
Why and How to Benchmark XML Databases

Albrecht Schmidt1,2
albrecht@cwi.nl

Florian Waas2
florianw@microsoft.com

Martin Kersten1
mk@cwi.nl

Daniela Florescu3
danaf@propel.com

Michael J. Carey3
mike.carey@propel.com

Ioana Manolescu4
ioana.manolescu@inria.fr

Ralph Busse5
busse@darmstadt.gmd.de

Abstract

Benchmarks belong to the very standard repertory of tools
deployed in database development. Assessing the capa-
bilities of a system, analyzing actual and potential bottle-
necks, and, naturally, comparing the pros and cons of dif-
ferent systems architectures have become indispensable
tasks as databases management systems grow in com-
plexity and capacity. In the course of the development
of XML databases the need for a benchmark framework
has become more and more evident: a great many dif-
ferent ways to store XML data have been suggested in
the past, each with its genuine advantages, disadvantages
and consequences that propagate through the layers of a
complex database system and need to be carefully con-
sidered. The different storage schemes render the query
characteristics of the data variably different. However, no
conclusive methodology for assessing these differences is
available to date.

In this paper, we outline desiderata for a benchmark
for XML databases drawing from our own experience of
developing an XML repository, involvement in the defini-
tion of the standard query language, and experience with
standard benchmarks for relational databases.

1 Introduction

XML and databases seem like an odd couple: two very
different concepts driven by two very different commu-
nities with different expectations and requirements. Yet,
an increasing demand for consistent and reliable ways to
manage XML data [2, 3] suggests the marriage of the two.
By that, we do not mean “management of XML data on
top of a relational database” as it is often interpreted but
a general coupling of the two worlds. For storing XML,
numerous techniques have been suggested and the discus-

1CWI, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands
2Microsoft Corp., One Microsoft Way, Redmond, USA
3Propel Inc., San Jose, USA
4INRIA Rocquencourt, France
5GMD-IPSI, Dolivostr. 15, 64293 Darmstadt, Germany

sion whether conventional database technology, be it rela-
tional or extended relational, is up to the challenge is still
in full swing.

From an application point of view, the discussion
whether XML is syntax or data model looks slightly dif-
ferent: in order to assume the role of a true data exchange
format in which both industry and research want XML
to be seen, an XML database has to deliver on the per-
formance demands of its key applications: web services,
B2B, and e-Commerce scenarios to name just a few. Most
of them require on-line, often interactive processing.

Throughout the history of the development of relational
database technology, benchmarks served primarily as a
scale to assess and compare new techniques and system
components. On the other side, many innovations in
query processing and storage management were achieved
by trying to boost benchmark figures (e.g.[10, 11]); thus,
benchmarking does not only mean that we measure the
state of the art but is also a constant incentive for further
development.

In this paper, we postulate desiderata for a general pur-
pose benchmark for XML databases; we take both into ac-
count, the state of the art as well as recent developments.

First of all, let’s have a look at the state of the technol-
ogy: (1) Currently, there is no commonly agreed on no-
tion of the functionality that an XML database can be ex-
pected to comply with. Therefore, we will go with the fre-
quently used definition of an XML database, which refers
to a system that stores and manages XML documents.6

More crisp are the definitions of various query languages,
XQuery [5], the most prominent of which is currently be-
ing standardized. (2) On the other hand, many applica-
tions currently under construction or being deployed al-
ready specify a number of requirements XML databases
will have to meet.

However, before we go into a detailed analysis, it might
be helpful to briefly survey the complementary devel-
opment of relational systems and benchmarks in order
to identify reasonable criteria and to avoid obvious mis-
takes. What can be carried over from more traditional

6A number of similar definitions can be found at [3].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301646518?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


benchmarks like those defined by TPC, SAP, PeopleSoft
amongst others? What can be learned?

Early benchmarks have been strictly geared toward
testing database functionality on a very general level. The
early Wisconsin Benchmark [12] for example consists of
a number of queries which test the performance of small
numbers of join operations. While helping to determine
the bottlenecks in join processing, the benchmark does not
take particular application scenarios into account beyond
the obvious motivation that joins rank among the most
costly operations thus have to be especially taken care of.

As database functionality evolved, implementations of
different systems converged, and performance figures for
simple queries became increasingly indistinguishable, the
embedding of a database system into an application sce-
nario became more and more important. TPC-H/R [16],
one of the most important industry benchmarks, is mod-
eled after the general requirements a data warehousing ap-
plication poses to a database system.

Finally, the latest development are application spe-
cific benchmarks like the SAP and the PeopleSoft bench-
mark series, where performance characteristics for run-
ning one proprietary application are used to assess a sys-
tem. In contrast to the early general purpose benchmarks,
these kind of application benchmarks no longer evaluate
databases as isolated units but as an integrated back-end
in an application scenario, and assume that customers pur-
chase the database solely for this purpose.

This evolution may seem like a linear development
with databases changing from general purpose reposito-
ries to becoming part of an individual, complex applica-
tion. However, this development has also seen failures
and set backs, most notably TPC-W. The TPC-W bench-
mark is widely agreed to provide only little insight. Mod-
eling many components of a internet commerce applica-
tion, the interaction between components and different
scenarios become opaque and hard to analyze. Unlike
the application benchmarks mentioned above, the TPC-
W scenario is kept overly generic, and thus, instead of ex-
actly matching one app, it does not match any. While tun-
ing a database system for SAP’s or PeopleSoft’s bench-
mark is of direct use for customers who directly deploy
the database – often solely – in this scenario, the gains
from high TPC-W numbers remains questionable.

In short, benchmarks have to match (1) the technology
available at the time and (2) the application scenarios used
in production; given the current developments, defining a
general purpose benchmark is an important first step to
conclusive assessments of XML databases.

In this paper, we review the conceptual idiosyncrasies
of storing and retrieving of XML data and try to identify
components and operations that a reasonable benchmark
should cover. We also scrutinize what lessons, learned
from query processing in relational databases, can directly
be carried over.

2 Preliminaries

The question “how to assess query performance” is obvi-
ously preceded by the more basic question “what opera-
tions on an XML document are conceivable and reason-
able”. With its XML Query Working Group, the W3C
addressed this issue with experts from both the database
and the document communities. The scenarios and use
cases [4] developed were directly taken from research in-
put but also results of surveys of web services and ap-
plication scenarios that did not yet deploy XML but could
benefit from it. The outcome of this process became avail-
able in two phases: first, an algebra that tried to formalize
operations was released and later, a draft for a query lan-
guage was formulated.

It appears essential when staking out a benchmark, to
review these two products as they set the stage for any
performance evaluation by defining the set of operations
available.

2.1 Query Algebra

The algebra, specified in a Haskell-like functional pro-
gramming language [8], defined and illustrated by means
of use cases a set of operations that appear meaningful to
perform on XML documents. Due to the visible database
background of the group, most operations suggested are
very familiar from the world of relational database sys-
tems. Operations include filters, joins on values or along
referential key constraints, grouping operations etc.

In contrast to their relational relatives, these operators
obviously have to maintain order. In the notation of the
algebra, this is implied by usingfor-loop like constructs
which suggest iterating over an ordered list of data. These
loops are only defining the variable binding and a sys-
tem which can encode order through, say, an additional
attribute at the object itself may take advantage of using
operations that are not order preserving,e.g.,hash joins.

With respect to the definition of a benchmark, the alge-
bra immediately provides two requirements. On the one
hand, we certainly want to test most if not all operations
suggested. On the other hand, the issue of treating order
should be a the central aspect in the tests—the more if the
XML database in question is implemented on a relational
database system.

2.2 Query Languages

While the algebra mainly served to outline the basic op-
erations that would have to be supported by a language
it does not specify how those operations should be ex-
posed in a query language. At the beginning of the stan-
dardization process, several query languages were in use,
the most popular of which are XQL [17] and XPath [6].
Those languages might be considered obsolete in the light
of the standardized query language XQuery – XQuery



Query 1 Query 2 Query 3

E
la

ps
ed

 ti
m

e

�

fixed
variable
inlined

Figure 1: Query times of select benchmark queries on a
relational database system using three different mappings
of XML to relational structures

subsumes XPath and is more powerful than XQL. How-
ever, a sizable user base currently deploys alternative
XML query languages including several proprietary ones
and to the best of our knowledge no commercial imple-
mentation of XQuery is available at the moment. Since
XQuery has been being standardized by the W3C, with
all major manufacturer fully supporting the development,
XQuery is clearly the query language of choice for for-
mulating the benchmark queries.

In order to be able to test also systems which do not
provide full XQuery support, be it for reasons of integrat-
ing legacy applications and data, be it that the application
scenario the XML database has been developed for simply
does not require the additional expressiveness of XQuery,
it seems highly advisable to definequery groups, i.e., a
classification and bundling of the individual queries. Of-
ten, simple queries can be formulated using only XPath
primitives. A second dimension along which we will de-
fine query groups is of course the functionality. That way,
the functionality of a system can be categorized and as-
sessed conclusively and transparently.

The XQuery standardization efforts have come a long
way already, yet, XQuery is by no means complete. So far
merely read-only query scenarios have been addressed;
inserts, updates and XML specific derivatives thereof
have, at the time of writing, not been dealt with. To or-
ganize the benchmark in query groups also helps in this
situation as groups can be enhanced with versioning to
reflect the current standard. Releasing a new version of a
particular query group to incorporate new developments
does not invalidate old results.

3 Motivating Examples

For XML data the physical break-down of data is of sig-
nificant impact and decidedly more important than it is
in the relational world. The decision how to store a doc-

ument does not only depend on performance and redun-
dancy considerations but also on external knowledge of
the document in the form of constraints. In the simplest
case, there is no external knowledge and one has to use
a generic mapping like one of the binary mappings de-
scribed for instance in [9, 18]. If there is external knowl-
edge, be it in the form of constraints like a DTD or even
something more expressive like a schema language [14]
then one may decide to use a more advantageous map-
ping for example by inlining1 : 1 relationships into larger
relations or mapping generic string values to richer data
types to save space and avoid coercions at query execu-
tion time [20]. In an object-oriented scenario,i.e., the pri-
mary access pattern is navigational iteration over DOM
like syntax trees [21], it is often worthwhile to map the
document structure to a set of class definitions. In this
case, external knowledge can be exploited by regrouping
objects into disk pages according to different access sce-
narios. Depending on the application scenario there likely
are more optimizations to favor the query profile of the ap-
plication. A number of mappings have been presented re-
cently (e.g.,[7, 9, 13, 18, 20]). However, it seems two de-
sign principles prevail: binary decomposition,i.e.,group-
ing ancestor relationships in one or more relations, and
inlined representation,i.e., storing1 : 1 relationships be-
tween parent tags and their element and attribute children
in one relation while1 : n relationships are mapped to
two relations which share a common key [20]. While the
former excel through their conceptual simplicity, the lat-
ter try to retain a relational flair by mimicking the trans-
lation rules (i.e., fragmenting the document along1 : n
parent-child relationships) between ER-models and rela-
tional schema.

Closely related to the issue of the physical represen-
tation is that of query optimization. Over the past two
decades, there have been significant advances in optimiz-
ing SQL queries; in practice rule-base and cost-based op-
timization techniques are used, both of which are tightly
coupled to the underlying physical data model. It would
be highly desirable to re-use large parts if not all of this
knowledge.

To illustrate these points, we implemented different
mapping models atop a relational database system and
compared the query times for three queries taken from
The XML Benchmark Project[19]. Figure 1 shows the
resulting query times: The first column in each group
represents the time for afixed, document-independent bi-
nary storage model such as [15],i.e.,all parent-child rela-
tionships are stored in a single relation resulting in many
self-joins during query execution. The second column is
the performance of the same data mapped to avariable,
document-dependent relational module such as [18],i.e.,
all parent-child relationships of a specific type are clus-
tered in a separate relation. The third column in each
group eventually shows the performance of aninlined
multi-attributemapping in the spirit of [20]; here relations



are larger and can have many more attributes than there
are per relation in the binary case. From the plot, it is ev-
ident, that each of the models has its advantages and can
outrun all other alternatives in certain situations. How-
ever, to understand the issues and bottlenecks encountered
in this simple experiment we need to have a closer look at
the processing of the queries:

Query 1 is a very basic point query specified by a path
expression. On the inlined model this results to a scan of
one relation returning a single tuple; on the other models
a number of joins or self-joins are required to materialize
the path expression. On the one hand, the inlined model
trades in data volume for joins with respect to the binary
models, on the other hand, in the variable model a larger
number of tables has to be accessed.

Query 2 specifies a join depending on the document
order. Here the multi-attribute model benefits from the
fact that fewer joins need to be executed than in the binary
case. As to the other two models, the implicit clustering
of data as achieved by the variable model results in better
statistics as compared to the fixed model. Therefore, the
the variable model is significantly more amenable for the
optimizer than the fixed model.

Query 3 finally underlines the differences in numbers of
columns per table. The multi-attribute model suffers from
the data volume when a large number of joins is executed
where only few columns are required for the result. Joins
are much less costly to process on both the fixed and the
variable decomposition schemes.

The example provides a good impression of the extent
and nature of the performance issues a benchmark has to
address. Besides the relatively obvious question of the
physical data break-down, a number of other aspects have
severe impact on the query performance. Concerning the
physical design, the usage of indexes and surrogate OIDs
where additional information like order is encoded in the
OID can speed up querying on the expense of rendering
updates or inserts overly expensive. An area which has
been largely neglected so far is the optimization of XML
specific queries. Besides issues like in Query 2 where the
physical storage scheme prevents extracting of meaning-
ful statistics relational optimization techniques are also
oblivious of XML specifics like constraints imposed by
the hierarchical structure of the document.

4 Challenges

Above, we explained some of the effects that caused sig-
nificant differences with respect to performance charac-
teristics though the physical storage format differed only
slightly. Certainly, a general performance assessment can-
not scrutinize differences on as fine a level of granularity
as we hinted at. Rather we identify 10 general challenges
which aim at providing a comprehensive and conclusive

performance analysis covering all performance critical as-
pects of processing of XML.

1. Bulk loading. The importance of bulk loading
data has been repeatedly emphasized when assessing
database performance in general. In XML databases,
bulk loading currently assumes an even more impor-
tant role as no insert/update operations are available
and most systems support insert only on a document
level. Due to the fact that different models imply dif-
ferent levels of granularity when shredding the doc-
ument this seemingly simple operation may entail
severe costs to setup and maintain indices or con-
straints.

2. Reconstruction.Also know as round-tripping, recon-
structing the original document is the counterpart of
bulk loading. Though being an operation simple to
specify, round-tripping is not a common but still nec-
essary operation in most scenarios. Reconstruction
reveals the price of achieving loss-less storage of the
document, i.e. the trade-off between efficient index-
ing and preserving the full semantics of the docu-
ment.

3. Path traversals.Specifying paths arguably is one of
the most basic and natural operations on structured
documents. Not only useful as a stand alone opera-
tion, path expressions are but ubiquitous part of al-
most all complex operations. Efficient path traver-
sals often bring about a trade-off with respect to re-
dundancy, data volume or degree of fragmentation.

4. Casting.XML is essentially text and as such queries
frequently demand casting to other elementary data
types like integers, floats or even user-defined types.
String operations are notoriously expensive.

5. Missing elements. The semi-structured nature of
XML in general brings about a highly heterogeneous
structure of records that under some mappings re-
sults in many NULL values. Apart from strategies to
store NULL values in a compact way, we also need
efficient methods to query for NULLs as they often
represent spots of interest.

6. Ordered access.Order is the omni-present feature
when querying XML and affects all aspects of data
management. Obviously, sticking with order pre-
serving implementations may become a severe bot-
tleneck. Rather, sophisticated and flexible treatment
of the document order should ensure that it well in-
tegrated into the optimization process up to a degree
that it is ignored when not needed.

7. References. References are an important model-
ing primitive almost comparable to referential con-
straints in relational databases. Technically speak-
ing, chasing references requires efficient access



methods supporting random access across the doc-
ument rather than navigational access.

8. Joins. Join operations on values,i.e. content, have
been seen as a critical aspect early XML query lan-
guages lacked. Particularly data-centric applications
require the combination of data based on values. The
difficulties, bottlenecks, and challenges posed by
joins are well-known from relational database sys-
tems.

9. Construction of large results.As opposed to round-
tripping, construction of large results refers to as-
sembling large new documents from the data stored.
Many application areas demand the ability to handle
large data volumes.

10. Containment, full-text search.Containment and full-
text search are elementary operations when querying
XML. The problem and its intrinsic difficulties are
well-known from other application domains, hence,
it hardly needs further motivation.

A benchmark for XML databases needs to address these
10 points. Given an application scenario, most of the chal-
lenges can be directly expressed as a single query, some
however offer a larger degree of freedom and it seems ad-
visable to address them with several, differently parame-
terized queries.

5 Other Quality Parameters

The above challenges are clearly focused on the perfor-
mance of the actual XML database as motivated in Sec-
tion 1. From an application programmer’s perspective,
other quality parameters of an XML database are visible
and at first sight, it may seem natural to include those.
They can be divided into two groups, infrastructure issues
and total cost of ownership, we list them here for com-
pleteness and underline afterward why we believe they
should not be included in the list of challenges.

Infrastructure. Especially if front-end and back-end of
the database are not tightly coupled, communication costs
may dominate and obscure the performance characteris-
tics of the query processor. Some of these issues have
been addressed in XMach-1 [1], a mainly system focused
benchmark. Issues include:

Access protocols, like HTTP, OLE DB, ODMG,
ODBC, native APIsetc., including their noise and trans-
mission costs, often determine the degree of usability
of a solution; Result representations, like DOM, SAX,
serialized XML, or proprietary structures should be in
line with application requirements;Responsiveness ver-
sus completeness, i.e.,availability of the first or the com-
plete query result, including the influence of lazy evalua-
tion and the availability of cursors can have a great impact

on performance of production systems; Theexpressive-
ness of the query language, e.g.,the missing restructuring
capability of XPath queries, often determines whether a
query engine fits a given application scenario; Lastly,data
throughputin multi-user application scenarios;

Total Cost of Ownership. With increasing complexity
of software systems, the total cost of ownership becomes
more and more important as it usually dominates the costs
of the software itself. With respect to XML processing,
we can identify a number of issues:

Installation effort: Does the product work out of the
box or does it require extensive multi-stage preparation
and installation? Generality support: Is it possible to
store documents with and without schema information?
What price does one have to pay for lack of modeling?
Consistency support:Is it possible to validate incoming
documents against a schema or other constraints?Prepa-
ration effort: What mapping and schema definition tasks
are necessary before the document can be imported (cf.
eXcelon vs. Tamino)?Training: Does the Software re-
quire extensive training for technical staff or does it inte-
grate into existing infrastructure?Interaction paradigm:
Does the product provide a stand-alone document man-
agement system with tools for direct interaction, or is it
rather an enabling technology for front-end applications?
Updates: Does the system provide fine-grained update
functionality or is it restricted to replacing complete doc-
uments?

In the introduction we already outlined why not to
benchmark infrastructure issues or total cost of owner-
ship: A benchmark has to reflect primarily the state of the
art. Given the current developments, we believe a bench-
mark that addresses the performance challenges we listed
above provides the most valuable input for the advance-
ment of XML processing technology. Benchmarks which
include other aspects provide less accurate and insightful
a feedback than we envision.

6 Conclusion

The wide choice of architectures and environments makes
it difficult to decide which XML Query Processor and
which infrastructure fit best a given application. From a
system analysis point of view, the noise introduced by the
infrastructure into which the query engine is embedded
often obscures the performance of the core components
and makes fine-tuning and architectural improvements
hard to realize. Therefore, the XML Benchmark Project,
in which we gathered our experiences, aims at providing
tools to analyze and improve query processors and make
sense of their performance characteristics. We have moti-
vated the need for an XML benchmark by pointing out
which parts of systems need consideration and adapta-
tion: while the front-end query language is in the pro-



cess of standardization, there are many performance crit-
ical issues in the design of the physical storage schema,
the physical algebra, query optimizer and execution. The
desiderata listed in this paper are intended to serve as a
basis for a comprehensive performance analysis of XML
databases.

Acknowledgments.The authors would like to thank Ste-
fan Manegold and Niels Nes for their comments on an
early draft of this paper. The first author would also like
to thank Michael Rys for his valuable input.

References

[1] T. Böhme and E. Rahm. XMach-1: A Benchmark
for XML Data Management. InProceedings of
BTW2001, Oldenburg, 2001. Springer, Berlin.

[2] R. Bourett. XML Database Products.
http://www.rpbourret.com/xml/
XMLDatabaseProds.htm , 2000.

[3] R. Bourret. XML and Databases.http://www.
rpbourret.com/xml/XMLAndDatabases.
htm , 2000.

[4] D. Chamberlin, P. Fankhauser, M. Marchiori, and
J. Robie. XML Query Use Cases.http://www.
w3.org/TR/xmlquery-use-cases , 2001.

[5] D. Chamberlin, D. Florescu, J. Robie, J. Siméon,
and M. Stefanescu. XQuery: A Query Language for
XML, February 2001. http://www.w3.org/
TR/xquery .

[6] J. Clark and S. DeRose. XML Path Language
(XPath), Version 1.0, November 1999. W3C
Recommendation,http://www.w3.org/TR/
xpath .

[7] A. Deutsch, M. Fernandez, and D. Suciu. Storing
Semistructured Data with STORED. InProc. of the
ACM SIGMOD Int’l. Conf. on Management of Data,
pages 431–442, Philadephia, PA, USA, 1999.

[8] P. Fankhauser, M. Fernández, A. Malhotra, M. Rys,
J. Siḿeon, and P. Wadler. XQuery 1.0 Formal Se-
mantics, June 2001. W3C Working Draft,http:
//www.w3.org/TR/query-semantics .

[9] D. Florescu and D. Kossmann. Storing and Query-
ing XML Data using an RDMBS.IEEE Data Engi-
neering Bulletin, 22(3):27–34, 1999.

[10] C. Galindo-Legaria and M. Joshi. Orthogonal Op-
timization of Subqueries and Aggregation. InProc.
of the ACM SIGMOD Int’l. Conf. on Management
of Data, pages 571–581, Santa Barbara, CA, USA,
May 2001.

[11] J. Goldstein and P. Larson. Qoptimizing Queries Us-
ing Materialized Views: A Practical, Scalable So-
lution. In Proc. of the ACM SIGMOD Int’l. Conf.
on Management of Data, pages 331–342, Santa Bar-
bara, CA, USA, May 2001.

[12] J. Gray. Database and Transaction Process-
ing Performance Handbook. http://www.
benchmarkresources.com/handbook ,
1993.

[13] C. Kanne and G. Moerkotte. Efficient Storage of
XML Data. InProceedings of the 16th International
Conference on Data Engineering, page 198, 2000.

[14] D. Lee and W. W. Chu. Comparative Analysis of Six
XML Schema Languages.ACM SIGMOD Record,
29(3):76–87, 2000.

[15] J. McHugh, S. Abiteboul, R. Goldman, D. Quass,
and J. Widom. Lore: A Database Management
System for Semistructured Data.ACM SIGMOD
Record, 26(3), 1997.

[16] M. Poess and C. Floyd. New TPC Benchmarks for
Decision Support and Web Commerce.ACM SIG-
MOD Record, 29(4):64–71, December 2000.

[17] J. Robie, J. Lapp, and D. Schach. XML Query Lan-
guage (XQL). InQL’98 – The Query Languages
Workshop, Boston, MA, USA, December 1998.

[18] A. Schmidt, M. Kersten, M. Windhouwer, and
F. Waas. Efficient Relational Storage and Retrieval
of XML Documents. InInternational Workshop on
the Web and Databases, pages 47–52, Dallas, TX,
USA, 2000.

[19] A. R. Schmidt, F. Waas, M. L. Kersten, D. Florescu,
I. Manolescu, M. J. Carey, and R. Busse. The XML
Benchmark Project. Technical Report INS-R0103,
CWI, Amsterdam, The Netherlands, April 2001.

[20] J. Shanmugasundaram, K. Tufte, G. He, C. Zhang,
D. DeWitt, and J. Naughton. Relational Databases
for Querying XML Documents: Limitations and
Opportunities. InProc. of the Int’l. Conf. on Very
Large Data Bases, pages 302–314, Edinburgh, UK,
1999.

[21] W3C. Document Object Model (DOM).http:
//www.w3.org/DOM/ .

http://www.rpbourret.com/xml/XMLDatabaseProds.htm
http://www.rpbourret.com/xml/XMLDatabaseProds.htm
http://www.rpbourret.com/xml/XMLAndDatabases.htm
http://www.rpbourret.com/xml/XMLAndDatabases.htm
http://www.rpbourret.com/xml/XMLAndDatabases.htm
http://www.w3.org/TR/xmlquery-use-cases
http://www.w3.org/TR/xmlquery-use-cases
http://www.w3.org/TR/xquery
http://www.w3.org/TR/xquery
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath
http://www.w3.org/TR/query-semantics
http://www.w3.org/TR/query-semantics
http://www.benchmarkresources.com/handbook
http://www.benchmarkresources.com/handbook
http://www.w3.org/DOM/
http://www.w3.org/DOM/

	Introduction
	Preliminaries
	Query Algebra
	Query Languages

	Motivating Examples
	Challenges
	Other Quality Parameters
	Conclusion

