing u(x) =
> n wn(x), where wp eWn, with neZ?, according to (2.38).

Each subspace Wy, has its natural basis, the standard basis ,

{Un k@) | ¥p (@) = 2T 152" €0 — k), ker’} (3.7)

of functions with a minimal support. We see that ¢ = e 0€Ve is a function with the unit cube
Q0,0 as support. The basis function d’n, L is a scaled, elementary checkerboard function, that may be
characterised either by its support, which is a single cell in Q23 _e, or by the centerpoint of this cell,
Zp_ek = 2-Im—€l (k 1 e/2).

On the open unit cube Q = (0,1)% we consider the 2/™I_dimensional spaces Vi = ®?:1Vn]., the
tensor product of V3, ((0, 1)), the spaces of piecewise constant functions with meshwidth h; = 27" in
the j-th coordinate direction. For functions defined on = (0,1)? we can write relation (2.38) as

X(Q) = wn, (3.8)

n>0

and make a decomposition in channels correspondingly. Each subspace Wn e, now with n > o, has
its standard basis d’n+e Lk

{¢n+e,k(w) | Unse k(@) =2M/9%(2"% k), 0 <k < 2"} . (3.9)

For Q = (0,1)¢, the exceptions related with the boundary are found in the spaces Wy, with a zero
index (i.e. ||n|| = 0). These Wp, have basis functions with different shapes. They are derived from
the corresponding functions for the unbounded case, but their support is restricted to 2. Their
corresponding nodal points Zn_e k> are found on the boundary Q2 = Q\( instead of in the interior.
For ||n|| = 0 we have Wy, spanned by a basis

0<kj <2t if n; #0
1bnk(.’r) ijO if n]'IO - (310)
j:]-a"'ad

Taking such modifications into account, both for @ = (0,1)? and for Q@ = R?, for each uELi’OC(Q)
we may write a hierarchical expansion (a wavelet expansion) according to (2.38) or (3.8), as

u@)= Y wn= cpptprp@) = cpg V2" k), (3.11)

nez n.k nk
where {b\ is simply
~ [ = sign|e| if max(zq,..,z4) <1,
W(x) = { = 0 if max(zi,...,zq) > 1,

and ¢,z = 0 for all k with &l even.

3.2. Piecewise linear approximation

We approximate ueX = C°(Q) by uneVn, in the space of piecewise d-linear functions on Qp, i.e. in

Vi = Span({¢ ). (3.12)
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with, for some ¢ > 1 or ¢ = oo,

bpj(@) = 271922 — ),

o(z) = [Tj_ Alzs), (313)
with A(z) = max(0,1 — |z|) the usual hat function.

Clearly this is a basis for a tensor product space as (3.3), where V;,; are spaces of piecewise linear
functions on a partitioning of 2; with meshwidth h; = 27"5. The set of nodal points {j2n}j€Zd in

Q is denoted by Q3.
Here we define the restriction Ry as the projection

Rnp: X - VpCX
U — un = Rnpu, (3.14)
un(z) = u(z)VzeQ.

The restriction is also of type (2.30) and the operator Rn = R, ... n, can be decomposed as (3.5)
where R, e;u(z) is a function, piecewise linear in the j-th coordinate direction, on a partitioning Qg
such that R, e, u(x) = u(x) for all  with z;/h;€eZ.

It is clear that there exists a basis-function in Vp for each nodal point z,,z in ﬁ; If and only iff

lik] is even, there exists a ‘parent grid’ ﬁ:—n with m < n and m # n, for which mnkEﬁ'I—;b' Hence, in
this case each wavelet space Wy, has its natural basis

{¢nk | keZ? with ||| odd } (3.15)

On the closed cube Q = [0,1]? we consider the szl(Q"f + 1)-dimensional spaces Vi = V() =
®j:1 Vn, ([0,1]). With homogeneous Dirichlet boundary conditions, the dimension of the correspond-
ing space V) C Vp, is H?Zl(Z"J' —1). It is immediately clear that typical FE-basis functions for Vp,

are the d-dimensional hat-functions: functions that vanish on all but one point of ﬁ; Each such FE
basis function of V3 is characterised by an interior point from Q,;'TL
We notice that for Q = [0, 1]¢ we have

Vn = {0} except for n > o, (3.16)

and
Vp, = {0} except forn > e. (3.17)

With Wy, (or W) we denote the subspace of Vp (respectively V;3) of functions that vanish at the
gridpoints of all ﬁ;—ej (respectively Q;’L_ej), j=1,---,d. From (3.12) we see that for Q = R?

Wn = Span({¢, ; | 7]l odd }). (3.18)
and for Q = [0,1]¢ we see that 0 < j < 2™ and
jiodd, 0 < j; <2™ if n; >0,

i=1,....d

Wn = Span( ¢ng

Clearly Wn, = W, = {0}, except for n > o. If |[n| = 0 we see that V; = {0} and Wp, is spanned by
FE basis functions that are characterised by boundary points on the unit cube. Thus, the trace of a

18



function on the boundary is exclusively approximated by elements of Wy, with |n|| = 0. Further we
see W9 = Wp, if n > e. Apparently

Vn= P W, (3.20)
o<k<n
and
Vn= P Wg. (3.21)
e<k<n

4. ERROR ESTIMATES FOR REGULAR GRIDS

The decompositions of type (2.38) allow the approximation of a sufficiently smooth function in X (Q)
by a series with elements in Wj. To obtain an impression of the quality of these expansions we derive
some error estimates.

4.1. Estimates for piecewise constant approrimation

As the case where domain boundaries are present, is the more general one, we study the case 2 =
(0,1)4. To quantify the error of approximation on Q, we introduce for ucC€(Q) the seminorm

|u :max|Deu(:t:)| + max max |Dpu(1:)| . (4.1)
TEQ 0<p<e zxeQ\Q
0<|p|<d

Now we derive the following

THEOREM 4.1 If we consider an expansion of a C€(Q)-function, u, in piecewise constant functions
on the grid Qy, for an arbitrary neZ?, n > o, and if we write

Rn’u = Z wm, , (42)

with wmeWm, o0 < m < n, then, for m # o we have
lwmll Loy < 2742271 ul, (4.3)
and an estimate for the approximation error

lu— RrullLy@) < (2/3)Y ||hnll |ul. (4.4)

Proof: We take {1} as a basis in Wm, e < m < n. All these functions form an Lo(Q)-
orthonormal set (orthonormal Haar basis) and they are orthogonal to all functions in Wp,, n # m.
Thus, we find (4.2) with wm = ) a; Y k> Where

Ul = (u,ipm’k) = / uwm,k df) :/ “¢m,k daa.
@ Ym_ek

For m > e the point z,,, , . lies in the interior of {2 and the estimate holds with

lu| = max |DCu(z)| .
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Viz., by Taylor expansion around z we have

m-ek>

CRARES fQ _ekuwm,k df

IN

Jo,. i 17~ moekl lul Y g a0
=Jo, e =z ekl fu] 2™-€l/% ag
B N P TP (45)

— d 27 ™
|u| 2|m e\/22d lfo Ej dfj

— |u| 2|m e\/22d1—[]_1 (52 2m])
| 21T —€[/29-2(TN| _ |1 9/M—€|/29—2|M|
|ul |ul

|u| 92— d/22 3m|/2

For m # 0, m % e, i.e. for ¢, with an m-component equal to zero, the point z,,, ek lies on the
boundary and the function v,,, k is constant in one direction over the whole domam Q and it is of

Haar-wavelet type for the non-zero indices (or index). In this case the orthonormal basis functions
are 2ﬁ/2¢m k> Where (3 is the number of zeroes in m. Nevertheless, provided that m # o, in this

situation the same estimate (4.5) holds with, e.g. if m; =0 and m; > 1 for j =2,...,d,

94 tu(x)
Oxa ---0x4

lu| = max‘
T

Hence, the estimate (4.5) holds for m > o, m # o, if we use the seminorm (4.1), and we find

lom|® =" lamgl> <D 274273 |uf? = 274272 M|y, (4.6)
k k

so that ||wm || < 274227 1™ |u|, which leads to (4.3) and (4.4) because

|lu — Rpu|®> = > llwmlP® < Z S 274 ™y
mi > ny ji=1 m>0
or .-+ or m;>n;
mq > ng
d
< 2P Y 3D (aymens
i=1 m>0
mj>n;
d d
< o (a3 S/ < f? (2/3)1 YR,
j=1 Jj=1
< Jul? (2/3) |hal®.

If we have no further a-priori knowledge about u, the most efficient approximation will be one with
hi = --- = hq because this equalises the main terms in the error bound. We see that the truncation
error for u — Rpu is not particularly promising or surprising: the major part of the error is produced
by the largest meshwidth: (max(hy,---,hg))¥?, whereas the total number of degrees of freedom for
an element in Vp, is 2/7.
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4.2. Estimates for piecewise linear approximation

For a function ueC®(2) we consider piecewise linear approximation as in Section 3.2. We approximate
u by un€Vn, where Vi is the space of piecewise d-linear functions on 9. We take upn such that
un(z) = u(z) for all zeQy; and we write

un(x) = Z dnj¢nj (z), (4.7)
J
where ¢,, ; (z) is defined by (3.13).

With upn€Vp the piecewise linear approximation on €5 of the function ueC®(f2), we make the
hierarchical decomposition Vi, = @y, .y, Wi, and write

un = Z W ’kaWk , (48)
k<n
where
wg(x) = chjcﬁkj(w) ; (4.9)
J

with Ckj = 0 for all j with ||7|| even.
In practice the coefficients cj, T 7]l odd, are computed as hierarchical surplus coefficients, by taking

the difference between the value u(jhg,) and the interpolant from coarser grids. This is most con-
veniently formulated by introducing stencil notation. Therefore, we introduce the difference operator
Vpu(z) =u(z +h) —u(z), (4.10)

and the usual central difference approximation for the second derivative by stencil notation, as

1 1 1
[— —1,—] u(z) = = Vi o u(z — hje;).
2 h;€; 2 JJ

With this notation we write an expression for the hierarchical coefficients in a piecewise linear ap-
proximation. We see that d-linear interpolation leads to the following expression for the hierarchical
surplus coefficient

_1 1 1 i
kgt = T [-50-3]  utimg). (4.11)
h .

j=1,d i €;

Notice that the factor |||hk|||% cancels the scaling factor 2K/ in the definition of k> so that the

function u(x) is expanded as

w@) ~ Y g lIhgl ™7 o(2Fa —j).
kg

An expression for the coefficient kj is found in the following lemma.

LEMMA 4.2
Let ucC€t™ for a given m with o <m < e, and let )

Lpj(@) = 27 ™22 - ), (4.12)

then, for each ¢,, ;€Wn, |l # 0, [|7]] odd, we have

Ty [5.1 3] ,.e, u(ibn)
(—1)€tmi2=d [, D€+ u(z) D&M Ly, i (2) d2.

1
Ihnll ™= [ey1
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Proof: We see that for |n|| # 0, ||7]|| odd, each L'nj has a support in the interior of Q. Taking this

into account, we give the proof after a coordinate translation with 2”5 then we see that for all s,

0<i<d,
Zsi=—1,1 Osihi D€iu(z)dz;
Sihi
= Zs,‘:—l,l u(z) 2,20
= Zs,':—l,l Vsihieiu(z) |Zi:0
= [1; -2, ]']hieiu(z) |zi:0
and hence
Hz:l,d [_%7 1’ _%] h;€; U(O)
_ sih; X
= (Tl)d Hi:l,d I:Esi:—l,l 0 Dei hd dml] ’U,(ZE)
— s1h sqh
= (Tl)d z;lsl,...,sd:h_1,1 01 ! "'.{gd ¢ De“(w) dzy ---dzg
= (F) I, - Joh, DEu() TTic, sign (z:) dy---dzg
= (G [, Doul@) T, (27 AR ay)) doy -+ dag
= () Deul@) [T, (27 £ AE™a:)) do
= (F)? [ DCu(x) 211 Deg(2mx) dQ
= (F)? [ DCu(z) D€Lno(zx)d
= (—1)l€+Mig=d [ DE+TMy(3) DE~T [y o(z) dD
O
Remarks:

e For |n| = 0, (i.e. for boundary points), the same formula holds, provided that the formula
is restricted to the lower dimensional boundary manifold (e.g. the face or the edge of the unit
cube).

e For an m with 0 < m < e we derive an expression for |[D™¢||,, with ¢ given by (3.13) as
follows m _

D™l = JoIL: |D™ A(=:)[PdS2
1 s
=TL (/1) 1™ (1 =l I da:)
=21(p+ 1)1
So that

ID™¢ll, = 247 (p + 1)1~/

e In (3.13) we have ngnJ = 2M/9(2™ % — §), and hence

Here, 271 — H?:l 2mini — H?:I h,m = hy™, so that for arbitrary 7,

This means that the norm I|¢n_7 |lp is independent of the level n iff we take ¢ = p.

D™ g5l = [ 27178 D™ (2" — )P do

= 2 Ip/q f|Dg”'¢(2n:c)|Pd(2|n|m) 2-Im|
= 2 Ip/q [ [2Me DM g(2)|P dz 2—Im|

— 91 |(p/q-1) 9|MMoTL|p ||Dm¢||g ,

ID™ ¢ jllp = In /PO Ry | DT, -
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e To obtain error estimates in the approximation Theorem 4.3 we compute an expression for
||DmL,nj(:t:)||p, with Lnj as introduced in (4.12), in particular for p = 1,2, co.

P _
[P Las @) = amttt ™ ol
[l ™ 2 1)l

So that we may conclude, also considering the special case p = oo,

D™ Ly j(@)lls = Ibnl®  (hn/2)"™,
D™ Lyj@)ll2 = (/32 Ibnl®? (hn/V3)™™,
D™ Ly j (@)oo = Ihnl  (hn)™™.

Using the above expressions and Lemma 4.2, we can derive the error estimates in the following theorem.

THEOREM 4.3 Let uECOe"'m(Q) be given for some m with 0 < m < e, and let unpe€Vn be the
piecewise linear approximation on Qg of u, such that up(x) = u(z) for all z€Q3,. If we make the
hierarchical decomposition Vpn = ®©, ., W}, and write

Un = Z W » kaWk,
k<n

then we have the estimates

lwgll: < DS Mally  Jhg|? 272372 e,
lople < 1D ™ulle Jhg)? (Ry/2)=™),
lu—unls < |DEtMul, 2-d3-3ml2 ¢ pl+mo

[t —unlle < [|DEFMu|ly 6™ BT

Proof: Using (4.11) and Lemma 4.2 we can obtain estimates for the hierarchical coefficients Ckj
We fix k and we derive, writing h = hy,,

1 _ —
IRl ezl = 277 | Jo D&*Mu(z) xgj(x) D€ ™MLg(x) dz |
S [ |DE-M Lyl
27 D Mu x4l IR I (R/2)~ (=™,

IAIA

where Xkj is the characteristic function for the support of ij (z), or similarly
P leggl = 21| o DO (@) e DS Lgj(a)de |

277 DM x g1l D" L 5|2

642 || D u xpll2 IR/ (R/v/3)= (&=

IN A

We write wy, = ZJ ckj¢kj with ||7]| odd, and we know that these functions {ngkJ }J’ for fixed k have
disjoint supports. Hence, for the hierarchical contribution,

lwgll3 = 125 ckifrilld = 2i j kickj | Phidhj 42

S lonsl3
IRIP/ llogills 35 1D uxy ;115 6~ IRI® (R/v/3)-2E€=T)
[l 27t |DEFMy3 p e gimi

IANIN I
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For the other norm [|wg, || We obtain similarly

lwgllo = 11225 ¢hj Prjlloo
< max; feg il (|6 jlloo
< [l max; 279 DM g oo [BI2 (B/2)7 €™ [R] 7S
< 277D | IR (R/2)” fe-m)

For the error, for p = 2 or p = oo, we get

lu—unly = || Cgwp — Xken wklly
Ekzn “wk”p

e-m
Cp | DS ™ ully Sg o Ihge I R, 6™

Gy [ D&+, S HET™

A IA

with Cy = 274/23=I™M1/2 or €, = 2792/€~™|  This yields the above mentioned estimates, by taking
into account that

Yhanbp " =Xkhy "~ Then by =

= 2 0<ki,....0<ky H hH_ml 2 0<ky <niyenns0<ka<ng H?:l hijmi
= Hg:l Zﬂski hllc+m1 - H?:l Eﬂgkifm hij—mi =

=1z EOSki(lﬁ)ki(Hm’) I, Do<ki<n: (1/2)% rm) =

d 1 1—(1/2) (1+nz)(1+mz)
=Lz 1-(1/2)1Fms ~ I 1—(1/2)t+ms

d n; m;
= [li=1 W [1 - Hz L (1= (1/2)0m0s ))] =
< 24 (2/3)™ [1 -1, (1—2- (1+"-)(1+m1))] =
n; m;) — d 14+m;
<24 (2/3)™1 Ly 2 = giml ST AL

For m = e this simply reads Zkgn lhgll? <374 |hn|?. O

COROLLARY 4.4
As a direct corollary we find

lu—unllz < 54742 ||D*€ully  ||hn|?,
lo—unllw < 677  [D*ulle [Ihnl?,

and, forp=2or p=o00,and 0o <m <e,

lwgll, < C D™, RE*™, (4.15)
and 4
[u—unl, < C ||D§;mu”p Ei—thIj—mi J (4.16)
[u—unll, < C [[D*ull,  [[hn]
From (4.15) also follows a bound by a Wpe’z—norm, We immediately see that, for 0 < £ < d,
lwglly < Cllullye.c amin, h ™ < Cllullye. g )4/ (4.17)
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Remark:

We gave the proof of Theorem 4.3 for functions that vanish at the boundary of 2. Taking into account
the remark following Lemma 4.2, it is clear that similar estimates (with different constants and with
terms including derivatives of u that are restricted to the boundary planes) also hold for functions
with non-homogeneous boundary conditions.

5. ERROR ESTIMATES FOR SPARSE GRIDS
5.1. Estimates for piecewise constant approzimation

THEOREM 5.1 Let ]/%nu be the piecewise constant approximation of a function u€Ls(Q2) on a sparse
grid on level n:

Rnu = Z W, kaWk, (5.1)
|kl<n
then, with ||h[| = 27, the volume of the finest cells, we have the estimate
lu = Rnullz,(@) < Clul [|R]] log"~"/2 R (5.2)

Proof: To prove the theorem for the Lo(Q2)-norm, we use (4.6), and the orthogonality of the
hierarchical basis functions, to obtain

|| — Rnu||%2(m Z\k\>" ||wk||%2(9)

> kyon 2”247 R 2
2—d|u|2 Z|k|>n 2—2‘k| (53)

_ _ Il+d—-1
= 2P, (50

INIA

We know
_ Il+d—-1
El>n2 21( d—1 )

= 2_2("“)(fo) F(l,14n+d;2+mn;1/4) (54)
= G(n,d)
Here F' is the hypergeometric function. It follows that
d—12—2n
G(n,d) ~ h for n — oo,
where the asymptotic value is reached soon for small values of d. Hence
_ _ l+d-1
d I
o Rall < 2 Sz (HI0)
< 27uf? G(n,d) (5.5)
d—165—2n
< 27w Cragrthr

where C),4 is a constant that tends to one for large n. So, we conclude that
lu — Butllzag@) < C fuf n@-D/2277,

which is equivalent with (5.2). O

25



To guarantee a small error on a regular grid, in (4.4) all cell edges h; need to be small, but in
(5.2) for the sparse grid only the volume ||| has to be small. Further, in the two-dimensional case,
the estimate (5.2) is of a similar order of accuracy as (4.4), except for a logarithmic small factor.
However, the number of degrees of freedom for the approximation (5.2) is significantly less. Namely,
in the unit cube, for Rpu the number of degrees of freedom is 2™, whereas for I/i\’"u it is O(nd=12m),
viz. 2n2™ + 1 in the 2D case, and in the 3D-case e.g. (n? + n + 2)2™ — 1. Because significantly less

~

degrees of freedom are involved in the approximation R,u than in the approximation of Ry n n)u, i.e.
less coefficients @k and less gridpoints 25 k> in analogy to [7], we call the approximation ﬁnu the
sparse grid approxrimation and

Qr = {zj,k | 25 k€7n, [n| < n}
is the sparse (boz) grid for this approximation on level n.

5.2. Estimates for piecewise linear approximation
For piecewise linear approximation we use a sparse (vertex) grid. Qf = U|k\<n QZ’ Q. A sparse

grid approximation is obtained by interpolation on this grid by means of the space spanned by all W,
with |k| < n.

THEOREM 5.2 Let R,u be the piecewise d-linear approximation of a function uGC’éH'm(Q), with
0 <m < e, on a sparse grid on level n:

ﬁnu = Z wg, wEpeWp, (5.6)
k|<n

then, with ||h| = 27", the volume of the finest cells, we have for p = 2, 00, with m = e the estimates
llu = Ruull, < ClID*€ull, [RI? 1og™ " [IA]~, (5.7)
and with |m/| < d the estimates
lu — Roull, < CIDEH ™ ull, Rl log? =™ R]I ", (5.8)
and with 0<¢<d

lw = Roullp < Cllullye.c IR+ log®= IR ~* . (5.9)

Proof: Using the estimates for ||wg,||, from Theorem 4.3, we prove, more generally, for some m with
o0 <m < e, and for p =2 or p = oo,

”“_Rn““p < Z\k|>n “wk”p
e+m
< Y, ClIDEmul hgem
= C|D ullp Z\k|>n hk .
= I, S g g TTL, 275 (5.10)
_ d ok
= CD™Mull, 3545, 2 ’Zuﬂzl [T, 27
= C|D&* M|, 3\, 27 Y gy, 27k
< C|| D&My, 27 (Cy 27|14 Cypd=Imi=1y

with C; = 0 if [m| =0, and C2 = 0 if |m| = d. Hence, for m # e we have

lu — Roull, < CIDSH ™ ull, [R]| log?™ =™ |A)~" .
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Moreover, (5.10) yields, for m = e,
lu — Roull, < CID*ull, |RI? log™ " A~
Further, using the estimate (4.17) we obtain, similar to the proof for Theorem 5.1,
lu — Raull, < Z|k\>n ”wk”p Z|k\>n c ”“”Wflmhk |||1+e/d
= Cllullype. X kjsn o—Ikl(1+¢/d)

l+d—1Y
= Cllullye Sinn ( e > o 1(144/d)

d
=C ||U||W1§,z Zf L) P+t ds2+n; 9-(1+¢/dyg—n(1+¢/a)

< Cllull e, 27D nd=1/(d — 1)1
< Cllull el +¢/ 4 1og™ A"

(5.11)

O

THEOREM 5.3 Let }/%nu be the piecewise d-linear approximation of a function ueC(?’l(Q) on a sparse

grid on level n, as in Theorem 5.2, then, with ||| = 277, the volume of the finest cells, we have, for
p =2, p= 00, the estimates
5 d—1 -
lu = Bnullwy < C JIb] log™ " RI™" |lull e 1= (5.12)
P

If, moreover, we know ueC?€, then

lu— Rpullwy < CllRIID* ull, . (5.13)

Proof: Let u be sufficiently differentiable and let 0 < m < e and |m| > 1, then

Part 1:

ID™ 15—, (Rg, — Rp_e, ullp
C?|ID™ IT5_, b, D€ ull, (5.14)
C? |hgll ID™ DCul|,

|5 ks D™k
%o D0,
5 ko O I D0,
ClID™*Cull, 3 ks Ikl (5.15)
l+d-1 _
ctipmeull, s, (517 )2
d—15—n =
C{| D™ Eull, 222" G (n, d)
C D™ ul, Al log"" k]

D™ wp

IAIN

D™ (u — Rnu)llp

VANNVANRVANRVAN

IN

INIA

Part 2: R
ID™(w—Raw)lly < 15 gjon D™wplly
d
Z|k\>n ||Dm Hj:1£fk - Rk_ej)“”p
Sk on C Ik IPh5 ™ I D%l
ClID*€ully 3 gy g I2h ™
C ”D2eu||P 2l>n 2_21 z‘,ﬂ:l hé/m
C ”Dzeullp El>n 2_2l E‘k|:l 2 om
ClD*ully s, 27 X gy -y 27 F0(E"™)
C ||D2eu||p 9—n (Cl 2—nnd—\m\—1 + C’gnlml_l) ,

(5.16)

IA N IANININ DA

IA
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with C; =01if |/m|=d, and C; =0if |[m|=0. Because

l/p

lollwg = | llvll7 + > D™l |,

|m|=1,0<m<e

we consider the case |m| =1 and we find

|lu — Roullwy < C||D*€ul, [R] .

Together with the result of Theorem 5.2 this proves the theorem. O
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SUMMARY OF NOTATIONS

We use the following notation for partial derivatives, nENg ,

o \™ o \™
n _ M1, Nd — - PP R
b"=D n (83:1) (amd) )

For the Banach spaces of continuously differentiable functions we use the notations

n —
(@) ={u]  max max [D™u(z)| < oo},

= pm™ 1
lullgn = max - max| D u(z)|, (5.1)

and, with [ € Ny,

Cl () ={u e ) | ueC™(Q); |m| <1}. (5.2)
uller = nax, l[ullgm = ax, max |D™*u(z)| . (5.3)

For the Banach spaces of integrable functions, 1 < p < oo, we, similarly, use the notation

Wr(Q) =3 u > / [D™u(z)|P < ooy,
o<m<n
ulyn = (/ [ ioma@p ama olp = > i
z€QN o<m<n
For 0 < k < d we write WyV*(Q) = (=, W, "(Q2). and
1/p
||u||WPn,k = > D™ o7

o<mc<e,m|=k

With a W} ((Q) and Wg’ 3¥(€2) we denote the corresponding subspaces with homogeneous boundary
conditions. For p = 0o we use the standard modifications, and for Wy we also write H.

TABLE 1. Elementary notations

Symbol Meaning

N natural numbers

Ny NuU {0}

Z integer numbers

R real numbers

R4 positive real numbers

n (n1,---,nq), multi-integer
|n| ny +ng + -+ ng, neNg
I ny - my - -ng, neNg

0eN? (0,---,0)

e;eN? (0,---,0,1,0,---,0), the i-th unit vector
eeN} (1,1,---,1)

E {e1,ea, -+, eq}
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TABLE 2. Grids

Symbol Meaning

Q c R? connected open subset

hneRY (hnyshng, <+ hny) = (27™,2772 .0 27 74)
|hn| Vi B2, hneRy

(2 ITj—; hn; = 27™, hneR]

Qi {z|thn <z < (i+e)hn}, a grid cell
On {410 i C Q,4€Z%), a grid of cells
Np, C R (#|z = ihp,icZ®}

Q QN Np, a grid of (interior) vertex nodes
ﬁ:,; QN Np, a grid of vertex nodes

Zn C RY {zp il 2 = (i + €/2)hn,ieL}

Qn QN Zn, a grid of cell centers

TABLE 3. Families of grids

Symbol Meaning

G {Qn|neZ?}, infinite grid of grids

Gn {Qm|0o < m < n, meZ?}, a finite grid of grids
Gt {9 | nez?}

G {95, ]0 < m < n, meZ?}

G* {9, | nez?}

G3, {Qnlo <m < n, meZ*}

TABLE 4. Sparse grids

Symbol Meaning
D, {Qm| mEZd, |m| < n}’
an infinite sparse grid family
D, {Qm| meZ?, o <m, |m| < n},
a (finite) sparse grid family
DF {x| e, 0 < |m| < n}, a sparse FEM grid
Dz {z| €y, o < |m| < n}, a sparse FVM grid

TABLE 5. Mappings

Symbol Meaning

X(Q) a Banach space of functions defined on 2
V'n, Ran(Rn)

Rn X (Q) — Vn, a restriction

Pp Vn — X(2), a prolongation

I X — Ran(Pp) C X, a projection

Rmn Vn — Vim, m < n, a restriction

Pnm Vim — Vn, m < n, a prolongation
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INDEX
approximation
sparse grid, 26

Bessel sequence, 14

cell, 2
channel, 17
characteristic function, 16
coarsest grid, 10
coherent
mutually, 6
commutative
transfer operators, 7
commutative set
of prolongations, 7
of restrictions, 7
complement, 15
orthogonal, 15
CSP, 7
CSR, 7
curse of three dimensions, 1

difference operator, 21

dyadic block, 2

father function, 14

frame, 13
bounds, 14
exact, 14
tight, 14

grid
coarsest, 10
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hat function, 18

hierarchical
surplus, 10

direct, 10

relative, 10
surplus coefficients, 21

merging operator, 8

MRA, 13

multi-integer, 2

multiresolution analysis, 13
multidimensional, 14

mutually coherent, 6

nested
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of prolongations, 4
of restrictions, 4
transfer operators, 4
NSP, 4
NSR, 4

operator
difference, 21
relational, 2
orthogonal complement, 15

pre-wavelet space, 11
prolongation
tensor product, 11
prolongations
commutative set, 7
nested set, 4

reconstruction, 4
relational operators, 2
restriction, 4
tensor product, 11
restrictions
commutative set, 7
nested set, 4

scaling function, 14

sparse grid
approximation, 26
box, 26
vertex, 26

stencil, 21

tensor product
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space, 11

transfer operators, 4
nested, 4

wavelet, 15
space, 14



