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ABSTRACT
Reachability and shortest paths are among two of the most common
queries realized on graphs. While graph frameworks and property
graph databases provide an extensive and convenient built-in sup-
port for these operations, it is still both clunky and ine�cient to
perform on standard SQL DBMSs. In this paper, we present an ex-
tension to the standard SQL language to compute both reachability
predicates and many-to-many shortest path queries. We �rst de-
scribe a methodology to represent a directed graph starting from
virtual table expressions. Second, we introduce a new type of oper-
ator to compute shortest paths on the given graph. Our semantic
abides by the rules of operating with table expressions, ensuring
that the property of the closure from the relational algebra is re-
tained. Finally, we developed a prototype implementation of our
extension on top of MonetDB, an existing open source relational
DBMS. Our preliminary results still show that dynamically build-
ing our representation of the underlying graph overly dominates
the query time. Currently, this cost can only be amortized when
executing multiple shortest paths on the same graph.
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1 INTRODUCTION
Reachability and shortest (or cheapest) paths are among two of
common operations of interest to perform on a graph. There exists
a broad range of domains where these naturally occur: analysis of
social networks, routing in transportation networks, control �ow
optimization, internet protocol routing, and so on.

The two operations can be formally de�ned. Let G(V ,E) be a
directed graph with V = {v1, . . . ,v |V |} the set of nodes or ver-
tices and E the set of edges, where ei j ∈ E represents a directed
edge from vi to vj . We say a node vs ∈ V reaches another node
vd ∈ V if there exists some path1 p of �nite length between the
two nodes, i.e. p = [es,k1 , ek1,k2 , . . . , ekm,d ]. Shortest paths can be
unweighted or weighted. An unweighted shortest path between
1Note that, in this text a path is the sequence of edges, rather than vertices, that need
to be traversed to reach the destination from its source.
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two nodes vs and vd is a path between vs and vd having the mini-
mum possible length. In a weighted shortest path, we associate to
each edge ei j a weight2 wi j > 0. Then, the weight w(p) of a path
p = [ek1,k2 , ek2,k3 , . . . ekn−1,kn ] is the sum of its weights:

w(p) =
∑

∀ei j ∈p
wi j

Therefore a weighted shortest path between two nodes vs and vd
is a path between vs and vd with the minimum possible weight.

Reachability and shortest path queries can be cumbersome to
perform in relational databases using standard SQL. First of all,
it might not be clear how to express a graph or a path in SQL. A
possibility would be to introduce new types and ad-hoc functions
to operate on them and extract their content, an approach similar to
XML documents. Here, we propose to model graphs and paths only
relying on table expressions and primitive types. The fundamental
bene�t is that all operators and functions that already exist can also
be further applied with no change.

Currently there are three customary means to perform reachabil-
ity and shortest path queries in standard SQL: recursion, persistent
stored modules (PSM) and, to a more limited extent, explicit chains
of joins. The common idea of these methods is to mimic the Breadth-
First Search (BFS) and Dijkstra algorithms. With recursion, starting
from a source node vs , each recursive step adds to the result set
the neighbours of an unvisited node having the current minimum
distance from vs . The recursion stops when the destination node is
found in the result set or there are no more nodes to explore. With
PSM, the idea is to create temporary tables to maintain the data
structures of BFS/Dijkstra and then use the procedural constructs
to implement a shortest path algorithm. Finally, if the number of
iterations can be limited by some number N, then a simple popular
technique is, starting with a table T only containing the source
node, execute N-1 self-joins to incrementally extend the result set
with the neighbours of the nodes discovered at the previous step.

Regrettably, all the three aforementioned approaches have some
unpleasant shortcomings. First, it can easily become quite verbose
and error prone to write a correct query following these methods.
Second, all the above approaches breach the declarative paradigm of
SQL: they specify how to compute the result rather than what result
is needed. Last, performance-wise, such approaches can be very
slow either due to missed algorithmic opportunities (full search
instead of Dijkstra), or due to interpretation overhead (PSM).

In this paper, we try to address the problem of reachability and
shortest paths through a new extension to the SQL language. We
hope that our proposed syntax is concise and rather intuitive to reg-
ular RDBMS users, while still being expressive enough for a wide
range of applications. We introduce a new operator that adequately
2We refer to the terms weight, cost and distance as synonyms, freely interchanging
them thereafter.
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integrates with the relational model, bridging the divergence be-
tween graphs and table expressions. Moreover, our approach opens
the opportunity for the DBMS to support and choose optimized
built-in algorithms to compute both reachability and shortest paths,
reducing the performance gap with specialized graph frameworks.

We implemented a prototype of our extension for MonetDB.
MonetDB [16] is a free and open-source column-store relational
DBMS, mostly compliant with standard SQL-2003. In our experi-
ence, implementing the extension required a fair amount of changes
in the existing code base for the compiler. However, MonetDB sup-
ports a pluggable architecture to extend the physical layer by exter-
nal libraries. Using this mechanism, we were able to easily add a few
shortest paths algorithms to execute the new operators. Note that
our prototype is still not optimized and we can only present very
preliminary results for the current state. We expect to signi�cantly
enhance the performance of our solution in the future.

The rest of the paper is organized as follows. In Section 2, we
describe our extension to SQL to compute shortest path queries.
Section 3 provides an overview of our implementation of the ex-
tension on top of MonetDB. In section 4 we show our preliminary
evaluation results over some speci�c queries. We discuss related
work in section 5 and conclude in section 6. Finally, the appendix
shows some usage examples of the proposed extension.

2 SQL EXTENSION
We introduce an extension to the SQL language to compute reacha-
bility and shortest path queries over graphs. The basic concepts are
summarized as follows. We represent a graph G by a single table
expressionT that indicates the edges of G. Its vertices are implicitly
derived from the unique keys in T. To inquire whether two nodes
are connected in the graph, we introduce a new join predicate that
operates overT . Additionally, we propose a new summary function
to compute shortest paths, its output is actually a pair containing
the cost and the path found. Finally, we describe an operator to
translate an arbitrary path into a table expression, so that all other
regular constructs from SQL can be applied over.

A graph G(V ,E) is modeled starting from a single table expres-
sion T . Each tuple t ∈ T represents a directed edge of the graph,
so E = T . The table expression follows the conventional modeling
of a many to many relationship to the same entity. For the sake
of simplicity, we assume that a node in the graph can only be ad-
dressed by a single attribute; extending for multiple attributes is
not complicated, though the notation becomes cumbersome. Thus,
we de�ne a single attribute S as the source of an edge and a second
attribute D as its destination. Both attributes S and D must have the
same type. It follows that, given a tuple t ∈ T , t[S] and t[D] refer
to nodes in the graph, and the tuple t expresses a directed edge
from t[S] to t[D]. The table T can consistently comprise of further
attributes to specify user properties attached to an edge. Due to the
aforementioned characteristics, we conventionally name T as the
edge table.

In a conventional many-to-many relationship, S and D should
be foreign keys to some entity U , which logically characterizes the
vertices of the graph. However, we do not explicitly mandate such
requirement. The vertices of the graph are formally derived from
the unique values of S and D, i.e. V = T [S]⋃T [D]. Nevertheless,

generally users might want to attach additional properties to the
vertices, besides to the edges. For this scope, an auxiliary table
expression, say VP , is required and the nodes v ∈ V should be
foreign keys to VP .

To express reachability we propose to extend the SQL language
with a new predicate. Given the graph G(V ,E) and two values x
and y, we say the predicate P(x ,y,G(V ,E)) is satis�ed for a pair
〈x ,y〉 if the following condition holds:

∃v ′,v ′′ ∈ V : x = v ′ ∧ y = v ′′

∧ exists a path p in G(V ,E) from v ′ to v ′′ (1)
The idea is to augment SQL with a way to express P to select

(�lter) only the tuples satisfying the predicate. A user will state
P using the following syntax inside the WHERE clause of a SQL
block3:
SELECT VP.*
FROM VertexProperties VP
WHERE VP.X REACHES VP.Y OVER E EDGE (S, D)

The semantic is as follows. Let E be a table expression repre-
senting an edge table as described above, while S and D are the
source and destination attributes, respectively. Then the vertices
of the graph are given by V = E.S

⋃
E.D. Let VP be a table expres-

sion de�ning the attributes X and Y . The types for the attributes
E.S,E.D,VP .X ,VP .Y must match, otherwise a semantic error arises.
Then the result set of the whole block are all the tuples t ∈ VP
such that P(t[X ], t[Y ],G(V ,E)) holds. In other words, the result is
composed by all the tuples t ∈ VP such that it exists a �nite path
from t[X ] and t[Y ] over G(V ,E). Naturally, the condition can be
interpreted as a join predicate when X and Y refer to distinct table
expressions, e.g. :
SELECT VP1.*, VP2.*
FROM VertexProp VP1, VertexProp VP2
WHERE VP1.X REACHES VP2.Y OVER E EDGE (S, D)

Furthermore we exploit the shown predicate to compute weighted
shortest paths. Indeed, when the predicate is satis�ed for a tuple t ,
we are then guaranteed that a path must exist between its source
X and destination Y . At this stage, it is legitimate to ask what is
indeed a shortest path and what it is its total cost. Our proposal
is to admit a special function, CHEAPEST SUM(e: expression),
in the projection clause which refers to the reachability predicate
using the tuple variable introduced there (e in this case). The whole
syntax of a SQL block becomes:
SELECT VP1.*, VP2.*,

CHEAPEST SUM(e: expr) AS cost
FROM VertexProp VP1, VertexProp VP2
WHERE VP1.X REACHES VP2.Y OVER E e EDGE (S, D)

The function takes as input two parameters: a tuple variable e
and a numeric expression expr . The �rst parameter, e , serves as a
mean to bind the function to the related edge table in the WHERE
clause, and more generally, to the associated reachability predicate.
While this explicit binding is not strictly needed when there is only
one edge table in the WHERE clause, it is mandated when multiple
reachability predicates are present and the expression has to be to
unequivocally related to a speci�c edge table. The second parameter,
3The terms REACHES, OVER and EDGE become keywords of the language.
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expr , is columnar expression to be evaluated in the context of the
associated edge table e . It determines the weight to assign to each
edge in the edge table. Its value must always be strictly greater
than 0, otherwise a runtime exception is raised. Setting expr = 1 is
equivalent to computing an unweighted shortest path, where the
�nal cost is given by the number of hops in the path. While setting
expr to an attribute A of the edge table means that A contains the
weights for all edges. In general, expr can be any arbitrary columnar
expression, its result is computed before executing CHEAPEST SUM.

To retrieve a shortest path, the function can return a second
expression using the syntax CHEAPEST SUM(e: expression) AS
(cost, path). Note that, in general, multiple �nite paths might
exist having the minimum cost. In this scenario, the function always
picks and returns one of the suitable alternatives among all the valid
shortest paths. While the �nal type of the cost is based on the actual
argument expr , i.e. a �oating point expression implies that also cost
will be a �oating point, the type of the path is more intricate. From
one side, the function has to return a single component per tuple
to comply with the usual semantics of a projection operation. On
the other hand, a path is logically a sequence of edges, which we
might want to expand and manipulate as multiple components.

Our proposal is to represent a path as a nested table. A nested
table is a special type that groups together multiple rows and
columns into a single component. Each path consists of records with
the columns S and D and, possibly, also additional edge property
columns. While this proposal departs from the pure NF1 relational
model, we note the SQL standard has already departed from there,
with its support for collection (arrays and multisets) and row types
[15]. Moreover, a number of newer SQL implementations, that can
work on nested �le formats such as ORC, Parquet or JSON, even
provide support for querying multi-column and recursively nested
data. These systems do not return arbitrarily nested data, and for
SQL predicates for �ltering, grouping/aggregation or joining to
work, the data needs to be �attened, i.e. unnested.

The standard SQL way to unnest data is using the UNNEST(expr)
operator. The operator can be invoked inside the FROM clause on
array- or multiset-typed expressions, and this is usually done in
the FROM clause using a so-called LATERAL join between the table
expression containing the nested data and UNNEST() on that nested
data. In a lateral join, a range variable introduced in a previous
table expression in the FROM clause can be used as parameter to
the operator UNNEST() appearing later in it. UNNEST can be used in
combination with both inner and left outer joins. Speci�cally, this
latter case is useful to preserve tuples when the nested structure is
the “empty collection”. Furthermore, the shortest admitted form of
lateral joins actually omits the LATERAL JOIN keywords and just
adds the UNNEST() separated by comma to the FROM clause, which
implicitly denotes a lateral inner join (the default). Finally, after
UNNEST(), SQL supports the optional WITH ORDINALITY clause
which allows to add an extra integer column that provides a densely
ascending sequence number with the expanded list (starting at 1).

In standard SQL, the elements in an array or a multiset can be
rows. As a special rule, invoking UNNEST on collections of rows also
�attens the �elds composing the row. E�ectively, a nested table can
be mimicked in standard SQL as a collection of rows, expanded
when demanded by the UNNEST operator.

Summarizing, CHEAPEST SUM is a function that can return one or
two components. The �rst component is always the numerical cost
of the shortest path. When a second identi�er is explicitly given
using the syntax AS (ident1, ident2), the function returns a
second component for the path, bound to the variable ident2. A
path, represented with type nested table, is the sequence of edges
that can be followed to link the source with its destination and
whose cost is the minimal possible. The attributes enclosed in the
nested table representing the path are the same as the attributes
of the EDGE table expression corresponding to the CHEAPEST SUM.
Eventually, a path can be expanded to its atomic components by
the UNNEST operator.

A SQL block involving both paths and unnesting can be exem-
pli�ed as follows:
SELECT T.X, T.Y, T.cost, R.S, R.D
FROM (

SELECT VP1.*, VP2.*,
CHEAPEST SUM(e: expr) AS (cost, path)

FROM VertexProp VP1, VertexProp VP2
WHERE VP1.X REACHES VP2.Y OVER E e EDGE (S, D)

) T, UNNEST(T.path) AS R

3 IMPLEMENTATION
A tentative prototype for our proposal has been implemented for
MonetDB. Its main components are the changes to the SQL compiler,
an external library implementing the BFS & Dijkstra algorithms
and �nally a new type nested table.

On a �rst approximation, MonetDB can be separated into three
recognizable layers:

(1) the compiler or SQL front-end.
(2) the intermediate language, named MonetDB Assembly Lan-

guage (MAL), and its interpreter.
(3) the physical layer.

Logically an incoming query is initially compiled by the SQL
front-end and translated into a sequence of MAL instructions. The
MAL layer performs a second optimization pass and generates the
�nal physical plan, still in the form of MAL statements. The physical
layer is responsible for the implementation of the core features, the
storage, the main operators and the primitive types. Moreover, the
MAL environment is pluggable, supplementary physical operators
and types can be provided as external libraries and linked with the
rest of the system through custom MAL scripts.

Currently our prototype exploits this plug-in feature to supply
the runtime with additional operators. A consistent set of changes
were required to the SQL front-end to describe the new semantics.
A small set of algorithms (runtime), to compute a shortest path, are
supplied as an external C++ library, avoiding any alteration to the
existing MAL & physical layers. Finally, the nested table type was
added to the kernel of MonetDB.

3.1 Compiler
The compiler was de�nitely the area of work that requested the
most attention. In the SQL front-end, a query is represented in
an abstract syntax tree (AST) where the nodes resemble the com-
mon operators or their variants from the relational algebra. Sample
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existing operators are projection, group by, select (�lter), join, semi-
join. . . The AST was augmented with two more operators to capture
the semantics of both reachability and shortest paths. These addi-
tions were justi�ed by the need to intermix various elements of
other operators: a reachability clause is similar to a select or join
in terms of �ltering out the tuples from a given table expression,
however it also applies on a secondary table expression, the edge
table. Moreover, it can also yield new expressions when comput-
ing shortest paths, similarly to what occurs with a group by or
projection.

The �rst added operator was the graph select, based on the regular
select. In both relational algebra and the MonetDB query model,
a select operator σP (T ) takes as arguments a table expression T
and one or more predicates P that denote conditions that must be
satis�ed. The result of the operator are the tuples t ∈ T that satisfy
P(t). The operator graph select σ̂P̄ (T ,E) applies the reachability
predicate P̄(X ,Y , S,D), resembling (1), over the table expression T
and the edge table E. The attributes X and Y de�ne the sequence
of source/destination vertices to �lter out, while S and D are the
source and destination keys for the edges in E. The semantic of σ̂
is to �rst model a graph G(V ,E) according to the edges of E and
the vertices V = S

⋃
D, then verify for each tuple t ∈ T whether

t[X ] is connected to t[Y ] over G(V ,E).
The second added operator was the graph join, based on the

regular join. A regular join ./P (T1,T2) is conceptually given by the
sequence of a cross product T = T1 ×T2 followed by a select σP (T ).
Similarly, a graph join .̂/ is de�ned as a cross product followed by
a graph select: .̂/P̄ (T1,T2,E) = σ̂P̄ (T1 ×T2,E). The semantic stage
of the compiler always creates a graph select when detecting a
reachability predicate. Graph joins are only unfolded in the query
rewriter when it recognizes the sequence of a cross product plus a
graph select.

Shortest paths are expressions generated by a graph select or a
graph joins. Their treatment is similar regardless to which operator
they are attached. A complication with respect to ordinary selects
and joins is that shortest paths create a new set of dependencies for
graph selects/joins in the relational tree, which need to be respected
in the rewriting rules of the optimiser.

In the code generation stage, the treatment of a graph select
and a graph join is almost equivalent. Given P̄(X ,Y , S,D), the set
of vertices V = S

⋃
D is indeed computed. The values from X

and Y are then joined with V , performing an initial �ltering on the
values that are not vertices. Thereafter, the weights attached to each
shortest path function are materialized. Regardless of their type, all
the values from X , Y , S and D are translated into integers from the
domain H = {0, . . . , |V − 1|}. The external library, described in the
next section, is then invoked, to �lter out the connected vertices
and compute the shortest paths. Eventually, the �nal result set is
fully materialized back from the retrieved values.

Finally, a minor set of alterations involved the lexical analyzer
and the parser. The terms CHEAPEST, REACHES, EDGE and UNNEST
are now treated as keywords in the language. Further extensions
to the parser and to the semantic phase regarded the recognition
of the reachability predicate, the special function CHEAPEST SUM
’(’ identifier: expression ’)’ and the aliasing format AS

’(’ identifier_list ’)’ to refer to multiple variables generated
from a single expression.

3.2 Runtime
The algorithms to compute the reachability and shortest paths have
been implemented in a external library. It is dynamically linked
with the rest of the system through a MAL script. The parameters
to invoke the library are:

(1) the columns S and D, denoting the edges of the graph;
(2) the source X and destination Y vertices to �lter;
(3) in case, the additional columnsW = {W1, . . . ,WN } for the

weights associated to the edges.

The library returns the sequence of row ids t such that t[S] is
connected to t[D] and the requested shortest paths to compute.

Our implementation always builds a Compressed Sparse Row
(CSR) representation [17] of the underlying graph, somewhat re-
sembling an adjacency list. The columns {S,D}⋃W are sorted ac-
cording to S , thus a pre�x sum is computed on S itself. As the keys
in S andD are the vertices from the domainH = {0, . . . , |V −1|}, we
exploit this property to address both the outgoing edges and their
weights. Indeed, given a vertex id η ∈ H , all the outgoing edges
of η are stored in D from the position S[η − 1] up to the position
S[η] − 1. The same property is also valid for the weightsW . The
library uses this data structure to compute the shortest paths.

Multiple shortest paths can be computed on the same graph.
The library provides an implementation of the Breadth First Search
(BFS) algorithm for unweighted shortest paths and the Dijkstra
algorithm combined with the Radix Queue [11] for weighted short-
est paths. When computing the �rst shortest path, tuples are also
�ltered (in case of the select semantic) or joined (in case of the
join semantic). If the query only requires to assess the reachability
predicate, without demanding to evaluate any shortest paths, the
library still performs a BFS over the source and destination vertices,
discarding the computed shortest paths.

3.3 Nested tables
As mentioned, we chose to represent paths as nested tables. How-
ever, in our current implementation a nested table is not a collection
of rows, in the standard SQL sense, but a custom type. While it al-
lows to ful�ll the requirements of our proposal, several limitations
exist. At the present time, it is not possible to explicitly create an
attribute or a variable having this type, it can only be produced
when computing a shortest path over a graph. Moreover, it cannot
be permanently stored into a physical table, nor it can returned
as it is to the connected client, but it has to be �attened before.
The implementation provides the UNNEST operator to �atten the
content of the nested table, though the clause WITH ORDINALITY is
not supported yet.

At the physical layer, a nested table is represented as a list of
references to the actual rows of the table expression that gener-
ated it. This is a handy solution because in the MonetDB execution
model all intermediate results are fully materialized by its opera-
tors. Therefore, the rows composing a nested table can always be
referred in a later stage. The UNNEST operator merely materializes
the contained rows according to these references. Note that we
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expect to change this representation in the future as we remove the
current limitations for nested tables.

4 EXPERIMENTAL EVALUATION
We present an early evaluation of our implementation based on two
queries speci�ed in the LDBC SNB Interactive Workload benchmark
[6, 13]. The benchmark is designed to model a social network, akin
to Facebook. For our use case, our graph is derived by assuming
the vertices are the users of the social network while the edges are
their friendship relationships. We generated the data sets with the
LDBC DATAGEN [5] using the scale factors 1, 3, 10, 30, 100 and 300.
Table 1 shows the number of vertices and edges per scale factor.
Note that the number of edges is actually double the amount of
friendship relationships generated by the LDBC data generator, as
relationships are undirected whereas our model assumes the graph
is directed.

All our experiments were executed on a dual socket Intel Xeon
e5-2650. The machine has 8 cores per socket, 16 cores, 32 physical
threads and 256 GB of RAM in total. The server runs on top of
Fedora 24 while GCC 6.3.1 was used to compile MonetDB. To run
the queries, we employed a custom Java client placed on a di�erent
physical machine and interacting with the server through JDBC.
The client and the server reside on a shared 1Gbit LAN network.
The times reported in our experiments are based on the average
measured latencies from the time the query is issued until the
results are available back to the client. To test our implementation,
we sequentially issued the same query with varying parameters
1000 times for scale factors SF 1 - 30 and 100 times for SF 100 and
300. The query parameters were randomly generated out of the set
of the generated persons and according to a uniform distribution.

We evaluated Q13 and a simpler variant of Q14 from the set
of the complex queries of the LDBC SNB Interactive Workload
benchmark. Q13 determines the cost of the unweighted shortest
paths between two given persons. We cannot perform Q14 as it is
de�ned in the LDBC speci�cation since it involves computing all
shortest paths between two persons, while with our proposal we
can only report one of them. However, for the purpose of testing
weighted shortest paths, we considered an alternative of the same
query. Each edge has attached a weight representing a measure
of the a�nity between the two friends, precomputed in the same
manner described in the benchmark speci�cation. In our variant,
the query directly returns a weighted shortest path between two
given persons using the a�nities as weights.

Scale factor Vertices ×103 Edges ×103

1 9.892 ≈ 362
3 ≈ 24 ≈ 1132
10 ≈ 65 ≈ 3894
30 ≈ 165 ≈ 12115
100 ≈ 448 ≈ 39998
300 ≈ 1128 ≈ 119225

Table 1: Size of the graph at di�erent scale factors

Figure 1a) depicts the average measured latency per query. Be-
tween the two queries considered, there is a di�erence in the exe-
cution time of roughly 25% starting at the smallest scale factor SF
and decreasing to 10% for larger SF. This result originates from the
di�erent algorithm chosen by the optimizer to compute the query.
Currently, our implementation for weighted shortest paths relies
on a more tuned radix queue under the hood, while, at this stage,
our BFS implementation is still largely unoptimized. Nevertheless,
we expect in the future to signi�cantly improve the BFS implemen-
tation and to outperform the rather general Dijkstra algorithm.

The execution time is almost entirely dominated by the construc-
tion of the graph representation. Nevertheless, our extension is
designed to compute multiple shortest paths over the same graph.
The second experiment repeats the execution of Query 13, but
grouping together multiple pairs 〈source, destination〉 at varying
batch sizes. Figure 1b) shows the average computation time per pair,
thus the measured latency divided by the batch size. In this case,
the execution time decreases almost linearly and, for larger batch
sizes, it �nally amortizes the cost of constructing the underlying
graph representation.

5 RELATEDWORK
Graph database systems and some graph processing frameworks
natively support several �avors of shortest paths queries. Some
notable graph database systems include Neo4j, Sparksee and Oracle
PGX, and graph processing frameworks include the GraphFrames
package for Apache Spark, GraphLab and the Gelly package for
Apache Flink. In some other cases, such as the Gremlin language
[2] and Apache Giraph [4], although they do not provide built-in
functions to compute shortest paths, there still exist common and
succinct recipes typically described in the system documentation.

In the context of relational DBMSes, some solutions o�er to the
user, aside SQL, a di�erent model or language tailored to graph
workloads. In [14], the authors explored an additional custom syn-
tactic layer for querying graph in a vertex-centric way. Commer-
cially, there is an ongoing progress to support Cypher [7], a graph
query language, on top of SAP Hana [9] and PostgreSQL [1].

A vendor extension to SQL with constructs to express both
reachability and shortest paths is already supported by Virtuoso
Universal Server [8]. In Virtuoso, a SELECT clause followed by
the t_transitive modi�er enables a special syntax to compute
the transitive closure between two columns. An additional option
is available to stop the search to the minimum number of hops,
whereas weighted shortest paths are not supported. The construct
always yield all valid paths. Depending on the projected attributes,
the result set may consist of one row per path or one row per each
hop in a path. A custom function, t_step, can be used to discrimi-
nate the paths from each other and determine the position of a row
in its associated path.

The idea of nested tables and their expansion into table expres-
sions was also in�uenced by the Snow�ake’s FLATTEN construct
[10] and Hive’s lateral views [3]. Snow�ake’s FLATTEN is a table
function that allows to expand an object or an array into a table ex-
pression. Similarly, Hive’s lateral views allow to expand an attribute
of a table expression by a user de�ned table function (UDTF), using
a syntax somewhat resembling a lateral join: table_exp LATERAL
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Figure 1: a) Average execution time for the queries Q13 and Q14 (variant). b) Execution of Q13 at varying batch sizes, the
reported time is the average time per pair 〈source, destination〉: execution time / batch size.

VIEW udtf(attribute) AS (ident_list). The text [12] further
investigates the concept of nested tables, named Relation Valued
Attributes, and their implications to the relational algebra.

6 CONCLUSIONS
In this paper we presented a manner to assess the reachability pred-
icate and calculate shortest paths among user de�ned graphs. We
�rst proposed an extension to the SQL language, exploiting the
where clause to �lter out tuples based on the reachability predi-
cate and the select clause to compute shortest paths according to
weights de�ned by the user. Then, we described our prototype
implementation on top of MonetDB and the changes necessary
to enable our extension. Finally we showed an early evaluation
of our implementation based on two queries from the LDBC SNB
benchmark.

Our model enables to specify arbitrary graphs starting out of (vir-
tual) table expressions. This conceals a pitfall: the involved graphs
need to be entirely materialized at run-time, likely dominating the
execution time of the whole query. While this situation can be im-
proved by optimizing the implementation and rendering it parallel,
it might still remain the major bottleneck, especially when only a
single shortest path needs to be computed at the end. To mitigate
this scenario, we are investigating how to expand our system with
the option of creating special ‘graph’ indices. These indices will
store the full graph, ready to be used when a query matches the
edge table that generated the graph. Nevertheless, they also need to
be amenable to the updates on the underlying tables, challenging
the currently adopted runtime CSR representation.
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A EXAMPLES
This appendix features some examples showing the usage of our
proposal. In the rest of the section we assume a schema of two ta-
bles, Persons(id, �rstName, lastName) and Friends(person1, person2,
creationDate, weight), somewhat based on the LDBC SNB speci-
�cation. Friends models a many-to-many relationships between
Persons, together with the extra attributes creationDate and weight.
From a graph perspective, Friends is the edge table, the set union
Friends.person1

⋃
Friends.person2 determines the vertices of the

graph, while the table Persons carries the vertex properties. Figure
2 reports the sample data considered in the following examples.

A.1 Cost of a shortest path
Query 13 of the LDBC SNB IW benchmark requires to compute the
distance of the unweighted shortest paths between two persons.
The input parameters are the IDs of two persons. This query can
be expressed with the syntax below:
SELECT CHEAPEST SUM(1)
WHERE ? REACHES ? OVER friends EDGE (src, dst);

Where the markers ? are the host parameters to bind.

A.2 Vertex properties
Similar to the previous example, given two person IDs, the following
snippet depicts how to compute the shortest distance between them
and report it together with their names:
SELECT p1.firstName || ' ' || p1.lastName AS person1,

p2.firstName || ' ' || p2.lastName AS person2,
CHEAPEST SUM(1) AS distance

FROM persons p1, persons p2
WHERE p1.id = ?

AND p2.id = ?
AND p1.id REACHES p2.id OVER friends EDGE (src, dst);

For instance, using the data of �gure 2, and binding the parame-
ters to the values 933 and 8333, the result set is:
person1 person2 distance
Mahinda Perera Chen Wang 2

A.3 Reachability
The following snippet queries all the persons reachable from id =
933 (Mahinda Perera) in the subgraph of friends with creationDate
< 01/01/2011.
WITH friends1 AS (

SELECT *
FROM friends
WHERE creationDate < '2011-01-01'

)
SELECT firstName || ' ' || lastName AS person
FROM persons
WHERE ? REACHES id OVER friends1 EDGE (person1, person2);

Using the sample data of �gure 2, the result set with the query
parameter bound to 933 is:
person
Mahinda Perera
Carmen Lepland
Chen Wang

A.4 Multiple weighted shortest paths
The following snippet augments the previous example by comput-
ing a shortest path among the reachable persons. The purpose of
the query is to �nd a shortest path for all persons in the subgraph
of friends with creationDate < 01/01/2011, starting from a given
person ID. Furthermore, the shortest path is weighted, evaluated
on the expression Friends.weight * 2.
WITH friends1 AS (

SELECT *
FROM friends
WHERE creationDate < '2011-01-01'

)
SELECT

firstName || ' ' || lastName AS person,
CHEPEAST SUM(f: CAST(weight *2 AS int)) AS (cost, path)

FROM persons
WHERE ? REACHES id OVER friends1 f EDGE (person1, person2);

Binding the query parameter to 933, it yields the derived table:
person cost path
Mahinda Perera 0
Carmen Lepland 1 person1 person2 creationDate weight

933 1129 2010-03-24 . . . 0.5

Chen Wang 5 person1 person2 creationDate weight
933 1129 2010-03-24 . . . 0.5
1129 8333 2010-12-02 . . . 2.0

Finally, unnesting the path produces the result set:
person cost person1 person2 creationDate weight
Carmen Lepland 1 933 1129 2010-03-24 . . . 0.5
Chen Wang 5 933 1129 2010-03-24 . . . 0.5
Chen Wang 5 1129 8333 2010-12-02 . . . 2.0

Note that the �rst row (Mahinda Perera) is discarded as its path
is empty. Nevertheless, as described in section 2, it can alternatively
be retained by using a left outer lateral join.



GRADES’17, May 19, 2017, Chicago, IL, USA Dean De Leo and Peter Boncz

Figure 2: Sample data for the examples used in this appendix. A) depicts the data for table Persons(id, �rstName, lastName,
gender) B) reports the records in the table Friends(person1, person2, creationDate) where 〈person1, person2〉 is the primary
key and both person1 and person2 are foreign keys to the table Persons.
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