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Multiple Grid and Osher's Scheme 

for the Efficient Solution of the Steady 

Euler Equations 

PW. Hemker, S.P. Spekreijse 
Centre for Mathematics and Computer Science, Amsterdam 

An iterative method is developed for the solution of the steady Euler equations for inviscid flow. The system 
of hyperbolic conservation laws is discretized by a finite volume Osher-discretization. The iterative method 
is a multiple grid (FAS) iteration with symmetric Gauss-Seidel (SGS) as a.relaxation method. Initial estimates 
are obtained by full multigrid (FMG). In the pointwise relaxation the equations are kept in block-coupled 
form and local linearization of the equations and the boundary conditions is considered. The efficient 
formulation of Osher's discretization of the 2-D non-isentropic steady Euler equations and its linearization is 
presented. The efficiency of FAS-SGS iteration is shown for a transsonic model problem. It appears that the 
rate of convergence is independent of the gridsize and that for all meshsizes the discrete system is solved 
up to truncation error accuracy in only a few (2 or 3) iteration cycles. 

1980 Mathematics Subject Classification: 65N05, 65N30, 76G15, 76H05. 
Key Words & Phrases: steady Euler equations, multigrid methods. 
Note: This report will be submitted for publication elsewhere. 

1. INTRODUCTION 

Recently the multiple grid method has become a well established technique for the acceleration of 
relaxation-iterations to solve the sparse systems that arise from discretization of elliptic partial 
differential equations. The advantage of multigrid over other acceleration techniques is the fact that -
under suitable, but quite general circumstances - the rate of convergence is independent of the size of 
the system to be solved. For other methods the rate slows down rapidly for finer discretizations when 
the systems get larger. This makes the multiple grid method superior to other methods - at least for 
very large elliptic systems. 

With success the multiple grid technique has also been applied for other types of equations, such as 
parabolic partial differential equations and integral equations. 

Based on the pioneering work of A.Brandt it is expected that by the multigrid method, for many 
equations, a sufficiently accurate approximate solution can be computed in an amount of work that is 
equivalent to a small number of evaluations of the (nonlinear) operator [2]. 

Also for the solution of hyperbolic equations such as the time dependent Euler equations, serious 
attempts have been made to use the multiple grid technique for the acceleration of the solution 
process [ 6, 7, 16, 18]. In particular when no accurate representation of the time dependence is required, 
a suitable acceleration may be expected. 
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In this paper we treat some aspects of the solution of the steady Euler equations. We show that for 
a - nontrivial - standard model problem, multiple grid iteration yields again a process of which the 
rate of convergence is independent of the size of the system. The problem treated is the transsonic 
flow of a gas in a channel with a circular bump. No special provisions are made with respect to the 
solution that is to be found. The shock is captured by the discretization. 

We treat the Euler equations for two dimensions. However, all techniques used can be extended in 
a straightforward way to the 3-D Euler equations. 

In the following sections we give the details of the computational method. In section 2 we treat the 
finite volume technique for the conservative discretization of the system of conservation laws, and we 
describe the implementation of the Osher approximate Riemann-solver in some detail. This 
description shows that the implementation of Osher's scheme is not so complex as is generally 
believed, provided that the right dependent variables are used. Two variants of Osher's scheme are 
shown, one being somewhat less expensive than the version originally proposed. 

In section 3 the treatment of the different possible boundary conditions is given. Similarly to what 
is seen for elliptic boundary value problems, it seems essential for a straightforward multigrid 
approach to have a discretization of the boundary conditions which is completely consistent with the 
discretization of the interior of the domain. This might be a reason why Osher's scheme - based on 
Riemann-invariants, just as a proper boundary condition treatment does - combines so well with 
multiple grid. 

In section 4 we give a description of the linearization of the discretization. Here again a good 
choice of dependent variables gives a convenient description and leads to a rather simple 
implementation. The linearization might be used for the solution of the nonlinear discrete system. 
Then the linear multigrid technique may serve the efficient solution of the linear system that arise in a 
Newton-type process. This approach is taken by Mulder and Van Leer [10]. In the present paper we 
use linearization in the nonlinear pointwise relaxation method. In each point the 4X4 nonlinear 
systems are approximately solved by one or more iterations of a Newton-process. 

In section 5 the FAS- and FMG-multigrid techniques are described and in section 6 numerical 
results are shown. In the last section some conclusions are summarized. 

2. FINITE VOLUME OSHER DISCRETIZATION 
FOR THE 2-D STEADY EULER EQUATIONS 

The 2-D Euler equations can be written in conservative vector form as 

a a a at q + ax f(q) + ay g(q) = 0• 

on an open '2CR 2, where 

q = 
p 

pu 
pv 
E 

f 
pu 

pu2+p 
puv 

u (E +p) 
g = 

pv 
pvu 

pv2+p 
v (E +p) 

(2.1) 

(2.2) 

Here p ,u ,v ,p and E are respectively density, velocity components in the x- and y-directions, 
pressure and total energy per unit volume. Furthermore, E may be expressed as 

E = p·(e +t(u2 + v2)), (2.3) 

where the specific internal energy e ,is related to the pressure and density by the perfect gas law 

p = ('y- l)pe, (2.4) 
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with y denoting the ratio of specific heats. 
In (2.2) the state-vector q is given in the conservation variables: mass, momentum and energy per 

unit volume. In some cases the same state is more conveniently described by the variables (p, u, v ,p ) 
or by ( c, u, v , z ), where c = Vyp / p is the local speed of sound and z = ln(p p -r) is a measure for 
the specific entropy. 

To discretize (2. l ), the domain Q is subdivided into disjunct quadrilateral cells n; J, in a regular 
fashion such that 

We restrict ourselves to subdivisions that are topologically equivalent with simple square meshes, such 
that ni,j and ni.j±l or ni±lJ are neighbouring cells. !:urthe!. we denote the neighbours of niJ by 
n;1,k> (k=N,S,E,W) and a common wall by fiJ,k = n;1 nniJ,k· The restriction to this kind of 
regular geometry is not necessary for the discretization method but leads to simple data structures 
when the method is implemented. 

By integration of (2.1) over O; .J we obtain 

:,J/q dxdy + /if·nx +g·ny)ds =O 
Q, 8Q, 

(2.5.a) 

or 

(2.5.b) 

where V;1 is the volume of cell n; ,J and % is the mean value of q over n; J. Further we introduce 
the notation 

j (j·nx + g·ny) ds = fij.k · S;j.k , 
r.,, 

where S;j,k is the length of rij,k and fij,k is the mean flux outward niJ over the side rij,k. Now it is 
easy to see that, if niJ and ni',j' are neighbours with a common side 

rij.k = ri'J'.k' 

then siJ.k = s;'J',k' and fiJ,k = - f;'J',k'· The space discretization of (2.l) is done according to the 
Godunov principle: the state q (t ,x ,y) is approximated by q;1 (t) for all fli; J and the mean fluxes/;; ,k 

are approximated from the states in the adjacent cells. For this purpose, a computed flux 
fiJ .d% ,qiJ .d is introduced to replace f;1 ,k. Thus we obtain the semi-discretization of (2.1): 

a 
V;j af % = - 2: S;j,k f;j,k(%,qij,k), 

k 

and for the steady equations we obtain the discrete system of equations 

Nh(qh) = 0, 

which is short for 

(Nh(qh));J := 2:s;J,k fiJ,k(q;J,qiJ.k) = 0 
k 

for all i ,j. 

(2.6) 

(2.7) 

If the cell nij is adjacent to the boundary of Q,i.e. rij,k c8Q, then a state q;j.k is possibly not 
available. In that case fiJ .k is computed from % and the boundary conditions at f;1 ,k • 

The main difficulty in the discretization of (2.1) is the construction of a proper approximation f iJ ,k 
for a given q;1 and q;j J« A possible approach is to consider the state q (t ,x ,y) at t = t 0 as piecewise 
constant over the cells n;1 and to compute (approximately) the fluxes over the walls as a quasi one­
dimensional problem during a small time (t 0,t 0 + Llt ), by solving the Riemann-problem for 
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gasdynamics [4, 17]. These fluxes are used as f;1 .dq;1 ,q;1 .d. Approximate Riemann-solvers have been 
proposed by Steger-Warming [19], Van Leer [4,20,21], Roe [14,15] and Osher [11,12]. 

The possible irregularity of the mesh is easily dealt with by making use of the invariance of the 
Euler equations under rotation of the coordinate system for the independent variables x and y. Let 
the normal of a skew wall f;;.k• directed from Qi) to Qi;.b be given by (ni.n2) = (COS</>;j,bsin</>;j,k), 
then the simple local rotation 

reduces the computation of f;1 .k to the approximate solution of the one-dimensional Riemann 
problem in the x-direction, i.e. 

(2.8) 

where 

I 0 0 0 

0 n1 ni 0 
T;J.k 0 -n2 n, 0 

0 0 0 

The numerical flux function f will be discussed later in this paper. We see that the geometrical data 
about the mesh, needed to set up equation (2.7) are only the quantities s;J,k and </>ij.k for each cell 
wall. Handling the irregular mesh by this finite volume approach, there is no need to introduce a 
transformation in the equations that are used. They remain simply in their form (2.1 )-(2.2). Further it 
is immediately clear that - in this way - the discrete system is fully conservative, also for the non­
uniform mesh. 

An additional advantage of this finite volume approach is that we can easily set up the residual 
Nh (qh) and its linearization dNh (qh) / dqh by assembling the contributions that are computed for each 
cell wall separately. This assembling procedure is completely analogous to the finite element 
technique, where the construction of the load vector and the stiffness matrix is done by assembling 
the element stiffness matrices. 

In this paper Osher's approximate Riemann-solver is used for the numerical flux f (q0,q 1) in (2.8). 
In the remainder of this section we give a short description of this function. In fact, we distinguish 
two strongly related variants of it, viz. the 0-(original) variant and the P-(physical) variant. The 
advantages of the Osher discretization procedure can be found e.g. in [ 11, 12]. Its main disadvantage 
seems its supposed complexity, when compared with other approximate Riemann solvers. The main 
objective of our exposition is to show that the scheme can be implemented in a simple and 
straightforward way. Further we need this description for further reference and to show (in section 4 ) 
how its linearization is obtained in a convenient way. 

According to Osher, in (2.8) the numerical flux function is defined by 

q, 

f(qo,q1) = 1 {f(qo) + f(qi) - J l/q(w)jdw}, 
qo 

where l/q(w)j is the absolute value of the matrixfq(w), as defined by 

l(q(w)j := R jAjR- 1. 

(2.9) 

Here I A I is the diagonal matrix of the absolute values of the eigenvalues A. of f q (w ). These 
eigenvalues form the diagonal matrix A in the eigenvalue- eigenvector decomposition 

fq(w) = R AR- 1. 
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In (2.9) the integration path is still to be defined, but we know that the matrix has a complete set of 
eigenvalues A.k viz. /\1 = u -c, .\2 = A3 = u, ,\4 = u + c, (where c = Vyp / p is the speed of 
sound) and a set of 3 corresponding eigenspaces R i.R 2.3 and R4 • 

qi 

The integral J l{q(w)I dw is computed along a path q = q(s), O:s;;;s :s;;;I, q(O) = q0, q(l) = q 1• This 
qo 

path is divided into subpaths rk, k = 1,2,3, connecting the states qak-l)/ 3 and qk 13. These 
subpaths r k are constructed such that on f k the direction of the path ~ is tangential to Rm, as 
m = m(k ), an eigenvector. Feasible choices for Rm(k) are given in table l. 

Variant 0 Variant P 

m(k) m(k) 
k=I 4 (R4) I 
k = 2 2,3 (R2,3) 2,3 
k = 3 l (R i) 4 

Table 1. The choice m(k) and (between brackets) the tangential 
eigenspace along rk for Osher-type methods. 

(R1) 
(R2.3) 
(R4) 

The states q 113 and q213 are determined by means of the Riemann invariants 
i¥t<k >(q (s )), I =;i=m, I= 1,2,3,4, which are invariant quantities along r k. These i/it(q ), m = 1,2,3,4 are 

i/;f = ij;j = v' 

ij;~ = iJ;J = z ' 

i¥i = u 

i¥r = i¥r = u, 

i¥l = i/;] = p, 

2 +--c y- I , 

2 - --c 
y-1 ' 

(2.10) 

where c = Vyp / p, z = ln(pp-r). Thus, q 113 and q213 are determined from qo and qi by the 
equations 

iJit<k>(q(k-l)/3) = tt<kl(qk 13), k = 1,2,3, l=l=m(k). 

These are 8 equations for the 8 unknowns in q 113 and q113· 
Expressing the state q in the dependent variables u ,v ,c and z, we obtain directly z 1; 3 = z o, 

Z2/3 = Z1 'Vl/3 =Vo' V2/3 =VJ. 
Introducing a = exp((z 1 - z 0) / (2y)), p 1/3 = p2; 3 leads to 

C2/3 [Z2/3-zl/3] -- = exp 
CJ /3 2y 

= a, (2.11) 

and we arrive at the linear system 

2 2 
u1;3 +-+- --c1;3 = uo +-+- --1 co =: 'l'o, 

y-1 y-
(2.12) 

2 2 
U2/3 --+- -- C2/3 = U1 --+- y- J C1 'l'i. y-1 
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U213 = Ul/3· 

Here, the upper sign stands for the P-variant and the lower sign for the 0-variant of the Osher 
scheme. This convention will be used throughout the remainder of this paper. 

A meaningful solution exists for the P-variant as long as no cavitation occurs ('1'0 >'111); for the 0-
variant the path q0- q 113 - q213 - q1 does not exists in the (unlikely) case of two states q0 and q1 
for which '1'1>'110• (Notice that the meaning of '110, '111 is different for the 0- and the P-variant!). 

This system is easily solved as 

..r=..!.. '{I 0 - '{I I 
Cl/3 = + 2 . 1 +a ' 

C2;3 = a·c1;3, 

'111 + a'l'o 

l+a 

The relevant eigenvalues at the points qk 13. k = 1,2,3, are 

Ao : = Am(l)(qo) = uo- +co , 

A1;3 := Am(l)(q1;3) = U1;3-+c1;3, 

A1;2 := Am(2)(q1;3) = Am(2i{g2;3) = U1;3 = U2/3• 

A213 := Am(3)(q2;3) = U2;3±C213, 

A1 : = Am(3)(q1) = U1±C1. 

(2.13) 

(2.14) 

Because A.1.4 are genuinely nonlinear eigenvalues, A.m<k> is monotonous along rb k = 1,3 and 
A.m<k>'-!J(!_)) changes sign at most once along these rk. E.g. a sonic point qs 1 with Am(l)(q(s 1)) exists on 
f 1 if /.o·A.113 oi;;;; 0. This sonic pcint is computed from the linear system 

+ 2 ,y. 
Us_--1 Cs = TO. 

y-

Similarly, a sonic point qs 2 is found on f 3 if A.2;fA1 E;;; 0. 

(2.15) 

Along the path q(s), 0 E;;; s E;;; 1, Am(k)(q(s)) may change sign only at the points q 113 or q 213 and 
eventually at a sonic point qs 1 or q.2 . 

Thus from (2.9) we obtain 

f(qo,q1) = f (qo) (sign (Ao) + 1) /2 (2.16) 

+ f (qs 1) (sign (X1 ;3) - sign (X'o)) / 2 
- -+ f (q113) (sign (A.1 ;2) - sign (A.113)) / 2 

+ f(q213) (sign (X2;3) - sign (X1;2)) /2 
- -+ f (qsi) (sign (A.1) - sign (A.213)) /2 

+ f (q1) (1 - sign (A.1)) /2 

In most cases many eigenvalues A. will have equal signs and f (q0,q 1) is computed as tge sum of only a 
fe~ f(q) . _Further ~e notice that f (q0,q1) is a continuous function in all A.'s and we see 
_::A.1 13 < +;\1;2 < +A.213. Because of this continuity we may neglect the case of a zero eigenvalue 
A. and we compute the numerical flux as 



j(qo,q1) = if ~>O then/(q0) 

+ if ~·.>..1;3 < 0 then sign (~113)·/(q5 i) 

+ if.>..113·.>..1;2 < 0 then +/(q 113) 

+ if A11 i-.>..213 < 0 then+ j(q213) 

+ if>.:2;3"~1 <Othensign(~1)·/(q5 2) 
+ ifA1 < 0 then/(q 1). 
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(2.17) 

This expression seems rather complex. However, if the ordered sequence >.:o.X:113,>.:112,~213,X1 can be 
split in two parts (possible empty), the first of which contains only negative and the second only 
positive signs, then a q exists such that simply j(q0,q 1)=j(q). We identify this state q as the state 
of the gas at the cell ~all. For physically realistic situations, in the 0-variant this occurs only in the 
supersonic cases (all A's positive or negative). Then the scheme corresponds to a pure upwinding 
scheme. For the P-variant, however, it occurs not only for these supersonic cases, but on a sonic line 
and for subsonic flow as well. If we exclude the unlikely cases that u 1 12 < 0 and u0-c 0 > 0, or 
u 112 > 0 and u 1 + c 1 < 0 , for the P-variant numerical fluxes near a shock are the only ones for 
which f (q0,q 1) is found to be a sum of more (viz. 3) terms f (q) . This makes the P-variant 
attractive from the point of view of efficiency. 

3. BOUNDARY CONDITIONS 

The flux of the conservative variables f;j Jc , at the boundary of the domain '2 is partially determined 
by qij, the state of the flow near the boundary and partially by the boundary conditions. To compute 
the value of these fu Jc we determine first the state q8 = q;j ,k at the boundary 80, depending on q;1 
and on the boundary conditions. Then f (q;1 ,q8 ), as described in section 2, is used to compute the 
boundary flux. 

In order to see what boundary conditions are required at the boundary for a properly posed 
problem, we first consider a time-dependent one-dimensional problem on a half-line 

a a - + -/(q) = 0, t ~ 0, x ;;;.. 0. (3.1) at ax 
In quasi-linear form we write (3.1) as 

(3.2) 

where A (q) = !!J-. 
For the hyperbotlc system (3.2), a complete set of real eigenvalues A(q) and linearly independent 
eigenspaces R ( q) exists and we obtain 

q, + R(q)A(q)R- 1(q) qx = 0. (3.3) 

Assuming the existence of a w ( q) such that 

dw = R-1( ) 
dq q ' 

we find the uncoupled system 

W1 + A(w) Wx = 0. 

(3.4) 

(3.5) 

Clearly, for any component w; for which A; ~ 0, the value w;(t ,0), t ;;;.. 0, is determined by 
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w;(O,x ), x ;;;;. 0. For these components the characteristics leave the domain x > 0 . However, for 
components for which A; > 0, characteristics enter the domain and boundary conditions· are to be 
given; i.e. for each A; > 0 a boundary condition B;(w,t) = 0 is required and the complete set of 
conditions should yield a non-singular dB; / dw1 for all variables w1 for which A.1 > 0. Returning to 
the original dependent variables q, this means that a set boundary conditions B; (q ,t) = 0 is required 
such that 

dB; . -51_ = dB R + ( ) 
dq dw1 dq q (3.6) 

is non-singular. 

R(q) = dq /dw is !he set of right eigenv<ciors of A(q) and { ~ I A1 >0} = R+(q) is the 

rectangular matrix of eigenvectors corresponding to the positive eigenvalues. 
For the discretization of the 2-D problem (2.1) near the boundary, the boundary conditions are 

considered as locally one-dimensional. This is completely consistent with the discretization over 
internal cell walls as treated in section 2. 

To satisfy the boundary conditions in the discrete equations (2.7) we determine qB, the state at the 
boundary, such that it satisfies the boundary conditions and the equality 

f;J.k = f(qo) = f(qg,qiJ)· (3.7) 

In view of (2.9) the second equality implies 

q., q., 

J fq(w)dw = J lfq(w)ldw, (3.8) 
q. 

i.e. q8 should satisfy the boundary conditions and should be connected with q;1 by a path q (s) such 
that 

Am(k)(q(s)) ;;;;> 0. (3.9) 

Such a path can be constructed again as a sum of subpaths along eigenvectors, as described in section 
2 for q;1 and q;1 Jc. Now only the eigenvectors corresponding to the positive eigenvalues can be used 
and the number of subpathes depends on the type of the boundary conditions (i.e. depends on the 
number of ingoing and outgoing characteristics). The endpoints of the rk are computed by means of 
the Riemann invariants (as in section 2) and the boundary data. 

We consider 5 different cases: 
1. Supersonic inflow: All A > 0. 

A full set of 4 boundary conditions is necessary; B (q8) = 0 specifies q8 completely; qB is 
independent of qiJ; f (qo •%) = f (qo ). 

2. Supersonic outflow: All A < 0. 
No boundary condition is to be specified; q8 = q;1 satisfies the relationf(qB,qiJ) = j(q;1 ). 

3. Subsonic inflow: u -c = A.1 < 0, u = A.2,3 > 0, u +c = "4 > 0. 
The integration path follows Ri,3(q) and R 4(q). Here we can distinguish between two possibilities: 

3a. variant (P): q8 is connected to an intermediate state q1 along R 2,3(q) and q1 is connected to q;1 
by R 4(q); or 

3b. an Osher path, (variant 0): q8 and q1 are connected by R 4(q), and q1 and% by R 2,3• 

In both cases the determination of q8 and q1 involves 8 unknowns. Three boundary conditions are 
given and 5 relations of the type (2.10), viz. for I/If, lf!t· I/If, t/J1· I/If , are available. 
In order to satisfy (3.9) no sonic point may appear between q8 and q;1. 

4. Subsonic outflow: A.1 < 0, A.2,3 < 0, "4 > 0. 
The integration path runs along R 4(q) and q;1 and q8 are connected by 



i/.f(%) = i/114(qB), [ = l,2,3. 

The single boundary condition B (q8 ) = 0 and the 3 relations (3.10) determine qB. 

Again, no sonic point may appear between q8 and% . 
5. Solid wall: A.1 < 0, A.2.3 = 0, ~ > 0. 

9 

(3.10) 

Here a qB can be computed as in the case of subsonic outflow, where u = 0 serves as the boundary 
condition. However, this state at the boundary qB is not uniquely determined. Any other state q' 8 

which shares the state variables p (pressure) and u = 0 with q8 satisfies the relation 
f (qB) = f (q 'B) = f (q8 ,q;j) as well. Now there are different boundary states, which -however- all 
infer the same boundary flux, i.e. they all satisfy our requirements. 

EXAMPLE (subsonic inflow ). 
Assume that at a subsonic inflow left-end boundary uB, v8 , z8 are given. In the cell near the boundary 
the state % is given by qiJ = (c;j, u;1, v;j, z;1 l , which should satisfy u;1 > 0, u;1 +ciJ > 0. Then % 
and q8 are related by paths along R2.3(q) and along R 4(q). Let the intersection point of both paths 
be q1 = (c1 , u1 , v1 , z1 ). Two possibilities exists: either% and q1 are connected by R 2,3(q) and q1 

and q8 by R 4(q) (0-variant), or q;1 and q1 are connected by R 4(q) and q1 and q8 by R 2,3(q) (P­
variant). Consider the latter possibility; we have the relations 

2 2 
UJ - y- l CJ = U;j - y- l C;j, 

PI =PB' 

.r.=J.. Thus, we find u1 = uB, v1 = v;1 , z1 = z;1, c1 = c;; - 2 (u;; - us); PB = PI is calculated from c1 

and z1 and finally c8 is obtained from p8 and z8 . 

EXAMPLE (subsonic outflow). 
Assume that at a subsonic outflow left-end boundary the pressure p is given. In the cell near the 
boundary the state % is given by % = ( ciJ, u;;, viJ, z;1 )T, which should satisfy u;1 < 0, uiJ -ciJ < 0. 

Then q;1 and q8 are related by (3.10) yielding v;1 = vB,z;; = zB, u;1 - y.:.l ciJ = uB- y.:.l cB. 

Together with the prescribed p8 this results in 

2 
qB = ( U;;-ri(c;,-cB), V;1, CB, zij), 

where CB = VYPB /PB and PB = [PB e -z,1 ] 
1 h. 

In (3.6) we found for a properly posed problem the requirement of a nonsingular ~B R +(q) for 

the boundary conditions B; (q) = 0. This provides us with a measure for the quality of tlie boundary 
conditions. We can quantify the well-posedness of a set of boundary conditions B(q) = 0 by the sine 
of the angle between the subspaces spanned by R + (q) and (dB / dq )T. E.g. for subsonic outflow the 
sine of the angle between \JB(q) and Riq) determines the quality of the boundary condition. 

4. LINEARIZATION 

Both in the case of a complete linearization of (2.7) and in the case when only local linearization is 
applied in a non-linear relaxation method, we need convenient expressions for dNh (qh) / dqh. From 
(2.7) we obtain 
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= 

= 

a 
s;j.l< -0-- f;1.k<qu•%.k> 

qij,k 

0 

if Olm = n .. k lj, ' 

otherwise. 

Now, in view of (2.8), the computation of dNh(qh) / dqh reduces to evaluations of 

f'<oJ(qo.q1) = -J-f (qo.q1) and f'o>(qo.q1) = -J-f (qo.q1). 
uqo uq1 

A matrix dNh (qh) / dqh can be assembled per cell wall as explained for Nh (qh) in section 2. 

(4.1) 

(4.la) 

(4.lb) 

(4.lc) 

If in (4.1.a) %.k = q8 is a boundary state, then a relation q;J.k = q8 (q;1) exists and the 
corresponding term in ( 4.1.a) is to be read as 

d d 
S;j,k -d fij,dq;j,qij.k) = Sij,k -d fij,k(q;j,qB(q;j)) (4.2) 

q;j % 

= s;1.k d~J { r- 1f(Tqu,Tq8 (qu))} 

= S;j,k y-l/'(O)(Tqij,'Tqs) T + S;j,k r- 1r(l)(Tq;1,Tqs) T ~qq~. 
I) 

Here T denotes TiJ.k as in eq. (2.8). The derivatives dq8 / dq;1 depend on the type of boundary 
condition and are in each case derived from the relations q8 (q;1) as described in section 3. 

We noticed already that the integration paths are easily expressed in the dependent variables u ,v ,c 
and z. The numerical flux and its partial derivatives are also conveniently expressed in these 
variables. The flux-vector f = (pu,pu 2+p,puv,u(E +p)l is found as a function of 
q = (c,u,,v,z )T by noting that 

I 

p = [e-z c2 /y] y-1 ' 

p = pc2 /y, 

pc2 
E = p(u2 +v 2)/2 + ~-­

y(y-1) 

In these variables the Jacobian matrix of the flux 

.!!L = o(pu,pu2+p,puv,u(E +p)) 

reads as 

dq o(c,u,v,z) 

f '(q) = .EL = 
dq 

hpu /c 

hp(u2+c2)/c 
hpuv I c 

hu(E+p+pc2)/c 

(4.3) 

p 0 -hpu /2 
2pu 0 -h(pu2+p) /2 
pv pu -hpuv /2 

pu 2+E+p puv -hu(E+p)/2 



11 

where h :::: 2 / (y-1 ). In terms of this matrix, from (2.17) follows 

~l(l f (qo.lf1) = if~> 0 then f'<qol 
tqo 

(4.4) 

. - - - oq t + 1f h.J'A11 3 < 0 then sign (A1 1 3)j'' (q, 1)-s-
. Clqo 

• ~ ~ I aqJj] + 1f "I .-1·"11 2 <0 then ±f (q 1 ,,)--'. . , . aqo 

- - aq2;3 + if A1 /2'A2/J < 0 then + j'(q213) aq;;. 
The derivatives aq I oqo. q = q,.1, q I/ 3· q2 / 3• are derived from the differentiable relations (2.11 )-(2.15), 
which yield 

Hence 

a 
::c: --az0 • 

2y 

= OUo + - 2- cko, 
y-1 

0'1'1 = 0. 

au1;2 = l:o: [ 3i'o -± y(y~l) Ct/JOZo l · 
ac1 /3 = - + 1; l [ OU1;2 - o'i'o] . 

.r=l 3c213 = ± 2 au1 /2• 

acsl = rl_ [-2-aco+auo]. y+ 1 y-1 

2 +.r=l 0 0 
y+l y+l 

+-2- :c.!_ 0 0 
aqsl y+l y+l 

= 0 0 1 0 aqo 
0 0 0 1 

+ -y-1 0 
_l_, Cz;3 

a+ 1 2(o:+ 1) 2y a+ I 

2 a ±--·-- a 0 -+ I . Cz;3 

aq1 13 y-1 a+l a+ I y(y-1) a+l 

aqo 0 0 0 

0 0 0 

(4.5) 

(4.6.a) 

(4.6.b) 
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±.r.=.!_ 0 
-1 

2 Ty"Ct/3 

+-2- 0 
1 

aq2;3 _ a y-1 -+ y(y-l>°Ct/3 

'dqo a+l 0 0 0 0 (4.6.c) 

0 0 0 0 

With the expressions (4 3),(4.4) and (4.6), the matrix f'<o)(q0,q 1) is readily co~puted; f'(l)(q0,q 1) is 
obtained similarly. For an efficient implementation of (4.4), a splitting of the matrices (4.6) in low 
rank matrices is possible. It appears that _!?oth Jacobian matrices f'<o)(qo,q1) and f'(li(q0,q 1) are 
continuous functions of q0 and q1 as long as A1;2 = u 11 3 = u2;3-=!= 0. 

5. MULTIGRID ITERATION 

Recently several attempts have been made to apply multigrid techniques for the solution of 
stationary and non-stationary Euler equations. Relevant papers are by Ron-Ho Ni [16], Steger [18], 
Jespersen [7,8], Jameson [6], Dick[3], and Mulder [10]. The improvements by multigrid acceleration 
range from moderate to significant. The authors use different discretization methods and different 
methods for the solution of the nonlinear system. The most significant improvement for the solution 
of the stationary equations seems to be obtained by Mulder and Van Leer who use Van Leer's flux 
splitting for the discretization and a "switched evolution- relaxation " (SER) scheme for the solution 
of the non-linear system. The SER-scheme is a hybrid form of time-stepping ( forward Euler ) and 
Newton's method. In each step a linear system is to be solved and it is to this linear solution process 
that multigrid is applied. For this linear multigrid process (the correction scheme, CS, used to 
accelerate linear Gauss-Seidel relaxation) they find a significant acceleration. 

For the advantages and the disadvantages of the use of multigrid to a linearized system or, as an 
alternative, to use non-linear multigrid see Jespersen [8]. In the present paper we consider a non­
linear multigrid method for the solution of the nonlinear system (2. 7) with an -at the moment 
arbitrary but small- right hand side 

Nh(qh) = rh. (5.1) 

We use iteration with the full approximation scheme (FAS), cf [2]. For this we need a sequence of 
discretizations 

N1i.(qh.) 

with h 1 > h2 > · · · > h1 = h. For the meshwidth h; we take h; = 2.h; + 1• For an irregular mesh 
we delete each second meshline to obtain the coarser grid. 

One FAS cycle for the solution of (5.l) consists of the following steps: 
(0) start with an approximate solution qh ; 
(1) improve qh by application of p nonlinear (pre-) relaxation iterations to Nh(qh) = rh; 
(2) compute the residual Nh (qh ); 
(3) find an approximation, q2h, of qh on the next coarser grid ( Either use a restriction 

q2h = R2h.hqh, or use another previously obtained approximation q2h ); 
(4) compute 

r2h = N2h(q2h) + R2h.h (rh - Nh(qh)) ; 



(5) approximate the solution of 

N2h(q2h) = r2h 

by application of a FAS cycles. The result is called q 2h ; 

(6) correct the current solution by 

qh : = qh + Ph,2h (ij2h - q2h); 
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(5.2) 

(7) improve qh by application of q nonlinear (post-) relaxation iterations to Nh(qh) = rh. 

The steps (2)-(6) in this process are called "coarse grid correction". These steps are skipped on the 
coarsest grid h 1• For the solution of the nonlinear system (2.7), FAS iteration is simply applied with 
rh = 0 on the finest grid. By the FAS iteration in (5.2) small right hand sides unequal zero appear on 
the coarser grids. 

In order to complete the description of t!!_e FAS-cycle we need to be explicit about: 
(I) the choice of the operators N 2h, Ph,2h, R2h,h and eventually R2h.h; 
(2) the FAS strategy, i.e. the numbers p, q, a; 
(3) the nonlinear relaxation method. 

For the operators N21r, Ph,2h and R2h.h we make a choice that is consistent with the concept of our 
finite volume discretization. This discretization is essentially a weighted residual method, where the 
solution is approximated by a piecewise constant function (on cells Ou) and where the residual is 
weighted by characteristic functions on all Ou. From this point of view, it i~ natural to use a 
e!_ecewise constant interpolation for Ph,2h and to use addition over subcells for R21r,h. Notice that 
R2h.h = Pl,2h· With these choices it is clear that 

(5.3) 

i.e. the coarse grid finite volume discretization is a formal Galerkin approximation of the fine grid 
finite volume discretization. Using (5.3) on all different levels we obtain a nested sequence of 
discretizations, i.e. the following scheme (fig.5.1) of operators and spaces is commutative. 

Figure 5.1. The nested sequence of discretizations. 

x N 

xh 

Fh,2h f 
X2h----. 

Pih.4h l . . 

y 

! Rh 

yh 

! R2h,h 

Y2h 

1 R4h,2h 

The effect of the Galerkin approximation N2h = R2h.h Nh Ph).h on the approximate solution iih 
obtained after a coarse grid correction is the following. If we take q2h = R2h.h qh in step (3) of the 
algorithm, with R21r,1i such that R21r.h Ph,2h = I 1JI is the identity operator on X21r, and if (5.2) is 
solved exactly, then 
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R2h.h [ rh - Nh Ph.2h R2h,h qh] 

= R2h,h [ N11qh - N11 P11.2h Rzh,h qh J, 
or, for the restriction of the residual 

R211,h [ rh - Nh(qh) J 

= iiu..h [ [N,q, - N, P,.u. Ru.; q, l - [N,q, - N, P,.u. Ru.; q, · J ] · 

(5.4) 

In two particular cases the restriction of the residual vanishes for a Galerkin approximation. First, 
q11 E Range(Ph,2h) implies qh E Range(Ph,2h). This means that for any such qh the corrected' solution 
ij11 has a residual for which the restriction vanishes: 

R2h,h [rh - Nh(qh)] = 0. 

Secondly, for a linear operator Nh, (5.4) would imply 

R211,11 Nh(Ih - Ph.2h R211,h )(qh -ijh) 

= R2h,h Nh(fn - Ph,2h R2h,h )Ph.2h · · · = 0. 

In the neighbourhood of a solution, the difference qh - ijh will be small and Nh will approximately 
behave as a linear function: the restriction of its residual will be very small, viz. 0 ( I I qh - ijh I 12 ). 

A small restriction of the residual means that possible large residues over neighbouring cells cancel: 
the residual is rapidly varying. Local relaxation methods should be able to eliminate such residuals 
efficiently. 

Experience with multigrid algorithms in another context makes it plausible that p = q = a = 1 is 
a good choice for a strategy. This is the choice mainly used in our experiments. Other choices with 
small values for p , q and a can be made. What is best depends much on the relaxation used, and 
research can be made seeking the most efficient combination. Up to now, it appears that different 
(p ,q ,a)-strategies are not much different in efficiency. Usually a smaller convergence factor is 
compensated by a corresponding amount of additional work. 

For the relaxation method we have used several alternatives, all being of the collective Gauss-Seidel 
type, where for each cell the 4 variables are recomputed simultaneously. For the solution of these 
nonlinear 4X4 systems, one or more steps of a Newton-iteration are used until the local residual is 
reduced below a specified amount. In almost all cases it appeared most efficient to take this tolerance 
so crude that no more than one iteration step per point is performed. 
The several relaxations used were: 
LEX: GS-relaxation with lexicographical ordering; 
SGS 1: symmetric Gauss-Seidel from NW to SE and vice versa; 
SGS2: the same from NE to SW; 
RB: using a checkerboard ordering of the points. 
In almost all cases the same relaxation was used in both steps (1) and (7) of the algorithm. Another 
good choice was SGS3: to use SGSl for the pre- and SGS2 for the post-relaxation. In [5] we 
compared some of these relaxations in combination with a uniform grid. There also the effect of 
other strategies (p ,q ,o) was considered. 

For the nonlinear multigrid as described above, it is important to start with reasonably good initial 
estimates. Since we do not want to provide sophisticated a priori estimates, we use the full-multigrid 
(FMG) technique to compute this estimate. 

In the FMG-method (or nested iteration) a crude initial estimate - in our case a uniform flow 
satisfying the inlet and outlet boundary conditions - is used. To obtain a first estimate on each finer 
level, first the solution on the next coarser grid is improved by a single FAS cycle and then this 
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improved approximation is interpolated to the finer grid. These steps are repeated on the finer levels 
until the finest level has been reached. 

The interpolation used to obtain the first guess on each level should be of high enough order to 
comply with the accuracy of the discretization. In our case, where the discretization is of first order, 
the zero order prolongation Ph ,2h as used in the Galerkin approximation is not accurate enough, and 
a first order bilinear interpolation is used. 

6. NUMERICAL RESULTS 

In this section, by a few numerical examples, we show that the rate of convergence of the FAS­
iteration is almost independent of the number of points in the mesh. Further, we see that with the 
FMG initial estimates only a few FAS iteration steps are sufficient to reach truncation error accuracy 
in the solution of the nonlinear system. 

The examples used are based on a single physical problem: the computation of a transsonic flow in 
a channel with a circular bump. This is a standard problem, used to compare many different methods 
[ 13]. 

The numerical experiments shown are restricted to the first order discretization as described in 
sections 2 and 3. We see that this discretization gives already a good approximation. Further 
improvement can be obtained by higher order discretization. This, however, will not influence the 
rate of convergence of the FAS iteration, if the higher order is obtained by means of the defect 
correction [1], where only nonlinear systems of the type (5.1) are solved and the second order is 
obtained by the construction of the proper right hand side rh. 

The physical problem is specified in figure 6.1. A non-uniform mesh in the channel is used as 
shown in figure 6.2. 

2.0 

y 

________ t~~~~~-"-' 
I I 
I I 

: N : 

u, v,c, z---+ :---+---W+ E ___,,,__ __ :,--+ p 
inflow I 1 outflow 

I I 

._Q_L.==.!_. s !~x 
~ . i . 

kQ.S>kO.SJ 

Figure 6.1 The model problem: flow in a channel. The height of the circular bump is 0.042; y = 1.4. 

At level I, I= 1,2,3,4,5 the vertices of the quadrangles n;1 in the (x,y)-space correspond to a regular 
square mesh over 5.2u- 1Jx2-2<1- 1J cells on [-2,3]X[0,2] in the (~,.,.,)-space. The (~.T/)- to (xtY)­
mapping is given by 

-0.42 -0.15·exp( -3.75~ - 5.13) 
~.32~ - 0.14 
0.44 +0.11 ·exp( 3.70~ - 7.96) 

-2.0 .;;;;; ~ < -1.37, 
-1.37 .;;;;; ~ .;;;;; 2.15, 
2.15 < ~ .;;;;; 3.0. 
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{ 
y = z 
y = z + 0.084(0.25 - x 2)(2 - z) 

l~I :;;;. o.5, 

l~I < o.s. 
wherez = 0.19(exp(l.22211) - 1.0). 

In this case, where the bump is built in the geometry, both solid boundaries are treated as described 
in section 3. This is in contrast with the approximation as used in [5] for uniform meshes. 

In figure 6.2 both the pressure distribution along the lower and upper surface of the channel and 
the supersonic region in the channel are shown. We see that the shock extends over a single cell. In 
figure 6.3 we show the pressure distribution along the lower wall for various refinements of the mesh. 
In the finer discretization the Zierep expansion appears after the shock. 

For the same problem, in the figures 6.4-6.6 we show the convergence histories for several (p ,q ,11)­
strategies of for several (p ,q ,a)-strategies of the FAS iteration. The norm of the residual is shown after 
each iteration step. The norm used is the largest value of the L 1 - norms of the four components in 
the flux. We see that the rate of convergence is almost independent of the number of levels. For the 
uniform mesh and the standard strategy [ref. 5] the convergence factor is about 0.25 per FAS-cycle 
and for the non-uniform mesh 0.38 per cycle. In all these experiments the P-variant of Osher's 
scheme was used. When the 0-version was used, neither in the solution found, nor in the 
convergence behavior significant differences were observed. 

7. CONCLUSION 

In the previous sections we have seen that with a good sequence of discretizations real multigrid 
efficiency can be obtained for the transsonic steady Euler equations, i.e. the rate of convergence for 
FAS iteration is independent of the number of cells in the mesh. A good sequence of discretizations 
is obtained by the consistent use of the finite volume technique. It induces a completely conservative 
2-D discretization and it prescribes both the prolongations and the restrictions. Moreover, it induces a 
sequence of Galerkin discretizations on all grids. 

Probably the most important ingredient in the finite volume discretization is the choice of a good 
numerical flux function. For this Osher's approximate Riemann-solver, and a slight variant of it, 
could be used. The reason for the excellent performance might be the fact that a completely 
consistent treatment is given to the interior and the boundaries of the domain. Both at the domain 
boundaries and in the interior, the appropriate Riemann invariants are used to transfer information 
over cell boundaries. Further, the numerical flux has smooth derivatives, which avoids problems 
when Newton's method is used in the relaxation. 

By the use of the FMG-(full multigrid) technique, sufficiently accurate initial estimates could be 
obtained (for about the work of 1/3 FAS-cycle) such that two or three FAS iterations (with 
p =q =a= I, SGS3-relaxation) are sufficient to obtain truncation error accuracy. This means that 
these (non-isenthalpic and non-isentropic ) steady Euler problems can be solved by an amount of 
work that is equivalent with about 3X(4 / 3)X2 nonlinear symmetric Gauss-Seidel relaxations sweeps. 
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Figure 6.2. The mesh at level 4 used for discretization of 0. The supersonic region and the 
pressure distribution along the lower and upper surface are shown. 
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convergence factor : 0.38 
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Figure 6.4. The convergence history of the FAS iteration with strategy: p = q = o = 1, and 
SGS3 iteration. 
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Figure 6.5. The convergence history of the FAS iteration with strategy: p = q = l, o = 2, and 
SGS3 iteration. 
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Figure 6.6. The convergence history of the FAS iteration with strategy: p = q = 2, o = l, and 
SGS3 iteration. 


