
Mutual Search
[EXTENDED ABSTRACT]

Harry Buhrman* Matthew Franklint

John Tromp'

Abstract

We define a new type of search problem called

"mutual search", where k players arbitrarily spread

over n nodes are required to locate each other by

sending "Anybody at node i?" query messages (for

example processes in a computer network). If the

messages are not delivered in the order they were sent

(for example when the communication delay time is

arbitrary) then two players require at least n - 1

messages. In an asynchronous network, where the
messages are delivered in the order they were sent,

0.88n messages suffice. In a synchronous network

0.586n messages suffice and 0.536n messages are

required in the worst case. We exhibit a simple

randomized algorithm with expected worst-case cost

of 0.5n messages, and a deterministic algorithm for

k 2'.: 2 players with a cost well below n for all

k = o(vfn). The graph-theoretic framework we

formulate for expressing and analyzing algorithms for

this problem may be of independent interest.

1 Introduction

Mutual Search (MS) is the problem of two or more

entities trying to learn each other's location in a uni

form unstructured search space. The most obvious

application is in distributed computing: k processes

residing in a computer network of n computers try to

locate each other in as few messages as possible. The

• Centrum voor Wiskunde en Informatica (CWI), Kruislaan

413, 1098 SJ Amsterdam, The Netherlands. E-mail: buhrme.nlD

cvi.nl.
t AT&T Labs - Research, P. 0. Box 971, FlorhamPark, NJ.

rre.nklinlDresearch.att.com.

?IBM T.J. Watson Research Center, P.O. Box 704, York

town Heights, NY 10598. garaylDvo.tson. ibm.com. W~rk partly

done while the author was visiting CWI.

scw1. jhhlDcvi.nl.

~ CWI. tromp©cvi. nl.

II CWL paul vlDcvi. nl.

Juan A. Garayt

Paul Vitanyill

Jaap-Henk Hoepman §

computers have distinct identities, say O, .•. , n - 1
(k :::; n), and the processes execute identical pro
tocols possibly using the identifier of the computer

they reside on. Two processes know each other's lo

cation if at least one process received a message from

the other process. The relation "know location" is

transitive and the problem is solved if all k processes

know each others location. We analyze this problem

for the case k = 2 under various assumptions on net

work synchronicity and communication delay and for

deterministic and randomized algorithms. We give a

result for the general case of k ~ fo processes.

Our Results: We first look at deterministic algo

rithms for two processes. If the messages are not

delivered in the order they were sent (nonFIFO),

for example in networks with unknown and arbi

trary communication delays (as e-mail has to some

extent), then two processes need to send at least

n - 1 messages in total in the worst case. Namely,

given any protocol construct the directed graph on

{O, .. . ,n - 1} with an arc from i to j if i sends a

message to j. For each pair there must be at least

one arc. With at least G) arcs in total, the average
number of outgoing arcs is at least n; 1 and it follows

easily that some two nodes must together have twice

this number, or n - 1, of outgoing edges (in fact, one

could refine this to 2f n2 1 l for n > 2). An adver

sarial demon can always schedule the communication

delays such that all these n - 1 message are sent out

before contact is made. The tightness of this bound

is witnessed by an algorithm called HalflnTurn, to be

discussed in Section 3.
In Section 2 we formulate a framework for ex

pressing and analyzing the structure of algorithms

for this problem. In Section 9 we show that in asyn

chronous networks, where the messages arrive in the

order they were sent, there is a mutual search algo

rithm using asymptotically 0.88n messages.
For synchronous networks we present in Section 6

481

482

the protocol SRn, an algorithm with a worst-case
cost of only (2 - .J2)n ~ 0.586n. We also show
this algorithm to be close to optimal, by proving a
(4 - 2J3)n ~ 0.536n lower bound on the number of
queries required by any mutual search algorithm in
Section 5.

We consider randomized algorithms for the prob
lem in Section 7. A randomized algorithm is shown
to have a worst-case (over player location) expected
(over random coin flips) cost of f!il, thus beating the
deterministic lower bound.

In Section 8 we present RSn,k, a deterministic
algorithm for k ~ 2 players for synchronous networks
with a cost well below n for all k = o(Jn). Here is a
quick roadmap to the results for k = 2:

Synchronous FIFO:
Deterministic worst-case: upper bound 0.586n
(Section 6); lower bound 0.536n (Section 5).

Randomized expected: upper bound f!i l (Sec
tion 7); lower bound n4 1 (Section 10).

Asynchronous FIFO:
Deterministic worst-case: upper bound 0.88n
(Section 9); lower bound 0.536n (Section 5).

Randomized expected: upper bound ~n (Sec
tion 9) lower bound n4 1 (Section 10).

nonFIFO:
Both upper bound and lower bound are 2l n;- 1 J
messages in the deterministic worst-case (Sec
tion 1); and similarly in the randomized expected
case.

The framework we develop for reasoning about

site. For simplicity, we allow at most one query
to be scheduled at any single time instant. The
lack of simultaneous queries makes the number of
queries until (and including) contact a well-defined
cost measure.

Note that for any pair of sites, such an algorithm
determines which site will first query the other. At
that point the algorithm terminates, and the latter
site need never query the former. Any algorithm
thus implies a tournament, which is a directed graph
having one (directed) edge between every pair of
nodes. An edge from node i to node j represents
site i querying site j. An algorithm can then be
specified in full by totally ordering all the queries in
a tournament, indicating the querying order.

DEFINITION 2.1. An algorithm for MS is an ordered
tournament T = (V, E, -<), where the set of nodes
(sites) is V = {O, 1, ... , n - 1}, E is a set of G) =
~n(n - 1) edges (queries), and-< is a total order on
E. For a node i, Ei is the set of outgoing edges from
i, and is called row i. The number of queries jEil is
called the length of row i.

DEFINITION 2.2. The cost c(T) of an algorithm T is
the maximum over all edges e = (i, j) of the edge cost
c(e) = \Ei-<ej + 1 + jEf"j, where for any F ~ E, p-<.e
denotes {f E F: f-< e}.

The edge cost counts the number of queries made
by both players located on the respective incident
nodes. Next, we present and analyze some basic
algorithms for the problem which will form the basis
of a better algorithm.

Some Simple Mutual Search Algorithms the Mutual Search problem may be of independent 3
interest. Mutual search can serve as a preliminary
stage to sharing random resources in a distributed
setting or forming coalitions for Byzantine attacks

The first algorithm, AlllnTurnn, lets each site in turn
queries all the other sites. For instance, AlllnTurn4

can be depicted as
and various cryptographic settings.

Related Work: The authors believe that this is
a novel type of search problem that has not been
considered before. We do not know of any directly
related previous research. Several topics that are
more or less related can be found in the Appendix A.

2 Model and Definitions: Synchronous Case

Consider an anonymous 2-player synchronous model,
in which the querying behaviour of a player depends
only on her site. Time is discrete, with time instants
numbered O, 1, Informally, an algorithm for the
MS problem specifies, for each site that a player can
find herself at, what to do at each time instant: either
stay idle or (atomically) query some specific other

0: 1 2 3

1 :

2:

3:

2 3
3

in which an edge (i, j) is shown on row i of the
picture as number j.

LEMMA 3.1. Algorithm AlllnTurnn has cost n - 1.

Proof. It is in fact easy to see that c(i, j) = j - i. A
player at site i makes this many queries to contact
the other player at site j, and the latter never gets
to make any queries. The maximum value of j - i is
n-1.

A somewhat more balanced algorithm is
HalflnTurnn, where each site in turn queries the next
Ln/2J sites (modulo n). Halfln'rurn5 looks like

0: 1 2

1: 2 3
2:

3:
4:

3 4

4 0
0 1

For even n, sites n/2 ... n - 1 only get to make
Ln/2J -1 queries.

LEMMA 3.2. Algorithm HalflnTurnn has cost n - 1.

Proof. Suppose i < j. If j - i ~ ln/2J, we find
c(i, j) = j-i, otherwise i- j mod n = n+i-j giving
c(j,i)= Ln/2J+n+i-j. Takingj=i+ln/2J+l
achieves the maximum of ln/2J + n - (ln/2J + 1) =
n- 1.

Our next result shows HalfinTurnn to be the
basis of a much better algorithm.

DEFINITION 3.1. An algorithm is called saturated if
its cost equals its maximum row length.

LEMMA 3.3. An algorithm that is not saturated can
be extended with another site without increasing its
cost.

Proof. Let T be an algorithm on n nodes whose
cost exceeds all row lengths. Add a new node n,
and an edge from every other node to this new
node. Order the new edges after the old edges (and
arbitrarily amongst each other). This does not affect
the cost of the old edges, while the cost of edge (i, n)
becomes one more than the length of row i, hence not
exceeding the old algorithm cost.

As the proof shows, the maximum row length
increases by exactly one, so we may add as many
sites as the cost exceeds the former. HalflnTurn2k+l

has cost 2k and uniform row length k so we may
add k more sites to get a saturated algorithm
SaturatedHalfinTiun3k+l of the same cost:

483

DEFINITION 4.1. A partial MS algorithm is a par
tially o~dered tournament T = (V, E, -<, R), where
R i;;;; E is the subset of retired edges, such that -<

• totally orders R,

e orders all of E - R before all of R, and

• leaves E - R unordered.

An edge e = (i, j) in row prefix E; - R has retiring
cost c(e) = IE; - RI + IEj - RI. Retiring an
edge e results in a more refined partial algorithm

T = (V,E,-<',R'), where R' = RU{e} and-<'=-<
U(E-R',e).

Note that relation -< is viewed as a set of pairs·
(E - R',e) denotes the set {(f, e): f EE - R'}. A~
example partial tournament, with 2 retired edges, is

{(O, 3), (0, 1), (1, 2), (2, O)}-< (2, 3)-< (3, 1)

Note that any sequence of IE - RI refinements yields
a (totally ordered) algorithm, which we call a total
refinement of T. A mere tournament corresponds to
a partial algorithm with no retired edges.

Observe that the cost of e in a total refinement
depends only on its ordering with respect to the edges
in rows i and j, which is determined as soon as it
retires. This shows the following

FACT 4.1. If T' results from T by retiring edge e =
(i, j), then the retiring cost of e equals the cost of that
edge in any total refinement of T'.

DEFINITION 4.2. The cost c(T) of a partial algorithm
T ·is the minimal cost among all its total refinements.
A total refinement achieving minimum cost is called
optimal.

LEMMA 4.1. The co.~t of a partial algorithm T eq,uals
the cost of the partial to·urnament that results from
retiring the edge e of minim,um 1'etiring cost.

Informally, any refinement from T will have cost
at least equal to the minimum retiring cost, and

C OROLLARY 3.1. Algo,,,,;thm SaturatedHal'+rnTurnn
'" ~ 1 choosing e doesn't hamper us in any way. The

has cost r ~ (n - 1) l · following proof makes precise this notion of non

4 Algorithm Refinement
hampering.

In order to get a better understanding of the structure Proof. Consider an optimal total refinement from T
of MS algorithms, we need to focus on their essential to some algorithm T", in which, at some point, say
properties. In this section we consider algorithms after e1, ez, ... , Ck, edge c is retired. Let algorithm T'
with only a partial edge ordering. The question arises be the result of retiring e first, and then continuing
how such a partial ordering can be extended to a good the same total refinement with e skipped. Then T"
total edge ordering. The following terminology helps will have c -<" Ck -<" . . . -<" ei whereas T' has
us answer this question. ek -<' ... -<' e1 -<' e. If we compare the costs c"

484

and c' for any edge in T" and T' respectively, we see
that for 1:::; i:::; k, c1(e;):::; c"(e;), c'(e) ~ c"(e), and
all other edges cost the same. However, c'(e) :::; c(e1)

by assumption, and so T' must be optimal too.

Seeing that optimal refinement is a straightfor
ward task, we can present algorithms as plain tour
naments. By graphically showing the tournament's
adjacency matrix, one obtains a visually insightful
representation; for instance, SaturatedHalflnTurn13

is shown in Figure 1.
Our algorithm HalflnTurnn now betrays a bad

ordering for even n. It retires (n - 1, 0) first, at a cost
of n - 1, whereas an optimal refinement can keep the
cost down to n - 2. It takes advantage of the bottom
rows being shorter, and first retires an edge between
nodes in this bottom half. For example, the following
reordering of HalflnTurn4 has cost 2:

(0, 1)-< (3,0)-< (0,2)-< (1,3)-< (1,2)-< (2,3)

5 Lower Bounds

Given that the maximum row length is a lower

Furthermore, c(e) :::; c, since the cost of T is the
maximum of all retirement costs. It follows that the
smallest of rows i and j has length at most c/2 + k.

This shows that the best possible distribution

of row lengths looks like D, where the (~) entries
are divided over n - c/2 rows of maximum length c,
followed by c/2 increasingly shorter rows, producing
a triangular "wasted" space of size about (c/2)2 /2.

THEOREM 5.1. Any MS algorithm T for n sites has
cost at least (4 - 2J3°)(n - 1).

Proof. Since each row has length at most c,
Lemma 5.2 implies IEI =

c/2
n(n - 1) < nc _ """c/2 _ k = nc _ (c/2)(c/2 + 1)

2 - ~ 2
k=O

bound on algorithm cost, the following result is easily => (c/2)2 - 2(n - 1)c + (n - 1)2 :::; 1 - 1.5c - n ~ 0.
obtained.

LEMMA 5.1. Any MS algorithm T Jorn sites has cost
Solving for c, we find c ~ (4- 2J3°)(n - 1).

at least r~ l · 6 Algorithm "Smooth Retiring"

Proof. The average outdegree of a node in T is
G) /n = n21, so some row has length at least
rn2 11 = L ~ J. It remains to show that for odd n,
an algorithm of cost n;- 1 is not possible. This is
because for any collection of n rows each of length
n2l, the last edge on every row has retiring cost
n-1 + n-1 _ _ 1

2 2 - n ·

The last argument used in the proof shows that
the sum length of the shortest two rows is a lower
bound on an algorithm's cost. An algorithm of
cost c thus necessarily has a row of length at most
c/2. Careful analysis allows us to prove the following
generalization:

LEMMA 5.2. Let T be an MS algorithm for n sites
with cost c. Then the (k + 1) st shortest row of T has
length at most c/2 + k.

Proof. Let e = (i, j) be the last edge for which i and
j are not among the shortest k rows. Consider the
moment of e's retirement in the refinement from the
unordered tournament in T to T. Since R includes
at most k edges from each of the rows i and j, the
retiring cost of e equals c(e) = I E; - RI + I E1 -
RI ~ IE;I - k + IE1I - k ~ 2(min(IE;I, IE11) - k).

In this section we present our best algorithm, building
on the insights gained in the previous sections.

Algorithm SRn is not quite as easy to describe as
our earlier algorithms. It is best described as a partial
algorithm with ordered rows, an optimal refinement
of which will be presented in its cost analysis.

SRn divides the nodes into two groups: an upper
group U = { 0, ... , u - 1} of size u and a lower group
L = {u, ... , n-1} of size c = n-u (which is the cost
we're aiming for). As can be expected, construction
of SRn presumes certain conditions on the relative
sizes of u and c, which will be derived shortly. The
value of c will then be chosen as the smallest which
satisfies the conditions.

The upper group engages in HalflnTurn.,, while
the lower group engages in a slight variation on
AllinTurnc in which each row is reversed.

Row u + i will have length c - 1 - L~J, of
which (u + i, n - 1) ... (u + i, u + i + 1) are the last
n - 1 - (u + -i) = c - 1 - i edges. That leaves
c - 1 - L~J - (c - 1 - i) = r~ l 'slots' available at
the front of row u + i, to be filled with edges to U.

Row i < u starts with the r~ l or L % J edges
in HalflnTurn.,, leaving up to c - L %J slots to be
filled with edges to L. The picture so far (with
u = 6, c = 8) is

0:

1 :

2:

3:

4:

5:
6:

7:

1 2

2 3
3 4

4 5

5 0

0 1

13 12

* 13

3 * *
4 * *
5 * *
* * *
* * *
* * *
11 10 9

12 11 10

*
*
*
*
*
*
8

9

8: *
9: *

10: *
11: *
12: *

13 12 11 10 9

* 13 12 11 10

* 13 12 11

* * 13 12

* * 13

13: * * * *

* *
* *
* *

* *
* *
* *
7

8

Asterisks indicate empty slots. Note that the
number of edges in the upper rows, uc, equals the
number of edges between U and L. The number of

lower slots equals (c -1) + (c- 3) + · · · + 2 = c 241

for odd c and (c - 1) + (c - 3) + · · · + 1 = c; for even
c. In order to fit all 1Lc edges between U and L, we
thus require

(6.1) l c: J ?: (~)
In the example, the 16 lower slots make up for the
15 which HalflnTurn6 takes out of the top section of
size 6 · 8 = 48.

6.1 Filling in the slots The bottom slots are
filled in from top to bottom, left to right, modulo
u, starting with (u + 1, 0). The top slots are then
filled with the remaining edges, in reverse order:

0 :
1:

2:
3:
4:
5:

6:
7:

8:

9 :
10:

11 :

12:

13:

1

2

3

4

5

0
13

0

1

2

4

0

3

0

2 3 12 10 9

3 4 12 10 9

4 5 12 10 8

5*11108

0 13 11 9 8

1 13 11 9 8

12 11 10 9 8

13 12 11 10 9

13 12 11 10 9

3 13 12 11 10

5 13 12 11

1 2 13 12

4 5 13

1 2 3

8 6
7 6
7 6
7 6
7 6
7 6

7

8

485

We assume that u is at least the maximum
number of slots per row liJ, to avoid filling a row
twice with the same edge:

(6.2)

This condition also finds use in the next subsection
to show optimality of a certain refinement.

The tournament underlying this partial algo
rithm is shown in Figure 2. Figure 3 makes the pat
tern clearer with the bigger instance u = 21, c = 29.

6.2 Cost analysis

THEOREM 6.1. Partial algorithm SRn has cost
c :=; /(2 - J2°)(n - l)l ·

Proof. To satisfy condition (6.1), it suffices to have

~ ?: (n-;-c)", or equivalently, c2 - 4(n - 1) +
2(n - 1)2 :=; 0, which, solving for c, translates to
c ?: (2 - J2°)(n - 1). It remains to show that SR..
actually has cost c. This we do by presenting a total
refinement sequence and verifying all retiring costs.

First, all edges in L x L are retired, bottom-up
and right to left. Upon retirement of edge (u+i, u+j),
IEu+i - RI equals IEu+i n L x UI + n - (u + j), while
IEu+j - Rj equals JEu+j n L x UI, giving a retiring
cost of

i j i j r -1 + c - j + r -1 = c + r -1 - l -J < c, 2 2 2 2 -

since i < j.
Next, all edges (i, u + j) E U x L are retired,

in increasing order of j. Upon retirement of edge
(i,·u+j),

jE; - RI = c - J{k < j: (u + k, i) rf. Eu+dl

= c-(j-J{k < j: (u+k, i) E E,.+k}!) :::; c-(j-f ~: l),
since the number of slots in the first j bottom rows

·2

equals (j - 1) + (j - 3) + · · · = l l:f J, while i appears
once in every u consecutive slots. Condition (6.2)
implies c;'U1 :s: 1 hence

IE;-Rj:::; c-(j-l~J-f iu l):::; c-(j-l~J)::; c-f~l
Combined with JEu+j - RI :::; rt l we conclude
c(i, u + j) = IE; - Rj + JEu+j - Rj :=;c. . .

Next, all edges in HalflnTurnu are retired m
their usual order at maximum cost u - 1, which, by
condition (6.1), is bounded by c.

Finally, all edges in L x U are retired in arbitrary
order, at costs no more than l ~ j .

486

Figure 1: HalflnTurn13

Figure 2: SRs+s

Figure 3: SR2i+29

7 Randomized Solutions

We can use randomization to obtain an algorithm
for mutual search with expected complexity below
the proven lower bound for deterministic algorithms,
namely, its cost is n/2. The cost is the worst case,
over all player locations, of the expected (over the
random choices) number of queries.

Algorithm RandomHalfinConcertn uses the same
tournament as HalflnTurn11 , but each player random
izes the order of its queries, and the querying proceeds
"in concert," i.e. in rounds that give each row one
turn for their next query. An example where the ran
dom choices have already been made can be depicted
as

0: 2 1

1: 2 3
2: 3 4
3: 0 1

4: 1 0

LEMMA 7 .1. Algorithm RandomHalfinConcertn has
a worst-case expected cost rn l
Proof. In the worst case, a player located at node
n - 1 ends up querying the other player at node
0 (with the latter already having made a query in
that round). The expected cost is then twice the
number of queries player n - 1 randomly orders
before (n-1, 0), the latter being halfway the interval
(0, ... , rill

8 More than 2 Players

There is no natural semantics of the Mutual Search
problem for more than two players. The view we take
is that in case of a positive query, the two players
involved, as well as their nodes, "merge" into one,
sharing all the knowledge they acquired. A query of
some node then becomes a query of the equivalence
class of that node. In this view the goal of the
problem is to merge all players into one.

In the two player case, a player has no identity
other than the node she's located at. In the new
setting, a player is an equivalence class, whose iden
tity comprises the complete joining history of its con
stituent players, i.e., which joins took place when.
Consequently, algorithms in the new setting have a
vast scope for letting the querying behavior depend
on all those details. To avoid overly complicated def
initions, we refrain from formalizing the notion of a
multi-player MS algorithm in this extended abstract.
Note that limiting the number of players in the new
setting to two reduces exactly to our old model.

We now describe algorithm RSn,k (for "RingSeg
ments") for k players. The algorithm has a cost below
n for all k = o(y'n). Algorithm RSn,k splits the n
node search space into a "ring" R of k(k - 1)m nodes
and a "left-over" group L of m nodes. For simplic
ity of description we assume that n is of the form
(k(k - 1) + l)m.

The algorithm consists of two phases. During
the first phase, players residing on the ring engage
in a sort of HalflnTurn making (k - l)m queries
ahead in the ring. During the second phase, if not
all the players completely joined yet, players query
all the leftover nodes. If, in the first phase, one
player positively queries another, then the merged
player continues where the front left off, adding up
the number of remaining ring queries of both. The
latter ensures that a collection of k' players on the
ring ends up querying k'(k - l)m of ring nodes, with
no node queried twice.

LEMMA 8.1. Algorithm RSn,k has cost k(k - l)m.

Proof. Let k' be the number of actual players residing
on the ring. Consider first the case k' < k. Then

c(RSn,k) = k'(k - l)m+ ![:::,,
~ left-over queries

:::; (k - 1) [(k - l)m+ m] = (k - l)km.

Otherwise (k' = k), the players find each other
around the ring, making (k - 1)m queries each in the
worst case.

9 Asynchronous Mutual Search

In an asynchronous setting, one cannot rely on calls
from different players to be coordinated in time. In
some cases the players will have no access to a clock,
in other cases the clocks may be subject to random
fluctuations. In the asynchronous model, all a player
can control, is what other sites are called, and in
what order. We could thus formalize an asynchronous
mutual search (AMS) algorithm as a partially ordered
tournament in which the rows are totally ordered and
edges from different rows are unordered.

But there is another subtlety. In the synchronous
case, we allow only one of any two given sites to call
the other (unidirectional), reasoning that if both try
to call the other, then one of those calls will always
be made first. In the asynchronous case however,
there is no control over which call occurs first, and
thus we need to allow for more general, bidirectional
algorithms (which we refrain from defining formally
here).

487

Although there may be possible benefits to hav
ing two sites call each other, we have been unable to
find ways of exploiting this, tempting us to

CONJECTURE 9.1. For any bidirectional algorithm,
there exists a unidirectional algorithm of the same or
less cost.

Since bidirectional algorithms don't fit too well
in the existing model, and since we lack nontrivial
results regarding them, we choose to use the above
unidirectional definition of AMS algorithm in the
remainder of this section. The cost of an edge can
then be defined as its position in the row-ordering
(caller cost) plus the length of the target row (callee
cost), since it may happen that the callee has already
made all of its calls.

With relatively little control over the ordering
of calls, it seems even less likely to find algorithms
which improve on the intuitive bound of n - 1 calls.
For instance, Lemma 3.3 no longer holds in the
asynchronous case.

But, surprisingly, a variation of SRn, called
ASRn, achieves 1.5 times its cost. It is obtained by
filling the slots of section 6.1 in reverse. The example
there would thus become:

0: 1 2 3 6 8 9 10 12
1 : 2 3 4 6 7 9 10 12
2: 3 4 5 6 7 8 10 12
3: 4 5 * 6 7 8 10 11

4: 5 0 6 7 8 9 11 13
5: 0 1 6 7 8 9 11 13
6: 7 8 9 10 11 12 13
7: 0 8 9 10 11 12 13

8: 1 9 10 11 12 13
9: 2 3 10 11 12 13

10: 4 5 11 12 13
11: 0 1 2 12 13

12: 3 4 5 13
13: 0 1 2 3

The key observation is that the shortest row has
half the length of the maximum row and that edges to
nodes with shorter rows appear in the later positions.
In this way, the cost of any edge is at most the
maximum row length plus the minimum row length.
Using an analysis similar to that of Theorem 6 .1, one
arrives at

THEOREM 9.1. Asynchronous algorithm ASR,, has

cost c < H(2 - v'2)(n - l)l ·

488

Time and space constraints prevent us from
including a proof here. Allowing randomness in
the algorithm, a 3,: upper bound is obtained by a
variation on HalflnTurnn in which each row is ordered
randomly. This appears to be the best one can do.

10 Directions for Further Research

Our lower and upper bounds for the 2-player case
leave a small gap. We suspect Lemma 5.2 of being
unnecessarily weak. It is tempting to try and prove
a strengthened version claiming a length of no more
than (c + k)/2 for the (k + l)th shortest row, which
would immediately imply the optimality of SR.n. All
algorithms we have looked at so far satisfy this con
dition. Unfortunately, there exist simple counterex-

amples, as witnessed by row distribution lP-where
the upper half engages in a HalflnTurn algorithm be
fore querying the lower half, which in turn engages in
an AllinTurn algorithm (giving a saturated result).
Such algorithms however have lots of relatively short
rows, making them far from optimal. It seems rea
sonable to expect that an optimal algorithm has only
a constant number of rows shorter than half the cost.
In this light we pose the following conjecture as a lead
on optimality of SR.n.

CONJECTURE 10.1. LetT be an algorithmforn sites
w~th cost c, such that no row is shorter than L~J.
Then the (k + 1) st shortest row of T has length at
most (c + k)/2.

The randomized model also leaves some open
questions. We hoped to be able to proof the fol
lowing result, which would imply optimality of Ran
domHalflnConcert:

CONJECTURE 10.2. No randomized MS algorithm
for n sites has expected cost less than n2l.

It's not too hard to prove a. lowerbound of n:; 1 ,

by looking only at the number of queries one player
makes, but that seems far from optimal.

The lower bounds we established for the syn
chronous case of course carry over to the asyn
chronous setting, but seem unnecessarily weak. In
fact, algorithm ASRn appears to be very close to op
timal. A lower bound of ~n might be provable, even
with randomization, but we haven't had much time
to ponder this issue. Finally, the conjecture concern
ing bidirectional asynchronous algorithms begs fur
ther investigation.

Acknowledgment

Matt Franklin thanks Sheryl Koenigsberg for helpful
discussions.

References

[1] B. Awerbuch and D. Peleg, "On-line tracking of
mobile users," Technical Memo TM-410, MIT, Lab.
for Computer Science, 1989.

[2] B. Awerbuch and D. Peleg, "Sparse Partitions,"
Proc. 31st IEEE Symp. on Foundations of Computer
Science, pp. 503-513, 1990.

[3] R. Axelrod and W. Hamilton, "The evolution of co
operation,'' Science, Vol. 211, pp. 1390-1396, March
1988.

[4] M. Ben-Or, S. Goldwasser, and A. Wigderson,
"Completeness Theorems for Non-Cryptographic
Fault-Tolerant Distributed Computation," Proc.
20th Annual ACM Symp. on the Theory of Com
puting, pp. 1-10, 1988.

[5] E. Billard and J. Pasquale, "Probabilistic Coali
tion Formation in Distributed Knowledge Environ
ments", IEEE Transactions on Systems, Man, and
Cybernetics, 25(2), pp. 277-286, February 1995.

(6) B. Chor, S. Goldwasser, S, Micali, and B. Awerbuch,
"Verifiable Secret Sharing and Achieving Simultane
ity in the Presence of Faults," Proc. 26th Annual
IEEE Symposium on the Foundations of Computer
Science, pp. 383-395, 1985.

[7] R. Gallager, P. Humblet and P. Spira, "A dis
tributed algorithm for minimum-weight spanning
trees," A CM Transactions on Programming Lan
guages and Systems, 5(1):66-77, January 1983.

[8] S.L.Hakimi, "Steiner's problem in graphs and its
implications," Networks, 1 (1971) 113-133.

[9] B. Huberman and T. Hogg, "The behavior of com
putational ecologies," in The Ecology of Computa
tion (B. Huberman, ed.), North Holland, Elsevier
Science Publishers, 1988.

[10) B.0. Koopman, "The Theory of Search, Parts !
III," Operations Research Vol. 4, pp. 324-346 (1956),
Vol. 4, pp. 503-531 (1956), and Vol. 5, pp. 613-626
(1957).

[11] E. Kranakis and P.M.B. Vitanyi, "A note on
weighted distributed Match-Making," Mathematical
Systems Theory, 25(1992), pp. 123-140.

[12) L. Lamport, R.E. Shostak and M. Pease, "The
Byzantine generals problem," ACM Trans. Prog.
Lang. and Systems, 4:3 (1982), pp. 382-401.

[13] M. Maekawa, "A .JN Algorithm for Mutual Exclu
sion in Decentralized Systems," ACM Transactions
on Computer Systems, 3(1985), pp. 145-159.

[14] J. Maynard-Smith, Evolution and the Theory of
Games, Cambridge University Press, 1982.

[15] S.J. Mullender and P.M.B. Vitanyi, "Distributed
match-making," Algorithmica, 3 (1988), pp. 367-
391.

[16] Q. Zhu and J. Oommen, "Optimal Search with Un
known Target Distributions," to appear in Proc.
XVll International Conference of the Chilean Com
puter Science Society, Valparaiso, Chile, November
1997.

A Related Research

DISTRIBUTED MATCH-MAKING. In "distributed
match-making" [15] the set-up is similar to mutual
search except that if a player at node i queries a node
k previously queried by a player at node j, then the
query to node k returns j [15, 11]. In general it is
assumed that the search is in a structured database
in the sense that there have been an initial set of
queries from players at all nodes to leave traces of
their whereabouts at other nodes. This problem is
basic to distributed mutual exclusion (13] and dis
tributed name server [15]. The difference is that
distributed match-making operates in a cooperative
structured environment while mutual search operates
in a noncooperative unstructured environment. Some
of our protocol representation ideas were inspired by
this seminal paper.

TRACKING OF MOBILE USERS. Another related
search problem is the (on-line) tracking of a mobile
user defined by Awerbuch and Peleg [1, 2], where the
goal is to access an object which can change location
in the network. The mobile user moves among the
nodes of the network. [.From time to time two
types of requests are invoked at the nodes: move(i, j)
(move the user from node i to node j) and find(i)
(send a message from node i to the current location
of the user). The overall goal is to minimize the
communication cost. In contrast, our search problem
is symmetric, and the players are static.

DISTRIBUTED TREE CONSTRUCTION. The goal of
MS can be thought of as forming a clique among the
nodes of the players. In this sense the problem is re
lated to tree construction problems, such as the (dis
tributed) minimum-weight spanning tree (MST) [7]
and Steiner tree (e.g., [8]). Besides other differences
(e.g., in those problems the nodes are given, and it
is the (weight of the) edges which are (globally) un
known; in the version of MS we consider it is required
that the players be directly connected, not just in the
same connected component; etc.), MS is concerned
with optimizing the process, and not the outcome of
the construction.

CONSPIRACY START-UP. Another possible applica
tion of MS is to secure multi-party computation. The
fields of fault-tolerant distributed computing and se
cure multi-party computation are concerned with n
players, a fraction (t) of which may be arbitrarily
faulty. It is traditionally assumed (e.g., [4, 12]) that
the faulty players have complete knowledge of who
they are, and that they can collude and act in con
cert. We would like to weaken this assumption and

489

investigate the complexity and cost of achieving such
a perfect coordination. We consider this pa.per as a
first step towards the study of such spontaneous ad
versaries and coalition forming. In fact, many test
bed problems (e.g., Byzantine agreement [12]) and
secure multi-party primitives (e.g., verifiable secret
sharing [6]) are bound to have interesting character
izations and efficient solutions under this new adver
sary.

PROBABILISTIC COALITION FORMATION. Billard
and Pasquale [5] study the effect of communication
environments on the level of knowledge concerning
group, or coalition, formation in a distributed system.
The motivation is the potential for improved perfor
mance of a group of agents depending on their ability
to utilize shared resources. In this particular model
the agents make randomized decisions regarding with
whom to coordinate, and the payoffs are evaluated
in different basic structures and amounts of commu
nication (e.g., broadcast, master-slave, etc.). Their
work has in turn been influenced by work on com
putational ecologies [9] and game theory studies [14].
In contrast, ours is a search problem with the goal
of minimizing the communication cost of achieving a
perfect coalition.

SEARCH THEORY. Finally, MS is also some
what related to Search Theory and Optimal Search
(e.g., [10]). Search Theory is generally concerned
with locating an object in a set of n locations, given
a "target distribution," which describes the proba
bility of the object being at the different locations.
In turn, Optimal Search involves computing how re
sources (e.g., search time) can be allocated so as to
maximize the probability of detection. Typically, it
is assumed that the target distribution is known, al
though more recently this assumption has been re
laxed [16]. Besides the multiple agent aspect, the set
ting of MS is more adversarial, as we measure worst
case cost.

