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Abstract. We present an open-source plasma fluid code for 2D, cylindrical and

3D simulations of streamer discharges, based on the Afivo framework that features

adaptive mesh refinement, geometric multigrid methods for Poisson’s equation, and

OpenMP parallelism. We describe the numerical implementation of a fluid model of

the drift-diffusion-reaction type, combined with the local field approximation. Then

we demonstrate its functionality with 3D simulations of long positive streamers in

nitrogen in undervolted gaps, using three examples. The first example shows how a

stochastic background density affects streamer propagation and branching. The second

one focuses on the interaction of a streamer with preionized regions, and the third one

investigates the interaction between two streamers. The simulations run on up to 108

grid cells within less than a day. Without mesh refinement, they would require 4 · 1012

grid cells.
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1. Introduction

Streamer discharges [1, 2, 3] are a generic stage of electric breakdown of nonconducting

matter, dominated by strong space charge effects at the tips of growing discharge

channels. They occur as precursors of sparks, arcs and lightning leaders, in nature

as well as in high voltage and plasma technology. Streamers are directly visible as so-

called sprites in the mesosphere [4], and they are used in applications such as surface

processing [5], sterilization and disinfection [6] or wound healing [7], often in the form

of atmospheric pressure plasma jets [8].

Streamers grow due to strong field enhancement at the tips of their partially ionized

long channels. The high local fields support the local growth of ionization due to electron

impact ionization. Simulating this process has proven to be challenging for a number of

reasons:

• Problems such as streamer branching or the interaction between streamers require

a three-dimensional description, as illustrated in figure 1.

• A fine grid spacing is required to accurately resolve the thin charge layers around

streamer heads that create the local field enhancement, see figure 2. Due to the

strongly non-linear growth of streamers, it is usually not possible to obtain an

approximate solution on a coarse grid.

• Time-dependent simulations are required. Due to the high electric field at streamer

tips, where the mesh spacing is small, small time steps have to be used.

• At each time step, Poisson’s equation has to be solved to obtain the electrostatic

potential and field. The non-local nature of this equation complicates the

parallelization of streamer models.

The physics of streamer discharges is mostly governed by electrons, because ions gain

energy more slowly and lose it more easily in collisions. Both plasma fluid models and

kinetic/particle-in-cell models have been used to simulate streamers. In fluid models

particle densities (and sometimes also momentum or energy densities) evolve in time,

using pre-calculated transport coefficients as input data. In kinetic simulations, the

electron distribution function f(~x,~v, t) evolves in time, using cross sections as input

data. Kinetic simulations typically require a large number of particles and smaller time

steps than fluid simulations, so that their computational cost is considerably higher.

The first demonstration of a 3D fluid simulation was given in [10]. In [11],

parallel fluid simulations with adaptive mesh refinement (AMR) were performed using

Paramesh, but the main bottleneck was the Poisson solver. Later work includes a 2.5D

fluid model with AMR, parallelized over axial modes [12]. Kinetic [13, 14] and hybrid

kinetic/fluid [15] 3D models without AMR have also been employed, and more recently

kinetic models with AMR have been used [16, 17]. Other work includes 3D simulations

with a finite element code [18] and a proof-of-concept of 3D simulations in transformer

oil with OpenFoam [19]. A notable development was the 3D fluid model with AMR

presented in [20], which is commercially available. The adaptation of parallel multigrid
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branching
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Figure 1. Experimental picture of positive streamers, showing why 3D simulations

are often required: streamers branch and interact, and single streamers often show

fluctuations which cannot be captured with axisymmetric models. Picture adapted

from [9] (air at 293 K and 0.4 bar, 16 kV applied to a 4 cm gap).

methods from the Gerris Flow Solver [21] made it possible to perform relatively large

scale 3D simulations.

Here we present Afivo-streamer, an open-source fluid model for the simulation of

streamer discharges. Both 2D, axisymmetric and 3D simulations are supported, but

the focus here is on 3D, which is computationally most challenging. Afivo-streamer is

based on the Afivo‡ framework [22], which provides quadtree/octree adaptive mesh

refinement, a geometric multigrid solver, shared-memory parallelism, and routines

for writing output. A first successful application of Afivo-streamer can be found

in [23]. The main contribution of Afivo-streamer is that it provides efficient and open-

source computational infrastructure for 2D, 3D and axisymmetric streamer simulations.

The paper is organized in two parts. In the first part (section 2), the numerical

implementation of Afivo-streamer is described. In the second part (section 3), we

demonstrate the code’s functionality with three 3D examples.

2. Model description

The implementation of the different components of Afivo-streamer is described below.

The source code is available online through [24] under an open source (GPLv3) license.

2.1. Afivo AMR framework

Adaptive mesh refinement is essential for 3D streamer simulations. Without AMR,

the fine grid spacing that is required near the streamer head severely restricts the size

of the computational domain. Here the open-source Afivo framework [22] is used to

provide AMR and parallelization for streamer simulations. The functionality of Afivo

is summarized below; for more details we refer to [22].

‡ Afivo stands for “Adaptive Finite Volume Octree”
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Figure 2. Cross section through a streamer head, showing the charge density (left)

and electric field strength (right). The numerical mesh was generated according to the

criteria described in section 2.5, using equation (8) with c0 = 1.0 and c1 = 1.2.

coarse grid one refinement level two refinement levels

Figure 3. Left: example of a quadtree grid consisting of two blocks of 4×4 cells. The

middle and right figure show how the mesh can be refined by recursively adding new

blocks, each having half the grid spacing of their parent.

2.1.1. Adaptive quadtree/octree grids Afivo supports quadtree (2D) and octree (3D)

grids. A quadtree/octree grid consists of blocks of ND cells, where N is an even number

(here we useN = 8) andD is the problem dimension. One or more of these blocks defines

the coarse grid. A coarse grid block can be refined by covering it with 2D child blocks,

which each have half the grid spacing. This process can be repeated recursively, leading

to an adaptively refined mesh that still has a quite regular structure, as illustrated in

figure 3.

Afivo provides routines for adapting the mesh, but does not come with built-in

refinement criteria. The criteria used here are discussed in section 2.5. Afivo does ensure

proper nesting, which means that neighboring boxes differ by at most one refinement

level. Methods for interpolating from coarse to fine grids, and vice versa, are included.
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2.1.2. Geometric multigrid solver One of the key computational challenges in streamer

simulations is quickly solving Poisson’s equation

∇ · (ε∇φ) = −ρ, (1)

to obtain the electrostatic potential φ from the charge density ρ, where ε is the

dielectric permittivity. The electrostatic field can then be determined as ~E = −∇φ.

Poisson’s equation has to be solved at every time step and with high spatial resolution

within the ionization fronts, and its non-local nature prevents a straightforward parallel

solution. Therefore, the Poisson solver is often the most time-consuming part of streamer

simulations. Afivo implements geometric multigrid routines [25, 26], which are among

the fastest methods for solving elliptic equations such as (1).

Multigrid methods are iterative solvers which cycle over a hierarchy of grids. Short-

wavelength errors are efficiently reduced on fine grids, and long-wavelength errors on

coarse grids, by using an appropriate smoothing procedure. There are many varieties of

multigrid, which differ in for example their multigrid cycle, smoothing procedure, grid

hierarchy or interpolation method. For a detailed description of multigrid methods,

which we cannot give here, we refer to e.g. [25, 26, 27].

Afivo supports a V-cycle and an FMG (full multigrid) cycle. An FMG cycle is more

expensive than a V-cycle, but it typically gives a solution within the discretization error

in one or two iterations. Both cycles are implemented using the full approximation

scheme, which means that the computed solution is available at all grid levels (in

some multigrid methods, only the correction to the solution is computed on coarse

grids). Afivo includes Gauss-Seidel red-black smoothers that can be used for constant ε

problems, and to some extent also for problems where ε varies, see [22]. It is currently

not possible to include internal boundary conditions, for example to define a curved

electrode, although work in that direction is ongoing.

For the Afivo-streamer model, an FMG cycle is used to compute the initial electric

potential. For each subsequent update of the potential a number of V-cycles is used

(here two), which use the previous solution as an initial guess. This exploits the fact

that there are only small changes in the potential between time steps.

In streamer simulations with AMR, the fine grid ideally covers a relatively small

region. As discharges propagate, the mesh has to follow their features, meaning it

changes frequently in time. A key advantage of geometric multigrid methods is that

they require almost no extra computation when the mesh changes, in contrast to matrix-

based (direct) methods.

2.1.3. Parallelization Afivo incorporates shared-memory parallelization using

OpenMP, which means that it can use one up to e.g. 32 cores, depending on the

available hardware. Since the quadtree/octree grid is naturally divided into blocks, the

parallelization is performed over these blocks. Each block contains a layer of ghost cells,

so that they can be operated on independently. The scaling of codes based on Afivo is

typically limited by the memory bandwidth of the computer. For the multigrid methods,
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a further challenge is that coarse grid levels contain few data points, hampering their

parallel efficiency, see e.g. [26].

2.1.4. Writing output When doing 3D simulations with AMR, writing and visualizing

output can be challenging. Afivo comes with support for writing VTK unstructured files

and Silo files, which can be visualized with e.g. Visit [28]. For 3D simulations, the Silo

format is more efficient, as it groups grid blocks into larger rectangular regions. The

Silo files also include ghost cell information, which helps to ensure smooth visualizations

near refinement boundaries. For a 3D streamer simulation, output can get pretty large:

using for example 5 variables and 2× 107 grid cells, a single file is about a gigabyte.

2.2. Fluid model equations

The fluid model used here is of the drift-diffusion-reaction type with the local field

approximation [29]. It keeps track of the electron density ne and the positive ion density

ni:

∂tne = ∇ · (µene
~E +De∇ne) + ᾱµeEne, (2)

∂tni = ᾱµeEne. (3)

Here ᾱ is the effective ionization coefficient, µe the electron mobility, De the electron

diffusion coefficient and ~E the electric field. With the local field approximation µe,

De and ᾱ are functions of the local electric field strength. These coefficients can be

computed with a Boltzmann solver [30, 31] or particle swarms [32], or they can be

measured experimentally. The fluid equations are coupled to the electrostatic field,

which is computed as

~E = −∇φ, (4)

∇2φ = −e(ni − ne)/ε0 (5)

where φ is the electric potential, ε0 the permittivity of vacuum and e the elementary

charge. The electric potential is computed with the multigrid routines from Afivo,

described in section 2.1.

Different types of plasma fluid models can be implemented in Afivo-streamer. More

advanced models could for example include an equation for the momentum and/or

energy density, and let the transport coefficients depend on the mean electron energy,

see e.g. [33, 34]. The mean energy is then given by Q/ne, where Q is the energy density.

Such models capture more of the physics, as demonstrated in e.g. [35]. However, the

ratio is Q/ne hard to define when ne → 0, making such models less robust than the

one used here. Furthermore, a hyperbolic system with multiple coupled equations is

generally harder to solve than a scalar one.

For electric discharges in air, photoionization is often an important process [36].

Excited nitrogen molecules can emit UV photons which are able to ionize oxygen

molecules. Such a non-local source of free electrons is particularly important for positive

streamers, which require free electrons ahead of them to grow. Afivo-streamer contains
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a Monte Carlo procedure for photoionization, which can take into account stochastic

fluctuations due the finite number of photons. The procedure is described in chapter

11 of [37], and in a forthcoming paper we will investigate the effect of stochastic

photoionization on streamer branching. In the present paper we focus on discharges

in pure nitrogen without photoionization, using a background density of electrons and

positive ions.

2.3. Spatial discretization

The spatial discretizations used in Afivo-streamer are second order accurate. We use a

finite volume approach, in which the following quantities are defined at cell centers: the

electron/ion density, the electric potential, and the electric field strength. The electron

fluxes and the electric field components are defined at cell faces.

Afivo’s multigrid routines compute the electric potential from the charge density, as

discussed in section 2.1.2. From the cell-centered electric potential φ, the electric field

at cell faces is computed by central differencing, so that the x-component is computed

as

Ei+1/2,j,k
x = (φi,j,k − φi+1,j,k)/∆x.

The electric field strength at cell centers is then computed as Ei,j,k =
√
E2

x + E2
y + E2

z

where Ex = (E
i−1/2,j,k
x + E

i+1/2,j,k
x )/2 is the average x-component at the cell center,

Ey = (E
i,j−1/2,k
y + E

i,j+1/2,k
y )/2, and similar for Ez.

We follow the approach from [38] for the discretization of the fluid equations. The

advective part of the flux is computed using the Koren limiter [39]. The electron velocity

at a cell face is then computed as

vi+1/2,j,k
x = −µ(E∗)Ei+1/2,j,k

x ,

where E∗ = (Ei,j,k + Ei+1,j,k)/2 is the electric field strength | ~E| at the cell face. For

brevity, we now omit the extra indices j, k. If v
i+1/2
x < 0, the advective flux between cell

i and i+ 1 is given by

f i+1/2
x = vi+1/2

x

(
ni+1
e − ψ

(
ni+2
e − ni+1

e

ni+1
e − ni

e

)
(ni+1

e − ni
e)

)
, (6)

and if v
i+1/2
x ≥ 0, it is given by

f i+1/2
x = vi+1/2

x

(
ni
e + ψ

(
ni
e − ni−1

e

ni+1
e − ni

e

)
(ni+1

e − ni
e)

)
, (7)

where ψ(x) is the Koren limiter, given by

ψ(x) = max (0,min(1, (2 + x)/6, x)) .

The y and z components are computed similarly. Note that the above equations, if

directly implemented, could cause division by zero. Our numerical implementation

avoids this; it is described in Appendix B of [37].
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The diffusive flux between cells i and i + 1 is computed using central differences,

and is given by

f i+1/2
x = De(E

∗)(ni+1
e − ni

e)/∆x,

with E∗ defined as above.

To efficiently look up transport coefficients we convert them to a lookup table.

This table stores the coefficients at regularly spaced electric field strengths, linearly

interpolating the input data, e.g., from BOLSIG+. To look up values for a given

field strength, the corresponding index in the table is computed, after which linear

interpolation is employed. By default, the table is constructed up to Emax = 35 MV/m

using 1000 entries.

Near refinement boundaries, we use linear interpolation to obtain two fine-grid ghost

values, which are required for equations (6-7). These ghost cells lie inside a coarse-grid

neighbor cell, and we limit them to twice the coarse value to preserve positivity§. At

refinement boundaries, the coarse fluxes are set to the sum of the fine fluxes to ensure

mass conservation.

2.4. Temporal discretization

Time stepping is performed as in [38], using the second order accurate explicit

trapezoidal rule. This method is strong stability preserving (SSP) and has favorable

properties when combined with the Koren limiter [40]. Our implementation advances

over ∆t as follows:

(i) Store the original electron and ion densities.

(ii) Compute fluxes and source terms, then perform a forward Euler step over ∆t and

compute a new electric field.

(iii) Compute fluxes and source terms, then perform another forward Euler step over

∆t.

(iv) Average the new electron and ion densities (advanced over 2∆t) with the stored

initial ones. Then compute a new electric field from the resulting charge density.

All the grids are advanced using the same global time step. We limit ∆t according

to several criteria. The first is a CFL condition

∆t
∑
|vi|/∆x < 0.5

where vi are the velocity components and ∆x the grid spacing. This condition is more

strict than necessary for stability, but we found that a CFL number of 0.5 gives a good

balance between accuracy and computational cost. To ensure stability for the combined

advective and diffusive fluxes, we require

∆t
∑
|vi|/∆x+ ∆t (2DDe)/∆x

2 < 1.0,

§ In the future, we intend to use a more general limiting procedure near refinement boundaries.
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Figure 4. The refinement criterion of equation (8) for c1 = 1.0 and c1 = 1.2, with

c0 = 1.0 for both cases. With a larger value of c1, there is more refinement at low to

intermediate electric fields. Data for nitrogen at 1 bar was used for α(E), as described

in section 3.1.

where D is the problem dimension, and De the electron diffusion constant. Finally, the

time step is also limited by the dielectric relaxation time

∆t < ε0/(eµene).

These requirements for ∆t are evaluated at stage (iii) of our time stepping scheme,

where the required quantities are already available. The next time step is then obtained

by multiplying with a safety factor (default 0.9).

2.5. Refinement criterion

The growth of positive streamers is dominated by electron impact ionization. Therefore,

our refinement criterion is based on 1/α(E), which is the average distance between

ionization events for an electron. Ignoring advection, it is an estimate for the distance

over which the electron density increases by a factor of e ≈ 2.72. For the simulations

presented here, the following criterion was used

∆x < c0c1/α(c1E), (8)

where we used c0 = 1 and c1 = 1.2. The constant c1 was introduced to balance the

refinement ahead and on the sides of the streamer. Without this constant (or when

it is one), we sometimes observed oscillations in a streamer’s radius. Setting c1 > 1

increases the refinement for intermediate electric fields, as illustrated in figure 4. This

helps to have more refinement on the sides of streamers, without significantly increasing

the refinement at their tips.

The criterion of equation (8) is evaluated for each grid cell. If at least one cell of a

grid block requires refinement, the whole block is refined. Afivo implements a refinement

buffer, so that blocks are also refined when nearby cells in neighboring blocks require

refinement. For the simulations presented here, we used a buffer distance of three cells.
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Furthermore, the code places refinement around the initial conditions, to ensure they

are accurately captured. Grid blocks can be derefined when for all cells equation (8)

holds with c0 = 1/8 and ∆x < ∆xderef . Here, we used ∆xderef = 30µm, which controls

the mesh resolution of the discharge in regions where it no longer grows. An example

of the resulting mesh around a streamer head is shown in figure 2. This streamer was

generated in nitrogen at 1 bar, using the same transport coefficients as for the examples

presented in section 3.

The above criterion is an empirical criterion for positive streamers, which often

works quite well, but not always. For example, when simulating negative streamers

propagating into a zero-density region (ne = 0), the criterion will trigger refinement

where there are no electrons and no space charge. We have experimented with a different

criterion, based on the space charge density ρ: ∆x <
√
c3ε0/|ρ|, with c3 for example

25 V. Such a criterion captures the space charge layers quite well, but not the strong

density gradients ahead of those charge layers, which play an important role in streamer

propagation. In the future, we hope to find a more generic criterion, based on the

discretization error in the model itself.

We would like to point out that the coarse mesh can make a significant difference in

the computational cost of simulations. For example, if the finest mesh spacing required

in a simulation is 2µm, and the computational domain measures (10 mm)3, then the

actual finest mesh will have a spacing of about 1.22µm = 10/213 mm. By using a larger

or smaller computational domain, the fine-grid spacing can be made to agree better

with its desired value. This would allow for larger time steps, often using a smaller total

number of grid cells.

3. 3D simulations

We now demonstrate the functionality of Afivo-streamer with three examples, all in

3D. The simulations were performed on a single node containing two Xeon E5-2680v4

processors (2× 14 cores, at 2.4 GHz). The simulations ran for up to 24 hours, using up

to 108 grid cells. Individual output files with the 3D data were up to 5 gigabyte in size.

3.1. Simulation conditions

The simulations presented here were performed in nitrogen at one bar. Electron

transport coefficients (e.g., α, µe) were computed with Bolsig+ [30] from Phelps’ cross

sections [41]. A computational domain of (40 mm)3 was used, constructed from octree

blocks of 83 cells. The maximum grid spacing was set to 625µm; the minimum

grid spacing in the simulations was about 2.4µm. A background electric field of

E0 = 2.0 MV/m was applied in the −ẑ direction, which is below the ‘breakdown’

threshold for nitrogen. For a discussion of the difference between discharges in overvolted

and undervolted conditions we refer to [42]. The background field is imposed by

grounding the bottom boundary of the domain and applying 80 kV at the top. On
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the other sides of the domain, Neumann zero boundary conditions were used for the

potential. Neumann zero boundary conditions were also used for the electron density

on all sides, but this had little effect on the results because the simulated streamers did

not connect to boundaries.

The propagation of positive streamers requires free electrons ahead of them. In air,

such electrons are often provided by photoionization. Since we here perform simulations

in nitrogen, where photoionization is absent, a background density of 1014 m−3 electrons

and positive ions is included instead. Such a density could for example be present due

to previous discharges in a repetitively pulsed system [43].

To start a discharge, the background field has to be locally enhanced. We do

this by placing an ionized seed of about 1.8 mm long with a radius of about 0.15 mm.

The electron and positive ion density are 1020 m−3 at the center, which decays at

distances above d = 0.1 mm with a so-called smoothstep profile: 1 − 3x2 + 2x3, where

x = (d − 0.1 mm)/0.1 mm. When the electrons from a seed drift upwards, the electric

field at the bottom of the seed is enhanced so that a positive streamer can form.

3.2. Stochastic background density

In this example we investigate how a stochastic distribution of background ionization

affects streamer propagation. A single ionized seed is placed as shown in figure 5. We

then let a discharge evolve using three different background ionization distributions, for

which the electron and positive ion density per cell are given by:

• Case 1: A constant value of 1014 m−3

• Case 2: A stochastic value (0.5 +U)×1014 m−3, where U is a uniformly distributed

random number between zero and one.

• Case 3: A stochastic density 2U ×1014 m−3, using the same random numbers as for

case 2.

The background is created at the grid level with spacing 625µm and then linearly

interpolated to finer grids, so that the noise has a correlation length of 625µm. Note

that all three cases have the same average density of 1014 m−3. An example of the

third case is shown in figure 5. We remark that the above distributions do not contain

physically realistic fluctuations, in which case the number of electrons per cell would be

Poisson-distributed.

Figure 6 shows how a positive streamer propagates for the different cases.

Remarkably, the streamer velocity is nearly identical. This is consistent with previous

studies [16, 44, 45], in which it was found that the streamer velocity only weakly depends

on the background ionization level. The background density has a stronger effect on

the morphology of the streamer. After 23 ns, case 3 shows streamer branching, while

case 1 and 2 do not. The evolution of cases 2 and 3 seems closer to the experimentally

observed streamers of figure 1. Our results agree with a previous study [46], in which it

was found that positive streamer branching is accelerated by stochastic electron density

fluctuations.
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Figure 5. Cross section through the computational domain for case 3, showing a

stochastic background density 2U × 1014 m−3 with a correlation length of 625µm,

where U is a uniform random number between zero and one. The location of the

ionized seed from which the discharge starts is also visible, its density (1020 m−3)

exceeds the color scheme.
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Figure 6. Evolution of a positive streamer in three background densities (1: uniform,

2: half-stochastic, 3: fully stochastic, see text). The average background density is

ne = ni = 1014 m−3 for each case. Shown is a 3D volume rendering of the electron

density; the opacity is indicated in the legend.
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Figure 7. Evolution of a positive streamer as it propagates through preionized regions

with 1016, 1017 and 1018 m−3 electrons and positive ions. At each indicated time a 3D

volume rendering of the electron density together with a cross section of the electric

field is shown.

3.3. Interaction with preionization

This example is related to two previous studies [23, 47], in which the guiding of

positive streamers by preionization from a laser was investigated. Here, we simulate a

positive streamer passing through three preionized cylinders. The cylinders are aligned

perpendicular to the direction of propagation, as indicated on the left of figure 7. They

contain a density of 1016, 1017 and 1018 m−3 electrons and positive ions. A background

density of 1014 m−3 was present in the whole domain.

Figure 7 shows how the electron density and electric field evolve in time. Since

the fluid model employed here is deterministic, the left-right symmetry in the initial

conditions is preserved. Upon reaching the first preionized region, the streamer’s

maximum electric field is reduced, and it becomes slightly wider. The second patch

has a similar, but somewhat stronger effect. Inside the third patch, the streamer

temporarily disappears, at least when looking at the electron density. Due to the high

preionization density (1018 m−3) in this region, the streamer loses most of its electric

field enhancement. A similar phenomenon was observed for sprite discharges, to explain

the formation of so-called ‘beads’ [48]. At around 25 ns the streamer continues, and

two branches form at the boundary of the preionized cylinder. As the positive streamer

grows downwards, electrons drift out towards the top. These electrons could eventually

form a negative streamer, as can be seen in the electric field profiles at later times.
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3.4. Interacting streamers

In this example the interaction between two streamers is investigated; previous numerical

and experimental investigations can be found in [12, 49]. The two interacting streamers

are created by placing two field-enhancing seeds in the domain, instead of the single

one used in the previous examples. We consider two cases, in which the vertical offset

between the seeds is 4 mm or 8 mm; their horizontal offset is 4 mm.

Figure 8 shows the time evolution of the electron density and the electric field for

both cases, with equipotential lines indicated at steps of 4 kV. With the smaller vertical

offset, the streamers repel, whereas they attract with the larger offset. This be explained

by looking at the equipotential lines. For the case with the smaller vertical offset, the

lower streamer bends equipotential lines downwards. This reduces the electric field in

which the upper streamer propagates. The reduction is smaller farther away from the

lower streamer, which causes the upper streamer to bend outwards.

For the case with the larger vertical offset, another effect becomes important. Both

streamers are in total electrically neutral (as well as the seeds they originate from).

Their bottom/positive end therefore bends equipotential lines downwards, whereas their

upper/negative end bends them upwards. With sufficient vertical offset between the

streamers, the equipotential lines between them are therefore compressed. This means

there is an increased electric field between them, so that they attract. In summary,

positive charged streamer heads repel, whereas a positive streamer head is attracted

to a negatively charged streamer tail. Finally, notice how in both cases the bottom

streamer propagates almost straight down, whereas path of the upper streamer is bent.

4. Conclusions and outlook

We have presented Afivo-streamer, an open-source plasma fluid model for 2D, cylindrical

and 3D simulations of streamer discharges. The model makes use of the Afivo

framework [22] to provide adaptive mesh refinement, a geometric multigrid Poisson

solver and OpenMP parallelization. For robustness, the fluid model is of the

drift-diffusion-reaction type in combination with the local field approximation. We

have described the numerical implementation of Afivo-streamer, discussing also the

refinement criterion. The model’s capabilities have been demonstrated with 3D

examples of long streamers in undervolted gaps in pre-ionized nitrogen at 1 bar. The

first example showed how stochastic background ionization affects streamer propagation

and branching. The second demonstrated how a streamer interacts with preionized

patches, in which it slows down and loses much of its field enhancement. The third

example showed how streamers can attract or repel each other, depending on their

relative position. These simulations used up to 108 grid cells, and all ran within a day.

A uniform grid with the same resolution would have required 4 · 1012 grid cells.

Future work will focus on the effects of photoionization, which was not included

here, but is important for discharges in air. A numerical challenge is the inclusion of
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Figure 8. Evolution of two interacting positive streamers. The streamers have a

vertical offset of 4 mm (top row) or 8 mm (bottom row) and a horizontal offset of

4 mm. At each indicated time a 3D volume rendering of the electron density together

with a cross section of the electric field are shown. The white equipotential lines are

spaced by 4 kV.

curved electrodes and dielectrics. This is planned for a future version of Afivo-streamer,

and requires not only modification of the underlying Poisson solver as in [50], but also

of the fluid model around the curved boundaries.
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[33] Aram H Markosyan, Jannis Teunissen, Saša Dujko, and Ute Ebert. Comparing plasma fluid models

of different order for 1d streamer ionization fronts. Plasma Sources Science and Technology,

24(6):065002, Oct 2015.

[34] M M Becker, H Khlert, A Sun, M Bonitz, and D Loffhagen. Advanced fluid modeling and

pic/mcc simulations of low-pressure ccrf discharges. Plasma Sources Science and Technology,

26(4):044001, Mar 2017.

[35] O Eichwald, O Ducasse, N Merbahi, M Yousfi, and D Dubois. Effect of order fluid models on flue

gas streamer dynamics. Journal of Physics D: Applied Physics, 39(1):99107, Dec 2005.

[36] Sergey Pancheshnyi. Photoionization produced by low-current discharges in O2, air, N2 and CO2.

Plasma Sources Sci. Technol., 24(1):015023, Dec 2014.

[37] Jannis Teunissen. 3D Simulations and Analysis of Pulsed Discharges. PhD thesis, Technische

Universiteit Eindhoven, http://repository.tue.nl/801516, Nov 2015.

[38] C. Montijn, W. Hundsdorfer, and U. Ebert. An adaptive grid refinement strategy for the simulation

of negative streamers. Journal of Computational Physics, 219(2):801–835, Dec 2006.

[39] B. Koren. A robust upwind discretization method for advection, diffusion and source terms. In

C.B. Vreugdenhil and B. Koren, editors, Numerical Methods for Advection-Diffusion Problems,

pages 117–138. Braunschweig/Wiesbaden: Vieweg, 1993.

[40] W. Hundsdorfer and J. G. Verwer. Numerical Solution of Time-Dependent Advection-Diffusion-

Reaction Equations. Number 33 in Springer series in computational mathematics. Springer, first

edition, 2003.

http://cwimd.nl
http://repository.tue.nl/801516


Simulating streamer discharges in 3D with the parallel adaptive Afivo framework 18

[41] A. V. Phelps and L. C. Pitchford. Anisotropic scattering of electrons by N2 and its effect on

electron transport. Phys. Rev. A, 31(5):2932–2949, 1985.

[42] Anbang Sun, Jannis Teunissen, and Ute Ebert. The inception of pulsed discharges in air:

simulations in background fields above and below breakdown. J. Phys. D: Appl. Phys.,

47(44):445205, Oct 2014.

[43] S. Nijdam, E. Takahashi, A. Markosyan, and U. Ebert. Investigation of positive streamers by

double pulse experiments, effects of repetition rate and gas mixture. Plasma Sources Sci. T.,

23:025008, 2014.

[44] S Nijdam, G Wormeester, E M van Veldhuizen, and U Ebert. Probing background ionization:

positive streamers with varying pulse repetition rate and with a radioactive admixture. J.

Phys. D: Appl. Phys., 44(45):455201, Oct 2011.

[45] G Wormeester, S Pancheshnyi, A Luque, S Nijdam, and U Ebert. Probing photo-ionization:

simulations of positive streamers in varying N2:O2-mixtures. J. Phys. D: Appl. Phys.,

43(50):505201, Dec 2010.

[46] A. Luque and U. Ebert. Electron density fluctuations accelerate the branching of positive streamer

discharges in air. Phys. Rev. E, 84(4), Oct 2011.

[47] S Nijdam, E Takahashi, J Teunissen, and U Ebert. Streamer discharges can move perpendicularly

to the electric field. New Journal of Physics, 16(10):103038, Oct 2014.

[48] A. Luque and F. J. Gordillo-Vzquez. Sprite beads originating from inhomogeneities in the

mesospheric electron density. Geophysical Research Letters, 38(4), Feb 2011. L04808.

[49] S Nijdam, C G C Geurts, E M van Veldhuizen, and U Ebert. Reconnection and merging of positive

streamers in air. Journal of Physics D: Applied Physics, 42(4):045201, Jan 2009.

[50] Sebastien Celestin, Zdenek Bonaventura, Barbar Zeghondy, Anne Bourdon, and Pierre Ségur.

The use of the ghost fluid method for Poisson’s equation to simulate streamer propagation in

point-to-plane and point-to-point geometries. J. Phys. D: Appl. Phys., 42(6):065203, Feb 2009.


	1 Introduction
	2 Model description
	2.1 Afivo AMR framework
	2.1.1 Adaptive quadtree/octree grids
	2.1.2 Geometric multigrid solver
	2.1.3 Parallelization 
	2.1.4 Writing output

	2.2 Fluid model equations
	2.3 Spatial discretization
	2.4 Temporal discretization
	2.5 Refinement criterion

	3 3D simulations
	3.1 Simulation conditions
	3.2 Stochastic background density
	3.3 Interaction with preionization
	3.4 Interacting streamers

	4 Conclusions and outlook

