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Abstract

Image similarity models characterize images as points in high-dimensional feature spaces. Each
point is represented by a combination of distinct features, such as brightness, color histograms or tex-
ture characteristics of the image, etc. For the design and tuning of features, and thus the effectiveness
of the image similarity model, it is important to understand the interrelations of individual features
and the implications on the structure of the feature space.

In this paper, we discuss an interactive visualization tool for the exploration of multidimensional
feature spaces. Our tool uses a graph as an intermediate representation of the points in the feature
space. A mass spring algorithm is used to layout the graph in a 2D space in which arrangements of
similar images are attracted to each other and dissimilar images are repelled.

The emphasis of the visualization tool is on interaction: users may influence the layout by in-
teractively scaling dimensions of the feature space. In this way, the user can explore how a feature
behaves in relation to other features.

1 Introduction

Visual information retrieval systems allow images to be retrieved from data repositories subject to a user
defined query. Although the preferred mode of querying an image is semantic, queries are usually based
on syntactic features of the image (such as color, texture and object shape). The discrepancy that results
from using syntactic features to satisfy semantic queries causes a basic problem with the traditional
query/response style of interaction. In addition, syntactic features are context sensitive in that a feature
may successfully be used in one context, but can be inadequate in a different context. Hence, it depends
on the image set which feature (or combination of features) is most useful for a search.

Image similarity models for visual information retrieval are a well studied subject. Such models
usually represent an image as a point in a multidimensional feature space where similarity of two images
is expressed by the distance between their points in the feature space. A larger similarity/dissimilarity
corresponds to a smaller/larger distance of the points. Traditionally, image retrieval systems return a
list of images, sorted by similarity to the query image. This list is then presented to the user as a list of
thumbnail images. Unfortunately, such a presentation can be disorienting since relationships between the
images of the answer set are largely ignored and only the similarity to the query image is assessed. More
appropriate would be a presentation of the multidimensional space where the similarity relationships of
all images in the vicinity of the query image, i.e. the answer set, are preserved and presented in a way
that is easy and intuitive to grasp for the user.
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In this paper, we represent the multidimensional feature space of images with a graph. A vertex in
the graph represents a point in the space, while edges represent similarity relationships between images.
The graph is displayed in such a way that vertices with strong similarities are attracted to each other and
dissimilar vertices are repelled. The advantage of this presentation is that it gives a global overview of
points in the feature space as well as similarity relations among points. In addition, the method allows a
user to interactively scale each dimension of the feature space. By interactively scaling a dimension, the
user can explore how a feature behaves in relation to other features.

The focus of our research is not to develop interfaces for end users of visual information retrieval
systems. Rather, we are developing a framework in which feature developers can experiment with fea-
tures on wide varieties of image sets. Our framework allows developers to gain insight into the weak
and strong points of an individual feature, as well as insight into combinations of features. We believe
that interactive interfaces, in which developers continuously control one or more dimensions of the fea-
ture space, are very intuitive for understanding the effect that features have on the underlying similarity
model.

The remainder of this paper is organized as follows: After reviewing related work, in Section 3,
we review the building blocks of our system. In Section 4 we present experimental results obtained
with a real-world data set, detailing different scaling effects. We discuss possibilities and limitations of
application of our system in Section 5 and present our conclusions in Section 6.

2 Related Work

User interfaces to visual information retrieval systems have gained much attention recently, see e.g. [1, 2].
Research is underway in defining new ways of representing the content of visual archives and the paths
followed during a retrieval session. In retrieving visual information, high-level semantic concepts are
often used together with perceptual features in a query.

Mass-spring algorithms are well known for graph layout, [3, 4, 5]. For example, Gross et al. devel-
oped a mass-spring based system that in which a similarity metric is quantified for objects in financial
applications. This similarity metric drives the spring stiffness parameters of the mass-spring system
which, in its equilibrium state, will reveal multidimensional relations and adjacency in terms of spatial
neighborhoods.

Given a set of � objects in a
�

-dimensional space and a dissimilarity measure between objects,
Multidimensional scaling (MDS) computes a configuration of points in a low-dimensional Euclidean
space so that the Euclidean distances between two points match the original dissimilarities between
the corresponding objects as precise as possible, [6]. The MDS procedure is realized by applying a
least-squares technique to an objective function that penalizes the overall disparity between distances
and dissimilarities. A minimum of the objective function yields the desired configuration. A number
of commercial and research prototype image retrieval systems, which are based on MDS to display
similarity, have been developed, including QBIC [7] and a research system built at Stanford Vision
Laboratory [8]. QBIC displays the returned images as a list sorted by dissimilarity from the query. The
Stanford system applies MDS to the dissimilarity matrix and places image thumbnails at the coordinates
of the resulting two-dimensional projection.
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3 Methods

3.1 Similarity Metrics

For any given image, a feature is expressed as a � -dimensional vector �������	�
� ��� �
� ���������� � ����� . The
dimension of the vector may vary significantly from feature to feature. For example, the brightness of an
image maybe noted as a single value, i.e., ����� , whereas a color histogram may consist for instance of
128 values, i.e., ��������� .

Now, given a set of � features, we define the feature vector of an image as the composition of the
single feature values: � ���	� � � ��������� � � ��� � � � � ��������� � � �! ��������� �#" � ��������� � " �%$&�
Accordingly, the dimension of

�
is
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with matrices
D � �M6 �ON�PRQRSUTWV�XZY\[ where P�] denotes the identity matrix of order � .

Using ? as a scaling matrix, we can compute the distance matrix ^ for a set of images P � ��������� PR] as
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with
` �Ub �dcO?.ef- � �hg � b / e�c . � � and

� b are the feature vectors of image P�� and Pib , respectively. The
` �jb

can be interpreted as the scaled similarity metric between image P � and P b .
Examples. To illustrate the concept of features, we survey some features widely used in the literature.

Color-based features. Color-based features operates solely based on the color information contained
in the image. The most prominent representatives of which are color histograms where the images are
usually first dithered and the incidence of the single colors is determined afterwards [9, 7, 10]. Color
histograms have been frequently used in related work as reference technique to assess the performance of
new features [11]. Also simpler features that reduce even to a single scalar value are conceivable like the
information of how many different colors occur, the brightness, or the contrast of an image. Especially
with cliparts, i.e. non-photographic images, these very simple features are often of high distinctive power.
On the other hand, color histograms can be refined to reflect also some spatial information of the image
by allowing for color transitions, i.e. these histograms do not record the number of pixels per color but
the number of pairs of neighbored pixels that make up a certain color transition. For example with a color
palette of 16 colors the transition histogram covers 256 color transitions. Depending on the particular
feature, the quality can be enhanced by applying filters like despeckle or blur filters to the image as a
pre-processing.
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Texture-based features. Texture-based feature captures structures within the images. The most typical
representatives are approximations with periodic functions like the Fourier transform. Here, the feature
vector corresponds to the sequence of coefficients found. Other important members of this class include
Gabor filters and wavelets. Texture-base features are particularly successful when applied to genres of
images where color information is of lesser importance, e.g. air photography [12].

3.2 Layout

A graph is used as an intermediate representation of the points in the feature space. Vertices represent the
points in the

�
-dimensional feature space while edges model the similarity relationship between points.

For the layout of the graph a mass-spring system is used. Edges are modeled as springs. A minimiza-
tion algorithm computes an equilibrium configuration of the points with minimal energy. Unfortunately,
to compute one step in the energy minimization algorithm, most spring mass systems are in ��-�� � /

,
where � is the number of vertices. This makes such fully connected mass-spring systems non-scalable
for interactive usage.

To overcome this scaling problem, we define an alternative mapping from the distance matrix to the
graph. Instead of generating a fully connected graph, we generate a graph in which only highly similar
vertices are connected. For this, we introduce a threshold distance � . When the graph is constructed
only edges corresponding to a distance that is less than � are taken into account; i.e. vertices � and �
have an edge if and only if

` �jb�� � .
The governing equations of the interactive mass spring layout model are captured as follows: denote

the position of vertex � in visualization space as � � and the position of point � in multidimensional space
as 	 � . The force applied by a vertex � onto a vertex � depends on the discrepancy between the c
� b g � � c
and c�	 b g 	 � c . If the discrepancy of these two distances is large than the force will be large. The
resulting total force applied to a vertex is the sum of all forces on the vertex. The mass spring algorithm
will minimize the total discrepancy of the distances.

With � �jb �  Y�� ���  Y�� �� � , the unit vector in the direction from � � to � b , we define the force between
vertices � and � as

� �jb � ��� �jb - ` �jb g c
� ��g � b c / N � �jb if c
� ��g � b c ������� if
` �Ub�� �; otherwise

The visualization space paramter � can be set by the user.
This formulation allows an efficient algorithm to be implemented. The computation of

� � is sped
up in two ways. First, a uniform grid of radius � around vertex � is used to quickly test and select only
those vertices in the neighborhood of � . Second, edges are used to select only those vertices of a distance
smaller than

` �jb to � . In this way, instead of testing all vertices, only a limited number of vertices have to
be tested, (see [13]).

3.3 GraphSplatting

GraphSplatting is a technique to transform the graph into a continuous field. It is based on the observation
that the density of vertices is an important characteristic of the graph. Splatting projects each vertex of
the graph onto a two-dimensional scalar field. Instead of showing the individual vertices and edges, the
variations in density are shown. Vertices of the graph are represented in the field by a splatting function.
Each vertex contributes to the field with a two-dimensional Gaussian shaped basis function. The resulting
field is constructed by adding all the contributions. This field is called the splat field.
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Figure 1 illustrates the mapping primitive. The figure shows a cross section of the Gaussian splatting
function. The width of the Gaussian ( � in Figure 1) determines the ’smoothness’ of the splat field. A
large value of � will result in smoothing out the details of the graph. Using a small value for � will
present more detail of the graph. In the limited case � � ; the original vertices will be represented as
points. The user can interactively control the width of the splats with a global parameter.

h

σ

Figure 1: Visualization of a splat field. The left panel shows the mapping parameters for the base
function; The right panel shows three splat fields of a graph with 4 vertices and 4 edges (upper left). The
splat fields have different splat widths.

The height (
�

in Figure 1) of each splat can be used for mapping an attribute of the vertices. In
this way, different properties of the graph can be highlighted. Vertices with a large attribute values will
contribute more to the splat field that vertices with low attribute values.

GraphSplatting is designed to be used in combination with other graph rendering methods. A con-
tinuous representation is often useful for obtaining an overview of the data associated with the vertices
of the graph. After zooming into a detail, it can be combined with other graph visualization methods.

4 Results

Test Image Set. We applied our methods to a synthetic test set of 3276 images. The test set consisted
of 36 groups of images with distinct hue values. Each group had 91 textures of varying frequency
and orientation. For each image, 6 feature vectors were computed: a 1 four-dimensional gabor feature
vector for texture analysis and 5 distinct color-based features vectors. The color-based features vectors
including a hue histogram, a hue histogram of the center region of the image, and 3 hue transition
histograms. For transition histograms, the hue is first dithered to 16 bins; then the histogram of the 256
resulting combinations is recorded. As a pre-processing step, the images were segmented into 32, 128,
and 256 tiles, and each tile was replaced by its dominant hue. The dimensionality of the feature space
spanned by the 6 features vectors is 804.

Figure 6 shows a snapshot of the user interface. The upper panel shows the graph view: an ar-
rangement of the graph in the visualization space. Small dots are used to represent vertices. Grey lines
represent edges between points with distances below the threshold distance � . Edges also provide addi-
tional feedback on the state and progression of the layout algorithm. For example, very long edges will
indicate that the layout algorithm has not reached an equilibrium. Some selected vertices are annotated
with a thumbnail image. The lower panel shows the splat field, which is color encoded from white (low
density values) to black (high density values). In Figure 6, the mass spring algorithm has reached an
equilibrium. Users can drag vertices to other positions, after which the mass spring algorithm will com-
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pute a new equilibrium. Animation is used to display each step of the mass spring system evolving to an
equilibrium. In this way, the user can study how an arrangement evolves towards another.

The graph provides a 2D view in which the images are displayed according to their mutual dissim-
ilarities and similar images are clustered. A problem with the graph view is the potential cluttering,
making it difficult to estimate density of vertices in dense regions. The splat field provides a 2D view of
a continuous density field. Colors are used to show which areas have a high density of vertices. In this
way, the user can see in a glance which images are similar.

Scaling is illustrated in Figure 3. Each panel of the 3x3 matrix show the splat field of the graph
layout in a equilibrium. Each row has scaled the hue histogram feature vector by incrementing the
corresponding 6 by 0.5. Similarly, each column has scaled the gabor feature vector with increasing 6
settings.

The influence of scaling the hue histogram feature vector in combination with scaling the gabor
feature vector can be analyzed from the matrix. For example, the arrangements shown in the first row are
very different than the arrangements in the last row. In addition, the circular pattern of small clusterings
seen in the last row, can already be discerned in the second row. This observation indicates that the hue
histogram feature vector is dominating the gabor feature vector for this test set.

Corel Image Collection. We also experimented with images taken from the Corel Image Collection
[14]. A set of 200 images were selected across different genres, yet, at the same time care has been
taken that there is a small fraction of images per genre that would be commonly regarded as “similar”.
For example, images of similar objects like sailing boats, or image of objects which differ in lighting
characteristics or camera positions only. The 6 feature vectors mentioned above were computed for each
image.

The four panels in Figure 4 demonstrate the effects of different 6 settings. These panels shows that
different weightings of features lead to distinctly different clusterings of the graph. Scaled features are
meaningful in their own way but provide significantly different separation of different regions or images.

In this case the gabor and hue histogram feature vector were scaled. The upper left panel shows the
graph with 6 setting for the gabor feature at 1.0 and the 6 setting for the hue histogram feature at 0.0. In
the upper right panel, the 6 settings were 0.8 and 0.2. In the lower left panel, the 6 settings were 0.2 and
0.8. In the lower right pane, the 6 settings were 0.0 and 1.0. The threshold value was set so that each
graph contained approximately 1100 edges.

Each panel show a very different structure of the underlying graph. The upper left panel shows a
structure with 4 clusters of vertices. Clusters are connected with relatively few links. The lower right
panel shows a structure with dense cluster.

To illustrate the scalability of the splat field, we have applied our methods to larger image sets.
Figure 6 shows the splat fields of four image sets taken from the Corel Image Collection. The sets have
1000, 4788 and 10000 images respectively. The same set of features as above was computed for both
sets. To generate the snapshots, the mass spring algorithm was used with the 6 of the gabor feature vector
set to 1.0. All other 6 factors were set to 0.0.

The top row shows the graph view for each layout. Graph views with 1182, 33524 and 86521 edges
are very cluttered and it is very difficult to determine which areas contain images that are similar. The
bottom shows the splat field for each layout. Here, the structure of the graph is clearly shown. This is
useful particularly in areas of high vertex density, i.e. those areas in which images have high similarity.
Also, the structure of the graph is very similar for the four image sets.
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5 Discussion

The framework discussed in this paper allows developers concerned with the design and tuning of fea-
tures to experiment with the precision of particular features, feature distributions, similarity models, and
the visualization of similar images. The interactive visualization tools are tailored towards the explo-
ration and presentation of the underlying multidimensional spaces.

5.1 Visualization

The layout algorithm detailed in section 3.2 generates arrangements in which similar images are attracted
and dissimilar images are repelled. Since related images are grouped together in order of increasing
dissimilarity, the density of the images can be interpreted as a measure of image similarity. Images
are displayed either as points (useful for density distributions), thumbnails (useful for visual similarity
comparisons), or the complete image.

However, the interactive nature of the interface provides additional advantages regarding both the
layout and modification of the points in the space by different feature weightings.

� Layout

Besides the actual layout algorithm, the tool comes with a whole array of interactive elements in-
cluding zooming, drag-and-drop of vertices, inspecting a vertex properties, highlighting of neigh-
bored vertices and connecting edges etc. This enables users to disentangle dense areas and study
neighborhoods of individual vertices.

The animation of the layout algorithm gives an immediate impression of the strength of the links
and components. Additionally, the user can also adjust the velocity of the convergence of the
system to study these effects also in slow-motion.

� Scaling

It is well-known that there is no universal concept of similarity but similarity always depends on
both the properties of the query image and the images stored in the repository. For different sets of
images, features differ in their effectiveness. In addition, the effectiveness may vary even from one
region of the feature space to another [15]. Thus, weighting and scaling of features is a necessity.

Studying these effects with statistical methods like cluster analysis etc. is often not satisfactory.
Capturing the structure of the points in space in order to describe the effects of scaling is compu-
tational expensive and results are difficult to grasp. In contrast, scaling the influence of features
interactively, helps to grasp these effects in an immediate and evident way.

Our experience has been that for the bulk of images the weighting is of little influence—these images
appear very similar under many different features, particularly, since features often subsume other fea-
tures. However, there are also areas where the influence of a few, sometimes even one single feature,
is crucial. Interactive and animated scaling of single features makes it easy to explore and analyze the
impact of individual features. Our layout provides for the visualization of areas which is facilitated by
the threshold parameter. Modifying this parameter enables pruning of the similarity relationships in the
graph to blot out regions that are of little interest. It does not matter exactly how distant dissimilar images
are from a given image, as long as they are far in relation to similar ones.

A splat field is used to show the density of one single dimension of the feature space by mapping
the feature value of a feature to a splat. Since splat fields are continuous representations of the discrete
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graph, they allow for the visualization of very large graphs. Individual vertices will not be discerned,
but the continuous field will contain density information that can be used to determine clusters of similar
images.

5.2 Comparison with other MDS based systems

The use of a mass-spring system for the layout of a multidimensional space is an approximation to MDS.
Recall that MDS uses a least-square technique to define an objective function that penalizes the overall
disparity between distances and dissimilarities. The MDS objective function may be interpreted as the
total energy of a fully connected mass-spring system, with a vertex for each image, and springs con-
necting each vertex. The relaxed length of a spring connecting two vertices is given be the dissimilarity
between the corresponding pair of images. The actual length of the spring is the Euclidean distance be-
tween vertices. The equilibrium of this spring system corresponds to the minimum of the MDS objective
function.

Our method differs from MDS when the graph is not fully connected. Constructing a graph from the
distance matrix uses a distance threshold � . When the graph is constructed only edges corresponding
to a distance that is less than � are taken into account; i.e. vertices � and � have an edge if and only if` �jb � � . For example, when � � ; , the graph will have no edges and if � � � , the graph will be
fully connected.

In the case of a not completely connected graph, our mass-spring algorithm will result in groups of
similar images. Mutual distances between images within a group can be interpreted as a measure of
similarity. Distances between groups have no meaning, but the similarity between images in different
groups is known to be larger than the distance threshold.

6 Conclusion

The framework discussed in this paper allows image feature developers to experiment with the precision
of particular features, feature distributions, similarity models, and the visualization of similar images.
The interactive visualization tools are tailored towards the exploration and presentation of the underlying
multidimensional spaces.

We have demonstrated that our tools can be used to gain insight into the strengths and weaknesses of
features and how they perform in combination with other features. We believe that interactive interfaces,
in which users continuously control one or more dimensions of the feature space, are very intuitive for
understanding the effect that features have on the underlying similarity model.

References

[1] S.K. Card, J.D. Mackinlay, and B. Shneiderman, editors. Readings in Information Visualization.
Morgan Kaufmann Publishers, 1999.

[2] A. del Bimbo. Visual Information Retrieval. Morgan Kaufmann Publishers, 1999.

[3] G. di Battista, P. Eades, R.A. Tamassia, and J.G. Tollis. Graph Drawing. Prentice Hall, 1999.

[4] R.J. Hendley, N.S. Drew, A.M. Wood, and R. Beale. Narcissus: Visualizing information. In S.K.
Card, J.D. Mackinlay, and B. Shneiderman, editors, Readings in Information Visualization, pages
503–511. Morgan Kaufmann Publishers, 1999.

8



[5] M.H. Gross, T.C. Springer, and J. Finger. Visualizing information on a sphere. In Proceedings
Symposium on Information Visualization, pages 11–16. IEEE Computer Science Press, 1997.

[6] T.F. Cox and M.A.A. Cox. Multidimensional Scaling. Chapman & Hall, London, 1994.

[7] J. Ashley, M. Flickner, J.L. Hafner, D. Lee, W. Niblack, and D. Petkovic. The Query By Image
Content (QBIC) System. In ACM SIGMOD Conference on Management of Data, page 475, 1995.

[8] Y. Rubner, C. Tomasi, and L.J. Guibas. A Metric for Distributions with Applications to Image
Databases. In IEEE International Conference on Computer Vision, pages 59–66, Bombay, India,
January 1998.

[9] V. Ogle and M. Stonebraker. Chabot: Retrieval From a Relational Database of Images. IEEE
Computer, 28(9):40–48, September 1995.

[10] A. Pentland, R. Picard, and S. Sclaroff. Photobook: Content-based manipulation of image
databases. International Journal of Computer Vision, 18(3):233–254, June 1996.

[11] J. Huang, S. R. Kumar, M. Mitra, W.-J. Zhu, and R. Zabih. Image Indexing Using Color Correlo-
grams. In IEEE Computer Vision and Pattern Recognition, pages 762–768, Puerto Rico, 1997.

[12] B.S. Manjunath and W.Y. Ma. Texture features for browsing and retrieval of large image data. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 18(8):837–842, August 1996.

[13] R. van Liere and W. de Leeuw. Graphsplatting: visualizing graphs as continuous fields. Submitted
for publication. Available at http:// www.cwi.nl/˜robertl.

[14] Corel, http://www.corel.ca/products/clipartandphotos/photos/index.htm. Corel Stock Photos, 1999.

[15] S. Santini and R. Jain. Similarity is a Geometer. Multimedia Tools and Applications, 5(3):377–306,
November 1997.

9



Figure 2: Two views of a graph arrangement for the test set. The upper panel shows graph view with
vertices and edges. The lower panel shows the splat field. Some vertices are annotated with a thumbnail
image.
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Figure 3: Nine splat fields with different scaling factors. Rows have increasing 6 values for the hue
histogram feature vector. Columns have increasing 6 values for the gabor feature vector.
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Figure 4: Four panels showing the graph with different scaling factors for the hue histogram and gabor
feature vectors. Ten vertices are annotated with a thumbnail image.
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1000 images 4788 images 10000 images
1182 edges 33524 edges 86521 edges

Figure 5: Scalability of splat fields. The top three panels show the graph views of three image sets. The
bottom three panels show the splat fields. The gabor feature vector was scaled to 1.0.
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