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Abstract 

We define a new type of search problem called 

"mutual search", where k players arbitrarily spread 

over n nodes are required to locate each other by 

sending "Anybody at node i?" query messages (for 

example processes in a computer network). If the 

messages are not delivered in the order they were sent 

(for example when the communication delay time is 

arbitrary) then two players require at least n - 1 

messages. In an asynchronous network, where the 
messages are delivered in the order they were sent, 

0.88n messages suffice. In a synchronous network 

0.586n messages suffice and 0.536n messages are 

required in the worst case. We exhibit a simple 

randomized algorithm with expected worst-case cost 

of 0.5n messages, and a deterministic algorithm for 

k 2'.: 2 players with a cost well below n for all 

k = o( vfn). The graph-theoretic framework we 

formulate for expressing and analyzing algorithms for 

this problem may be of independent interest. 

1 Introduction 

Mutual Search (MS) is the problem of two or more 

entities trying to learn each other's location in a uni

form unstructured search space. The most obvious 

application is in distributed computing: k processes 

residing in a computer network of n computers try to 

locate each other in as few messages as possible. The 
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computers have distinct identities, say O, .•. , n - 1 
( k :::; n), and the processes execute identical pro
tocols possibly using the identifier of the computer 

they reside on. Two processes know each other's lo

cation if at least one process received a message from 

the other process. The relation "know location" is 

transitive and the problem is solved if all k processes 

know each others location. We analyze this problem 

for the case k = 2 under various assumptions on net

work synchronicity and communication delay and for 

deterministic and randomized algorithms. We give a 

result for the general case of k ~ fo processes. 

Our Results: We first look at deterministic algo

rithms for two processes. If the messages are not 

delivered in the order they were sent (nonFIFO), 

for example in networks with unknown and arbi

trary communication delays (as e-mail has to some 

extent), then two processes need to send at least 

n - 1 messages in total in the worst case. Namely, 

given any protocol construct the directed graph on 

{O, .. . ,n - 1} with an arc from i to j if i sends a 

message to j. For each pair there must be at least 

one arc. With at least G) arcs in total, the average 
number of outgoing arcs is at least n; 1 and it follows 

easily that some two nodes must together have twice 

this number, or n - 1, of outgoing edges (in fact, one 

could refine this to 2f n2 1 l for n > 2). An adver

sarial demon can always schedule the communication 

delays such that all these n - 1 message are sent out 

before contact is made. The tightness of this bound 

is witnessed by an algorithm called HalflnTurn, to be 

discussed in Section 3. 
In Section 2 we formulate a framework for ex

pressing and analyzing the structure of algorithms 

for this problem. In Section 9 we show that in asyn

chronous networks, where the messages arrive in the 

order they were sent, there is a mutual search algo

rithm using asymptotically 0.88n messages. 
For synchronous networks we present in Section 6 
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the protocol SRn, an algorithm with a worst-case 
cost of only (2 - .J2)n ~ 0.586n. We also show 
this algorithm to be close to optimal, by proving a 
(4 - 2J3)n ~ 0.536n lower bound on the number of 
queries required by any mutual search algorithm in 
Section 5. 

We consider randomized algorithms for the prob
lem in Section 7. A randomized algorithm is shown 
to have a worst-case (over player location) expected 
(over random coin flips) cost of f!il, thus beating the 
deterministic lower bound. 

In Section 8 we present RSn,k, a deterministic 
algorithm for k ~ 2 players for synchronous networks 
with a cost well below n for all k = o( Jn). Here is a 
quick roadmap to the results for k = 2: 

Synchronous FIFO: 
Deterministic worst-case: upper bound 0.586n 
(Section 6); lower bound 0.536n (Section 5). 

Randomized expected: upper bound f!i l (Sec
tion 7); lower bound n4 1 (Section 10). 

Asynchronous FIFO: 
Deterministic worst-case: upper bound 0.88n 
(Section 9); lower bound 0.536n (Section 5). 

Randomized expected: upper bound ~n (Sec
tion 9) lower bound n4 1 (Section 10). 

nonFIFO: 
Both upper bound and lower bound are 2l n;- 1 J 
messages in the deterministic worst-case (Sec
tion 1); and similarly in the randomized expected 
case. 

The framework we develop for reasoning about 

site. For simplicity, we allow at most one query 
to be scheduled at any single time instant. The 
lack of simultaneous queries makes the number of 
queries until (and including) contact a well-defined 
cost measure. 

Note that for any pair of sites, such an algorithm 
determines which site will first query the other. At 
that point the algorithm terminates, and the latter 
site need never query the former. Any algorithm 
thus implies a tournament, which is a directed graph 
having one (directed) edge between every pair of 
nodes. An edge from node i to node j represents 
site i querying site j. An algorithm can then be 
specified in full by totally ordering all the queries in 
a tournament, indicating the querying order. 

DEFINITION 2.1. An algorithm for MS is an ordered 
tournament T = (V, E, -<), where the set of nodes 
(sites) is V = {O, 1, ... , n - 1}, E is a set of G) = 
~n(n - 1) edges (queries), and-< is a total order on 
E. For a node i, Ei is the set of outgoing edges from 
i, and is called row i. The number of queries jEil is 
called the length of row i. 

DEFINITION 2.2. The cost c(T) of an algorithm T is 
the maximum over all edges e = ( i, j) of the edge cost 
c(e) = \Ei-<ej + 1 + jEf"j, where for any F ~ E, p-<.e 
denotes {f E F: f-< e}. 

The edge cost counts the number of queries made 
by both players located on the respective incident 
nodes. Next, we present and analyze some basic 
algorithms for the problem which will form the basis 
of a better algorithm. 

Some Simple Mutual Search Algorithms the Mutual Search problem may be of independent 3 
interest. Mutual search can serve as a preliminary 
stage to sharing random resources in a distributed 
setting or forming coalitions for Byzantine attacks 

The first algorithm, AlllnTurnn, lets each site in turn 
queries all the other sites. For instance, AlllnTurn4 

can be depicted as 
and various cryptographic settings. 

Related Work: The authors believe that this is 
a novel type of search problem that has not been 
considered before. We do not know of any directly 
related previous research. Several topics that are 
more or less related can be found in the Appendix A. 

2 Model and Definitions: Synchronous Case 

Consider an anonymous 2-player synchronous model, 
in which the querying behaviour of a player depends 
only on her site. Time is discrete, with time instants 
numbered O, 1, .... Informally, an algorithm for the 
MS problem specifies, for each site that a player can 
find herself at, what to do at each time instant: either 
stay idle or (atomically) query some specific other 

0: 1 2 3 

1 : 

2: 

3: 

2 3 
3 

in which an edge ( i, j) is shown on row i of the 
picture as number j. 

LEMMA 3.1. Algorithm AlllnTurnn has cost n - 1. 

Proof. It is in fact easy to see that c( i, j) = j - i. A 
player at site i makes this many queries to contact 
the other player at site j, and the latter never gets 
to make any queries. The maximum value of j - i is 
n-1. 



A somewhat more balanced algorithm is 
HalflnTurnn, where each site in turn queries the next 
Ln/2J sites (modulo n). Halfln'rurn5 looks like 

0: 1 2 

1: 2 3 
2: 

3: 
4: 

3 4 

4 0 
0 1 

For even n, sites n/2 ... n - 1 only get to make 
Ln/2J -1 queries. 

LEMMA 3.2. Algorithm HalflnTurnn has cost n - 1. 

Proof. Suppose i < j. If j - i ~ ln/2J, we find 
c(i, j) = j-i, otherwise i- j mod n = n+i-j giving 
c(j,i)= Ln/2J+n+i-j. Takingj=i+ln/2J+l 
achieves the maximum of ln/2J + n - (ln/2J + 1) = 
n- 1. 

Our next result shows HalfinTurnn to be the 
basis of a much better algorithm. 

DEFINITION 3.1. An algorithm is called saturated if 
its cost equals its maximum row length. 

LEMMA 3.3. An algorithm that is not saturated can 
be extended with another site without increasing its 
cost. 

Proof. Let T be an algorithm on n nodes whose 
cost exceeds all row lengths. Add a new node n, 
and an edge from every other node to this new 
node. Order the new edges after the old edges (and 
arbitrarily amongst each other). This does not affect 
the cost of the old edges, while the cost of edge ( i, n) 
becomes one more than the length of row i, hence not 
exceeding the old algorithm cost. 

As the proof shows, the maximum row length 
increases by exactly one, so we may add as many 
sites as the cost exceeds the former. HalflnTurn2k+l 

has cost 2k and uniform row length k so we may 
add k more sites to get a saturated algorithm 
SaturatedHalfinTiun3k+l of the same cost: 
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DEFINITION 4.1. A partial MS algorithm is a par
tially o~dered tournament T = (V, E, -<, R), where 
R i;;;; E is the subset of retired edges, such that -< 

• totally orders R, 

e orders all of E - R before all of R, and 

• leaves E - R unordered. 

An edge e = ( i, j) in row prefix E; - R has retiring 
cost c(e) = IE; - RI + IEj - RI. Retiring an 
edge e results in a more refined partial algorithm 

T = (V,E,-<',R'), where R' = RU{e} and-<'=-< 
U(E-R',e). 

Note that relation -< is viewed as a set of pairs· 
(E - R',e) denotes the set {(f, e): f EE - R'}. A~ 
example partial tournament, with 2 retired edges, is 

{(O, 3), (0, 1), (1, 2), (2, O)}-< (2, 3)-< (3, 1) 

Note that any sequence of IE - RI refinements yields 
a (totally ordered) algorithm, which we call a total 
refinement of T. A mere tournament corresponds to 
a partial algorithm with no retired edges. 

Observe that the cost of e in a total refinement 
depends only on its ordering with respect to the edges 
in rows i and j, which is determined as soon as it 
retires. This shows the following 

FACT 4.1. If T' results from T by retiring edge e = 
( i, j), then the retiring cost of e equals the cost of that 
edge in any total refinement of T'. 

DEFINITION 4.2. The cost c(T) of a partial algorithm 
T ·is the minimal cost among all its total refinements. 
A total refinement achieving minimum cost is called 
optimal. 

LEMMA 4.1. The co.~t of a partial algorithm T eq,uals 
the cost of the partial to·urnament that results from 
retiring the edge e of minim,um 1'etiring cost. 

Informally, any refinement from T will have cost 
at least equal to the minimum retiring cost, and 

C OROLLARY 3.1. Algo,,,,;thm SaturatedHal'+rnTurnn 
'" ~ 1 choosing e doesn't hamper us in any way. The 

has cost r ~ ( n - 1) l · following proof makes precise this notion of non

4 Algorithm Refinement 
hampering. 

In order to get a better understanding of the structure Proof. Consider an optimal total refinement from T 
of MS algorithms, we need to focus on their essential to some algorithm T", in which, at some point, say 
properties. In this section we consider algorithms after e1, ez, ... , Ck, edge c is retired. Let algorithm T' 
with only a partial edge ordering. The question arises be the result of retiring e first, and then continuing 
how such a partial ordering can be extended to a good the same total refinement with e skipped. Then T" 
total edge ordering. The following terminology helps will have c -<" Ck -<" . . . -<" ei whereas T' has 
us answer this question. ek -<' ... -<' e1 -<' e. If we compare the costs c" 
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and c' for any edge in T" and T' respectively, we see 
that for 1:::; i:::; k, c1(e;):::; c"(e;), c'(e) ~ c"(e), and 
all other edges cost the same. However, c'(e) :::; c(e1) 

by assumption, and so T' must be optimal too. 

Seeing that optimal refinement is a straightfor
ward task, we can present algorithms as plain tour
naments. By graphically showing the tournament's 
adjacency matrix, one obtains a visually insightful 
representation; for instance, SaturatedHalflnTurn13 

is shown in Figure 1. 
Our algorithm HalflnTurnn now betrays a bad 

ordering for even n. It retires ( n - 1, 0) first, at a cost 
of n - 1, whereas an optimal refinement can keep the 
cost down to n - 2. It takes advantage of the bottom 
rows being shorter, and first retires an edge between 
nodes in this bottom half. For example, the following 
reordering of HalflnTurn4 has cost 2: 

(0, 1)-< (3,0)-< (0,2)-< (1,3)-< (1,2)-< (2,3) 

5 Lower Bounds 

Given that the maximum row length is a lower 

Furthermore, c( e) :::; c, since the cost of T is the 
maximum of all retirement costs. It follows that the 
smallest of rows i and j has length at most c/2 + k. 

This shows that the best possible distribution 

of row lengths looks like D, where the (~) entries 
are divided over n - c/2 rows of maximum length c, 
followed by c/2 increasingly shorter rows, producing 
a triangular "wasted" space of size about ( c/2)2 /2. 

THEOREM 5.1. Any MS algorithm T for n sites has 
cost at least (4 - 2J3°)(n - 1). 

Proof. Since each row has length at most c, 
Lemma 5.2 implies IEI = 

c/2 
n(n - 1) < nc _ """c/2 _ k = nc _ (c/2)(c/2 + 1) 

2 - ~ 2 
k=O 

bound on algorithm cost, the following result is easily => ( c/2)2 - 2( n - 1 )c + ( n - 1 )2 :::; 1 - 1.5c - n ~ 0. 
obtained. 

LEMMA 5.1. Any MS algorithm T Jorn sites has cost 
Solving for c, we find c ~ (4- 2J3°)(n - 1). 

at least r~ l · 6 Algorithm "Smooth Retiring" 

Proof. The average outdegree of a node in T is 
G) /n = n21, so some row has length at least 
rn2 11 = L ~ J. It remains to show that for odd n, 
an algorithm of cost n;- 1 is not possible. This is 
because for any collection of n rows each of length 
n2l, the last edge on every row has retiring cost 
n-1 + n-1 _ _ 1 

2 2 - n · 

The last argument used in the proof shows that 
the sum length of the shortest two rows is a lower 
bound on an algorithm's cost. An algorithm of 
cost c thus necessarily has a row of length at most 
c/2. Careful analysis allows us to prove the following 
generalization: 

LEMMA 5.2. Let T be an MS algorithm for n sites 
with cost c. Then the ( k + 1) st shortest row of T has 
length at most c/2 + k. 

Proof. Let e = ( i, j) be the last edge for which i and 
j are not among the shortest k rows. Consider the 
moment of e's retirement in the refinement from the 
unordered tournament in T to T. Since R includes 
at most k edges from each of the rows i and j, the 
retiring cost of e equals c( e) = I E; - RI + I E1 -
RI ~ IE;I - k + IE1I - k ~ 2(min(IE;I, IE11) - k). 

In this section we present our best algorithm, building 
on the insights gained in the previous sections. 

Algorithm SRn is not quite as easy to describe as 
our earlier algorithms. It is best described as a partial 
algorithm with ordered rows, an optimal refinement 
of which will be presented in its cost analysis. 

SRn divides the nodes into two groups: an upper 
group U = { 0, ... , u - 1} of size u and a lower group 
L = {u, ... , n-1} of size c = n-u (which is the cost 
we're aiming for). As can be expected, construction 
of SRn presumes certain conditions on the relative 
sizes of u and c, which will be derived shortly. The 
value of c will then be chosen as the smallest which 
satisfies the conditions. 

The upper group engages in HalflnTurn.,, while 
the lower group engages in a slight variation on 
AllinTurnc in which each row is reversed. 

Row u + i will have length c - 1 - L~J, of 
which ( u + i, n - 1) ... ( u + i, u + i + 1) are the last 
n - 1 - ( u + -i) = c - 1 - i edges. That leaves 
c - 1 - L~J - (c - 1 - i) = r~ l 'slots' available at 
the front of row u + i, to be filled with edges to U. 

Row i < u starts with the r~ l or L % J edges 
in HalflnTurn.,, leaving up to c - L %J slots to be 
filled with edges to L. The picture so far (with 
u = 6, c = 8) is 



0: 

1 : 

2: 

3: 

4: 

5: 
6: 

7: 

1 2 

2 3 
3 4 

4 5 

5 0 

0 1 

13 12 

* 13 

3 * * 
4 * * 
5 * * 
* * * 
* * * 
* * * 
11 10 9 

12 11 10 

* 
* 
* 
* 
* 
* 
8 

9 

8: * 
9: * 

10: * 
11: * 
12: * 

13 12 11 10 9 

* 13 12 11 10 

* 13 12 11 

* * 13 12 

* * 13 

13: * * * * 

* * 
* * 
* * 

* * 
* * 
* * 
7 

8 

Asterisks indicate empty slots. Note that the 
number of edges in the upper rows, uc, equals the 
number of edges between U and L. The number of 

lower slots equals (c -1) + (c- 3) + · · · + 2 = c 241 

for odd c and ( c - 1) + ( c - 3) + · · · + 1 = c; for even 
c. In order to fit all 1Lc edges between U and L, we 
thus require 

(6.1) l c: J ?: (~) 
In the example, the 16 lower slots make up for the 
15 which HalflnTurn6 takes out of the top section of 
size 6 · 8 = 48. 

6.1 Filling in the slots The bottom slots are 
filled in from top to bottom, left to right, modulo 
u, starting with ( u + 1, 0). The top slots are then 
filled with the remaining edges, in reverse order: 

0 : 
1: 

2: 
3: 
4: 
5: 

6: 
7: 

8: 

9 : 
10: 

11 : 

12: 

13: 

1 

2 

3 

4 

5 

0 
13 

0 

1 

2 

4 

0 

3 

0 

2 3 12 10 9 

3 4 12 10 9 

4 5 12 10 8 

5*11108 

0 13 11 9 8 

1 13 11 9 8 

12 11 10 9 8 

13 12 11 10 9 

13 12 11 10 9 

3 13 12 11 10 

5 13 12 11 

1 2 13 12 

4 5 13 

1 2 3 

8 6 
7 6 
7 6 
7 6 
7 6 
7 6 

7 

8 
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We assume that u is at least the maximum 
number of slots per row liJ, to avoid filling a row 
twice with the same edge: 

(6.2) 

This condition also finds use in the next subsection 
to show optimality of a certain refinement. 

The tournament underlying this partial algo
rithm is shown in Figure 2. Figure 3 makes the pat
tern clearer with the bigger instance u = 21, c = 29. 

6.2 Cost analysis 

THEOREM 6.1. Partial algorithm SRn has cost 
c :=; /(2 - J2°)(n - l)l · 

Proof. To satisfy condition (6.1), it suffices to have 

~ ?: (n-;-c)", or equivalently, c2 - 4(n - 1) + 
2( n - 1 )2 :=; 0, which, solving for c, translates to 
c ?: (2 - J2°)(n - 1). It remains to show that SR.. 
actually has cost c. This we do by presenting a total 
refinement sequence and verifying all retiring costs. 

First, all edges in L x L are retired, bottom-up 
and right to left. Upon retirement of edge ( u+i, u+j), 
IEu+i - RI equals IEu+i n L x UI + n - ( u + j), while 
IEu+j - Rj equals JEu+j n L x UI, giving a retiring 
cost of 

i j i j r -1 + c - j + r -1 = c + r -1 - l -J < c, 2 2 2 2 -

since i < j. 
Next, all edges ( i, u + j) E U x L are retired, 

in increasing order of j. Upon retirement of edge 
(i,·u+j), 

jE; - RI = c - J{k < j: (u + k, i) rf. Eu+dl 

= c-(j-J{k < j: (u+k, i) E E,.+k}!) :::; c-(j-f ~: l), 
since the number of slots in the first j bottom rows 

·2 

equals (j - 1) + (j - 3) + · · · = l l:f J, while i appears 
once in every u consecutive slots. Condition ( 6.2) 
implies c;'U1 :s: 1 hence 

IE;-Rj:::; c-(j-l~J-f iu l):::; c-(j-l~J)::; c-f~l
Combined with JEu+j - RI :::; rt l we conclude 
c(i, u + j) = IE; - Rj + JEu+j - Rj :=;c. . . 

Next, all edges in HalflnTurnu are retired m 
their usual order at maximum cost u - 1, which, by 
condition (6.1), is bounded by c. 

Finally, all edges in L x U are retired in arbitrary 
order, at costs no more than l ~ j . 
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Figure 1: HalflnTurn13 

Figure 2: SRs+s 

Figure 3: SR2i+29 

7 Randomized Solutions 

We can use randomization to obtain an algorithm 
for mutual search with expected complexity below 
the proven lower bound for deterministic algorithms, 
namely, its cost is n/2. The cost is the worst case, 
over all player locations, of the expected (over the 
random choices) number of queries. 

Algorithm RandomHalfinConcertn uses the same 
tournament as HalflnTurn11 , but each player random
izes the order of its queries, and the querying proceeds 
"in concert," i.e. in rounds that give each row one 
turn for their next query. An example where the ran
dom choices have already been made can be depicted 
as 

0: 2 1 

1: 2 3 
2: 3 4 
3: 0 1 

4: 1 0 

LEMMA 7 .1. Algorithm RandomHalfinConcertn has 
a worst-case expected cost rn l 
Proof. In the worst case, a player located at node 
n - 1 ends up querying the other player at node 
0 (with the latter already having made a query in 
that round). The expected cost is then twice the 
number of queries player n - 1 randomly orders 
before (n-1, 0), the latter being halfway the interval 
(0, ... , rill 

8 More than 2 Players 

There is no natural semantics of the Mutual Search 
problem for more than two players. The view we take 
is that in case of a positive query, the two players 
involved, as well as their nodes, "merge" into one, 
sharing all the knowledge they acquired. A query of 
some node then becomes a query of the equivalence 
class of that node. In this view the goal of the 
problem is to merge all players into one. 

In the two player case, a player has no identity 
other than the node she's located at. In the new 
setting, a player is an equivalence class, whose iden
tity comprises the complete joining history of its con
stituent players, i.e., which joins took place when. 
Consequently, algorithms in the new setting have a 
vast scope for letting the querying behavior depend 
on all those details. To avoid overly complicated def
initions, we refrain from formalizing the notion of a 
multi-player MS algorithm in this extended abstract. 
Note that limiting the number of players in the new 
setting to two reduces exactly to our old model. 



We now describe algorithm RSn,k (for "RingSeg
ments") for k players. The algorithm has a cost below 
n for all k = o( y'n). Algorithm RSn,k splits the n
node search space into a "ring" R of k( k - 1 )m nodes 
and a "left-over" group L of m nodes. For simplic
ity of description we assume that n is of the form 
(k(k - 1) + l)m. 

The algorithm consists of two phases. During 
the first phase, players residing on the ring engage 
in a sort of HalflnTurn making (k - l)m queries 
ahead in the ring. During the second phase, if not 
all the players completely joined yet, players query 
all the leftover nodes. If, in the first phase, one 
player positively queries another, then the merged 
player continues where the front left off, adding up 
the number of remaining ring queries of both. The 
latter ensures that a collection of k' players on the 
ring ends up querying k'(k - l)m of ring nodes, with 
no node queried twice. 

LEMMA 8.1. Algorithm RSn,k has cost k(k - l)m. 

Proof. Let k' be the number of actual players residing 
on the ring. Consider first the case k' < k. Then 

c(RSn,k) = k'(k - l)m+ ![:::,, 
~ left-over queries 

:::; (k - 1) [(k - l)m+ m] = (k - l)km. 

Otherwise ( k' = k), the players find each other 
around the ring, making ( k - 1 )m queries each in the 
worst case. 

9 Asynchronous Mutual Search 

In an asynchronous setting, one cannot rely on calls 
from different players to be coordinated in time. In 
some cases the players will have no access to a clock, 
in other cases the clocks may be subject to random 
fluctuations. In the asynchronous model, all a player 
can control, is what other sites are called, and in 
what order. We could thus formalize an asynchronous 
mutual search (AMS) algorithm as a partially ordered 
tournament in which the rows are totally ordered and 
edges from different rows are unordered. 

But there is another subtlety. In the synchronous 
case, we allow only one of any two given sites to call 
the other (unidirectional), reasoning that if both try 
to call the other, then one of those calls will always 
be made first. In the asynchronous case however, 
there is no control over which call occurs first, and 
thus we need to allow for more general, bidirectional 
algorithms (which we refrain from defining formally 
here). 
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Although there may be possible benefits to hav
ing two sites call each other, we have been unable to 
find ways of exploiting this, tempting us to 

CONJECTURE 9.1. For any bidirectional algorithm, 
there exists a unidirectional algorithm of the same or 
less cost. 

Since bidirectional algorithms don't fit too well 
in the existing model, and since we lack nontrivial 
results regarding them, we choose to use the above 
unidirectional definition of AMS algorithm in the 
remainder of this section. The cost of an edge can 
then be defined as its position in the row-ordering 
(caller cost) plus the length of the target row (callee 
cost), since it may happen that the callee has already 
made all of its calls. 

With relatively little control over the ordering 
of calls, it seems even less likely to find algorithms 
which improve on the intuitive bound of n - 1 calls. 
For instance, Lemma 3.3 no longer holds in the 
asynchronous case. 

But, surprisingly, a variation of SRn, called 
ASRn, achieves 1.5 times its cost. It is obtained by 
filling the slots of section 6.1 in reverse. The example 
there would thus become: 

0: 1 2 3 6 8 9 10 12 
1 : 2 3 4 6 7 9 10 12 
2: 3 4 5 6 7 8 10 12 
3: 4 5 * 6 7 8 10 11 

4: 5 0 6 7 8 9 11 13 
5: 0 1 6 7 8 9 11 13 
6: 7 8 9 10 11 12 13 
7: 0 8 9 10 11 12 13 

8: 1 9 10 11 12 13 
9: 2 3 10 11 12 13 

10: 4 5 11 12 13 
11: 0 1 2 12 13 

12: 3 4 5 13 
13: 0 1 2 3 

The key observation is that the shortest row has 
half the length of the maximum row and that edges to 
nodes with shorter rows appear in the later positions. 
In this way, the cost of any edge is at most the 
maximum row length plus the minimum row length. 
Using an analysis similar to that of Theorem 6 .1, one 
arrives at 

THEOREM 9.1. Asynchronous algorithm ASR,, has 

cost c < H(2 - v'2)(n - l)l · 
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Time and space constraints prevent us from 
including a proof here. Allowing randomness in 
the algorithm, a 3,: upper bound is obtained by a 
variation on HalflnTurnn in which each row is ordered 
randomly. This appears to be the best one can do. 

10 Directions for Further Research 

Our lower and upper bounds for the 2-player case 
leave a small gap. We suspect Lemma 5.2 of being 
unnecessarily weak. It is tempting to try and prove 
a strengthened version claiming a length of no more 
than (c + k)/2 for the (k + l)th shortest row, which 
would immediately imply the optimality of SR.n. All 
algorithms we have looked at so far satisfy this con
dition. Unfortunately, there exist simple counterex-

amples, as witnessed by row distribution lP-where 
the upper half engages in a HalflnTurn algorithm be
fore querying the lower half, which in turn engages in 
an AllinTurn algorithm (giving a saturated result). 
Such algorithms however have lots of relatively short 
rows, making them far from optimal. It seems rea
sonable to expect that an optimal algorithm has only 
a constant number of rows shorter than half the cost. 
In this light we pose the following conjecture as a lead 
on optimality of SR.n. 

CONJECTURE 10.1. LetT be an algorithmforn sites 
w~th cost c, such that no row is shorter than L~J. 
Then the ( k + 1) st shortest row of T has length at 
most (c + k)/2. 

The randomized model also leaves some open 
questions. We hoped to be able to proof the fol
lowing result, which would imply optimality of Ran
domHalflnConcert: 

CONJECTURE 10.2. No randomized MS algorithm 
for n sites has expected cost less than n2l. 

It's not too hard to prove a. lowerbound of n:; 1 , 

by looking only at the number of queries one player 
makes, but that seems far from optimal. 

The lower bounds we established for the syn
chronous case of course carry over to the asyn
chronous setting, but seem unnecessarily weak. In 
fact, algorithm ASRn appears to be very close to op
timal. A lower bound of ~n might be provable, even 
with randomization, but we haven't had much time 
to ponder this issue. Finally, the conjecture concern
ing bidirectional asynchronous algorithms begs fur
ther investigation. 
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A Related Research 

DISTRIBUTED MATCH-MAKING. In "distributed 
match-making" [15] the set-up is similar to mutual 
search except that if a player at node i queries a node 
k previously queried by a player at node j, then the 
query to node k returns j [15, 11]. In general it is 
assumed that the search is in a structured database 
in the sense that there have been an initial set of 
queries from players at all nodes to leave traces of 
their whereabouts at other nodes. This problem is 
basic to distributed mutual exclusion (13] and dis
tributed name server [15]. The difference is that 
distributed match-making operates in a cooperative 
structured environment while mutual search operates 
in a noncooperative unstructured environment. Some 
of our protocol representation ideas were inspired by 
this seminal paper. 

TRACKING OF MOBILE USERS. Another related 
search problem is the (on-line) tracking of a mobile 
user defined by Awerbuch and Peleg [1, 2], where the 
goal is to access an object which can change location 
in the network. The mobile user moves among the 
nodes of the network. [.From time to time two 
types of requests are invoked at the nodes: move( i, j) 
(move the user from node i to node j) and find( i) 
(send a message from node i to the current location 
of the user). The overall goal is to minimize the 
communication cost. In contrast, our search problem 
is symmetric, and the players are static. 

DISTRIBUTED TREE CONSTRUCTION. The goal of 
MS can be thought of as forming a clique among the 
nodes of the players. In this sense the problem is re
lated to tree construction problems, such as the (dis
tributed) minimum-weight spanning tree (MST) [7] 
and Steiner tree (e.g., [8]). Besides other differences 
(e.g., in those problems the nodes are given, and it 
is the (weight of the) edges which are (globally) un
known; in the version of MS we consider it is required 
that the players be directly connected, not just in the 
same connected component; etc.), MS is concerned 
with optimizing the process, and not the outcome of 
the construction. 

CONSPIRACY START-UP. Another possible applica
tion of MS is to secure multi-party computation. The 
fields of fault-tolerant distributed computing and se
cure multi-party computation are concerned with n 
players, a fraction (t) of which may be arbitrarily 
faulty. It is traditionally assumed (e.g., [4, 12]) that 
the faulty players have complete knowledge of who 
they are, and that they can collude and act in con
cert. We would like to weaken this assumption and 
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investigate the complexity and cost of achieving such 
a perfect coordination. We consider this pa.per as a 
first step towards the study of such spontaneous ad
versaries and coalition forming. In fact, many test
bed problems (e.g., Byzantine agreement [12]) and 
secure multi-party primitives (e.g., verifiable secret 
sharing [6]) are bound to have interesting character
izations and efficient solutions under this new adver
sary. 

PROBABILISTIC COALITION FORMATION. Billard 
and Pasquale [5] study the effect of communication 
environments on the level of knowledge concerning 
group, or coalition, formation in a distributed system. 
The motivation is the potential for improved perfor
mance of a group of agents depending on their ability 
to utilize shared resources. In this particular model 
the agents make randomized decisions regarding with 
whom to coordinate, and the payoffs are evaluated 
in different basic structures and amounts of commu
nication (e.g., broadcast, master-slave, etc.). Their 
work has in turn been influenced by work on com
putational ecologies [9] and game theory studies [14]. 
In contrast, ours is a search problem with the goal 
of minimizing the communication cost of achieving a 
perfect coalition. 

SEARCH THEORY. Finally, MS is also some
what related to Search Theory and Optimal Search 
(e.g., [10]). Search Theory is generally concerned 
with locating an object in a set of n locations, given 
a "target distribution," which describes the proba
bility of the object being at the different locations. 
In turn, Optimal Search involves computing how re
sources (e.g., search time) can be allocated so as to 
maximize the probability of detection. Typically, it 
is assumed that the target distribution is known, al
though more recently this assumption has been re
laxed [16]. Besides the multiple agent aspect, the set
ting of MS is more adversarial, as we measure worst
case cost. 


