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Mixed defect correction iteration for the solution of a singular 

perturbation problem*) 

by 

P.W. Hemker 

ABSTRACT 

We describe a discretization method (mixed defect correction) for 

the solution of a two-dimensional elliptic singular perturbation problem. 

The method is an iterative process in which two basic discretization 

schemes are used: one with and one without artificial diffusion. The 

resulting method is stable and yields a 2nd order accurate approximation 

in the smooth parts of the solution, without using any special directional 

bias in the discretization. The method works well also for problems with 

interior or boundary layers. 

KEY WORDS & PHRASES: defect correction, singuZar perturbations, 

convection diffusion equation 

*) This report will be submitted for publication elsewhere 



1 . INTRODUCTION 

In recent years much research has been devoted to the numerical solution 

of Singular Perturbation Problems or what is called in the engineering 

community: the computation of convection dominated flows. The solutions of 

these problems are characterized by large regions where the solution is a 

smooth function of the independent variable and small regions (boundary -

or interior layers) where the solution varies rapidly. 

One of the first observations that are made for all known discretizations 

of these problems is that higher-order accurate schemes are strongly direction 

dependent, i.e. the difference scheme used or the Petrov-Galerkin weighting 

applied depends on the flow-direction in the equation. Symmetric schemes 

(finite differences or the usual Galerkin methods with symmetric weighting 

functions) are either not applicable (unstable) or only 1st order accurate. 

On most feasible discretization grids it will be possible to represent 

properly the smooth parts of the solution but the grids are too coarse to 

fit the solution in the boundary layers. Therefore higher order accuracy 

is justifiably wanted only in the smooth parts. It makes no sense to require 

a high order polynomial approximation to the special layers, it is 

sufficient to locate them properly. 

It is now known that Defect Correction yields the possibility to 

improve the order of accuracy of a stable low-order discretization by 

means of accurate but instable higher order methods [3]. Guided by this 

idea, in this paper we study whether it is possible to use a symmetric 

higher order scheme to improve the 1st order accurate solution obtained 

by a stable direction independent method. The purpose is to obtain a method 

in which no information is used about the flow direction and where still 

a high order of accuracy is obtained in the smooth parts of the solution. 

We shall see that the direct application of the defect correction principle 

does not satisfy our needs, but we can extend the defect correction idea 

and obtain a second order accurate discretization which has no directional 

bias. 

In this paper results are collected that appeared in previous 

preliminary papers by the author on the same subject [6, 7, 8]. 

In the remaining part of this introduction we introduce the model 
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problems that are studied and we briefly show some fundamental problems 

that arise with their numerical solution. In the 2nd section we describe 

the Local Mode Analysis that is used to study the solution methods. In the 

3rd section we show how the direct application of the defect correction 

principle works out for our problems and in the next section the "mixed 

defect correction iteration" is introduced. The solution obtained by this 

method is analyzed in section 5 and in section 6 the convergence of the 

iteration process is studied. In the following section the solution is 

studied in the boundary layer and finally a few numerical examples are 

given. 

As a model problem we study the singular perturbation equation 

( 1. l) + 
Lu - -s ~u +a.Vu= f, 

s 

in a two-dimensional region~- We refer to this equation as the convection­
+ 

diffusion equation; a is the convection vector ands> 0 is the diffusion 
+ 

parameter, which may be small compared to !al. This equation can be 

considered as a model equation for more complex real-life problems such as flows 

described by the Navier-Stokes equation, when the Reynolds number takes 

large values. 

Allthough we study equation (1.1) with constant coefficients, we want 

to find numerical methods that are also applicable for variable:; i.e. 
+ + + + 
a= a(x,y) or a= a(x,y,u). In particular, we are interested in methods 

that are independent of the direction of 1 and independent of whether the 

grid is properly refined in possible boundary or interior layers, when 

sis small. 

As a simplification of the two-dimensional equation we also study 

the one-dimensional case. For this one-dimensional problem, 

( I • 2) Lu - su + 2u = f, 
S XX X 

many numerical methods have already been investigated [9]. However, almost 

none of these methods are suitable for generalization in more dimensions. 

An essential difficulty in the numerical solution of (1.1) with 

0 < s < h, h the mesh-width, is the different type of approximation that is 



required in the smooth part of the solution and in the boundary or 

interior layers. In the smooth part an accurate approximation - possibly 

of high order - is desired, whereas for the boundary layer the proper 

location is most important, with the additional requirement that the 

effect of an (almost) discontinuity does not disturb the solution in the 

smooth parts. 

For large values of s the numerical solution of (l.l) or (1.2) gives 

no particular problems. Discretizations 

( I • 3) L u = f h,s h,s h 

2 are known for which llu -u II = O(h) ash+ 0, e.g. the usual central h,s s 
difference discretization. The errorbound remains valid for small values 

of €! 

II~ - u II <_ C h 2 h < h as - , 
,E: E: E: € 

but C • 00 and h • 0 as s • 0. This means that the error estimate is of no use 
€ E: 

if we apply these discretizations with finite hands • O. In fact, for 

3 

smalls, the usual discretizations may yield quite useless approximations. 

We show this by means of the 1-D model problem 

(I .4) u + 2u = 0, x E [0, 00), u(O) = I, u(00 ) = 0, 
XX X 

Discretizing by central differences 

(1. 5) 

we find 

This is a second order approximation indeed; for jh fixed and(~) • 0 
E: 

lu. (jh) - u (jh) I 
h,E: E: 
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C independent of j, hand h/s. 

However, the solution of the reduced difference equation is 

( 1. 6) uh 0 (jh) = lim u. (jh) = (-l)J. 
' c-+O n, c 

The influence of the boundary condition at x = 0 is significant over the 

whole domain of definition, whereas for the differential equation the 

influence of this boundary condition vanishes in the interior of the domain. 

A we11-known cure against this spurious influence of the boundary 

condition is "upwinding" or "artificial diffusion". In upwinding one­

sided differences are used for the discretization of .the first order term. 

In artificial diffusion, the diffusion constant c is replaced by a larger 

value a= c + O(h). In both cases the spurious influence of the boundary 

layer far into the smooth part of the solution disappears at the expense 

of the fact that these discretizations are only accurate of order O(h). 

In the 1-D case "upwinding" is equivalent with "artificial diffusion" with 

a= c + hlal/2. 

The solution of the upwind discretization of (1.4) 

( I. 7) E ~~uh+ 2~ U. = 0 + - + h 

is 

In contrast with the central difference solution, we see that here the 

influence of the boundary condition vanishes in the interior of the domain 

as c + O; but the discretization is only first order: for jh fixed and 

(E:) + 0 we find 
€ 

I uh (jh) - u (jh) I s C (E:) • 
, E E E 

2 • LOCAL MODE ANALYSIS 

We want to analyze separately the behaviour of the discretization (i) 



in -the smooth parts of the solution, and (ii) in the boundary layers. 

Therefore we use local mode analysis, cf. Brandt [2] and Brandt and Dinar 

[1]. We consider equation (I.I) in two particular model problems: 

(i) the inhomogeneous problem 

(2. I) 

5 

on a regular rectangular discretization of :R2 ; ~ and fh are f..2-functions, 

and 

(ii) the homogeneous problem 

(2.2) = 0 

in a discretization of the half-space, of which the boundary is a grid-line; 

boundary conditions are given on this grid-line and~ is bounded at 

infinity. 

In both cases we consider the discretization of the constant coefficient 

problem on a regular rectangular grid and we decompse the solution in its 

Fourier modes ([5]) 

(2.3) ~(jh) = <A;-)2 I ¾(w)e+iwhjdw, j e 'll2, 

.... ( ) iwhj · th d f f • h 1 · d f -where ~,w =¾we is e mo e o requency win~; t e amp itu e o 

this mode with 

w ET~= {w I w E a: 2 , Rewk E [-Tr/h,-rr/h),k = 1,2} 

is given by 

(2. 4) 

2 
If we consider the problem (2.1), the boundary condition imposes w E lR; 

for (2.2) with n being the half-space, with boundary conditions at x = O, 

we have Im w1 ~ 0, Im w2 = O. 
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The modes being the eigenfuncti~ns of the discrete operator Lh, we can 

define the characteristic form ~(w) corresponding with the discrete 

operator Lh, by 

(2.5) 
~ /\ A 

½i ~,w = ½i (w)1½i,w · 

This characteristic form ~(w) is the analogue of the characteristic 

polynomial or the symbol L(w) of the continuous operator L. 

We now define consistency and stability of the operator Lh for each mode 

w separately. 

DEFINITION. The operator~ is consistent with L of order p for mode w ET~ 

if 

(2.6) l½i(w) - L(w)I ~ C hp for h • O. 

DEFINITION. The stability of Lh for mode w ET~ is the quantity !Lh(w)I. 

DEFINITION. The local stability of ½i, a discretization of L, for 
2 ]R.2 A 

w E Th n , L (w) f, 0 is 

(2. 7) 

DEFINITION. The operator~ is locally stable if 

(2. 8) Vp > o 2 A 

3n > 0 Vw n lR IL (w) 1 > p + 
A A 

!Lh(w)I/IL(w)I > n, 

where n = n(p) is independent of h. 

DEFINITION. The operator Lh , a discretization of L, is asyrrrptotically ,s s 
stable if 

2 ]R.2 A 1Lh (w)I 
Vp > 0 3n > o Vw E Th n lim IL (w)I > p • lim ,s 

s• O s s-+0 1£ Cw) I s 
where n = n(p) 1S independent of h. 

DEFINITION. The operator Lh is s-uniformly stable if (2. 8) holds with ,s 
n = n(p) independent of hands. 

> n, 



To analyze the local behaviour of the discretization (1.5) of our 

one-dimensional problem we find its characteristic form 

(2.9) - . 2 
Lh (w) = -4S (sS - ihC) /h , ,E: 

where S = sin(wh/2) and C = cos(wh/2). 
- 2 Comparing this with the symbol LE:(w) = -sw + 2iw of LE: wefind: 

(I) the discretization (1.5) is consistent of order 2: 

(2) the discretization (1.5) is not asymptotically stable: 

-lim Lh (TI/h) = O, whereas 
E:-+0 ,s 

lim L (TI/h) = 2Tii/h. 
e-+O E: 

We find that ~,TI/his an unstable mode. This mode corresponds to 

= e 
i TIJ0 

= (-l)j, 

cf • eq • ( l • 6) • 

If we consider the discretization with artificial diffusion a, we 

find its characteristic form (2.9) with E: replaced by a> O. This 

discretization is 

(I) consistent of order I if la-sl::::: c1h; viz. 

(2. 10) !Lh (w) - L (w)I ,a s 
2 -::::: c1 la - sl lwl + ILh,/w) 

-
- L (w)I 

€ 

::::: O(l a - e1) + 0(h2) = O(h), 

(2) locally stable, uniform in e, if la - s I ::: c2h; viz. 

7 

I sin(wh/2) I I ~a sin(wh/2) - 2i cos (wh/2) I 2/i . 
= ----- -------------- :::-2- m1n(C2 ,1 

wh/2 sw - 2i TI 

These last two obsecrvations show that we obtain ans-uniformly stable discretizad 

which is of order 1, only if we take a - e = O(h). 
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3. THE DEFECT CORRECTION PRINCIPLE 

For the solution of linear problems~ the defect correction is a general 

technique to approximately solve a "target 11 problem 

(3. I) Lu= f 

by means of an iteration process 

(3. 2) Lu(i+l) = Lu(i) - Lu(i) + f, i = 1,2, ...• 

The operator L, an approximation to L, is selected such that problems 

Lu (i + l) = f. 

~ with fin a neighbourhood off, are easy to solve. If Lis injective and 

the iteration process (3.2) converges to a fixed point~. then~ is clearly 

a solution of (3.1). 
~ 

If two equations Lh~ = fh and ½i~ = fh are both discretizations of a 

problem Lu= f (respectively consistent of order p and q, p ~ q) and if Lh 

satisfies the stability condition 

(3.3) II L~ 1 II < C , uniform in h, 

then it is well known (cf. e.g. [3]) that, if the solution is sufficiently 
(i) 

smooth,~ in the iterative process 

(3.4.a) 

(3.4.b) 

satisfies 

(3.4.c) 

where¾ denotes the restriction of u to the gridpoint values. 
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This· error bound holds without a stability condition (3.3) for the accurate 

operator ½i· 
Direct application of the defect correction principle to the solution 

of our singular perturbation problem suggest the application of (3.4) with 

:h = Lh,s' the 2nd order central difference discretization, and with 

Lh = Lh,a' the artificial diffusion discretization. Then, the correction 

equation (3.4.b) has the simple form 

(3. 5) 

Since Lh is stable and consistent of order 1 and L.. is consistent of 
,a -h,e: 

order 2, we obtain 

(3. 6) 11~1) - ull = O(h) and n~i) - ull = O(h2) for l. > I • 

I h • h • • Ci) · d · · c· · h n t e regions w ere D+u- uh ~s a goo approx1.mat1.on to uxx' 1..e. 1.n t e 

smooth part of the solution) u~1.+l) is a better approximation to u than 

~I). The error bounds (3.6), however, hold in the classical sense: for 

f . d d O 11 / d 1 . I h 1 ' (i) 1.xe e: an h + • For a sma e:: h an a genera 1. > , t e so ut1.on ~ 

is not better than the central difference approximation, but in the first 

few iterands the instability of L.. has only a limited influence. This is 
-h' e: 

shown in the following example. 

For (1.4) we can compute the solutions in the defect correction 

process explicitly. Application of (3 .5) with a. = e: + h yields the solutions 

u~l)(jh) = E: J 
(e:+2h) ' 

u~2)(jh) (-E:-)J[l 'h 2h 
= - .L (2+2h) J' e:+2h 2 • 

u~3)(jh) (-E::-)J[l - . 2h2 
{ 1 - jh2-h(e::+h)}J = e::+2h J (e::+2h) (e:+2h) ' 

The general solution is 
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where p (j,h/e) is am-th degree polynomial in j, depending on the parameter 
m 

h/e. It is easily verified that, fore fixed and h + 0, the solutions are 

2nd order accurate form= 1,2, •••• For small values of e/h, p (j,h/e) 
m 

changes sign m times for j = 0,1,2, .•• , m+I; i.e. in each iteration step 

of (3.5) one more oscillation appears in the numerical solution. The 

influence of the boundary condition at x = 0 vanishes in the interior after 

the first m+l nodal points. Thus, we see that by each step of (3.4) the 

effect of the instability of Lh creeps over one meshpoint further into 
,e 

the numerical solution. Similar effects are found for the process in two 

dimensions. 

The behaviour of the iterands ~i) can also be a~alyzed by local mode 

1 . E f h 1 . f dd" . 1 . . ( 2) ana ys1s •• g. or t e so ut1on a ter one a itiona iteration step,~ , 

we have 

(2) -1 (2) 
Qh u. := Lh (2Lh -Lh ) Lh uh = f. , E: h ,a ,a , E: ,a 

By Fourier analysis, analogous to (2.9), we find 

-4S(aS-ihC) 2 
2 ' h [(2a-e:)S-ihC] 

from which we derive that Qh is locally stable, uniformly for small e:: 
,E: 

IA I~ I lwl min2 (1,a/h) 
Qh,e: n max(l,2a/h) • 

For all modes the operator Qh is consistent of order two: , e: 

IQ -£ I = h,e: h,e I 3 2 I 2 4S (a-e:) = O(h2). 
h {(2a-e)S-ihC} 

(2) 
We find~ to be a 2nd order accurate solution, uniformly in e > 0, for 

the smooth components in the solution. The effect of improved accuracy 

in the smooth part of the solution, for small e, is found in the actual 

computation indeed, see table I. 



. -6 
E = 10 h=l/10 ratio h = 1 /20 ratio h = 1 /40 

II -11 = maxly.-y(x.)l, i = 0, 1 , ••• ,N. 
l. l. 

II y~ 1 )-R.1?11 0.3303 1.98 0. 1665 2.00 0.0831 

lly~Z)_¾yll 0.6213 1.09 0.5714 1.06 0.5384 

lly~3)_¾yll 0. 7770 0.99 0. 7791 1.01 0. 76 77 

II • II = max I y. -y (x.) l , 
l. 1. 

1 = N/2,N/2+1, .•. ,N 

lly~l)_¾yll 0.0698 2.38 0.02931 2.21 0.01326 

11 y~Z) _¾yll 0. 1037 3.83 0.02707 3.94 0.00687 

lly~3)_¾yll 0.0544 4.58 0 .o 1188 4 .18 0.00284 

Table 1. Errors in the numerical solution of Ey 11 + y' = f on (O, 1) by 

application of (3.4)-(3.5). Boundary conditions and fare such that 

1 I 

y(x) = sin(4x) + exp(-xh). Near the boundary at x = 0 the accuracy is only 

0(1). However, on a mesh with meshwidth h, the boundary layer cannot be 

represented anyway. For boundary layer resolution, locally a finer mesh is 

necessary. In the smooth part of the solution we find the order of 

accuracy as predicated by local mode analysis. 

For the two-dimensional problem (I.I) we do not find this E-uniform 

stability for Qh • Hence, with~ «h, it is not possible to find a 2nd 
,E 

order accurate approximation for (1 .1) by application of a single step of 

(3.5). On the other hand, iterative application would result in the unwanted 

solution of the target-problem Lh,E~ = fh. 

In table 2 we show that, indeed, the error estimate (3.4.c) for a single step 

of (3.5), which holds for a fixed E and h + O, does not hold uniformly in 

E, not even in the smooth part of the solution. 
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h = 1/8 ratio h=l/16 ratio h = 1 /32 

e: = I 

ll~I)_¾ull 0.0630 2.5 0.0255 I. 7 0.0149 

11~2)-¾ull 0.0740 3.6 0.0203 4.0 0.00505 

e: = !O 
-6 

l:u (l )_¾ull 0.790 1.4 0.578 I . 5 0.380 

11~2)-¾ull 0.634 1.8 0.360 2. I 0. I 73 

Table 2. The error is max-norm for (3.4), (3.5) with a. = e: + h/2, in the 

smooth part of the solution. The problem: e:~u + u = f on the unit square; 
X 

with the Dirichlet boundary data and the data f such that 
( exp ( -xi e:) - exp ( -1 /E) ) 

u(x,y) = sin(,rx)sin(,ry) + cos(,rx)cos(3'ITy) + (l _ exp(-l/e:)) 

4. THE MIXED DEFECT CORRECTION PROCESS 

In the previous section we considered the Defect Correction Process 

(3.4) in which in each iteration step an improved approximation is obtained 

to a (single) discrete target problem 

Now we consider the possibility of two different target problems 

(p I) 

(P2) 

L.1 1 fl 
n~ = h' 

L2 2 £2 
n~ = h' 

7 



to ·be used in one iteration process, where both (Pl) and (P2) are 

discretizations to the same problem 

(P) Lu= f, L: .X • Y. 

~I ~2 
To this end we introduce approximate inverse operators Gh and Gh to the 

1 2 ~1 ~2 
operators~ and~ respectively (we assume Gh and Gh to be linear), and 

we define the Mixed Defect Correction Process (MDCP) by 

(4.1.a) 
~1 1 I ri+! = u. - Gh (Lhui - fh)' 1. 

(4. 1.b) 
~2 2 2 

ui+l = U. I - Gh C1iu· 1 - fh). 
1. + 2 1. +2 

~I ~2 ~I ~I -1 
If Gh and Gb_ are invertible, we also introduce the notation Lh = (Gh) 

~2 ~2 -1 1 2 and Lh = (Gh) for the approximations to~ and 1i• The convergence of 

(4 .1) is determined by the "amplification operator for the error" 

(4.2) 

By the fact that two different target operators~ and L~ are used, it 
1/2 1 3/2 2 

is clear that the sequence u , u, u , u , ••• generally does not 

converge. However, it is possible that limits 

A 
~= lim u. 

i 4-00 l. 

and B 1· U. = l.ffi U, I, 
h • 1.+2 

1-+o:> 

i = 1,2, ••. , 

A exist. A stationary point~ of (4.1) satisfies 

(4.3) 

In the case that 

(~: y • Y!, ~: 
f! and f~ can be written 

Y • Y~) equation (4.3) is 

(4.4) 

A 
For~ we prove the following theorem. 

1 -1 2 
as fh = Rii_f and fh = 

equivalent with 
~£ 

13 
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THEOREM. Let (Pl) and (P2) be two discretizations of (P) and let restric~ions 
. -1 1 -2 2 

be def-ined by 1\: X + ~, \i: Y + Yh, 1b: Y + Yh. 

(i) Let (Pl) and (P2) be such that f! = ~f, f~ = ~f. 

(ii) Let the local truncation error of (Pl) and (P2) be of order p 1 and 

Pz Pespectively. 

(iii) Let~:~+ Y~, k = 1,2, be stable discretizations of Land let 

~ be consistent with~ of order qk. 

(iv) Let 01\11 s C < I, so tho.t (4.1) converges for aU h and let u! be 

the stationary point of (4.1), 

then 
A * min(pl+q2,p2) 

Hl\i -1\u II s Ch 

. h * -, wi.t u the SObution of (P). 

PROOF. From (iii) it follows that 
~k 2 ~2 q2 

II Gh II s C , k = I , 2 , and II Lh - Lh II s Ch 

for the truncation error T~ = (L~ - R~)u * uniformly in h. From (ii) follows 

that HT:11 = O(hpk). 

From (iv) we know 11¾11 s C < l and hence II (I-1\)-lll s 1/(l-C). 

Now we see from (4.3) 

and hence 

* A ~2 2 ~I I * I ~2 2 * 2 
(I-'\) (1\u -¾) = (I-Gh~)Gh <1n1\u -fh) - Gh (~¾u -fh) = 

~2 ~2 ~1 I ~2 2 
= Gh(~-1n)GhTh - GhTh, 

~1\u*-{11 s II (I-'\)- 1UIIG~ll{ll~-Lhllllc;!YIIT!II 

s C(Chq2 .Chp 1+Chp 2) 

min(pl+q2,p2) 
s Ch Q.E.D. 

B Similarly we find for uh 

* B min(p2+ql,pl) 
111\u -¾II s Ch 



For the singular perturbation problem (1.1) we take 

(4.5) 

1 a) ~ = ½i ,E the central difference (or FEM) discrete operator, 

b) L 2 = i:_1 = L · the artificial diffusion discrete operator, and 
h n h,a. 

~2 
c) Lh = Dh,a := 2 diag(Lh,a.). 

15 

By this choice, (4.la) is a defect correction step towards the 2nd order 

accurate solution of ~,Euh = fh, bymeansof the operator ½i,a• The second 

step (4. Lb) is only a damped Jacobi-relaxation step towards the solution 

of the problem Lh,a.~ = fh. For this choice of operators, the above theorem 

yields, for a fixed E, the error bourids 

(4. 6) II Rhu -u..A II ~ C h and II Rhu -u..B II ~ C hz, 
E h,E E E h,E E 

where u is the exact solution. The defect correction step (4.1.a) generates 
E 

a 2nd order accurate solution and may introduce high-frequency unstable 

components. The damped Jacobi relaxation step (4.1.b) is able to reduce 

the high-frequency errors. 

In this paper we shall mainly be concerned with the convergence of the 

iteration process (4.1)-(4.5) and with the properties of its fixed points, 
A B the "the stationary solutions". These solutions~ and~ can be 

characterized as solutions of linear systems 

(4.7) 

and 

(4.8) [~ + (L~-~)(1i)-IL~]u! 

. I 2 ~2 . ( ) with 11i, ~ and Lh as in 4.5. 

In short, we denote eq. (4.7) as 

(4. 9) 

The method described here is to a large extent similar to the double 

discretization method of Brandt [2]. In that method a multiple grid 

iteration process is used for the solution of (1.1). The relaxation method 
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in ·each MG-cycle is taken with a stable "target" equation, and the course 

grid correction is made by means of a residual that is computed with 

respect to another (accurate) equation. In the double discretization 

method this is applied to all levels of discretization, to obtain 

efficiently an approximation of the continuous equation. There, however, it is 

hard to characterize the solution finally obtained. In our MDCP method we 

use also two target equations, but we restrict the treatment to a single 

level of discretization. We don't specify the way by which the stable 

linear system (4.1.a) is solved and, thus, we can characterize the two 

solutions obtained by (4.7) and (4.8). 

5. LOCAL MODE ANALYSIS OF THE MDCP SOLUTION 

The characteristic forms of the different discretizations of the 

one dimensional model problem (1.2) are, for central differencing, 

upwinding, and the MDCP discretization respectively: 

(5. I) 

(5. 2) 

(5.3) 

.... 
Lh (w) 

,E: 

1- Cw) -h,et. 

.... 
M. (w) 

h,E 

where S = sin(wh/2) and C = cos(wh/2). 

THEOREM. The operator l\,E defined by the MDCP process (4.1)-(4.5) 

applied to the model equation (1,2) is consistent of 2nd order ands­
unifoY'lTlly stable. 

PROOF. See [ 6 J • 

A From this result, obtained by local mode analysis, we expect that 

~ shows 2nd order accuracy in the smooth part of the solution. This is 

found in the actual computation indeed. Results are shown in table 3. 



h= 1/10 ratio h = I/20 ratio h = 1/40 

II • II = maxly. - y(x.) I, i =. 0, 1 , ••• , N 
1 1 

A 
llyh-¾yll 0.208 0.92 0.227 0.97 0.233 

B 
llyh-1\lll 0.565 0.94 0.604 0.98 0.614 

II • 11 = max]y.-y(x.)1, i = N/2,N/2 + 1, ••• ,N 
1 1 

lly!-¾yll 0.02507 3.83 0.00653 3.96 0.001(;i5 

B 
llyh-¾yll 0.05953 3.83 0.01556 3.97 0.00392 

Table 3. Errors in the numerical solution by MDCP; the 
same problem has been solved as for table 1. 

An analysis similar to the one-dimensional case, can be given for the 

two-dimensional model problem (I.I). 

The corresponding difference operator is given by 

(5 .4) a2 [ 
(4+2p)h p 

-p 

2 p] 
0 -p • 

-2 

With p = 0 it corresponds to the central difference discretization; with 
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p = 1 it describes the FEM discretization on a regular triangulation with 

piecewise linear trial- and test-functions. The discretization operator is 

used either with the given diffusion coefficient£ or with this coefficient 

replaced by an artificially enlarged diffusion coefficient a=£+ Ch, where 

C is independent of£ and h. Also for the 2-D equation we define the MDCP 

by (4.1)-(4.5). For the two-dimensional problem (1.1) the characteristic 

form of the discrete operators is 

(5.5) 
.,.,, 

Dh (w) ,a 
-Ba = --, 
h2 

and 



18 

(5. 6) M_ (w) 
n,£ 

where 

iwx 
For£= 0 the continuous operator L is unstable for the modes u = e 

£ w 
with frequencies w = (w 1,w2) that are perpendicular to a= (a 1,a2). _For 

£ = 0 the discrete operator Lh is unstable for the modes uh = e1 wh for 
,£ ,w 

which w satisfies T(w) = 0. In the finite difference discretization (p=O), 

these modes w = (w 1 ,w2) are simply characterized by 

The operator Lh has no unstable modes for£+ 0 and it is consistent (of 
,a 

order one) with L h if and only if la-£ l = 0 (h) as h + 0. The 2nd order 
E:' 

consistency of M and its asymptotic stability are proved similarly to the -11, £ 

one-dimensional case. 

THEOREM. The operator M_ , defined by the process (4.1)-(4.5), applied to -11,£ 
the model equation (I.I) with central difference or finite element 

discretization for L and with artificial diffusion, a= s + Ch, ~s h,s 
consistent of 2nd order and is asymptotically stable. 

PROOF. See [ 7] . 

As for the one-dimensional case we expect from this result 2nd order 

accuracy in the smooth part of the solution. Results for an actual 

computation are shown in table 4. In contrast with the direct defect 

correction method as treated in section 3, we see here that a 2nd order 

accurate solution is obtained also for small£ indeed. 



h = I /8 ratio h= 1/16 ratio h = 1 /32 

s = l 

A 
11~-~ull 0.0693 3.5 0.0201 3.9 0.00516 

B 
lluh-~ull 0.0780 3.6 0.0214 4.0 0.00533 

-6 
E: = IO . 

i 
A 

lluh-¾ull 0.459 3.4 0. 132 4.5 0.0291 

B 
lluh-~ull 0.608 3.8 0. 159 4.7 0.0335 

Table 4. The error is the max-norm for ut and { measured 
in the smooth part of the solution. 
The problem solved is the same as used for table 2. 
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Computing two final solutions~ and u!, we are interested to know 

what the difference between both solutions is. From (4.1)-(4.5) we easily 

derive 

(5.7) = (a-s)Dh-l 6 6 
,a + -

From this formula we see that {- u! is large where a - E: and the 2nd order 

differences of u! are large. Hence, this is the region where the influence 

of the artificial diffusion is significant. From (5.7) we irmnediately 

derive 

from which we conclude (cf. [8]) that for low frequences (where S ~ h) 

0(h2 ) for h + O, 

uniformly for all E:. For the high frequencies (where S:::::I): for fixed Ewe find 
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B A . l\i - l\i = O(h) for h + O 

and for O ~ £ < h with h + 0 

B A ¾ - ¾ = 0(1). 

6. THE CONVERGENCE OF MDCP ITERATION 

In this section we consider the rate of convergence of the process 

(4.1)-(4.5). By local mode analysis we show at what rate the different 

frequencies in the error are damped. The amplification operator for the 

error,¾, is given by (4.2). Its characteristic form is 
A A A 

(a.-e) b.h (w) 
~(w) =---

£h (w) Dh. ,a. ,a 

L. (w)-Dh n,a ,a 

Using this expression for the one-dimensional model problem we find 

(6. l) 

and 

(6. 2) 

~(w) 
(cx-e)SC =----a 

A 

1-¾i Cw) I 

[ SC (c/-h 2) +iha] 
a2S2+h2C2 

With the upwinding amount of artificial viscosity, a= e + h, we derive 
A 

from (6.2) that l¾(w)I ~ !fi, i.e. the process converges with a finite 

rate for all frequencies. Such a simple result is not obtained in the 

two-dimensional case. 

(6. 3) 

For the two-dimensional problem we find 

(a-e) s2 / (~2s2- h r 2) 2+4T2) 
l~(w)I = h a 

2h[ (~S 2) 2 + T~] 
h 

where c2 = c! + C~. It is easy to show that l~(w)I ~ I for all w. However, 

for some frequencies convergence is slow. E.G. for the unstable modes w 

of Lh , for which T(w) = O, we find 
,£ 
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i.e. for smalls, along.T(w) = O, in the·neighbourhood of w = O, convergence 

is slow. If we set a= s + yh, then, considering the limit for s + 0, we 

obtain 

(6.4) 

To understand this expression, we introduce a new coordinate system in the 

frequency space. We define lines with constant y = yS2/T and lines with 

constant t = T/2y. Then 

l~(w) I = 1½ ✓1+(t-(l-yt)y)2. 
l+y 

(6. 5) 

In the neighbourhood of the origin, lines of constant y are approximately 

circles tangent in the origin to the line T(w) = O, the value of y is 

proportional to the radius. Lines of constant tare lines approximately 

parallel to the line a 1w1 + a 2w2 - 0, tis proportional to the distance to 

this line. We see that for small y 

l~(w) I~ yv'J+? = O(y); 

and for large y, i.e. in the neighbourhood oft= 0, 

Thus we see that low frequencies converge fast along the convection 

direction: and that convergence is slow (only!) in the direction 

perpendicular to the convection direction (i.e. for those w with T(w) = 0.) 
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<o 

" hw l 

1T 

T(w) = 0 
1T 

Figure 1. The MDCP convergence rate for the equation -sllu + ux = f; 
discretization by finite differences. 

7. BOUNDARY ANALYSIS OF THE MDCP SOLUTIONS 

In section 5, by Local Mode Analysis for l 2-functions on an unbounded 

domain, we saw that the MDCP discretization is asymptotically stable with 

respect to the ri3ht-hand side fh. To analyze the effects of the boundary 

data, we consider the homogeneous problem (2.2) in a discretization of the 

right half-space (x~O), the boundary x = 0 being a grid-line. Dirichlet 

boundary data are given on this boundary and we consider solutions that 

are bounded at infinity. This situation is again studied by mode analysis. 
2 Now we use complex modes, w = (w 1 ,w2) E a: ; w2 €. 1R is given by the 

boundary data aP.d Lh (w) = 0 is solved for w1 E a:. Those solutions w1 for 

which Im w1 ~ 0 determine the behaviour of the discretization near the 

boundary at x = 0. 

In this way, we first treat the one-dimensional model problem (1.2) 

with a= s + h. For this problem the only possible inhomogeneous boundary 
. h" . 

data are uh(O) = 1. The modes ~,w(jh) = eiw J = AJ for which the 

homogeneous equation (4.9) is satisfied, are determined by 

(7. I) -M (w) = 0. -n,s 



This is a 4th degree polynomial in A. With E = 0 we find for (7. 1) the 

solutions A= I, A= 0, A= 2± Is. From (5.3) it is clear that for all 

e/h > 0, A= I is a solution and no other solutions with !Al = exist. 
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Since all A are continuous functions of e, we have for all E ~ 0 two A's 

with !Al < l and one A with !Al > 1. The two A1 s with IA1 < l determine the 

behaviour of the solution near the boundary at x = O. For small values of 

e/h we find Al = O(e/h) and A2 = 2 - /s + O(e/h). These values show that in the 

numerical boundary layer, for small e/h, the influence of the boundary data 

decreases .with a fixed rate per meshpoint. I.e. the width of the numerical 

boundary layer is only O(h). 

Only Al and A2 determine what modes appear 1.n th~ solution of 

The difference operator at the meshpoint next to the boundary determines 
j j A B what linear combination of Al and A2 forms uh and uh. A more detailed 

computation shows 

u!(jh) = -(2+2/s)f A1 + [ 1 + (2+2/s)f ]A~ + 0 ((:) 2) , 

(7.2) 

u! (jh) = -(1+ 1 /s) A j + cl+ J..rs) A j + 0((~)). 2 2 I 2 2 2 

This describes completely the behaviour of the 1-D numerical boundary 

layer solution. 

We analyze the two-dimensional model problem 1.n a similar way. For 

given boundary data 

we compute the modes 

uh (jh) = ,w 

that satisfy M_ u. = 0 for j 1 > O, and we determine the corresponding -11,s h,w 

To simplify the computation, we restrict ourselves to the finite 

difference star (i.e. p = 0 in eq. (5.4)) and artificial diffusion 
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a= i + h!a 11/2, a 1 / O. First we consider boundary data with w2 = O. For 

E = 0 we determine X from 

(7.3) ~ O(w) = -2a S4 + 2i T[Z+S2]·= O. 
, h2 h 

We find the solutions x0 = O, x1 = I, x2 3 = 3 ± /i2. Next we consider w2 f. 0. 
' 2 

From (7.3) it follows that no real w E [-TI/h,TI/h] , w f- (O,O), exists 

such that~ 0 (w) = O. Hence, except for w2 = O, no X exists with IX!= I. 

' All X's are continuous functions of w2 and for small w2 we know 

a2 4 
x1 = I - i a; w2h + 0((w2h) ). 

Hence IX 11 ~ I and for all w2 E [-TI/h,w/h] there are two X's with !XI < 

and two X's with !XI~ I. The two small X's, considered as functions of 

w2 € [-TI/h,TI/h] describe a curve inside the unit circle in~- The curves 

are closed subsets of¢ and have no point in common with the unit-circle. 

Thus, we see that C = maxw IXw I exists and lXI ~ C <I.Thus we see that 
2 2 

for all w2 the small eigenvalues are separated from I. 

To study the case EI O,weconsider ~,E instead of i\i,o and we see again 

that for bounded e:/h no real w exist for M. (w) = 0 except w = (O,O), which -n 'e: 
yields a single root x1 = I for all e:/h. Since all X's are continuous functions 

of e/h we conclude that for all w2 and all O ~ E/h < C there are two A's with 

IX I ~ I and two X's with 1 X1 .,; c2 < 1. We conclude that, also in the two­

dimensional case for small E/h, the influence of the.boundary data decreases 

with a fixed rate per meshpoint, i.e. the width of the numerical boundary 

layer is O (h) . 

This non-constructive proof for the existence of maxi X (w 2) I < I allows·. 

the possibility of a large !XI < 1, such that the existence may be of little 

practical use. In the numerical examples we see that the numerical boundary 

layer extends only over a few meshlines in the neighbourhood of the boundary 

indeed. 

8 NUMERICAL EXAMPLES 

In this section we show some numerical results obtained for the model 

problem, in the presence of boundary or interior layers. We include also 



25 

an example with variable coefficients. 

8.1 In the first example we show the solution of problem (I.I) with Dirichlet 

boundary conditions on the unit square; E = 10-6 , 1 = (-1 ,0), the function 

f and the boundary data are chosen such that u(x,y) = (Mexp(-x/E)-1)/(M-l) 

with M = exp(l/€). The problem is discretized with the standard FEM with 

piecewise linear functions on a regular triangulation. The mesh was 

chosen with 
A . h uh is s own 

width O(h). 

h = 1/8, 1/16, 1/32. With a.= E+h/2 the numerical solution 

in figure 2. We see that the numerical boundary layer has 

Only a few meshlines near the boundary layer are affected by 

the downstream Dirichlet boundary condition. 

o-"' •·"' •·"' 

h = 1/8 h = 1/16 h = 1/32 

Figure 2. Example 8.1 

8 -6 .2 In the second example we show again solutions of (I.I) with E = 10 , 
+ 
a= (I,O). Dirichlet BCs are given, except at the outflow boundary, where 

natural BCs were used. The rhs and the Dirichlet boundary data were 

chosen such that 
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0 

"' 

-o.s o.o 0.5 1.0 
X - AXIS 

Figure Sa. Example 8.4 with artificial diffusion. 

-o.s 0.0 o.s 
X - AXIS 

Figure Sb. Example 8.4, solution{· 
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with x0 = -0.1 and y0 = 0.5. These data cause a strong parabolic interior 

layer in the solution. (The solution u(x,y) also satisfies the homogeneous 

equation -e:u + u = 0.) In figure 3 we see the numerical solution of 
yy X 

this problem (a) by application of artificial diffusion with a = s + h/2, 

(b) by application of a single defect correction step, (c) the solution 

ut and (d) the difference between { and l\_· We see that the solutions 

u! and u! yield much sharper layers than (a) or (b). Further, we see that 

l\ - { is large where the influence of the singular perturbation is 

significant (see eq. (5.7)). 

8.3 In the 3rd example we show the solution of (1.1) with e: = 10-6 , a= e: + h/2, 

a= (cos(~),sin(~)), ~ = 22½ 0 • Dirichlet BCs are given at the inflow 

boundary; u = 0 or u = with a discontinuity at (0,3/16), so that an 

interior layer is created. At the outflow boundary homogeneous Neumann 

(fig. 4a) or Dirichlet (fig. 4b) boundary data are given. We see that 

also for a skew flow a rather sharp profile is found (cf. [10]). The 

boundary layer at the outflow Dirichlet boundary shows the same 

behaviour as in example 1. Similar behaviour of the solutions is found 

for other angles~ (cf. [8]). 

8.4 In this last example we use a problem with variable coefficients: 

equation (I.I) on a rectangle [-1,+1] x [0,1] withe:= 10-6 , 

a= (y(l-x2),-x(I-y2)). This represents a flow around the point (0,0), 

with inflow boundary -1 :5: x :5: 0, y = 0 and outflow at O < x :5: I, y = O. 

Dirichlet boundary conditions are given at all boundaries except the 

outflow boundary where Neumann boundary conditions were used. At the 

inflow boundary a flow profile is given: u(x,O) = 1 + tanh(l0+20x). 

This results in an interior layer. For the boundary condition at 

(x=l, 0:5:y:5: 1) the data u(x,y) =2(1-x) are used. This yields a contact 

layer near this boundary. All other boundary conditions were taken 

homogeneous. This problem is again discretized by the FEM. In figure 

Sb we show the solution u! and in Sa the solution with artificial 

diffusion (a= e: + h/4). We see that by ~ the profile both of the 

interior layer and of the contact layer are well represented. 
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