
Learning robust policies when losing control
Richard Klima

University of Liverpool
United Kingdom

Daan Bloembergen
Centrum Wiskunde & Informatica
Amsterdam, The Netherlands

Michael Kaisers
Centrum Wiskunde & Informatica
Amsterdam, The Netherlands

Karl Tuyls
University of Liverpool

United Kingdom

ABSTRACT
Many real-world applications require control strategies that pro-
vide robustness against a model of potential temporary external
control, such as failures of the designed controller or malicious at-
tacks. In this article we assume a Markovian control model as a
stepping stone towards extending Q-learning akin to the options
framework, but addressing the risk of losing control involuntar-
ily to possibly malicious ‘options’. The resulting reinforcement
learning algorithm maximises expected return, and is model-free
with respect to domain dynamics, but model-based with respect to
control transitions. Our model allows to exploit parallel off-policy
updates to efficiently learn from experience. Results demonstrate
that effective safe strategies can be learned from mistakes, possibly
even before attacks occur. Our algorithm compares favourably to
on-policies SARSA and Expected SARSA and off-policy Q-learning
in a multi-agent benchmark, can be trained using forward domain
models, and is compatible with many state of the art extensions,
such as deep learning, Retrace(λ), or Q(σ). We thus pave the way
to learn robust strategies in critical multi-agent domains, such as
smart grids, where graceful degradation is a prerequisite.

KEYWORDS
Reinforcement Learning; Safety; Robust Learning

1 MOTIVATION AND RELATEDWORK
Our research is mainly driven by the need for safety in critical
systems, which can be put at risk by one or more system compo-
nents failing or being compromised in an attack. Innovations in
critical systems may yield vulnerabilities to such attacks: e.g., in
smart grids communication channels are both needed and potential
targets to compromise distributed intelligent energy management
strategies [19], demanding new approaches for resilience and cyber-
security. Improving resilience and security in smart grids is a key
point of attention for Dutch funding in this area [17].

Consider a distributed control problem, for which each controller
executes an individual policy on separate hardware. Any of such
controllers may be attacked, potentially affecting or changing the
local policy. These attacks or failures can be rare but can have a pro-
found impact on the whole system if the system is not prepared for
them. The main question is then, how to obtain effective and robust
policies in such systems. The reasons for a controller executing a
different policy than desired include: an attack by an adversary (e.g.
hacker), a natural disaster (e.g. earthquake) or a mechanical defect
(e.g. node malfunction).

Our work touches upon multiple fields including robust con-
trol/learning, security games and safe reinforcement learning. Con-
trol theory starts with a model of the system to be controlled (the
plant), and for the purpose of robust control assumes a set of pos-
sible plants as an explicit model of uncertainty, seeking to design
a policy that stabilises all these plants [20]. While our assumption
of multiple controllers could be likened to distinct plant models,
we here seek to maximise in expectation by assuming probabilities
of alternate controllers taking over, reducing the model back to
one system. In addition, our work assume that the model of this
system is not known a priori, and a policy needs to be learned
by interacting with it, as in robust learning. While early work
on robust reinforcement learning focused on learning within pa-
rameterised acceptable policies [14], later work transferred the
objective of maximising tolerable disturbances from control theory
to reinforcement learning [9]. Our work is similar to the therein
defined Actor-disturber-critic, but we replace its model of minimax
simultaneous actions with stochastic transitions between multi-
ple controllers (one being in control at any time) with arbitrary
objectives for each controller. We thus cover not only minimising
adversaries but also random failures or any other policy encoding
other adversaries’ agendas. In relation to the taxonomy of safe
reinforcement learning [3] our method falls in betweenWorst-
Case Criterion under Parameter Uncertainty and Risk-Sensitive RL
Based on the Weighted Sum of Return and Risk, depending on the
chosen alternate controller objectives.

The domain of security games has expanded in recent years
with many real-world applications, examples include the ARMOR
system for airport security [11] or the PROTECT system for sched-
uling Coast Guard [13]. The main approach to the security games
in the related literature is computing exact solutions and deriv-
ing strong theoretical guarantees, mostly using equilibria concepts
such as Nash equilibria and Stackelberg equilibria [6], with an ex-
tension to the Stackelberg multi-agent setting [8]. This direction
of research in security games has been very important to theoreti-
cally underpin the field, however, it seems often difficult to deploy
exact theoretical solution methods in real-world settings due to
strict model assumptions or severe simplifications. Since we base
our approach on learning from interactions with the environment
we do not need to know the model of the system, which helps to
overcome some of the weaknesses of the theoretical approaches.

There has been substantially less work done on using rein-
forcement learning for security games compared to merely game-
theoretic approaches. The whole idea of using learning is primarily
based on modelling the system as a Markov Decision Process (MDP)
with states, actions and rewards. In case of considering multiple

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301646569?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

agents, MDPs extend to Stochastic Games. Some approaches have
used reinforcement learning for patrolling problems [12] or for the
illegal rhino poaching problem using Stochastic games [4]. Secu-
rity games are often modelled as Stackelberg Security games [6],
which capture the asymmetry in agents’ information about the
game. The attacker is assumed to observe the defender’s past ac-
tions and thus can reason about his strategy, to which the attacker
in turn best responds. Related work suggests a framework for asym-
metric (Stackelberg) multi-agent reinforcement learning where the
roles of defender (leader) and attacker (follower) are fixed [5]. Our
work adopts the information asymmetry assumption, providing the
control transitionmodel for the leader, and allowing leader-strategy-
informed best response strategies by attackers. However, we arrive
at a more general safe learning approach where the attacks might
be very rare and not necessarily adversarial (e.g. random attack).
Adversarial attack models may draw on the multi-agent reinforce-
ment learning algorithmMinimax-Q [7] for zero-sum games, which
assumes minimisation over the opponent action space. However,
in contrast, we define an attack to minimise over our own action
space, and thus learn (but not enact) simultaneously our optimal
policy and the (rare) attacks it is susceptible to.

In brief, we present a novel model-free approach to learn safe
and robust policies in systems that are prone to be attacked, or in
which some parts of the system may fail. We derive two algorithms
that are safe with respect to temporary loss of control, and find
them to be empirically robust with respect to estimation errors of
control loss probabilities. The proposed family of algorithms opens
new ways to effective behaviour in such systems, and can help
mitigate some of the security threats using a priori information
about the potential nature of the attack or failure.

2 GENERAL MODEL
We use the standard Stochastic game formulation defined by a tuple
(n, S,A1 . . .An ,R1 . . .Rn ,T), where n is the number of agents, S is
the state space, Ai is the action space of agent i , Ri (s,a) → ri
is the reward function of agent i for given state s and action a
and T (s,a) → s ′ is the transition function. We also define a joint
action space A as A1 ∪ . . . ∪ An ∈ A and a joint reward R as
R1 ∪ . . . ∪ Rn ∈ R. Our agents are assumed to be cooperative with
a possibility of external attack or external noise in action selection.
In general the n agents can be cooperative, adversarial or mixed.
Our method is particularly designed for the case where there is a
set of cooperating agents, where some of them can sometimes turn
to be non-cooperating (possibly adversarial).

We introduce a new algorithmwhere we consider several control
domains, defining whether the cooperating agents are in control of
their actions or someone else is in control and can alter the agents’
actions taken. During the interaction with the system there are
assumed to be transitions of such control. In the proposed algorithm
we assume we know the model of the control transition, which is
defined by the control transition function C. This function defines
who is in control of the system, where we also allow for a partial
control. In case of multiple agents, the function C can for example
define if and when an agent (and which one) is compromised i.e.
not in control of his actions. The control function is defined for a
very general case and can express various scenarios of malfunction

of an agent or of a malicious attack. In our reinforcement learning
method we use function C to define the value function V (s), i.e.
value function is a function of the control function as V (s,C).

We start introducing our algorithm from a simple case, where
we assume only two entities having control, either the optimal
agent itself with policy π or an external entity with policy µ, then
C determines whether we move between cπ and cµ at any given
moment. We define the control transition function C to be consis-
tent with the transition function T as C(s,a,σ) → σ , where σ ∈ M
describes who (and how) is in control out of |M | different entities.
The model assumes Markovian property, thus p(σ ′) = p(σ ′ |σ), ∀σ .
The objective of the external policy µ is defined in a general way
and thus can for example be: minimising value (malicious attack),
randomising (e.g. random errors). Based on an assumption about
the nature of µ we want to learn simultaneously a model of the
environment and a model of µ without necessarily observing actual
attacks. This means learning a safe policy π right from the start.

The simple case is when we need to learn only one Q-value
function Qπ . This is in the case when the not-in-control policy
can be defined in terms of our own Q-value function e.g. attacker
is minimising our Q-value function. Such an assumption can be
explained by the Stackelberg property, where the attacker might be
able to observe our past actions and thus know our Q-value function.
The Q-value function update based on standard Q-learning is then
defined:

Qπ (s,a) ← Qπ (s,a) + α
[
r (s,a) + γV π̃ (s ′,C) −Qπ (s,a)

]
(1)

where the value function in state s , given the control transition
function C, is defined as

V π̃ (s,C) =
∑
σ ∈M

p(σ)V π (s,σ)

where the composite policy π̃ · =
∑
σ ∈M p(σ)σ (s,a), which can be

seen as the actual executed policy by the system, including any
potential malfunctions or/and attacks. Note that we can learn Qπ

without actually observing any attack or malfunction.
We now move to a more advanced model, where we still assume

only two entities having control but now the not-in-control policy
cannot be defined in terms of our Q-value function Qπ and instead
is based on a different Q-value function Qµ . We approach this by
learning separate Q-functions for both our target policy π and the
not-in-control (e.g. attacker) policy µ, and using a mix of both Q-
functions based on the control transition model (e.g. probability of
attack) to evaluate the next state. The Q-update for our safe policy
π is then defined as:

Qπ (s,a) ← Qπ (s,a) + α
[
r (s,a) + γV π̃ (s ′,C) −Qπ (s,a)

]
(2)

where the value function in state s , given the control transition
function C, is defined as

V π̃ (s,C) =
∑
σ ∈M

p(σ)V σ (s,σ)

where the value function of the composite policy π̃ is a weighted
sum1 of several value functions learned using different Q-value
functions. Technically, we want to find our robust policy π by learn-
ing the Q-function Qπ while assuming that in the next state s ′ any
1In general this can be any operator, not just sum (i.e. linear combination), which
would allow for more complex scenarios.

2

policy σ ∈ M can be active with some probability p(σ |s ′), where∑
σ ∈M p(σ |s ′) = 1. This probability is defined by the control transi-

tion function C. In our exampleM = {π , µ}. Thus, at the same time
of learning Qπ we want to learn Q-functions for all policies σ we
consider. We can learn the value function using the Q-update func-
tion of the not-in-control policy µ from the same experience stream
< s,a, r , s ′ > generated by policy π by using importance sampling
(or other methods like in Retrace(λ) algorithm [10]) denoted by cs
as:

Qµ (s,a) ← Qµ (s,a) + αcs
[
r (s,a) + γV π̃ (s ′,C) −Qµ (s,a)

]
(3)

where cs is for example importance sampling i.e. cs =
µ(a |s)
π (a |s) . This

gives us our own estimation of the Q-functions for all policies σ ,
which in our setting would be just our own policy and that of the
attacker.

3 TWO-AGENT ADVERSARIAL CASE
We now demonstrate the proposed algorithm on a special case of a
distributed cooperative two-agent adversarial scenario, where we
assume the attack to be intentional and intelligent. This mainly
concerns the control transition function C and thus the definition
of the value function, where we assume the attack to minimise
the possible return (i.e. minimising Q-function). This assumption
comes from the concept of Stackelberg attackers who can fully
observe the agent past behaviour and therefore know his strategy
vector which he can best-respond to (minimising agent’s utility).
An important aspect is the sparsity of such attacks with the aim
not to be too cautious when not needing to be. We assume two
cooperating agents in the model with the attacker minimising over
the agents and over their action spaces.

The risk of attack is assumed to be known and is expressed by
the probability of attack per state, which is defined by the control
transition function C. These attacks are expected to be fairly rare.
In our algorithm we use a parameter κ which expresses the risk
of attack and allows the algorithm to learn an accordingly safe
strategy π . Thus, we consider several policies σ ∈ M , where

M = {max
A1

max
A2

Qπ ,max
A1

min
A2

Qπ ,min
A1

max
A2

Qπ ,min
A1

min
A2

Qπ }

with p(σ) = (1 − κ, κ2 ,
κ
2 , 0), representing the situation where only

one agent can be attacked at a time (with probability κ
2). We now

present two new algorithms based on standard off-policy and on-
policy algorithms.

Q(κ): Q-learning based. We present an off-policy type of learning,
based on standard Q-learning. We assume that each agent’s Q-
function is representative of all agents’ Q-functions (which makes
sense in a cooperative domain with a single reward function). Then
in the two agent case we can compute the optimal actions for both
players as

⟨a⋆1 ,a
⋆
2 ⟩ = argmax

a1∈A1,a2∈A2

Qπ (s, ⟨a1,a2⟩) (4)

where we define the value function as
V π̃ (s,C) = (1 − κ)Qπ (s, ⟨a⋆1 ,a

⋆
2 ⟩)

+
κ

2
min
a1∈A1

Qπ (s, ⟨a1,a
⋆
2 ⟩)

+
κ

2
min
a2∈A2

Qπ (s, ⟨a⋆1 ,a2⟩)

(5)

Note that for κ = 0 this algorithm degenerates into standard
Q-learning.

Expected SARSA(κ): On-policy-mix learning. We propose an on-
policy version based on Expected-SARSA [18]. We define the value
function V π̃ (s,C) for the Expected SARSA(κ), with the attacker
reacting (in expectation) to mixed policy

V π̃ (s,C) = (1 − κ)Ea⋆1 ,a⋆2 ∼π
[
Qπ (s, ⟨a⋆1 ,a

⋆
2 ⟩)

]
+
κ

2
min
a1∈A1

Ea⋆2 ∼π
[
Qπ (s, ⟨a1,a

⋆
2 ⟩)

]
+
κ

2
min
a2∈A2

Ea⋆1 ∼π
[
Qπ (s, ⟨a⋆1 ,a2⟩)

] (6)

4 EXPERIMENTS
We use a version of Cliff Walking described by Sutton and Barto
[15] for experimental evaluation of our proposed algorithms Q(κ)
and Expected SARSA(κ). Our environment is a grid world with
puddles, which need to be avoided by the agent, motivated by
the independent control transitions in distributed systems. Our
algorithm is primarily designed for multi-agent environments, thus
in our experimental evaluation we assume two cooperative agents
who move in the map according to their joint action. Each agent has
two possible actions: stay or move; we distinguish the agents by the
direction of their move. The first agent can move horizontally (from
left to right) and the second agent can move vertically (from top to
bottom). Therefore, the joint action consists of 4 possible actions:
stay, move right, move down or move diagonally. The agents start
at the left top corner and the game (episode) ends when the agents
reach the right bottom corner or step into a puddle. Each move
renders negative reward -1 or -1000 for stepping into a puddle. We
show the puddle grid world in Figure 1, where the puddles are dark
blue.

Firstly, we demonstrate the behaviour of Q(κ) in our grid world
in Figure 1. We show learned paths for different levels of parameter
κ. Note that for κ = 0 our algorithm Q(κ) degenerates into standard
Q-learning. We can see that Q-learning learns the shortest possible
path, which is, however, very risky due to the close proximity to
the puddles. In case of a small perturbation in the strategy (e.g.
attack or failure) the system can fall into a puddle, gaining very
high negative reward (we use the term reward also for negative
numbers, representing cost). One can observe how the learned path
becomes safer for increasing parameter of κ. Note that the agents
can stay or move only towards the right bottom corner i.e. down or
right direction, meaning no returning allowed, which is the reason
why even for high values of parameter κ the agents do not mind
being close to the puddles from the right side of the puddle but
trying to avoid the puddle from the left side. The arrows show
maximal Q-values in each state, thus one can observe the learned
behaviour in each state. The heat-map shows the number of visits
to each state.

3

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

Puddle gridworld for κ= 0, |path| = 10

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

Puddle gridworld for κ= 0.01, |path| = 13

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

Puddle gridworld for κ= 0.1, |path| = 15

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

Puddle gridworld for κ= 0.3, |path| = 16

Figure 1: Puddle gridworld: Two agents need to get from the
top left corner to the bottom right corner. Agent A (B) has
two possible actions; stay or move right (down). The result-
ing move is a joint action: stay, move right, move down, or
move diagonal. There is a reward of −1 per time step, and
stepping into a puddle (blue squares) results in a reward of
−1000. The learned path is shown by diagonal stripes (//). The
heat-map shows the number of visits per state, and the ar-
rows show the optimal joint action in each state. The results
are for Q(κ) with different values of κ; note that for κ = 0 the
algorithm reduces to standard Q-learning. One can see how
the learned path becomes safer with increasing κ.

In order to evaluate the proposed algorithm Q(κ) and Expected
SARSA(κ) we show reward evolution for varying intensity of at-
tacks. These two algorithms are described in Section 3. An attack
means changing one of the two agent’s strategy in a malicious way.
We assume that only one agent can be attacked at a time. In our
experimental setup with two agents, attacking one of them means
that the joint action is changed only partially from one of the agents.
As described before there are four possible joint actions: stay, move
right, move down or move diagonally. In case of attack these joint
actions change in following manner; (i) action stay to either move
right or move down, (ii) action move right to either stay or move
diagonally, (iii) action move down to either stay or move diagonally
and (iv) action move diagonally to either move right or move down.

We compare the algorithms against off-policy and on-policy
baselines: Q-learning, SARSA and Expected SARSA. We fix the
exploration parameter for all the algorithms to ϵ = 0.1. We train
every method for 50000 episodes, then test it for 50000 episodes
with attacks and average over 100 trial runs; we also show 95%
confidence intervals. We assume that we know the probability of
attack for the learning phase (i.e. knowing the control transition
function C), thus we set the parameter κ equal to the probability

of attack. We show this in Figure 2, where the left figure depicts
probabilities of attack in range (0.001, 0.2) and the right figure
in range (0.1, 0.9). The curves are plotted with a 95% confidence
intervals. We can see that Q(κ) performs the best in both figures,
Expected SARSA(κ) also beats all the baselines. The bottom figures
in Figure 2 show how many times the algorithm stepped into a
puddle - rendering a reward -1000. We can see that for very low
probabilities of attack (i.e. 0.001) the algorithm Q(κ) steps into a
puddle relatively more often than some of the baselines, however
the performance in terms of reward is better (top figures), which
means that the algorithm does not take unnecessarily safe paths in
case of very rare attacks. The dotted/dashed lines, crosses ’x’ and
pluses ’+’ in respective colours show the algorithms’ performance
in case of no attacks i.e. the rewards of learned path, thus we can
see how safe a path an algorithm learns.

To test our proposed algorithms we perform a robustness analy-
sis, where we assume we might not know the probabilities of attack
and thus are not able to correctly set the κ parameter. We show
a reward evolution for fixed parameter κ in Figure 3, κ = 0.01 in
the left figure and κ = 0.1 in the right figure. One can see that
even for the cases where parameter κ is not equal to probability
of attack i.e. assuming wrong intensity of attack, algorithm Q(κ)
performs the best (up to probability of attack 0.05 for κ = 0.01 and
for probability of attack equal to 0.1 or 0.2 for κ = 0.1). Algorithm
Expected SARSA(κ) also outperforms the baselines algorithms in
those cases. This robustness evaluation confirms strong properties
of our proposed algorithms. We conclude that the proposed algo-
rithms are robust to the cases of inaccurate estimate of probability
of attack (within some bounds).

Further testing of the proposed algorithms include convergence
analysis in Figure 4. We trained the proposed algorithms and the
baselines on low number of episodes i.e. (in range (1000, 10000)),
then test it on 50000 episodes of fixed probability of attack and
averaged over 100 trials. The right subfigure in Figure 4 shows the
reward evolution for different number of training episodes for fixed
probability of attack 0.01 and the left subfigure for probability of
attack 0.1. One can see that off-policies (Q-learning and Q(κ)) con-
verge slower compared to the on-policies (SARSA, Expected SARSA
and Expected SARSA(κ)). However, the proposed algorithm Q(κ)
and Expected SARSA(κ) eventually converge to superior behaviour
compared to the baselines as demonstrated above. Note, the insta-
bility of SARSA, where the confidence interval is very wide. On
the other hand the proposed algorithms are very stable i.e. narrow
confidence intervals.

5 DISCUSSION
The proposed type of algorithms presents a new way of learning
robust policies in presence of rare malfunctions or attacks. Our
experimental evaluation shows promising results where ourmethod
was able to beat standard Q-learning, SARSA and Expected SARSA
algorithms. This is a first experimental evaluation done on a simple
gridworld inspired by Cliff walking presented by Sutton and Barto
[15]. We showed an example with two agents with a possibility
of rare attacks on one of those two agents, causing losing control
of executed action. While the extended setting of losing control
can be seen as a new Markov game, we argue a) that this class of

4

9

12

17

23

31

re
w

a
rd

Reward evolution for varying intensity of attack

SARSA

Expected SARSA

Expected SARSA(κ)

Q-learning

Q(κ)

shortest path

0.001 0.005 0.010 0.025 0.050 0.100 0.200
probability of attack

0.0

0.4

0.8

1.2

1.6

%
 p

e
r

e
p
is

o
d
e stepped in puddle

9

28

89

278

874

re
wa

rd

Reward evolution for varying intensity of attack

SARSA
Expected SARSA
Expected SARSA()
Q-learning
Q()
shortest path

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
probability of attack

0
21
43
65
87

%
 p

er
 e

pi
so

de stepped in puddle

Figure 2: Reward evolution: Comparing algorithms Q(κ) and Expected SARSA(κ)with baselines (SARSA, Expected SARSA and
Q-learning). The dotted/dashed lines and ‘+’ and ‘x’ markers in respective colours are the rewards of learned path (i.e. no
attack). The black dashed line is the reward of the shortest path. Note that we train Q(κ) and Expected SARSA(κ) with κ equal
to probability of attack. All the shown algorithm have fixed exploration ϵ = 0.1.

9

13

18

26

37

re
w

a
rd

Reward evolution for varying intensity of attack

SARSA

Expected SARSA

Expected SARSA(κ=0.01)

Q-learning

Q(κ=0.01)

shortest path

0.001 0.005 0.010 0.025 0.050 0.100 0.200
probability of attack

0.0

0.5

1.0

1.5

2.0

2.5

%
 p

e
r

e
p
is

o
d
e stepped in puddle

9

12

17

23

31

re
w

a
rd

Reward evolution for varying intensity of attack

SARSA

Expected SARSA

Expected SARSA(κ=0.1)

Q-learning

Q(κ=0.1)

shortest path

0.001 0.005 0.010 0.025 0.050 0.100 0.200
probability of attack

0.0

0.4

0.8

1.2

1.6

%
 p

e
r

e
p
is

o
d
e stepped in puddle

Figure 3: Robustness of Q(κ) and Expected SARSA(κ): Left figure shows reward evolution for fixed κ = 0.01 and right figure for
fixed κ = 0.1. We can see that even when parameter κ and probability of attack are different the performance is still very good.
For κ = 0.01 we obtain superior performance of Q(κ) (and also Expected SARSA(κ)) for probabilities of attack up to 0.05, for
κ = 0.1 the proposed algorithms are superior for probabilities of attack 0.1 and 0.2.

games is relevant and useful in applications, and b) our formulation
based on a control loss model provides a solution that exploits the
identical action space (which model-free approaches applied to the
extended game would not).

In future workwewill extend the experimental evaluation to new
and more complex environments, where we hope to further demon-
strate the performance of the proposed methods and analyse their

behaviour deeper. We aim to show our algorithms over-performing
SARSA by a larger margin. An example of more daring environment
is a narrow passage walking where the agents control different di-
rections with different intensity and need to learn to coordinate to
walk safely through this passage.

As a next step we want to extend the method to the decentralised
multi-agent case, where several agents learn to cooperate while

5

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
episodes

9

29

95

310

1008

re
w

a
rd

Evolution of learning for probability of attack = 0.01

SARSA

Expected SARSA

Expected SARSA(κ)

Q-learning
Q(κ)

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
episodes

24

62

163

427

re
w

a
rd

Evolution of learning for probability of attack = 0.1

SARSA

Expected SARSA

Expected SARSA(κ)

Q-learning
Q(κ)

Figure 4: Convergence: We compare the convergence of our proposed algorithms Q(κ) and Expected SARSA(κ) with several
baselines. On x-axis there is the number of episodes the algorithms are trained for. After training the algorithms are tested in
50000 testing episodes with probability of attack 0.01 (left figure) or 0.1 (right figure). One can see that off-policies converge
slower than on-policies, which is to be expected. We can also observe the stability of learning by looking at the 95% confidence
intervals, e.g. SARSA is very unstable with very wide confidence interval.

being robust to losing control of actions taken. Such a setting re-
sembles independent Q-learning, which we plan to compare our
approach with. Furthermore, we could assume several agents be-
ing attacked or malfunctioned with different intensity. This would
be expressed by a more complex control transition function with
potentially more parameters depending for example on state or
time. State-dependent control transition function is motivated by
the fact that in practice some states might be critical and would
require an extremely safe policy. Continuing in that direction, the
control transition function could also be time dependent, where
some time steps are more prone to attack or malfunction than oth-
ers. These extensions would narrow the reality gap and would allow
for learning more complex policies, where we believe our approach
could bring new insights into learning robust policies in complex
environments. For a very large domains we also aim to combine our
method with some modern and powerful function approximation
techniques such as deep neural networks.

Our proposed method can be closely linked or even combined
with some of the state-of-the-art reinforcement learning methods.
We already mentioned Retrace(λ) [10], which can be combined
with our approach in a multi-step Q-update for robust learning
in environments where we might not be always in control of our
actions. Promising extension of our model would be to combine it
with Q(σ) [1] to allow for mixed multi-step updates. Note that the
parameter σ in this algorithm can also be time- or state-dependent
similarly to the proposed extensions of the control transition func-
tion in our model. Combining our model with Q(σ) algorithm shows
new ways how to learn robust policies against more complex at-
tacks e.g. multi-step attacks or assuming a strategic attacker de-
ciding on when to attack. Another interesting extension would
be to model the control transition function similar to the options

framework [2, 16], in which case the alternate control policies could
be seen as “malicious” options over which the agent has no control
with potentially complex initiation sets and termination conditions.

6 CONCLUSION
In this work we presented a new method based on standard re-
inforcement learning algorithms, which can learn robust policies
in systems with potential attacks or malfunctions. The proposed
framework provides robustness against a chosen stochastic control
transition model, which describes the probability of attack or mal-
function of every part of the studied system. This control transition
function is assumed to be a chosen (and thus known) robustness
target by the system designer, which is justified in many real-world
domains, where expertise is available on the type of expected attack
or potential malfunctions that may become critical to system per-
formance. Our preliminary experiments provide promising results,
and given the flexibility of the framework and its ability to model
attacks with temporal and state-space structure, it lends itself to
being applicable to a wide range of real-world scenarios.

ACKNOWLEDGMENTS
This research was partially funded through the ERA-Net Smart
Grids Plus project Grid-Friends, with support from the European
Union’s Horizon 2020 research and innovation programme.

6

REFERENCES
[1] Kristopher De Asis, J. Hernandez-Garcia, G. Holland, and Richard Sutton. 2018.

Multi-Step Reinforcement Learning: A Unifying Algorithm. In AAAI Conference
on Artificial Intelligence.

[2] Pierre-Luc Bacon, Jean Harb, and Doina Precup. 2017. The Option-Critic Archi-
tecture. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence.
1726–1734.

[3] Javier Garcıa and Fernando Fernández. 2015. A comprehensive survey on safe
reinforcement learning. Journal of Machine Learning Research 16, 1 (2015), 1437–
1480.

[4] Richard Klima, Karl Tuyls, and Frans Oliehoek. 2016. Markov Security Games:
Learning in Spatial Security Problems. NIPS Workshop on Learning, Inference and
Control of Multi-Agent Systems (2016), 1–8.

[5] Ville Könönen. 2004. Asymmetric multiagent reinforcement learning. Web
Intelligence and Agent Systems: An international journal 2, 2 (2004), 105–121.

[6] Dmytro Korzhyk, Zhengyu Yin, Christopher Kiekintveld, Vincent Conitzer, and
Milind Tambe. 2011. Stackelberg vs. Nash in Security Games: An Extended
Investigation of Interchangeability, Equivalence, and Uniqueness. Journal of
Artificial Intelligence Research 41 (2011), 297–327.

[7] Michael L Littman. 1994. Markov games as a framework for multi-agent rein-
forcement learning. In Machine Learning Proceedings. Elsevier, 157–163.

[8] Jian Lou, Andrew M Smith, and Yevgeniy Vorobeychik. 2017. Multidefender
security games. IEEE Intelligent Systems 32, 1 (2017), 50–60.

[9] Jun Morimoto and Kenji Doya. 2005. Robust reinforcement learning. Neural
computation 17, 2 (2005), 335–359.

[10] Rémi Munos, Tom Stepleton, Anna Harutyunyan, and Marc Bellemare. 2016. Safe
and efficient off-policy reinforcement learning. In Advances in Neural Information
Processing Systems. 1054–1062.

[11] James Pita, Manish Jain, JanuszMarecki, Fernando Ordonez, Christopher Portway,
Milind Tambe, CraigWestern, Praveen Paruchuri, and Sarit Kraus. 2008. Deployed
ARMOR Protection: The Application of a Game Theoretic Model for Security
at the Los Angeles International Airport. In International Joint Conference on
Autonomous Agents and Multiagent Systems, Vol. 3. 1805–1812.

[12] Sui Ruan, Candra Meirina, Feili Yu, Krishna R Pattipati, and Robert L Popp. 2005.
Patrolling in a stochastic environment. Technical Report. Electrical and Computer
Engineering Department, University of Connecticut, Storrs.

[13] Eric Shieh, Bo An, Rong Yang, Milind Tambe, Craig Baldwin, Joseph DiRenzo,
Ben Maule, and Garrett Meyer. 2012. PROTECT: A Deployed Game Theoretic
System to Protect the Ports of the United States. International Conference on
Autonomous Agents and Multiagent Systems 1 (2012), 13–20.

[14] Satinder P Singh, Andrew G Barto, Roderic Grupen, and Christopher Connolly.
1994. Robust reinforcement learning in motion planning. In Advances in neural
information processing systems. 655–662.

[15] Richard S Sutton and Andrew G Barto. 1998. Reinforcement learning: An intro-
duction. Cambridge: MIT press.

[16] Richard S Sutton, Doina Precup, and Satinder Singh. 1999. Between MDPs and
semi-MDPs: A framework for temporal abstraction in reinforcement learning.
Artificial intelligence 112, 1-2 (1999), 181–211.

[17] Ministerie van Economische Zaken en Klimaat. 2018. Regeling van de Minister
van Economische Zaken en Klimaat van 8 maart 2018, nr. WJZ/18026207, tot wi-
jziging van de Regeling nationale EZ-subsidies en de Regeling openstelling EZK-
en LNV-subsidies 2018 in verband met de openstelling van de subsidiemodules
inzake Topsector energieprojecten en enkele wijzigingen ervan. Staatscourant
14209 (2018).

[18] Harm van Seijen, Hado van Hasselt, Shimon Whiteson, and Marco Wiering.
2009. A theoretical and empirical analysis of expected sarsa. In IEEE Symposium
on Adaptive Dynamic Programming and Reinforcement Learning, ADPRL. IEEE,
177–184.

[19] Ye Yan, Yi Qian, Hamid Sharif, and David Tipper. 2013. A survey on smart grid
communication infrastructures: Motivations, requirements and challenges. IEEE
communications surveys & tutorials 15, 1 (2013), 5–20.

[20] Kemin Zhou and John Comstock Doyle. 1998. Essentials of robust control. Vol. 104.
Prentice hall, Upper Saddle River, NJ.

7

	Abstract
	1 Motivation and related work
	2 General Model
	3 Two-agent adversarial case
	4 Experiments
	5 Discussion
	6 Conclusion
	Acknowledgments
	References

