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1. INTRODUCTION 

1.1. Governing equations 
The flow equations considered are: 
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For a detailed description of the various quantities used, assumptions made and so on, we refer to 
any standard textbook. Suffice to say that these are the full, steady, 2D, compressible Navier-Stokes 
equations with zero bulk viscosity and constant diffusion coefficients. For 11 Re =O, diffusion has van­
ished and the remaining equations are the Euler equations. 
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1.2. Discrttization method 
For both the Euler and Navier-Stokes equations, we have considered first- and higher-order accurate 
discretizatioos (3,5,7,8]. Since for both the first- and higher-order discretized equations, the relaxations 
are performed on the first-order discretized equations only, here we limit the discussion only to that 
case. The discussion is concise, for details we refer to [5,7]. 

Both the Euler and Navier-Stokes equations are discretized in their integral form. The discrete sys­
tem of equations is obtained by subdividing the integration region into finite volumes, and by requir­
ing that the integral form holds for each finite volume separately. The resulting discrete operator 
implies the evaluation at each finite volume wall of the convective flux vector and, additionally for 
Navier-Stokes, the diffusive flux vector. 

For the evaluation of the convective flux vector we use an upwind approach, following the 
Godunov principle [l}. For the solution of the resulting lD Riemann problem, Osher's approximate 
Riemann solver [9] is preferred. First-order accuracy for the convection part is oonsidered only. It is 
simply obtained by taking the left and right state at each finite-volume wall equal to the one in the 
corresponding adjacent volume. 

For the evaluation of the diffusive flux vector, we use the central finite-volume technique as out­
lined in [ 10]. This technique is second-order accurate. 

1.3. Earlier developed solution method 
The solution method used so far for the first-order discretized equations, is a multigrid method with 
collective point Gauss-Seidel relaxation as the smoothing technique. Briefly summarized, the multigrid 
method applied is nonlinear multigrid iteration (FAS) preceded by nested iteration (FMG). Its cycles 
are of V-type and have a single pre- and post-relaxation per grid level. For details we refer to [5,6]. In 
the point Gauss-Seidel relaxation, per finite volume, one or more Newton iteration steps are per­
formed for the collective relaxation of the four state-vector components. (Usually, the tolerance for 
the Newton iteration is so large that in a substantial majority of all cells, only a single Newton step is 
performed.) In general, for the first-order discretized equations, collective point Gauss-Seidel relaxa­
tion appears to be a good smoother. Therefore, in many cases, it allows a good acceleration by mul­
tigrid. However, recently we experienced the following (already expected) deficiencies of the point 
relaxation method: 

In very low-subsonic flow regions (regions in which v' u 2 + v 2 I c « 1, as for instance stagnation 
regions and viscous sublayers adjacent to the wall) the derivative matrix used in the Newton 
iteration is ill-conditioned and becomes singular for v'u2 +v2 lc-+0. A clear illustration of this is 
given in [4]. 
In the initial phase of a steady flow computation in which strong perturbations of the solution 
arise, a local iterand may be easily swept out of Newton's convergence range and, thus, may 
cause global divergence. (This may easily happen for instance in the computation of a hypersonic 
blunt body flow which has been - crudely - initialized to its hypersonic upstream flow conditions 
and in which a strong shock wave is arising.) 

2. NEW SOLUTION METHOD 

2.1. Line relaxation 
If aforementioned situations are really of a local nature, line relaxation may be a robust remedy. In a 
local, very low-subsonic flow region such as a viscous sublayer adjacent to the wall, lines crossing that 
layer and running into the outer solution (Fig. la) are affected to a smaller extent by the low speeds 
than single volumes in that layer. For a strong hypersonic shock wave arising in an initially unper­
turbed flow field, a similar reasoning may hold for lines crossing the shock wave and running to the 
far-field boundary (Fig. lb), and single volumes in, or downstream, of that shock wave. 

In a viscous sublayer with high aspect ratio volumes (such as in Fig. la), an additional advantage of 
the properly directed line relaxation mentioned is that it is well-adapted to the corr~ponding strong 
coupling in crossflow direction. In convection dominated flow regions, a strong coupling exists in flow 
direction. Here, lines are to be preferred which are more or less aligned with the flow. So, if well­
aligned, this is an additional advantage of lines crossing shock waves. 

With line Gauss-Seidel relaxation as a new smoother, the earlier developed multigrid technique can 
be maintained. 



a. Viscous sublayer 

M»l __,.. 

b. Hypersonic shock wave 

Fig. 1. Relaxation lines crossing difficult flow region 

2.2. Relaxation matrix 
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For line relaxation applied in an Euler flow computation, two basic types of flow can be dis­
tinguished: flows with either subsonic or supersonic velocity components along the line considered. 
For the subsonic case, Osher's scheme (correctly) picks up information from up- and downstream 
direction, with as a consequence a block-tri-diagonal relaxation matrix. For the supersonic case the 
result is a block-bi-diagonal matrix. For Navier-Stokes flow computations a block-tri-diagonal matrix 
is the result in any case, except in the rare case of supersonic velocity components and zero gradients 
of u, v and c2 along the line. (Then a block-bi-diagonal matrix results again.) In all cases the blocks 
are 4 X 4-matrices. 

No special effort was put into an efficient implementation of the solution method for the block­
diagonal system; a solver for a general band-matrix is applied. 

3. CoNVERGENCE RESULTS 

As test case to study the convergence of the method we consider a supersonic flat plate flow with an 
oblique shock wave impinging upon the plate (Euler) or boundary layer (Navier-Stokes). The test case 
stems from [2]. The particular experiment considered in [2] is that at M =2, Re =2.96 HP. Since in 
this experiment, the flow is known to be laminar but yet hard to compute (because of the shock 
induced separation), it is a benchmark problem for laminar, 2D, compressible Navier-Stokes codes. 
The grids used for Euler and Navier-Stokes are identical. The coarsest grid applied in all multigrid 
computations is the 5X2-grid (Do) shown in Fig. 2a. A fine grid considered is the 24(5X2)-grid (04) 

shown in Fig. 2b. 

a.no 

Fig. 2. Grids considered _, 
-1.s -1 -o.s o.s 

The convergence results are presented by the residual ratio I;,jlFh(if,:)l;,/I;,jlFh(q£)1;,j versus 
either the amount of computational work (expressed in some appropriate work unit), or the (wall 
clock) time. In the residual ratio, Fh denotes the discrete operator considered (either first-order Euler 
or first-order Navier-Stokes), q,: the iterand after the n-th work unit and i,j the volume indices. 
(Iterand q£ is the one obtained by the nested iteration.) All computations have been performed on a 
(two-pipe) Cyber 205. 



3. 1. Euler flow 
For the Euler ftow, the multigrid behaviour for Gauss--SeideJ relaxation with successively points, cross­
wise lines and streamwise lines, is given in Fig. 3. The streamwise line relaxation is symmetric whereas 
the other two relaxations are asymmetric with natural downwind sweeps only. To ensure a good com­
parison of convergence rates, we define a work unit to be equal to: a single multigrid cycle with sym­
metric relaxation, and consequently: two muJtigrid cycles with downwind relaxation only. 

Clearly visible in Fig. 3 are the expected superior convergence rates of the streamwise line relaxa­
tion. Also remarkable is its better grid independence. 

' . 
work 1.1n1..t.1 

a. Points 

10 
work un~ ta 

b. Crooswise lines 
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c. Streamwise lines 

Fig. 3. Multigrid behaviour for three types of Gauss-Seidel relaxation (Euler flow) 
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In Fig. 4, for three different grids, the efficiency of the streamwise line relaxation is compared with 
that of the point relaxation. The markers correspond to those in Fig. 3. Though no special etf ort was 
put into an efficient implementation of the line reJaxation, its efficiency is the same for Di and better 
for ~ and D.i. (fhe gain in efficiency on finer grids is of course a consequence of the better grid 
independence.) 
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Fig. 4. Convergence histories for point (0) and streamwise line (•) Gauss-Seidel relaxation (Euler flow) 
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3.2. Navier-Stokes flow 
Also for the Navier-Stokes flow, we consider the multigrid behaviour for point, crosswise line and 
streamwise line relaxation. Here, all relaxations are symmetric, because of the possibly arising sub­
sonic sublayer. Further, here the finest grid considered is n6 . A work unit is defined as one multigrid 
cycle with symmetric relaxation. The convergence rates are given in Fig. 5. 

Both for point Gauss-Seidel and stream.wise line Gauss-Seidel we have divergence at 06. For the 
latter relaxation we find also divergence for 0 5 . In both cases the cause is the increasing ill­
conditioning directly above the plate with decreasing mesh size normal to the plate. Here the cross­
wise line relaxation turns out to be more robust. 

divergence for 05 and ~ 

• 6 10 • 6 10 • 6 10 
work unLts work unLts work unLt.s 

a. Points b. Crosswise lines c. Streamwise lines 

Fig. 5. Multigrid behaviour for three types of Gauss-~del relaxation (Navier-Stokes fiow) 

An objection that can be made against the use of crosswise line relaxation throughout the computa­
tion, is that though it is well-adapted to the strong coupling in the viscous sublayer with its high 
aspect ratio volumes, it is not well-adapted to the opposite coupling in the outer flow. (There, stream­
wise lines are preferred.) The switch in direction of strong coupling suggests an adaptive local line 
relaxation to be optimal (Fig. 6). 

Fig. 6. Locally adapted lines 
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4. CONCLUSIONS 
For Euler flow computations, line relaxation appears to be a better smoother than point relaxation if 
the lines considered are well-aligned with the flow. Already with a relatively slow solver for the large 
linear system, line relaxation may be more efficient than point relaxation. 

For Navier-Stokes flow computations with a practically relevant resolution of viscous layers, the 
advantage of proper (i.e. crosswise) line relaxation clearly is its greater ro~u.s~ess. It is less sensitive 
to a strong local ill-conditioning of the flow equations. This smaller sens1tIV1.ty (greater robustness) 
probably holds in general for strong local perturbations arising in an initially unperturbed flow. 
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