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Multigrid Solution of the Steady Euler Equations 

P.W. Hemker. S.P. Spekreijse 
CW!, Centre for Mathe matics and Computer Science 

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands 

A multigrid (MG) method for the approximation of steady solutions to the full 2-D Euler equations is 
described. The space discretization is obtained by the finite volume technique and Osher's approximate 
Riemann-solver. Symmetric Gauss-Seidel relaxation is applied to solve the nonlinear discrete system of 
equations. A multigrid method, the full approximation scheme, accelerates this iterative process. 

In a few two-dimensional testproblems, (subsonic, transsonic and supersonic) the multigrid iteration is 
applied to an initial estimate that was obtained by means of the FMG-technique (nested iteration). For the 
discretization on the different levels, a fully consistent sequence of nested discretizations is used. The 
prolongations and restrictions selected are in agreement with this consistency. 

It turns out that the total amount of work required to obtain a solution, that is accurate upto truncation 
error, corresponds to a small number of nonlinear Gauss-Seidel iterations. In the case of transsonic flow 
the rate of convergence of the MG-iteration appears independent of N, i.e. the number of cells in the 
discretization. 

1980 Mathematics subject classification: 65N05, 65N30, 76G15. 

1. INTRODUCTION 

The Euler equations for compressible inviscid flow in a two dimensional domain 0, 

qt + fx(q) + g,(q) = 0, 

1 

(1.1) 

form a quasi-linear hyperbolic system of conservation laws. The state of the fluid at a point (x J' )eO 
is given by q (x J') = (p,pu ,pv ,El. The fluxes in the x - (resp. y - ) direction are 

/(q) = (pu,pu 2 + p,puv,u(E +p))T 

and 

g(q) = (pv,pvu,pv 2 + p,v(E +p))r. 

For a perfect gas, p and E are related by the equation of state 

p = (y-1) (E -tp(u2 + v2)). 

With (n hn 2) a pair of direction cosines, the flux in the (n hn 2)- direction is given by n if + n ig. It is 
easily verified that the Euler equations are invariant under rotation of the independent variables. This 
means that, with the change of variables 

~:] [ •1 "'] ~] = -n2 n1 

we obtain 

q', + f x-(q ') + g,,(q') = 0 , 

where 

1 0 0 0 
0 n1 n1 0 

q' = 0 -n2 n1 0 q. 

0 0 0 
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Solutions of (1.l) are not necessarily smooth functions and it makes sense to generalize (l.l) to its 
weak form: 

:r J J q(x,y)dxdy + at,(nJ + nig)ds = 0, 
0' 

(1.2) 

for all ff c n. 

where (n 1'n 2) is the direction of the outward normal along 5!J'. Equation ( 1.2) allows also non­
physical solutions and it can be shown that a physical solution should also satisfy an entropy 
condition [6,14). 

In symbolic form we write (1.1) or (1.2) as 

q, + N(q) = 0. (1.3) 

The steady Euler equations are given by 

N(q) = 0. (1.4) 

Here N :X ~ Y is a nonlinear operator, X C[ L 2({2)]4 is the space of possible fluid states and 
Y = [L 2(!J)]4 is the Banach space of rates of change (of state). 

NOTATION 
0 cR2 the domain of definition for the Euler equations. 
!JiJ a cell in the partitioning of !J. 
anij the boundary of !Ji}. 
Oijk a n~ghbo~g cell of fl.;j, k=N,S,E,W. 
rijk = !Jij n nijk . 

q;j an approximation for the mean state in oij 

q;/ meas (!JiJ) = J q (x J' )dxdy. 

qijk an approximation for the mean state in nijk. 

qh = {qij I niJ en}. 

p 
p 
u,v 
E 
c 
z 

pressure. 
density. 
speed of fluid in x ,y direction. 
total .Jnergy per unit volume. 
= YP IP speed of sound. 
= ln(p p-1) specific entropy. 

ratio of specific heats, y = 1.4. 

2. DISCRETIZATION 

In order to achieve a discretization of a hyperbolic system of conservation laws that has a significant 
meaning even if the meshsize is coarse, it is important to use a fully conservative method which 
discretizes the weak form of the equations. A simple but effective technique is found in the finite 
volume discretization. This technique allows for an irregular partitioning of the domain !J in a 
number of disjunct cells. For ease of notation and implementation, we divide the bounded domain !J 
in quadrilateral cells !J;j, such that the result is topological equivalent with a partitioning in regular 
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squares. In each cell the state of the fluid is represented by qij, the mean value of q (x JI) over fliJ. 
The semi-discrete form of the space-discretized equation is 

d 
meas (nu) dt qi} + ~60;, (n J + n ig )ds = 0, for all nij c Q, (2.1) 

where n J + n ig denotes the normal flux outward QiJ. For the steady equation on our mesh this 
reduces to 

j (nJ + nig)ds = 0, for all i ,j, (2.2) 
k=N,E,S,W r,, 

Here j (n J + n ig )ds denotes the rate of transport of q over the boundary fiJk from cell 0;1 to the 
f;1 

neighbouring cell fl.iJk , i.e. the flux from QiJ to O,iJk multiplied by meas (fiJk ). In the discretization 
this flux n J + nig is approximated by the numerical flux f (qij ,q;Jk ). In a first order discretization 
scheme this numerical flux over f ;Jk depends only on the unknown states qiJ and qiJk. For a given 
choice of the numerical flux, the discrete system for the steady equations (2.2) can formally be written 

(2.3) 

This is the discrete system of nonlinear equations of which the solution is required. The operator 
Nh : Xh ~ Yh is the nonlinear discrete operator, Xh is the (finite dimensional) linear space of mean 
states in cells fliJ, and Yh is the (finite dimensional) linear space representing the rate of netto 
transport into the cells fl.iJ. 

To obtain a good discretization, the selection of a good numerical flux is essential. Such a flux 
should take into account the fact that, depending on the local characteristics, the flux at riJk is -in a 
specific way - depending on qij and q;Jk. E.g. in case of a supersonic flow from Ou to fliJk this flux 
depends only on qiJ. 

One way to determine the numerical flux is to consider the flux computation at riJk as a locally 
one-dimensional problem and to solve the Riemann problem of gasdynamics: compute the flux at 
fiJk> O<t.s;;;to with at t =O the initial conditions q =qiJ in rt,iJ and q =qiJk in QiJk· The use of this 
computed flux as the numerical flux in (2.3) yields the Godunov discretization. A disadvantage is the 
expensive solution of the Riemann problem at each cell boundary. Several less expensive approximate 
Riemann solvers have been proposed. These lead to various well known flux (difference) splitting 
methods [2,8,9, 11, 12, 15, 17, 18]. 

Selecting a numerical flux,we should take care that it should (1) yield shocks which satisfy correct 
jump conditions, (2) find only physically correct shocks, i.e. shocks satisfying an entropy condition, 
and (3) yield nonlinear stability (a monotone nonlinear system (2.3)). 
Further it is an advantage to have a differentiable function f(qiJ•%k) if a Newton-type technique is 
used in the solution process for (2.3). 

A very good numerical flux, that satisfies these desired properties, is generated by Osher's 
approximate Riemann-solver [8,9]. This numerical flux is based on the Riemann-invariants which 
relate different states that are connected by simple waves [14]. The good qualities of this numerical 
flux are often considered to be offset by its relative complexity. However, we found this disadvantage 
improved by the use of a proper set of dependent variables, viz. u ,v ,c and z [3]. 

An additional advantage of the numerical flux computation based on Osher's approximate Riemann 
solver is the fact that the treatment of boundary conditions, i.e. the computation of the boundary 
fluxes, can be done in a way that is completely consistent with the computation of fluxes over interior 
cell walls. For this purpose _!!ie e<J.!!ations are considered quasi-one-dimensional, normal to 8Q, and a 
state qiJB at the boundary 8fl.iJ n 8fl can be calculated,such that %B satisfies the boundary conditions 
and such that qiJB and qiJ are connected by Riemann invariants that correspond to negative (right 
boundary ) or positive (left boundary) eigenvalues [3]. 
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It appears that in the MG-iteration such a consistent treatment of the equation and the boundary 
conditions makes a special relaxation treatment of the boundary superfluous. (A similar effect is seen 
when an elliptic equation together with its boundary conditions is consistently dicretized by the finite 
element method.) 

3. SOLUTION METHODS AND LINEARIZATION 

Globally there are three ways to solve the nonlinear system (2.3). First, one can start from the semi­
discretized form (2.1) and solve the large system of ordinary differential equations 

d 
Dh dt qh + Nh(qh) = 0 (3.1) 

by some explicit time integrator; Dh is a diagonal matrix. In this way the time-dependent behaviour 
of the flow is followed, starting from some initial condition. Integration over a long enough time 
interval may make the solution of (3.1) converge to the solution of (2.3). An advantage is that 
intermediate values of qh allow a physical interpretation. If (2.3) has a non-unique solution, the 
proper choice of an initial condition may select the solution required. Another advantage is that this 
method needs only evaluations of the operator Nh (qh ). If the time-dependent solution is not wanted, 
it is a disadvantage that usually many time-steps are needed to obtain a sufficiently converged final 
solution qh. Stability conditions may prevent the use of large time steps. Multigrid may provide a 
technique to accelerate the convergence of this time stepping [4,13]. 

Secondly, the equation (2.3) may be solved by some implicit time integrator, or -what is closely 
related- the system (2.3) or (3.1) can be solved by some global linearization. Examples are the 
application of a Newton-type method or the use of the SER- (Switched Evolution Relaxation) scheme 
as used by Mulder and Van Leer [7], 

[Dh + 6.t·N~(qh(n))] (qin+I) - qh(n)) = -6.t·Nh(qh<n>). (3.2) 

In these methods large linear systems are to be solved and the construction of the Jacobian matrix 

N~(qh) 

is required. For the solution of the linear system (e.g. in eq. 3.2), several techniques are available. 
Multigrid in its linear form (the Correction Scheme) [1] can be used to accelerate iterative methods for 
the solution of the linear systems. 
In particular Newton's method will give very fast convergence, provided that a sufficiently accurate 
initial estimate is available (and that a singular Jacobian is avoided). If the accurate initial estimate is 
not available, continuation or time-stepping techniques may slacken the solution process as was the 
case with the explicit time integration. 

Finally, the equation (2.3) may be solved directly by means of a non-linear relaxation method. If 
(2.3) sufficiently satisfies stability (monotonicity) conditions, simple relaxation methods may converge. 
Rather than a good global convergence rate, we may expect that local relaxations -such as point 
Gauss-Seidel methods- will be able to smooth the error. Multigrid in its nonlinear form FAS (the 
Full Approximation Scheme) [I] is a proper technique to accelerate the convergence of these 
relaxations. The nonlinear relaxation iteration with FAS seems the most direct way to solve (2.3) and 
it is this approach that we follow in this paper. 
In a local relaxation sweep, for each g,;1 one set of four equations, 

(3.3) 

is solved (approximately). For these four equations no natural ordering exists and -hence- we solve 
these equations simultaneously (collective relaxation). Now only the local linearization, i.e. 
linearizaion of (3.3) with respect to (qh )iJ is needed. 
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Besides the reduced sensitivity for accurate initial estimates [16], it is an additional advantage of 
nonlinear relaxation that the storage requirements are significantly less. Only 4*4-systems are solved 
and no global Jacobian matrix needs to be kept, whereas a global linearization requires 80* N real 
numbers to store the Jacobian; N is the number of cells in the mesh. Probably a global linearization 
only pays off in a final stage of the solution process for (2.3), when Newton's method guarantees 
quadratic convergence. For a further discussion of the choice between Newton-Multigrid or 
Multigrid-Newton see [5]. 

Independent of the type of linearization that is actually used, it is important to see the structure of 
the Jacobian matrix of (2.3). For the finite volume discretization, the global Jacobian matrix is 
assembled in a way that is similar to the assembling process for finite elements. The finite volume 
Jacobian is the sum of small block-2*2 cell wall matrices (for FEM: element matrices). The regular 
structure of the mesh used induces a block-5-diagonal structure in which each block entry itself is a 
4*4 matrix. The Jacobian and the rhs are assembled simultaneously and for each cell wall, r ijk, the 
en tries +-J ( qiJ ,qijk ), 

+AiJt = + _aa f(qiJ•qiJk) and +A;Jk = +-a a j(qiJ,qiJk) 
qi} qijk 

are evaluated and added as a contribution to the rhs or the Jacobian matrix respectively (see figure 1). 
The fact that all column sums are zero, except for boundary contributions, reflects that the 
discretization is conservative. 
A row from the Jacobian, corresponding to the cell QiJ , is now seen to be of the form 

-A - I +A+ I 
iJ-2 i,J+2 

-A+ I 
' iJ-2 

+A- I 
' i,J+2 

,+A.-+1. 
I 2.) 

(3.4) 

This structure of the Jacobian matrix is to be exploited when relaxation methods for the system are 
analyzed. 

a) b) 

Figure L Assembling the rhs and the Jacobian of the nonlinear system. 

p 
p 

q 

q 

(3.5) 
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where A;jE = AiJ+f· 

The boun~ary condition treatment is straightforward as soon as we take the view that for each 
fijB =80 n Oij we can determine a qijB as is introduced in section 2. This boundary state depends 
on the state in the neighbouring cell: q;jB =qij8 (%)· Hence, we have for the contribution from f;jB 
to (2.3) 

and 

a a a 
aq . .f ijB = -a -f(qijB•qij) + -a-f(qijB•qij). 

11 qij qijB 

a 
-0 -qijB(q;j) 

q;j 

oq··B 
A - + A· 7 ·..:.:!!E. = ijB IJB Clq·· · 

I) 

This completes the description of the linearization of (2.3). 

(3.6) 

The local linearization of (3.3) gives a coefficient matrix as appears in the main diagonal of (3.4). 
For cells near 80 these systems are augmented by boundary terms as given in (3.6). 

4. THE NESTED SEQUENCE OF DISCRETIZATIONS 

For the P-variant of Osher's scheme [3], when the flow field is sufficiently smooth (no shocks present), 
for any qh defined on the grid Oh = {Oij }, piecewise constant states q;jk can be defined at the cell 
boundaries f;jk> such that f(q;jk)=f(q;j,qijk) or, at the boundary of 0, q;jk=q;jB· Under these 
assumptions the finite volume method can be seen as a formal weighted residual method for the 
discretization of N(q)=O. · 

We can write the discrete operator N11 as a Galerkin approximation to N, 

N,.(qh) = R11 N(P11 q11 ), 

where P11 : x,. ~x relates to each q11 a function P,. q11 on 0, for which 

{
ph qn (s) = q;j for s eOij 

P11 q11 (s) = q;jk for s efij ' 

(4.1) 

where q;jk is such thatf(q;jk)=f(q;j,qijk)· I.e. piecewise constant functions with upwind continuity at 
the boundaries for characteristic information. 
The restriction R11 : Y ~ Y11 is defined by 

(R11 r)ij = J r(x ,y)dxdy , 

so that, formally, 

(RhN(q));j = f fx(q) + gy(q)dxdy 
O;j 

= ~IID., nif(q) + nig(q)ds 

= "£. J (n if + nig)q ds 
kr," 

and 

(R,.N(P,.qh));j = ~ f (nif + niq)(Phqh)ds 
kr,jk 

(4.2) 



= ~ J (nif + n2q)(q;jdds 
krij. 

= ~meas (fiJdf(qiJ,qiJd. 
k 
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Now, a regular sequence of nested discretizations is found in the following way. Start with a 
partitioning of Q in cells {~iJ IO<i :s;;;; n 1i1 ,O<j :s;;;; nti }. This yields the finest level of discretization 
(level I). For each k =I ,I - 1,1 - 2, ... , 1, a coarser level of discretization k - l is defined by deleting 
each second meshline, so that each time 4 cells in the finer mesh correspond to a single coarser cell. 
In this way sequences of discrete spaces 
Xh,X2h,X4h, · · ·, and Yh,Y2h,Y 4h, · • ·, are obtained. With a prolongation between the discrete 
solution spaces Ph,2h : X 211 ~xh, defined by "piecewise constant interp£_lation" (distribute a coarse 
cell value q;1 as the same value over 4 finer cells), and a restriction R 2h .h : Yh ~ Y 2h, defined by 
adding the 4 fine cell values to obtain the coarse cell value, we have the relation 

- - -
P 211 = PhPh,2.h and R211 = R2h.hRh . 

In this way we obtain a commutative diagram for the -now nested- set of discretizations Nh,N 2h, etc .. 

Figure 2. The nested set of discretizations. 

x N 

Nh 
xh----· 

Fh,2h t 
I N2h 
X2h----

f2h..t.h r 

y 

yh 

l R2h,h 

Y2h 

1 R4h,2h 

The prolongation and restriction introduced in this way are the natural operators that correspond 
with the physical meanings of X and Y. An qh EXh is associated with the mean states of the fluid in 
the cells {OiJ }, whereas rh E Yh is associated with the netto transport rate of the conservative 
quantities into the cells {Q;J }. 

Figure 3. The first order finite volume prolongation Ph,2h and R 211 ,h restriction. 
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The operators Ph,'1.h and R21t.h are also used in section 5 as grid transfer operators in_ the FAS 
multigrid algorithm. In the case of CS-multigrid ~y can, be used for the efficient construct10~ of the 
coarse grid Jacobian matrices. Then the operator R2h,h Nh(qh)Ph,'1.h can be used instead of N2h(q2h). 
This Galerkin coarse grid Jacobian has the usual (additional) advantage that -after a coarse grid 
correction- the restriction of the residual vanishes and -thus- the residual contains mainly Fourier 
components with high frequencies. 

5. THE MULTIGRID METHOD 
Based on the sequence of discreizations Nh ,N 2h ,N 4h>-·· the Full Approximation Scheme (FAS) 
multigrid algorithm bas been used to accelerate the nonlinear point Gauss Seidel relaxation. 

One iteration step of the FAS-algorithm for the solution of Nh (qh) = rh is defined as 
1. Execution of p pre-relaxation steps. 
2. Execution of a course grid correction,i.e. 

2a. for some given q2h compute 

'21t = N2h(q2h) + R2.1i.h (rh -Nh(qh)); 

2b. determine by a FAS-iteration steps ij 211 , the approximate solution of 

N2h(q2h) = '2h; 

2c. replace qh by qh + Ph,'1.h (i/2h -q211 ); 
3. execution of q post-relaxation sweeps. 
On the coarsest grid no coarse grid correction is executed. 

Experiments show that a> 1 generally gives no more efficient results than a= 1 (the V-cycle). A 
strategy that usually yields efficient results is p =q =a= 1, where collective synunetric Gauss-Seidel 
was used as a relaxation method. The ordering of the lexicographical Gauss-Seidel relaxation was 
from north-west to south-east -vice versa- in the pre-relaxation, and from north-east to south-west 
-vice versa- during post-relaxation. This stategy was adopted as a standard strategy and it is 
compared with various other variants in section 6. 

Initial estimates are obtained by the Full Multi Grid (FMG) technique. For k =0,1,2 .. / -1 the 
initial approximation on level k + 1 is obtained by 
1. Application of a single FAS-cycle to the solution on level k , and 
2. Interpolation of the approximate solution on level k to level k + 1. 
For this interpolation not the prolongation Ph,2h is used. The piecewise constant prolongation is not 
sufficiently accurate to interpolate the -first order accurate- coarse grid solution to the finer mesh. For 
the interpolation operator, a bilinear blockwise interpolation is used: the bilinear interpolation of the 
solution found on a coarse 2*2 block of cells OiJ is transfered to a 4*4 block of cells on the finer grid. 

6. NUMERICAL RESULTS 

To show some properties of our method, we computed flows through a channel with a circular bump. 
As a first test, a standard testproblem [10) was chosen. This problem concerns a transsonic flow. 
Further tests were made by variation of parameters, such that the flow became supersonic or 
subsonic. Tests were made both on adapted grids as described in [10) and on non-adapted regular 
square grids. In this paper, concerned with the convergence of the method rather than with the 
representation of the solution, we restrict ourselves to regular grids. For tests on the adapted grids the 
reader is refered to [3]. 

In a sense, the tests on a regular grid are harder because it is less clear that the coarse grid 
discretizations have a significant meaning for the problems on the finer grids. In particular, on the 
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coarsest level the meshsize was so large that the discretization cannot recognize the circular bump(!). 
The problem desription is given in figure 4. 

2.0 

Figure 4 The testproblems 

On the northern wall v = 0 is specified, on the southern wall the ratio v / u is specified in such a 
way that it is in agreement with the direction of the wall (dependent on x ). At the inflow boundary 
u ,v ,z are specified. For supersonic flow on this boundary also c is given. For transonic or subsonic 
flow the pressure p is given at the outflow boundary. The thickness of the bump is d =0.042. 

The coarsest grid is a 4*2 grid, as indicated in figure 4. Finer grids were obtained by regular 
subdivision of the coarse cells. The boundary condition at the bump was satisfied at the mid-cell-wall. 
As a consequence, on the coarsest grid the. boundary condition used for the southern wall is v / u = 0. 
Hence, on the coarsest grid a uniform flow is the solution of the discrete problem! 

In the figures 5 to 12 we show the convergence histories of the FAS iteration for the following 
testproblems. 

Problem 1 Supersonic flow: u =3.0, v =0.0, c = 1.0, z = -yln(y) 
Problem 2 Transsonic flow: u =0.85, v =0.0, z =ln(py-r), p = 1.05. 
Problem 3 Subsonic flow: u =0.3, v =0.0, z =ln(py-r), p = 1.05. 

In the figures the norm of the residual, JIN(qh)ll, is plotted against the iteration number. The norm 
used is the maximum of the four L 1-norms of the components in the residual. The numbers 2,3,4 or 5 
in the figures denote the number of levels used. 

The P-variant of Osher's approximate Riemann solver [3] was used for the discretization. The three 
problems have been run for the (standard) strategy, as described in section 5. Further experiments 
have run with Red-Black Gauss-Seidel relaxation. Other experiments have run with the W-cycle 
instead of the V-cycle. 

From the experiments we conclude that for the supersonic and transsonic flow the rate of 
convergence of FAS is -in practice- independent of the meshwidth. Convergence is slower and 
dependent of the meshwith for small Machnumbers. Red-black Gauss Seidel relaxation is slower than 
Symmetric Gauss Seidel relaxation, but for vector architectures it may still be competitive. 

If boundary conditions are over-specified, i.e. if complete states of flow are specified at the inflow 
and outflow boundaries (and, hence, the upwind scheme may select the best defined boundary 
conditions), the problem -being better posed- converges faster, as long as the number of meshpoints is 
small enough. · 

Experiments for which no figures are given, show that W-cycles give almost the same convergence 
behaviour as V-cycles. Bilinear prolongatibns in FAS give almost the same convergence behaviour as 
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piecewise constant prolongations. Also, when the 0-variant of Osher's scheme was used [3], no 
significant differences were observed. 

7. CONCLUSION 
An efficient multigrid method for the solution of the steady Euler equations could be developed. The 
backbone of the method is a nested sequence of Galerkin discretizations, which is constructed by the 
finite volume technique. To obtain a stable discretization and a good representation of the solution 
(sharp captured shocks, no sonic glitches, etc.) and to find a boundary condition treatment that is 
consistent with the interior discretization, the use of an powerful numerical flux is essential. Such a 
numerical flux was found in Osher's approximate Riemann-solver. 

When the FMG-technique is used for the computation of initial estimates, it appears that a few 
FAS cycles are often enough to obtain a solution of the discrete system that is accurate upto 
truncation error. 

Numerical experiments show that in several transsonic testcases the rate of convergence of the FAS 
iteration is independent of the gridsize. For a subsonic testcase, M =0.3, this could not be observed. 
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