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Abstract. In query-intensive database application areas, like
decision support and data mining, systems that use vertical
fragmentation have a significant performance advantage. In
order to support relational or object oriented applications on
top of such a fragmented data model, a flexible yet power-
ful intermediate language is needed. This problem has been
successfully tackled in Monet, a modern extensible database
kernel developed by our group. We focus on the design
choices made in the Monet interpreter language (MIL), its
algebraic query language, and outline how its concept of tac-
tical optimization enhances and simplifies the optimization
of complex queries. Finally, we summarize the experience
gained in Monet by creating a highly efficient implementa-
tion of MIL.
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1 Introduction

With the rapidly increasing demands of query-intensive ap-
plications like data mining and OLAP, we see performance
of all-purpose commercial DBMSs become inadequate [2].
System vendors have addressed this problem by introduc-
ing specialized decision support systems (DSS) [22, 35, 42].
Such systems assume that data access is query-intensive
rather than update-intensive.

Our group developed a new extensible database kernel,
Monet [5], specifically targeted to query-intensive applica-
tions. It uses a fully fragmented data model that consists
of binary tables only, and its query-processing infrastruc-
ture is optimized towards main-memory execution. We have
demonstrated the high performance of Monet on various
benchmarks, including TPC-D [3], OO7 [6], Sequoia [4],
and the DD benchmark [2]. We believe Monet represents sci-
entific state-of-the-art database technology, whose concepts,
techniques and lessons have strong relevance for commercial
products.

? This work was supported by SION grant no. 612-23-431

In this paper, we first outline how its architecture makes
Monet different from other systems and which advantages
this brings in performance, generalness and extensibility. We
then focus on the question what query language framework is
needed in this architecture. Our answers to this question are
embodied in the design of the Monet interpreter language
(MIL). We show how MIL addresses the needs of query-
intensive database applications, and discuss implementation
techniques that allowed us to make Monet highly efficient.

1.1 Query-intensive database architecture

Most relational DBMS products stem from a design line
that originates from the late 1970s, and hence were care-
fully designed and tuned to the application requirements and
hardware characteristics at that time. Technically speaking,
their storage infrastructure remains optimized towards the
needs of OLTP, which requires high performance on large
numbers of small updates. Query-intensive applications like
OLAP and data mining, however, have a distinctly different
access pattern, as they condense large volumes of data into
small, summarized, results.

In order to favor performance on single-row updates
(OLTP), relational systems store their table data on disk
clustered by row. Query-intensive applications, though, typi-
cally examine large percentages of the tuples in the database
and must therefore often perform full table scans. Moreover,
these queries typically use only a small subset of all at-
tributes, which leads to projecting out many of the attributes
of the table scanned. This means that, with row-clustered
storage, only a small percentage of the I/O bandwidth gen-
erated by these table scans is actually useful.

The commercial DSS (sub)systems available deploy var-
ious architectural ideas, to cope with the high I/O load gen-
erated by their applications. We will briefly describe two
such approaches: precalculation and vertical fragmentation.

1.1.1 Approach 1: Precomputation

The number of necessary table scans can be reduced by
computing results from precomputed aggregates or summary
tables.
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One approach in this area is to store precomputed ag-
gregates in amulti-dimensional array[26]. This allows for
easy slice/dice operations between aggregated results. Severe
problems arise when such array structures become sparse due
to data skew, blowing up exponentially the size of these data
structures [16].

The question of what to precompute and how to do this is
often facilitated in practice by working with precooked solu-
tions for standard business problems. In particular, products
often assume a particular topology of the database schema,
like a star or snowflake[22]. In such schemas, there is one
big fact tablethat records “events”, and maintains (hierarchi-
cal) information on the fact table attributes in small tables
around it. One of the techniques used is to store precom-
puted aggregates in the fact table itself in ’phony’ rows that
have NIL (or ALL) values for the aggregated attributes. Mi-
crosoft SQLserver introduced a CUBE operator to SQL that
works this way [15]. Another approach is to storeprecom-
puted viewson frequently used subparts of the schema [9].
The inherent disadvantage of precomputation, however, is
that only those queries that request precomputed data can be
accelerated. Ad-hoc query execution can by definition never
be fully supported with precomputation.

1.1.2 Approach 2: Vertical fragmentation

The idea of vertical fragmentation is to make table scans
cheaper. When a table is decomposed into separate slices
for each column, scan/project operations only need to scan
those slices on which is being projected. This eliminates the
I/O bottleneck from the DBMS on OLAP and data mining
query loads.

Systems that use vertical fragmentation are Sybase IQ
[42] and Compaq’s Infocharger [11], which is inspired by an
early version of Monet. Sybase IQ is especially well known
for its use of various kinds ofbitmap indices. The bitmap
index is a search accelerator that has been around for quite
a while [33], and works especially well for accelerating se-
lection predicates on low-cardinality attributes. Sybase IQ
extends this functionality with a patented high-cardinality
bitmap schema similar to [48], which makes this technology
more widely applicable.

In our view, however, bitmap indices are not the de-
cisive factor that makes Sybase IQ efficient. In a normal
select-project execution strategy, low selectivities – as typi-
cally encountered in OLAP queries – cause the project phase
to degenerate into a full table scan, which renders useless
any search accelerator, no matter how sophisticated. The im-
portant factor that makes it possible for IQ to successfully
employ its indexing structures is in fact vertical fragmen-
tation. IQ automatically creates aprojection indexon each
attribute. These projection indices are simply vertical col-
umn slices, and are used during the project phase. Sybase
IQ is even capable of supplanting scans on a projection in-
dex with a scan on its high-cardinality bitmap index. This
saves additional I/O, since a high-cardinality bitmap can be
seen as a projection index in compressed form.

1.2 Monet

In this section, we will present Monet, a database kernel de-
veloped since 1994 at our institute, targeted at achieving high
performance on query-intensive applications. Additional ob-
jectives were to support multiple logical data models (object-
oriented, relational, object-relational), providing parallelism
on both shared-memory and shared-nothing hardware, and
extensibility to the needs of specific application domains
(GIS, multi-media).

We will give a short rationale of the main architectural
choices made in Monet. More detailed information can be
found in [3, 5].

1.2.1 Binary table model

Monet uses vertical fragmentation to avoid I/O where possi-
ble. It offers a kernel of DBMS primitives on binary tables
(i.e., tables with two columns). This data model was intro-
duced in literature as the Decomposed Storage Model (DSM)
[12]. In the binary table model, the vertical fragmentation of
the data structures is made explicit in the data model. The
advantages of such an approach are:

– it is simple and elegant. Having a fixed table format
both eases many design aspects of the query language
and facilitates (optimization of) its implementation.

– it provides flexibility. Each application, be it an SQL
front-end or a data-mining tool, can map its data on the
binary table model in the way that suits best.

The binary table model has the drawback that queries
must spend extra effort in recombining fragmented data, i.e.
they must do extra joins. For this reason, the DSM has not
been taken seriously by the database research community
for a long time.

This counter-argument lost some of its power due to de-
velopments in modern custom hardware, as investing some
extra memory and CPU processing (for a join) to reduce
I/O can be a good trade-off. More importantly, the extra
joins needed on a vertical fragmented data model are not
mere ’random’ joins. Vertical fragments of the same table
contain identical tuple sequences, and if the join operator
is aware of this, it does not need to spend effort in find-
ing matching tuples at all. For this reason, Monet maintains
fragmentation information aspropertieson each binary ta-
ble, and propagates these across operations. Choosing algo-
rithms is deferred to run time, and is done on the basis of
such properties. Our experimental work with Monet shows,
that by maintaining this extra run-time information, the ad-
ditional join cost of vertical fragmentation can, in fact, be
eliminated [3].

1.2.2 The role of main memory

When vertical fragmentation is successful in avoiding un-
necessary I/O, the balance of query processing cost shifts
from I/O to CPU cycles and memory access time. Past re-
search on main-memory databases [1, 17, 38] has shown that
main-memory execution needs different optimization criteria
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than in I/O-dominant systems. As advances in CPU speed
far outpace advances in DRAM latency, the effect of op-
timal use of the memory caches is becoming ever more
important. Monet is optimized both in its algorithms and
data structures for main-memory access. The effects of our
optimizations were confirmed in experiments with the DD
benchmark on a query load of data-mining requests, where
Monet was measured to be more than a magnitude faster
than a commercial relational DBMS [2], while both systems
were CPU/memory bound.

While Monet is designed to exploit main memory when
abundant, it is not an all-or-nothing main-memory system.
If the database hot set exceeds main memory, the system
relies on operating system (OS) support for managing vir-
tual memory. Access to virtual memory causes page faults,
and in this way I/O does play its role in the system. Rely-
ing on the OS to manage I/O (also called thesingle-level
store approach) has the advantage that algorithms and data
structures can stay targeted to main-memory execution, and
therefore does not compromise performance when the hot
set does fit in memory. On the other hand, the success or
failure of our approach with single-level memory in I/O-
dominant query execution, depends on how well Monet is
able to provide the OS with information to steer its virtual-
memory management. Our experience with virtual-memory
advice on modern operating systems indicates that this in-
deed is feasible [4].

1.3 Overview and contributions

The first contribution of this work is to explore the database
language issues for an algebra on the binary table model.
This is embodied in Sect. 2 by the definition of the MIL.
The second contribution comes from the considerable ex-
perience gained by the implementation of MIL. Section 3
discusses the techniques employed in Monet to make MIL
into a highly efficient target language for the binary table
model. Here, we also contribute the notions of strategical
and tactical optimization, and show how the tactical run-time
optimizations in MIL both simplify the query optimization
process and enhance its quality. Finally, in Sect. 4, we draw
conclusions.

2 The MIL language

Monet was designed to work in a front-end/back-end system
architecture, in order to reach its design goals of extensibility
and support for multiple logical data models. It can be seen
as the back-end that provides a kernel of DBMS facilities to
multiple front-ends (Fig. 1). A relational front-end maps SQL
queries onto Monet requests. An ODMG front-end does the
same for OQL and object access. Other front-ends, targeted
to specific applications such as data mining, may co-exist.

The language with which front- and back-end commu-
nicate, MIL, is crucial in fulfilling the design goals of the
system. All front-end systems built on top of Monet, such as
a relational or object-oriented DBMS, use it to communicate
with the Monet back-end. This does not mean that MIL itself
is an object-oriented or even a relational language; MIL just
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Fig. 1. Front-end/back-end architecture

provides the minimally complete set of primitives, such that
each front-end can adequately map operations on its logical
model to the underlying Monet primitives. Adequately here
means that our objectives for the design of Monet (perfor-
mance and extensibility) should not be compromised.

Figure 2 shows the general structure of MIL. The lan-
guage consists of a number of control structures (the black
area) and extensibility features (the concentric areas), and
has the following characteristics:

– it provides all DBMS services needed by front-ends;
– it uses one simple bulk data type, the binary table;
– its table manipulation operations form a closed algebra

on this binary table model;
– it provides constructs to express various kinds of paral-

lelism;
– it is extensible with new primitives, data types, and as-

sociated search accelerator structures;
– it is a computationally complete procedural language.

In the design of MIL, we applied valuable lessons
learned in previous work on database languages. The idea of
usingquery algebrasas intermediate languages for relational
query execution dates back to [37]. In the context of exten-
sible relational systems, this idea was generalized to allow
modular extensibility using ADT interfaces. The extensibil-
ity interface of MIL was inspired by Gral [21], an early
system that offered extensibility on all relevant levels (data
types, algebra operators and search accelerators). The Fad
[13] language is well known for its consequent functional
operator style. The expressive generalness of this language
proved a hindrance to run Fad programs efficiently on bulk
data and perform parallelization [32]. Its successor language,
Flora, used as an intermediate language in the IDEA [29]
system, solved this problem by focusing a simple kernel of
bulk operators. This decision we also followed in MIL, as
well as the decision in Flora to introduce explicit language
primitives for specifying parallelism.
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2.1 Data model

The MIL data model consists of an extensible set of atomic
values, and one collection type, the BAT (Binary Association
Table). The formal definition of the set of all typesT in
MIL is:

1. t ∈ Af ∪ Av ⇒ t ∈ T .
2. T1, T2 ∈ T ⇒ bat [T1, T2] ∈ T .

The first rule defines atomic data typesA (both of fixed
and variable size), and the latter defines the BAT type. A
BAT value is a multi-set that contains binary tuples, called
Binary UNits (BUNs). The left column of a BAT is called
theheadcolumn, and the right is called thetail column. The
bat[ T1, T2] type is parametrized by the types of its head and
tail columns, and may benested, as those types might again
be BATs.

As a starting point, we have the collection of fixed-
size atomsAf = {bit , chr , sht , int , lng , flt , dbl , oid },
respectively denoting boolean values, single characters,
small, normal and long integers, normal and double floating-
point numbers, and object identifiers. The standard collection
of variable-sized atomsAv = {str } just contains the string
type.

This initial set of atomic types is focused on supporting
standard business applications, but the MIL data model can
be extended with new atomic types. We have implemented
many new atomic types and operations on them. These types
encompass enrichments in the business area (like currency
and temporal types) [3], the GIS domain (points, polylines,
polygons) [4] and multi-media (images, video, audio) [31].

The MIL syntax for values of the standard atomic types
follows that of the C/C++ programming languages. Val-
ues can be cast to another type with conversion functions
type(value) that implicitly exist for each atomic type. Cast-
ing is necessary to distinguish longs from integers and dou-
bles from floats (e.g.,lng(42) , dbl(3.14) ). The bit type
has two values, denotedtrue and false .

Each type has one additional special value, callednil, that
expresses the “don’t know” value. We use thenil as a short-
hand for the niloid , as this value is often used. For nil val-
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Fig. 3. Mapping of relational tables

ues of other types, we use casts (e.g.,bit(nil) , int(nil) ,
dbl(nil) ).

2.1.1 Example data mapping

Suppose a relational schema with tablesOrder andItem ,
where the attributeorder identifies the order to which an
item belongs:

table Order(int id; date day; float discount);
table Item(int order; float price; float tax);

This relational data model can be stored in Monet by
splitting each relational table by column [12]. Each column
becomes a BAT that holds the column values in its tail (right
column). The head (left column) holds an object identifier
(oid ). We use the naming conventiontable-namecolumn-
name for such BATs. The relational tuples can be recon-
structed by taking all tail values of the column BATs with
the sameoid in the head.

This mapping scheme decomposes our ORDER table
into order id , order day andorder discount , and the ITEM
table intoitem order , item price anditem tax . Sometimes
it is possible to use one of the unique columns as the head
column in the BATs (likeid for the Order table) field, but
if not, we use system-generatedoid numbers (see Fig. 3).

2.2 MIL language framework

The basic unit of MIL execution is theoperator. MIL op-
erators receive a number of input values and produce an
output value. All operators can be called likeop( expr1,..

, exprN) , but MIL also allows infix notation( expr1 op expr2)

for binary operators, as well as object-oriented dot-notation
expr1.op( expr2,.., exprN) .

Multiple operators with the same name, but with differ-
ent signaturesmay exist (overloading). An operator signa-
ture consists of the operator name, followed by a comma-
separated list of parameters between parentheses, a colon,



P.A. Boncz, M. L. Kersten: MIL primitives for querying a fragmented world 105

SQL example query
SELECT item.id AS id,

item.price*item.tax AS total
WHERE order.id = item.order AND

order.discount BETWEEN 0.00 AND 0.06
ORDER BY total,id

MIL translation (annotated below)
ORDNIL := select(order discount,"between",0.0,0.06)

a bat[oid,oid] , head column with selected order-oids,nil s in tail
IDS NIL := join(order id.reverse,ORD NIL,"=")

creates abat[oid,oid] with selected order-IDs in head,nil tail
ITM NIL := join(item order,IDS NIL,"=")

creates abat[oid,oid] with selected item-IDs in head,nil tail
UNQITM := mark(ITM NIL,oid(0)).reverse

creates abat[oid,oid] fresh oids in head, selected item-IDs in tail
UNQPRI := join(UNQ ITM,item price,"=")

creates abat[oid,flt] with selected item-IDs and their prices
UNQTAX := join(UNQ ITM,item tax,"=")

creates abat[oid,flt] with selected item-IDs and their taxes
UNQTOT := [*](UNQ PRI,UNQ TAX)

creates abat[oid,flt] with selected item-IDs and totals
table("2,1",UNQ ITM,UNQ TOT)

prints a 2-column table with item IDs and totals, with major
ordering on the second column, and secondary ordering on the first

Fig. 4. A simple SQL query and a MIL translation

and then the return type. Each parameter definition consists
of the parameter type and a parameter name. Operators may
have a variable number of parameters. In the signature, such
parameters are denoted· · ·type-expr· · ·.

Most operators arepolymorphic, which means that their
signature contains (free) type variables, denoted in this doc-
ument with capital single-letter italics.

MIL is a dynamically typed language, so function resolu-
tion is a run-time task. The execution mode of operators is to
first interpret all parameters and materialize their results. If
an operator exists with a signature that matches these actual
parameters, it is invoked (else a run-time error occurs).

MIL is a procedural block-structured language, with
standard control structures like if-then-else, and while-loops.
The BAT iterator, denotedbat-expr@ iterator, provides an-
other way of looping. This cursor-like construct visits ele-
ments (BUNs) from a BAT, and, for each element, executes a
MIL statement. This statement can contain the special vari-
ables $h and $t that represent the head and tail value of
the current element, respectively. The most commonly used
iterator in MIL is the batloop that sequentially visits all
elements of a BAT.

MIL extension modulesintroduce new atomic data types,
operators, search accelerators1 and iterators (Fig. 2). The
core of the language is introduced by the standard mod-
ule collection, which database extenders can augment with
their own. Extension modules are implemented in C/C++.
Alternatively, new operators can be defined at run time in
MIL as scriptedprocedures. This extensibility mechanism
is comparable to extension mechanisms used in relational
systems like [18, 40] and differs from [34] in its choice to
run extension code directly in the DBMS process space, as
performance is a primary concern in Monet.

1 Search accelerators are data structures related to BAT columns that are
maintained under updates by the system. They do not introduce semantics,
but are generally used to accelerate execution of certain operators (e.g., a
hash table accelerates equi-selections and equi-joins).

2.2.1 Atomic value operators

A minimal set of operators like =, /=, <, >,≤,≥ is present
on all atomic types. Each atomic type brings with it an ad-
ditional interface of specific operations.

Numerical types sht,int,flt,dbl andlng have arithmetic
operators (+,−, ∗, /), as well as thebetween(

value, low, high):bit that checks whetherlow ≤ value ≤
high.

Floating point flt anddbl have math operatorscos, sin,

tan , etc.
Strings have a series of (sub)string and matching opera-

tions.
Object identifiers the newoid(int size):oid operator re-

quests a system-wide unique range of freshoid s. The
function returns the start value of this consecutive range.

Booleans thebit type has theand , or , not operators defined
on it.

Note that the convention for all MIL operators is to re-
spect the “don’t know” semantics of thenil value. For ex-
ample, int(nil)+2 and int(nil)>10 evaluate toint(nil)

andbit(nil) , respectively.

2.2.2 BAT algebra

The focus of MIL execution is to enable efficient bulk opera-
tions on mass data stored in BATs. This core functionality is
offered by aBAT algebraof MIL operators. These operators

– have an algebraic definition, as provided below;
– are free of side-effects, which makes the algebra apt as

a language for optimization with rewrite systems;
– form a closed algebra on BATs, so their parameters are

BATs, and the result of each operator is a BAT.

We formally define the semantics of the BAT algebra
operators using tables that describe theoperator signature,
followed by the equivalence symbol≡, and an algebraic
definition that represents the result. We denote BATs as bags
〈 · · · 〉, and – if we know that no double elements will occur
– as sets:{· · ·}. The notation of a BUN is [a, b]. |S| indicates
the size of a bag or set.

Figure 4 provides a flavor of MIL execution in the ex-
ample from Sect. 2.1.1. The depicted sequence of MIL state-
ments retrieves all item-IDs from orders with a certain dis-
count, and the tax paid over them. As Monet never material-
izes N-ary tables, the result of our query is a relational table
that is again decomposed, in the BATsUNQITM andUNQTOT.
Multi-column tables can be printed with thetable(str

orderby, ..BAT[htpe,any]..) operator. It prints the N-ary
table that consists of all tail values that match on in the
multi-join on the head columns of all BAT parameters. The
optionalorderby parameter contains a comma-separated list
of columns to order the result on. In line 6 of Fig. 4, we
use it to print the requested table with item-ids and total tax
paid.

lookup & selections
with operator (∗f )(T, · · ·) : bit ∈ {=, <, >, between, · · ·})

select(bat[H,T ] AB,str f,· · ·pi· · ·):bat[H,oid] ≡
〈 [a,nil] | [a,b] ∈AB ∧ (∗f )(b,· · ·pi· · ·) 〉

find(bat[H,T ] AB, H a):T ≡ b if ∃[a,b] ∈AB, elseT (nil )
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The select operator allows for all kinds of selection
predicates (∗f )(). Equi-select, like inselect(b,"=",42) , is
one example. Line 1 of Fig. 4 shows the use of the range-
select using thebetween(flt,flt):bit operator. Note that
this operator selects on tail, but returns only the head column
of the selected values. The tail column has theoid type,
but is always filled withnil values. As we will see later,
this particular kind ofoid columns actually do not consume
memory resources in the Monet implementation.

relational join
with operator (∗f )(T1, T1, · · ·) : bit ∈{=, <, >, ≥, ≤, · · ·}

join(bat[H1,T1] AB, bat[T1,T2] CD,strf, · · ·pi· · ·):bat[H1,T2]
≡ 〈 [a,d] | [a,b] ∈AB ∧ [c,d] ∈CD∧ (∗f )(b,c,· · ·pi· · ·) 〉

The BAT algebra is closed on the BAT type, so the re-
sult of the join is again a binary table. This is achieved by
projecting out the join columns; the result consists of the
outer columns of the left and right BAT where their inner
columns matched.

In lines 2, 3, 5 and 6 of Fig. 4 we use=(oid,oid):bit

as the function (∗f )() for performing equi-join on the tail
column of the left BAT with the head column of the right
BAT. All kinds of boolean functions on the join column can
be passed as an argument (∗f )().

Much like in the definition of theselect , the operators
in the BAT algebra have fixed semantics on which columns
of their BAT parameters they work, and from which columns
result values are derived. If an operator needs to work on
the opposite column of some BAT, MIL allows to view each
BAT with head and tail column swapped. Thisreverse view
on a BAT is delivered by thereverse operator.

column operators

reverse(bat[H,T ] AB):bat[T,H] ≡ 〈 [b,a] | [a,b] ∈AB 〉
mirror(bat[H,T ] AB):bat[H,H] ≡ 〈 [a,a] | [a,b] ∈AB 〉
mark(bat[H,T ] AB, oid o):bat[H,oid] ≡

{ [a0,o],· · · ,[an,o+n] } if AB =∪n
i=0〈 [ai,bi] 〉

The mirror allows to view a BAT as if it had its head
column superimposed on the tail column, yielding a BAT
with two identical columns.

The mark also introduces a new tail column, but fills it
with an ascending range ofoid s that starts with the second
parameter value. Note thatnil+ x =nil , so passing thenil

value as second parameter will yield a BAT withnil in the
entire tail column. Themark is often used for introducing a
new column of uniqueoid s. As we saw in Sect. 2.1.1, such
unique columns are used in MIL to couple BATs that repre-
sent a decomposed table. This not only goes for persistent
tables, but also for intermediate results of query processing,
as those can be viewed as temporary tables. In line 4 of
Fig. 4, the result of the join from line 2 gets a new unique
column using themark . This unique column is present in all
temporaries of Fig. 4 whose name starts withUNQ.

By careful design of the BAT data structures (see
Sect. 3.3.2), thereverse , mirror and mark actually do not
have to materialize their results, which makes them zero-cost
operators.

aggregates
sum(∅) ≡ T (0), min(∅) ≡ T (nil), max(∅) ≡ T (nil)

count(bat[H,T ] AB):int ≡ |AB|
sum(bat[H,T ] AB):T ≡

∑
[a,b]∈AB

b

max(bat[H,T ] AB):T ≡ b : [a,b] ∈AB∧ 6 ∃y>b, [x,y] ∈AB

min(bat[H,T ] AB):T ≡ b : [a,b] ∈AB∧ 6 ∃y<b, [x,y] ∈AB

The above collection ofaggregatesis by no means com-
plete. Extension modules with new ones can be introduced
easily in MIL.

set operators

unique(bat[H,T ] AB):bat[H,T ] ≡ { [a,b] | [a,b] ∈AB }
diff(bat[H,T ] AB, bat[H,T ] CD):bat[H,T ] ≡

{ [c,d] | [c,d] ∈CD∧ 6 ∃[c,d] ∈AB }
union(bat[H,T ] AB, bat[H,T ] CD):bat[H,T ] ≡

{ [a,b] | [a,b] ∈AB ∨ [a,b] ∈CD }
intersect(bat[H,T ] AB, bat[H,T ] CD):bat[H,T ] ≡

{ [a,b] | [a,b] ∈AB ∧ [a,b] ∈CD }

The classical operations on sets, formed by the BUNs
of a BAT, are displayed above. If only one column of the
parameter BATs is of interest, one should first make the other
column constant (withmark(nil) ) or equal (withmirror ).

Relational group by, or object-oriented nest/unnest re-
quire specific support on the flat binary algebra. Such group-
ings may involve multiple attributes. In MIL, groupings are
materialized in across-tableBAT that holds in the head col-
umn identifiers of all objects of interest, and in the tail a
unique group identifier. Thegroup operators construct such
cross-tables.

groupby operators
encoding with:[idB(x),x]∈B, and: idB(x)= idB(y)⇒x=y

group(bat[oid,T ] AB):bat[oid,oid]≡
{ [a,o] | o=idAB(b) ∧ [a,b] ∈AB }

group(bat[oid,oid]AB, bat[oid,T ] CD) : bat[oid,oid]≡
{ [a,o] | o=idCD([b,d]) ∧ [a,b], [o,b] ∈AB ∧ [a,d] ∈CD }

The unarygroup operation is executed on a first BAT
with an oid head column and creates a new equivalence
group for each different value in the tail column. The result
is formed by a BAT with the same head column as the in-
put, with a group-id in the tail column for each BUN. Each
group-id is chosen from the collection of theoid s from the
head of its group members2. Cross-tables can be refined us-
ing the binarygroup operation that subdivides the groups
into new equivalence subgroups taking into account an ad-
ditional bat[oid,any] .

This re-use of head column values for the group-ids
makes it easy to go back from a group-id to the tail val-
ues the grouping is based on: we know that each group-id
identifies an ’example’ member of the group.

horizontal fragmentation

fragment(bat[H,T ]AB,bat[H,H]CD):bat[H,bat[H,T ]] ≡
{[h,select(AB,”between” ,l,h)]|[l,h] ∈CD}

split(bat[H,T ] AB,int n):bat[H,H] ≡ {[l,h]|l ≤ h∧
∃[l,x],[h,y] ∈AB} ∧ ∀[a,b] ∈AB :∃unique[l, h] : l≤a≤h

The MIL data model supports nested BATs, as produced
by the fragmentationoperatorfragment . This operator per-
forms a range fragmentation of a BAT according to the head

2 The functionidAB(tail) in the definition could, for instance, be im-
plemented as returning the firsthead value from AB that has this tail
value.
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column. The range BAT containing the split boundaries –
that is passed as a second parameter – can be produced with
the split operator. The number of boundariesn is only a
target; the actual number of boundaries returned depends on
the distribution of the values in the head column ofAB.

2.2.3 Operator constructors

The {f}() and [f ]() are special MIL syntax constructs that
implicitly define a new operator for each already defined
operatorf .

multi-join map
with: f (T1,· · · ,Tn) : Tr e.g. =,/=,<,>,+,−,∗,/,and,or,· · ·

[f ](bat[H,T1] AB1,· · ·,bat[H,Tn] ABn):bat[H,Tr ] ≡
〈 [a, f (b1, · · · , bn)] | ∀1≤ i≤n : [a,bi] ∈ABi 〉

The multi-join mapconstructs an operator that does an
implicit equi-join on the head columns of multiple BATs and
executes the operator that was passed between the square
brackets on the result of this join (all matching combinations
of tail values). The result of the multi-join map is again a
BAT, that contains the head value for each match and in the
tail the result of the corresponding operator execution.

The multi-join map of the*(flt,flt):flt operator was
demonstrated in line 6 of Fig. 4. It produces a new BAT with
multiplied item prices and taxes.

Though not shown in the definition, we can also type the
const keyword in front of an actual parameter and pass any
kind of value (not necessarily a BAT) into the map operator.
In this case, that parameter is not taken into the multi-join,
and this value is passed as a constant into all operator execu-
tions. For example,[*](item tax, const 0.07) multiplies
all prices by 0.07. Typingconst is actually not necessary
for non-BAT values; e.g.,[*](item tax, 0.07) will do as
well.

pump
with: f (bat[T, T ]) : R e.g. count,min,max,sum,· · ·

{f}(bat[H,T ] AB, bat[H,I] CD) : bat[H,R] ≡
〈 [a,f (Sa)] | [a,d] ∈CD, Sa =〈[b,b] | [a,b] ∈AB〉 〉

If not one aggregate should be computed over a table, but
multiple over some GROUPBY condition, thepumpoperator
constructor is used on the aggregate (e.g.,sum() becomes
{sum}() ).

The pump constructs a new operator that works on a
set of bags, where each bag is represented by a BAT. On
each such BAT, the operator between accolades, is executed.
More precisely, the return value of the pump is a BAT with
all head values ofCD, and in the tail the result of executing
f () on the BAT that consists of all tail values inAB that
have that head value (possibly an empty BAT). This BAT is
constructed on the fly and contains the same values in both
columns, to accommodate operatorsf () that work on either
head or tail column.

2.2.4 BAT updates

The BAT update operators modify their BAT operands and
are therefore separated from the BAT algebra. We use the
symbol⇒ rather than≡ to describe their semantics.

BAT management
masks∈ {cp normal ,cp enumerate ,cp sort }

create(strh, str t) : bat[H, T ] AB ⇒ AB := ABprev := ∅
info(bat[H, T ] AB) : bat[str,str]⇒

return [property,value] information on this bat
copy(bat[H, T ] AB, int mask) ⇒

CD := CDprev := independent copy ofAB

A newly created BAT is an empty bag. Theinfo operator
produces a meta-BAT that contains various properties (see
Fig. 15) and statistics on a BAT. The reason why thecopy

operator is in the update interface is that copying has no
meaning in an algebra. The copy produced is an identical
set of BUNs, but may have them stored in a different order
in the BAT data structure (cp sort ) or use an enumerated
representation (cp enumerate , see Sect. 3.2.1).

I/O and virtual memory management
modes∈ {malloc ,vm normal ,vm rand ,vm seq }

save(bat[H, T ] AB, str s) : bat[H, T ] ⇒
save to persistent store

load(strs, int mode) : bat[H, T ] ⇒
load or mmap() from persistent store,

remove(strs) ⇒ remove persistent image of a BAT

BATs may be saved to persistent storage, and loaded
from there. When loading to virtual memory, explicit advice
can be given on the access pattern expected. In this way, the
OS virtual-memory management policy can be influenced.

search accelerator management
standard acceleratorsacc ∈ { hash,Ttree}

create(bat[H,T ] AB, str acc, ..Xi..) ⇒
create search accelerator on head ofAB

destroy(bat[H,T ] AB, str acc) ⇒
destroy search accelerator from head ofAB

Search acceleratorsare part of Monet’s extensibility in-
terface. MIL comes standard with the bucket-chainedhash
table structure and the T-tree , both successful main-memory
data structures for value lookup [30].

update management
modes∈ { read, append, update, write}

delete(bat[H,T ] AB, H a, T b) : bat[H,T ] ⇒
AB ∧ AB := AB \ { [a,b] }

insert(bat[H,T ] AB, H a, T b) : bat[H,T ] ⇒
AB ∧ AB := AB ∪ { [a,b] }

update(bat[H,T ] AB,H a, T b,c):bat[H,T ] ⇒
AB.delete([a, b]).insert([a, c])

access(bat[H,T ] AB, int mode) ⇒
change the update access mode of a BAT

In order for updates to be possible, write access has to
be granted. BATs constructed with the BAT algebra oper-
ators have default read-only access, as this permits certain
optimizations in the implementation.

New BAT elements can be inserted and deleted, or val-
ues can be replaced in a straightforward way. Theinsert ,
delete andreplace operators do not have ACID properties
themselves. What they do provide, in combination with the
transaction supportoperators, are the basic primitives for
building a full transaction management. In this way, trans-
action overhead is avoided when full ACID functionality is
not required (e.g., in a bulk load of an otherwise read-only
data warehouse).
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transaction support

flush(bat[H,T ] AB) ⇒ ABprev := AB
alpha(bat[H,T ] AB) : bat[H,T ] ⇒ returns AB \ ABprev

delta(bat[H,T ] AB) : bat[H,T ] ⇒ returns ABprev \ AB
commit(bat[bat,bat]M ):bit ⇒ returns
false: commit failed, nothing changed
true: ∀[A, B]∈M : A:=Aprev :=(A ∪ alpha(B))\delta(B)

In the context of the Monet/ODMG system [6], we built a
transaction-processing system on top of MIL by letting each
transaction work on private copies of the BATs it accesses.
Monet actually usesprivate virtual-memoryOS primitives3

to efficiently copy BATs loaded into virtual memory: only
the modified pages occupy extra memory. Monet records the
changes in a BAT in analpha (inserted BUNs) anddelta

(deleted BUNs) status. At transaction commit we use this
to propagate the changes made in the private copies back
to the master BATs. This is done with ACID properties by
the commit – that receives pairs of (master, modified-copy)
BATs – by first safeguarding all BUNs to be overwritten in
the masters in a roll-back file.

2.2.5 Parallelism

The MIL execution system is multi-threaded, with worker
threads taking MIL jobs from a job queue. Parallel schedul-
ing is hence automatic on multi-processor systems. SMP
parallelism is expressed with explicit MIL constructs.

Similar to the standard sequential blocks{. . .}, MIL
has parallel blocks denoted by{| · · · |}. All statements
in a parallel block are scheduled for independent execu-
tion. A parallel block terminates when all statements in it
have been executed. Another way of expressing parallelism
in MIL is by placing aparallelism degreebetween square
brackets behind the @ character in BAT iterators. For in-
stance:bat-expr@[P]batloop() will processP items from
the BAT in parallel. The multi-threaded nature of Monet
is explicitly present in MIL using the constructsfork and
kill , with which a new thread can be started to execute a
statement asynchronously.

Shared-nothing parallelism is offered in MIL through the
communication interface outlined below:

remote MIL execution

connect(strhost, int port):int ⇒
connect with a remote Monet server

close(intfd) : int ⇒ close connection
export(int fd, str id, T value) ⇒

send a value with a certain ID to a remote site
import(str id):T ⇒ block until a value came in for ID.
mil(int fd, str mil expr) ⇒ asynchronous MIL execution
rpc(int fd, str mil expr, · · ·params· · ·):T ⇒

export params, remote execution, import result

We used these primitives as the building blocks for scal-
able distributed data structures (SDDS), and to experiment
with distributed parallel join strategies [25].

3 In UNIX systems, the this functionality is provided by the
MAPPRIVATE flag of themmap() system call.
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2.3 Object-oriented example

We now use part of the decision support database from the
TPC-D benchmark [43] to illustrate how an object-oriented
data model can be stored and queried in Monet.

2.3.1 Mapping the object model

The object-oriented model supplants the flat relational ta-
bles with a nested type system, in whichObject and Set

form the basic building blocks for database types. Both con-
cepts can be refined using inheritance, and methods can be
defined on them. A standardized object-oriented data model
has been defined by the ODMG [7], together with an object-
oriented equivalent of the SQL query calculus, named OQL.
We rephrase our example schema from Sect. 2.1.1 in an
object-oriented way, as follows:

class Order { class Item {
attribute date day; attribute float price;
attribute float discount; attribute float tax;
relation Set <Item > items; relation Order order

inverse Order.items;
} }

Simple object attributes are mapped just like relational
columns intotable attribute BATs. Relation attributes, i.e.,
those that refer to an object, simply store anoid in the
tail of such a BAT. Relation attributes allow to avoid one
level of indirection present in the relational mapping (i.e.,
we can now directly join orders with items on its “order”
attribute, instead of first having to join on the relational “or-
der.id” attribute). The object-oriented data model also allows
to specify referential consistency usinginverserelationships.

The possibility to nest collection types, however, leads to
one extra BAT in the mapping of a class. This BAT is called
theextent, and holds theoid s of all objects in the collection.
Set-valued attributes are stored intable attribute BATs just
like ordinary attributes, with the difference that eachoid in
the extent can occur zero or more times in the head of this
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OQL query
SELECT year, sum(total)
FROM ( SELECT price * tax AS total,

year(item.order.day) AS year
FROM item
WHERE order.discount BETWEEN 0.00 AND 0.06)

GROUP BY year;
ORDER BY year;

MIL translation ( annotated below)
01 ORDNIL := select(order discount, ”between”,0.0,0.06)

bat[oid,oid] select all orders of interest
02 ORDSEL := ORD NIL.mark(oid(0))

bat[oid,oid] put unique id’s in the tail
03 SEL DAY := join(ORD SEL.reverse,order day,"=")

bat[oid,date] get [id,day] values
04 SEL YEA := [year](SEL DAY)

bat[oid,int] extract [id,year] values
05 GRPSEL := group(SEL YEA).reverse

bat[oid,oid] group on year
06 GRPGRP := unique(GRP SEL.mirror)

bat[oid,oid] all unique grp-ids
07 GRPYEA := join(GRP GRP,SEL YEA,"=")

bat[oid,int] unique grp-ids and years
08 ITM SEL := join(item order,ORD SEL,"=")

bat[oid,oid] [item,id] oid combinations
09 UNQITM := ITM SEL.mark(oid(0)).reverse

bat[oid,oid] renumber tail column
10 SEL UNQ := ITM SEL.reverse.mark(oid(0))

bat[oid,oid] renumber head column
11 UNQPRI := join(UNQ ITM,item price,"=")

bat[oid,flt] get bat[pos,price] values
12 UNQTAX := join(UNQ ITM,item tax,"=")

bat[oid,flt] get bat[pos,tax] values
13 UNQTOT := bat[*](UNQ PRI,UNQ TAX)

bat[oid,flt] compute bat[pos,price*tax]
14 GRPUNQ := join(GRP SEL,SEL UNQ,"=")

bat[oid,oid] substitute sel for grp
15 GRPTOT := join(GRP UNQ,UNQTOT,"=")

bat[oid,flt] substitute pos for grp
16 GRPSUM :={sum}(GRP TOT,GRP GRP)

bat[oid,flt] bat[grp,sum(tot)] results
17 table("1",GRP YEA,GRP SUM)

Fig. 6. OQL query and a MIL translation

BAT (instead of exactly one time). The set-value of such an
attribute is formed by all tail values in this BAT with itsoid

in the head. In this way, nested collections areflattenedinto
flat binary tables. Note that the empty set is encoded by the
absence of anoid (the extent is necessary to detect this).

We represent the extent of a class with abat[oid,oid] ,
of which the head holds theoid s of all objects in the class. Its
tail column can be used to store the identifiers of the objects
in the direct superclass. In top-level classes likeItem and
Order , we could store system-wide object identifiers in the
tail4. Making a difference betweenlocal and system-wide
object identifiers is interesting, as local identifiers need to
be unique only in their (sub)class, and hence might be im-
plemented with a smaller data type. In this example, we
use the same identifiers in both columns. A final note con-
cerns relation attributes that have an inverse relationship,
like Order.items and Item.order . Here, we refrain from
materializing anorder items BAT. Whenever it is used, we
can instead use thereverse view on theitem order BAT.
This way, the problem of keeping both inverses consistent
is implicitly solved by the data structure.

4 Alternatively, one could choose to always store system-wide object
identifiers in the tail of the extent.

2.3.2 Query translation

The example OLAP query in Fig. 6 on our schema asks per-
year totals of tax paid on discounted items. The MIL equiva-
lent of this single-join OQL query contains seven BAT joins.
The join in line 8 actually corresponds with the OQL join be-
tween orders and items, the other six joins are a consequence
of the vertical fragmentation applied in Monet. While this
may seem a waste of effort, we describe in Sect. 3.4 how the
MIL operators keep track of the relatedness of vertical frag-
ments and how they avoid doing unnecessary work when
joining those.

Many optimizing query execution engines on the rela-
tional model have been built successfully in the past decades,
by following the strategy of transformation of relational cal-
culus to relational algebra with optimizing rewrite systems.
A specific translation technique for the decomposed model
can be found in [28, 45].

For supporting object-oriented systems, database resear-
chers have tried to repeat the successes in the relational field
by proposing a number of object-oriented query algebras
[8, 41]. They offer a nested-object data model for support-
ing complex objects and support multiple collection types
like Set, List and Bag. These languages were designed as
input languages for algebraic optimizer systems that pro-
duce a physical query plan. Their implementation, however,
turned out to be difficult due to the combination of a large
number of operations and the complex storage model. To
our knowledge, no efficient implementation of object alge-
bras have been reported on large databases.

With the object-oriented MOA front-end [3] for Monet
we showed that, despite the additional mapping of a logical
data model (object-oriented) to the physical binary tables,
ad-hoc query processing can be very efficient.

The fragmentation of the nested object-oriented data
model onto binary tables brings some additional intrinsic op-
timizations. Traversing a relation attribute (see line 8) boils
down to executing a MILjoin operator on abat[oid,oid] .
This is very efficient, as it comes down to the join optimiza-
tion technique ofjoin indicesproposed in [44]. Additional
optimizations are achieved on set-operator expressions on
nested sets. Intersecting two set-valued attributes on a col-
lection of objects, for instance, is executed with just one
MIL intersect operator, e.g., this OQL query may inter-
sect many sets:

select intersect(items1, items2) from Orders ,
but translates in MIL to the single bulk operator:

intersect(order items1, order items2)

2.3.3 Optimized translations

MIL operators have the execution policy of full material-
ization of their result. This choice was made mainly to al-
low for more main-memory-specific optimization in the im-
plementation of MIL operators. If intermediate results are
larger than the available memory, this simple policy quickly
becomes suboptimal. Apipelinedexecution, where chunks
flow through an operator tree, then performs better.

In a “pipelined” MIL program, we use on-the-fly hori-
zontal fragmentation of tables in chunks, and let the MIL
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MIL Statement signature of created bat
01 BOUNDS := split(order extent, N); bat[oid,oid]
02 FRGEXT := fragment(order extent, BOUNDS); bat[oid,bat[oid,oid]]
03 FRGDIS := fragment(order discount, BOUNDS); bat[oid,bat[oid,flt]]
04 FRGDAY := fragment(order day, BOUNDS); bat[oid,bat[oid,date]]
05 FRGI O := fragment(item order.reverse, BOUNDS); bat[oid,bat[oid,oid]]
06 GRPYEA := new(oid,int);
07 GRPSUM := new(oid,flt);
08 BOUNDS@bat[P]batloop() {
09 ORDDIS := select(FRG DIS.find($h), "between", 0.00, 0.06); bat[oid,flt]
10 ORDSEL := ORD DIS.mark(newoid(count(ORD DIS)); bat[oid,oid]
11 SEL DAY := join(ORD SEL.reverse, FRG DAY.find($h), "="); bat[oid,date]
12 SEL YEA := bat[year](SEL DAY); bat[oid,date]
13 GRPSEL := group(SEL YEA).reverse; bat[oid,oid]
14 GRPGRP := unique(GRP SEL.mirror); bat[oid,oid]
15 GRPYEA.insert(join(GRP GRP, SEL YEA, "="));
16 ITM SEL := join(FRG I O.find($h), ORD SEL, "="); bat[oid,oid]
17 POSITM := ITM SEL.mark(0).reverse; bat[oid,oid]
18 SEL POS := ITM SEL.reverse.mark(0); bat[oid,oid]
19 POSPRI := join(POS ITM, item price, "="); bat[oid,flt]
20 POSTAX := join(POS ITM, item tax, "="); bat[oid,flt]
21 POSTOT := bat[*](POS PRI, POS TAX); bat[oid,flt]
22 GRPPOS := join(GRP SEL, SEL POS, "="); bat[oid,oid]
23 GRPTOT := join(GRP POS, POS TOT, "="); bat[oid,flt]
24 GRPSUM.insert( {sum}(GRP TOT, GRP GRP));
25 }
26 GLB GRP := group(GRP YEA).reverse; bat[oid,oid]
26 GLB GLB := unique(GLB GRP.mirror); bat[oid,oid]
27 GLB YEA := join(GLB GLB, GRP YEA, "="); bat[oid,int]
28 GLB TOT := join(GLB GRP, GRPSUM, "="); bat[oid,flt]
29 GLB SUM := {sum}(GLB TOT, GLB GLB); bat[oid,flt]
30 table("1",GLB YEA,GLB SUM);

Fig. 7. Pipelined MIL execution of the example query

program iterate over these chunks. Standard decomposition
rules for fragmented query processing [14] must be applied
in order to produce correct results using this additional hor-
izontal fragmentation. For instance, a selection on a frag-
mented table can be executed on each chunk, but results
must afterwards be collected with a union. Aggregate com-
putations must use decomposition rules of the aggregate in
a local function and a global function [15].

Figure 7 shows a “pipelined” version of our sample MIL
program that was created by fragmenting theOrder table on
oid . Balanced chunk sizes are guaranteed by thesplit MIL
operator. All Order BATs are then fragmented with these
split boundaries (lines 2–5)5. The main MIL program body
is then placed inside a loop over all chunks (lines 8–24).
Wherever one of theOrder BATs was used, it is substituted
by the current chunk from this BAT. The SUM aggregate
gets decomposed in a local{sum} and a global{sum}. The
local aggregate results are grouped and reaggregated using
the global function after the loop terminates (lines 25–29).

The next step is to parallelize the pipelined program,
by letting MIL work on multiple chunks in parallel. This is
simply achieved by using a parallel batloop in line 8 with
some parallelism degree P (BOUNDS@[P]batloop() ).

3 The implementation of MIL

In this section, we describe the experience gained from im-
plementing MIL as the primary interface language to the
Monet system [5], and provide details of this implementa-
tion. We give an overview of its novel data structures and
main-memory-based algorithms. Special attention is paid to
parts of the MIL language crucial for performance of the
object-oriented and relational front-end applications.

5 In Sect. 3.4.1 we describe how thesplit and fragment operators
can be made to consume just constant time.
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operator resolution

Fig. 8. Monet software architecture

Figure 8 shows the Monet software architecture. The
basic data structures and primitives for management of BATs
are provided by theBAT kernel. This includes support for
persistency, transaction management and data access. The
MIL operator primitives themselves are found inextension
modulesthat can dynamically be loaded into the system. The
other MIL language features, like parsing, variable handling,
procedure management, resolution of overloaded operators,
etc., are provided by theMIL interpreter; which coordinates
execution of client applications.

3.1 Main-memory system design

Our design decision to target Monet at main-memory exe-
cution of mostly read-only queries has consequences for its
implementation. CPU instruction time and memory access
cost are the dominant costs in main-memory systems, rather
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than I/O. In-memory data movement and predicate evalu-
ation tend to take up most time during query processing
[17, 46]. As main-memory optimization and cost modeling
are largely unexplored research areas, main-memory system
design still depends on intuitive programmer notions about
what kind of coding style makes good use of memory cache,
CPU registers, etc. In the design of Monet, we therefore ad-
hered to a number of rules of thumb.

1. Keep it simple. Having a complex software architec-
ture that offers powerful (generic) operations can eas-
ily lead to a high percentage of CPU overhead (e.g.,
in interpretation cost, parameter passing or buffer copy-
ing) when there is no overshadowing I/O cost. Straight-
forward processing algorithms and data structures, like
bucket-chained hash tables or T-trees, have proven to
work best in main memory [30].

2. Use large granularities. Implementation functions that
work on the granularity of one tuple at a time introduce
a fixed amount of interpretation overhead for each tuple
(stack operations, context switch). Using large granulari-
ties in the basic processing functions is an effective way
to decrease the effects of such interpretation overhead.

3. Sequential memory access. Historic cost models for main-
memory systems could safely assume absence of lo-
cality of reference on memory access. Modern custom
hardware, however, has three memory levels, and uses
pipelined memory transfer over the bus to enhance mem-
ory bandwidth. This makes sequential memory access
significantly faster than random access. This holds for
simple PC hardware, but is even more true for the new
generation of scalable-shared memory multi-processor
computers [39].

The result of applying these rules in the design of Monet
are reflected in the simple sequential array structure for
BAT storage, the bulk nature of the MIL operators, and the
straightforward algorithms applied for their implementation.

3.2 Data storage in Monet

The BAT data structure (Fig. 9) is seen by database code
as a pointer to aBAT descriptor. A BAT descriptor points
to two column descriptors, one for thehead column, the
other for thetail. Each column descriptor contains column-
specific information, like the type stored, and pointers to
search accelerators. The bulk data structure of the BAT is the
BUN heap, a main-memory array of binary tuples (BUNs). It
is reachable from the BAT descriptor via aBUN descriptor.
BUNs are fixed-size records that consist of a head- and a
tail-field.

The heaps of a BAT are stored on disk in their exact
memory layout, which enables us to map these files into
virtual memory. The algorithms of Monet do not see the
difference between mapped memory and normal memory.
To make this direct mapping possible, our storage scheme is
carefully kept free of hard pointers. Absence of hard pointers
implies thatpointer swizzling[47] is performed lazily, on
each data access. This policy only works well if data access
is cheap and simple, and swizzling cost can be factored out
in bulk operations. Monet therefore provides only a limited
number of ways (3) to store atomic data in a BAT:

search 

REVERSEnormal
BAT descriptor BAT descriptor

structures
accelerator

various

head tail tailhead

first last

descriptor
BUN

descriptor
column

Tail Heap

BUN Heap

descriptor
column

variable-size atom
s

BUN fixed
atom

integer
offset

Fig. 9. BAT data structure

– fixed-size atoms:are stored directly in the BUN record;
– variable-sized atoms:store an integer in the BUN record.

The integer is a byte-offset into a separate heap. This
heap is a linear memory space, just like the BUN heap,
and is reachable from the column descriptor;

– implicit storage:virtual oid s, defined by the additional
void type, require no storage. Avoid column implicitly
defines a column of densely ascendingoid values (e.g.,
100, 101, 102, 103, ..). These values are computed on the
fly by adding the array index number of the BUN in the
BUN heap to someoid base number, called “seqbase”.
This seqbase (in our example 100) is stored in the column
record.

The different treatment of variable-size atoms is neces-
sary to keep the BUN heap an array of fixed-size records. Im-
plicit data storage was introduced deeply into the BAT data
structure, as it is an optimization that is both greatly ben-
eficial and often applicable. Many Monet applications map
data into BATs that have one column with system-generated
oid s, and these are often dense and ascending. Virtualoid s
optimize both memory usage and value lookup: BAT sizes
are cut by more than half and lookup can simply be done by
position: when looking foroid 102 in avoid column with
seqbase=100 we calculate by subtraction that it is located at
array index 2 in the BUN heap.

3.2.1 Storage type remappings

The simple nature of data storage in a BAT can be con-
trasted with more flexible data storage schemes that would
allow a more compact data representation, for instance, by
using bit-wise integer encodings on low-cardinality columns
[11]. Such flexibility is added in Monet on a level higher
than the direct data structures by storing a BAT with a dif-
ferent physical type signature than it is logically perceived.
Virtual oid s are one example of suchtype remappings, as
they implement the logicaloid type in a different way. These
type differences in the BAT implementation are hidden by
the MIL interpreter.

There are three type levels in the MIL implementation
between which type-remappings exist (see Fig. 10).
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Logical types are the types known in the MIL language.
These are called logical, as they are not tied to one spe-
cific implementation.

Physical types are a superset of the logical types (a logical
type may be stored in alternative ways). A physical type
defines how a type is implemented. For instance, BATs
with an oid column may be stored either usingoid s or
void s. All physical types mapped on the same logical
type have exactly the same MIL semantics.

Implementation types are a subset of the physical types,
as the implementation of some physical types may reuse
the implementation from others. Such aderivedphysical
type only implements the string representation functions
of Monet’s atom interface, but copies all other behavior
of the type it is derived from. For instance,bit is imple-
mented bychr , and oid is (currently) implemented by
int .

An enumeration typeis a specific case of a logical-to-
physical type remapping. The idea is to represent all values
in an enumerated domain as (small) integers. In OLAP and
data mining, column values often have a low cardinality. If
256 or fewer different values occur, 1 byte would suffice
to encode the values (2 bytes for 65536 or less). A lookup
table is used to translate the encoding back to the original
value. The parametrized physical typese1[BAT] ande2[BAT]

provideenumerationencodings into 1- and 2-byte integers.
Their parameter is anencoding BATthat contains the lookup
table.

The advantage of enumeration types is compact storage,
which is achieved especially if the other column isvoid . In
those cases, the BUN heap becomes a dense array of 1- or
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Fig. 12. One MIL operator, many implementations

2-byte values. Enumeration types preserve the value order-
ing on the encoded values in the integer codes. By doing so,
operators like range-select can work directly on the encoded
values. This policy, however, makes the enumeration types
expensive to update, as an insert of a new value in the do-
main may trigger a recoding of all values in the BAT. For
this reason, enumeration type storage should only be applied
to BATs when updates are infrequent or bulky.

3.3 MIL operator implementations

MIL operators are defined in an algebraic way; indepen-
dent of the algorithms that implement them. Still, MIL is
the target language for query-optimizing front-ends. For this
reason, we introduce here the distinction betweenstrategical
and tactical query optimization, rather than the well-known
distinction between logical and physical query-optimization.
Query-optimizing front-ends produce MIL programs, so they
decide the execution order of logical operations (the query
execution “strategy”). Choosing a suitable algorithm (deter-
mining the run-time “tactics”) is done automatically by the
MIL operator implementations.

3.3.1 Tactical vs. strategical optimization

In traditional query optimization, the primitives in the physi-
cal algebra are algorithm-specific; the query optimizer
chooses both strategy and tactics. MIL separates these two
concepts, which alleviates (though not eliminates) a number
of problems found in classical query optimization.

1. Queries are optimized to be executed in isolation. The
real situation of the execution system, however, is de-
termined by a load of multiple queries and the database
status at time of execution (including buffer management
and available search accelerators), which might favor al-
together different decisions [27].
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2. Errors in estimates of intermediate result characteristics
quickly propagate in complex queries where the esti-
mates of one operator are calculated from parameters
that are themselves the result of previous estimates [23].
Such estimation errors lead directly to wrong decisions
made by the optimizer.

3. A very detailed model of query processing creates a huge
search space for complex queries, whose search itself
gets to be resource-consuming [36].

Problems 1 and 2 are dealt with by the tactical phase at
run time, so it can take into account the system state. Monet’s
policy of materializing all results now becomes a benefit.
When an operator starts, all information about its parame-
ters is known. The optimization decisions are based on real
information, not on estimates. This is the main difference
between our approach and the so-called ’choose-plan oper-
ator’ dynamic query optimization approach of [10, 20, 24].
In the ’choose-plan operator’ approach, just before query
execution, the estimates on the base operators are updated,
and variables in the query are bound; then a new query op-
timization is done on the entire tree to see which alternative
is best. This approach thus makes a decision based on much
more actual information than normal QO – hence, alleviates
problem one – but as it is just an optimization closer to
the moment of execution, it still suffers in errors made by
estimation functions in the model (problem 2).

It is important to note that separating the query opti-
mization in a strategical and tactical phase assumes that the
strategical phase can do without physical details. The target
of optimization cannot be formulated in terms of execution
time, as this depends on the (physical) algorithms chosen.
A useful alternative target is minimization of the number of
intermediate tuples generated. In this case, the price paid for
our simplification is making the assumption that the best plan
corresponds to the strategy that generates the least number
of intermediate tuples.

The notion of strategical and tactical query optimization
should not be confused with the classical notion of logical
and physical query optimization [19], in which the logical
phase depends on heuristics and the physical phase on a
cost model. In the strategical phase, we already decide the
eventual execution order of logical algebra operations, so
this optimization process includes both logical and physi-

cal optimization. We might, for instance, use cost models
to estimate the selectivities of various MIL operators. The
abstraction of physical alternatives (e.g., merge, hash and
nested-loop join) into their single logical operator (join) just
causes a reduction of the search space, hence alleviates prob-
lem three.

As strategic optimization is a task of the front-end, fur-
ther discussion of it falls outside the scope of this paper.

3.3.2 Data structure optimizations

Tactical optimizations imply that the implementations of the
MIL operations themselves decide at run time how they will
produce their logical result. Some MIL operators can exploit
the decomposed nature of the BAT data structure (Fig. 9) and
actually produce their result without doing any real work.

Reversed view.The BAT data structure contains two BAT
descriptors (see Fig. 9); onenormal and onereversed.
These two descriptors differ only in that they have their
column descriptor pointers swapped. As such, they rep-
resent two differentviewson the same BAT. The imple-
mentation of the MILreverse operator on a BAT makes
use of these views. It just jumps from one view to the
other; making this operation free of cost.

Mirrored view. The mirror MIL operator creates a new
BAT descriptor that has both head and tail column de-
scriptor pointers pointing to the original head column
descriptor. The resulting BAT appears to have two iden-
tical columns.

Void view. Virtual oid s are introduced by themark operator
that creates a new column descriptor stating the column
data type to bevoid . As void values are computed just
by position, the data in the BUN heap is not looked at,
and can therefore share the BUN heap from the operand
BAT.

Slice views. When a BAT column contains ascending values
and a range-select or fragment is done on it, the result
represents a contiguous subarray of BUNs in its BUN
heap. In such cases, we just have to provide an alternative
BUN descriptor that points at that subset (see Fig. 14).

Enumeration views. BAT with enumeration types provide
various opportunities for view optimizations. Consider
the unarygroup operator that replaces the tail column
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property semantics
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int type (physical) type number
bit enum true ⇔ enumerated type
bit dense the column is a densely ascending range
bit sorted true ⇒ ascending value sequence
bit constant true ⇒ all equal values
oid align unique identifier for this value sequence
bit key true ⇒ no duplicates this value sequence
bit hash true ⇔ hash-table on this column exists
bit Ttree true ⇔ T-tree on this column exists

BAT properties
bit set true ⇒ no duplicate BUNs in the BAT
bit mirrored true ⇒ head and tail column are identical
int count the exact number of BUNs in the BAT.

Fig. 15. BAT and column properties

with oid s. Each suchoid uniquely identifies a tail value.
It therefore suffices to replace theencoding BATof the
enumeration type with an alternative encoding BAT that
maps ontooid values (see Fig. 14). We then just create
a view with a different enumeration type in the column
descriptor; this enumeration type points to our new en-
coding BAT.
The unary multi-join map can use a similar optimization
(e.g.,[*]( tax, 0.007) can be executed on the encoding
BAT of the tax tail column). The one-column version of
theunique operator also can represent its result by a view
on an encoding BAT if it is executed on an enumerated
column.

All these optimizations are highly efficient and exploit
the freedom that MIL has in choosing the best way an op-
erator can be implemented at run time.

3.3.3 Property-driven tactical optimization

Not all MIL operators get a free ride in terms of their
implementation. For these operators, the Monet implemen-
tation contains a multitude of algorithms. Selecting a good
alternative at run time happens in three levels.

01 PROC select(BAT[ANY::1,ANY::2] b, STR "="
02 ANY::2 val) : BAT[ANY::1,ANY::2]
04 {
05 VAR i := b.info;
06
07 IF (i.find("tail.type") = "void") {
08 RETURN positional equi select(b,v);
09 } ELSE IF (i.find("tail.hash").bit) {
10 RETURN hash equi select(b,v);
11 } ELSE IF (i.find("tail.sorted").bit) {
12 RETURN binsearch equi select(b,v);
13 } ELSE IF (i.find("tail.Ttree").bit) {
14 RETURN Ttree equi select(b,v);
15 }
16 RETURN scan equi select(b,v);
17 }
Fig. 16. Procedure for algorithm selection in equi-select

Operator overloading. Some of the selection work is off-
loaded to the command resolution in the MIL interpreter.
Figure 12 shows that specific implementations for the
”=” and ”between” predicates are available for the MIL
select operator (equi- or range-select). All other predi-
cates are handled by a simple scan that invokes a pred-
icate function on all tuples and retains those yielding
true in the result.

Algorithm selection. For the equi- and range-selects, the
MIL interpreter can choose between hash-lookup, T-tree
search, binary search and sequential scan (Fig. 12).
The tactical decisions made here are partially based on
general system information about the CPU load, I/O ac-
tivity and memory consumption. The most important in-
formation, though, comes from thepropertiesthat Monet
maintains on all BATs (Fig. 15).
We implemented these tactical optimizations as MIL pro-
cedures, like in Fig. 16. This makes it easy to experiment
with more complex cost models (e.g., by using virtual-
memory-usage statistics and result size estimates, or even
sampling).
The current tactical optimization procedures try to make
best use of the information provided by the properties us-
ing heuristics, sometimes supplemented by a simple cost
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group unique(X) fragment ”=”- find ”between”-
property: (t) X=h X=h∧t (t) select(t) (h) select(t) expansions:

enum(b) use encoding-bat encode param
set(b) not used adapt result

key(b) mirror(b) copy(b) estimate 1:{ADT}
mirrored(b) useX=h not
constant(b) version used

dense(b) positional lookup 1:{void}
hash(b) hash-lookup not used 6:{ADT,chr,sht

sorted(b) merge scan binary search 8:{chr,sht
T-tree(b) T-tree search int,flt,lng,
fallback scan dbl,str,ADT}

scan-hash scan ,int,lng,str}
#algorithms 3 3 2 3 5 5 4 25(total)
#expansions 1+8+6 8+6 8+8+6 1+8+8+6+6 1+8+8+8 149(total)

Fig. 17. Algorithm overview for unary BAT algebra operatorsunop(b).

model. For selections, positional lookup is the most ef-
fective method, followed by hash-lookup, binary search
and T-tree search. These rules are optimal under main-
memory conditions.
An important feature of property-driven tactical opti-
mization is that each operator implementationpropa-
gatesall relevant properties onto its result BAT. If the
scan equi select is executed on a BAT that has a
sorted head column, it will propagate this property on its
result, etc.

Type-specific expansions. When an algorithm has been
selected, the Monet implementation makes an automatic
extra choice for a type-specific routine.
MIL operators are generally type-generic. This means
that data access (for instance, comparing two values)
goes through some atomic ADT function interface. Call-
ing functions in the inner loop of an algorithm should
be avoided in programs optimized for main memory. In
order to optimize main memory performance. Monet has
for each algorithm multiple implementation routines that
are specific to a certain type. We call such type-specific
implementationsmacro-expansions, as we generate them
automatically from one source base using a macro pack-
age.
Monet is an extensible system and new atomic types
may appear at run time, so there always needs to be one
generic implementation that still uses the ADT routines.
All type-specific expansions are optional. Code expan-
sion is an optimization technique that trades off code
size for performance, so only those cases that benefit
most and are likely to be used should be expanded.
Figure 12 shows, for instance, that the equi-select hash
implementation has macro-expansions for the typeschr ,
sht , int , lng andstr . These are calledchr hash equi

select() , sht hash equi select() , etc. There is also
oneADT hash equi select() that goes through the ADT
interface, and is used for all other types. Note that the
int expansion is also used for selectingoid values, as
int is the implementation typeof oid .

Type-specific implementations are selected automatically,
and are therefore not visible on the MIL level.

3.3.4 MIL operator implementation overview

The different algorithms implemented for unary MIL oper-
ators are shown in bold text by Fig. 17. This table shows

per row which properties need be set for them to be chosen
(leftmost column), as well as the macro-expansions applica-
ble for each algorithm (rightmost column). As the decision
which code expansions to do largely depends on the nature
of the algorithm, these code expansions and algorithm type
share the horizontal dimension in Fig. 17. The logical oper-
ators listed at the top of each column have a parameterh or
t, indicating the column (head or tail) of the BAT parameter
on which the properties should apply.

The MIL script for the equi-select of Fig. 16 can be re-
constructed by checking the ’=’-select column in Fig. 17
from top to bottom. The algorithm of the first row in which
the property condition holds is chosen for execution. A more
complex example is theunique(b) operator, which is split
in two cases. The left column (labeledX = h) singles out
the special case that only the head column is relevant for
the uniqueness of the BUNs. This happens if we know that
both columns are equal (mirrored(b) ), or one contains all
the same values (constant(b) ). In those cases, the standard
two-columnunique(b) implementation invokes the single-
column one, which is more efficient.

Figure 18 gives a similar algorithm overview for binary
operators. The join is overloaded with specific implementa-
tions for the<,≤, =, >,≥ predicates. Other join predicates
are handled by a simple nested-loop algorithm that invokes
a predicate-testing function for each pair of matching tuples.
Similar tounique , the binary set operatorsintersect , union

anddiff are implemented both in their 1- and 2-column ver-
sions.

In a pure main-memory situation, we can read Fig. 18
from top to bottom to find out which algorithm is chosen.
Note that all binary operators exceptdiff and group are
symmetrical, in which cases the possibility of execution with
swapped parameters is also taken into account. In contrast
to the unary operators, there are no fallback algorithms that
are executed when no properties are set. The reason for this
is that it is more efficient toenforceone property (e.g., by
creating a hash table or by sorting) than to execute a nested
loop algorithm. The decision which property to enforce and
– for symmetrical operators – on which BAT, depends on
memory statistics and result size estimates.
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group =-join intersect(X,X) {≤,<,
(h, h) (t, h) union(X,X) ≥, >}

diff (X,X) -join
property: X=h X=h∧t (t, h) expansions:

align(l)= array lookup equal one not
align(r) (if key(l)∨key(r)) bags⇒ column used

constant(l)= cart. trivial insignifi- cart. 1:{ ADT }
constant(r) prod. impl’s cant⇒ prod.

mirrored(l)∧ not useX = h
mirrored(r) used version

dense(l) positional lookup not 1:{void}
hash(l) hash used 6:{ADT,chr,

lookup sht,int,lng,str}
sorted(l)∧ merge 8:{chr,sht

sorted(r) not algorithm int,flt
sorted(l) used binary search lng,dbl,
T-tree(l) T-tree search str,ADT}

#operators 1 1 3 3 4
#algorithms 3 6 5 3 54 (total)
#expansions6+6+6 6 1+1+6+8+8+8 1+6+8+8+88+8+8 335 (total)

Fig. 18. Algorithm overview for binary BAT algebra operatorsbinop(l, r)

3.3.5 pump{op} and multi-join map [op]

The pump and multi-join map primitives are mainly executed
on BATs that have anoid head column. For this reason, the
oid cases are specifically optimized using code expansions.
This can be contrasted with the other MIL operators which
are optimized for all standard data types.

The pump and multi-join map parameters often receive
BAT parameters that have enumerated tail columns. In order
to avoid conversions, their optimized implementations de-
code such types on the fly. We again use macro-expansions
(see Sect. 3.3.3) to avoid having to check for each value
whether it is enumerated (into either 1 or 2-byte integers) or
not. Another expansion dimension that speeds up data ac-
cess to the tail columns is created for fixed or variable-size
atoms.

The pump combines tail values with a common head
value. Consequently, the head columns of such BATs tend
to have a relative low cardinality, and are therefore often
represented with an enumeration type that exploits this. For
this reason, in addition to the generic ADT version, type-
specific expansions are made for thechr , sht and int types
(these are the implementation types for the enumeration
types e1[b] , e2[b] and oid physical types, respectively).
These are combined with three algorithms: merge-, hash-
and T-tree grouping.

The multi-join map[op] has the additional complica-
tion that a variable number of BAT parameters (/P ) may
be passed. Its fallback implementation is a generic adaptive
N-ary implementation that uses all properties in an inter-
pretative manner. As the multi-join result is an N-ary table,
it cannot be represented as a BAT. For this reason, results
produced are returned by calling a call-back function for
each tuple. This implementation, which is also used for the
BAT-print , is not main-memory efficient. Two optimized
algorithms are available, namely array lookup (if all head

6 1+1+6 would be expected from the table. The binary group, though,
always getsoid s in its head columns. No expansions would be necessary
(1+1+1), but then again the grouping algorithm is based on hashing on the
tail column of ther parameter. So, each algorithm is expanded on tail for
hashing (6 expansions).

head-type algorithm tail-type
ADT hash- e1[B] fixed-size
chr group e2[B]
sht merge-group normal variable-size
int * Ttree-group* *
4 3 3 2

Fig. 19. 72 pump implementations

headalgorithm /P tail expansions expansions/P

3 e1[B] 3 27
ADT array 2 fixed-size 6 36

lookup 1 e2[B] * variable- = 6 6
merge 2 size 6 36

int lookup 3 normal 2 3 27
multi- N 3 1 1

ADT join N 1 1

Fig. 20. 134 multi-join map implementations

columns are identical), or a merge algorithm (if all head
columns are sorted).

In all, the 20 MIL primitives are implemented using
around 100 algorithms. These algorithms are macro-expanded
into around 700 highly efficient implementation functions
that can be invoked by the MIL interpreter. As these func-
tions are all fairly simple, the cost in binary code size of
all these expansions still remains moderate: when compiled
with space optimization on PC hardware, the Monet binary
occupies about 1 MB.

3.4 MIL execution trace

We illustrate MIL execution in Monet by running our ex-
ample query of Sect. 2.3 on the database specified by the
TPC-D benchmark [43]. The mapping of an object-oriented
data model onto BATs depicted in Fig. 5 is a sub-part of the
object-oriented version [3] of the TPC-D schema.

The order table in the TPC-D database has 1.5M rows
(we use SF=1), and the item table has 6M rows. We store
all BATs from Fig. 2 with the physicalvoid type in the head
column, except for theorder items , which is not material-
ized (the reverse view onitem order is used instead). In this
example, we use enumeration types in the tail columns of
the BATs that store the columnstax , discount , price and
day . This compact representation results in the entire TPC-
D database occupying just 600 MB of disk space in Monet,
instead of the 1 GB that it normally occupies in relational
DBMS products.

The table below shows a trace of executing the MIL
script for our example query. It describes the exact imple-
mentations chosen for each MIL operator in the script and
the BAT and column properties of all results created. Us-
ing these properties, one can check back to Figs. 17 and 18
to see why the tactical optimization chose that particular
implementation function, and also see how each operator
implementationpropagatesits properties onto their BAT re-
sult.

The execution trace fully lists all operators used, includ-
ing the load() operator (that loads a persistent BAT into
memory and gives virtual-memory advice) and thefree() ,
that is automatically invoked by the MIL interpreter if a
BAT is no longer used. The rightmost columns show the
amount of reserved virtual memory (’res’), the actual amount
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example query execution trace BAT signature BAT Properties7 memory(MB)
lineno. MIL implementationfunction → result head tail head tail count diff res use hot

load(”order discount”,vm seq ); → order disc void e1[flt] D100Ao Aoi 1.5M 1.5 1.5 0.0 0.0
01 chr scan range select(order disc,e1[.00],e1[.06]) → ord nil oid void SKA1 A2 0.9M 3.6 5.1 3.6 0.0

free(order disc ) → in memory(ord nil ) -1.5 3.6 3.6 0.0
02 view mark (ord nil,x) → ord sel oid void SKA1 DxA3 0.9M 0.0 3.6 3.6 0.0

load(”order day”, vm seq ); → order day void e2[date] D100Ao Aod 1.5M 3.0 6.6 3.6 0.0
03 positional equi join (

view reverse(ord sel),orderday) → sel day void e2[date] DxA3 A4 0.9M 1.8 8.4 5.4 0.0
free(order day ) → in memory(ord nil,sel day ) -3.0 5.4 5.4 0.0

04 norfix array map(sel day,date2year()) → sel yea void sht DxA3 A5 0.9M 1.8 7.2 7.2 0.0
free(sel day ) → in memory(ord nil,sel yea ) -1.8 5.4 5.4 0.0

05 view reverse(sht scanhashgroup(sel yea)) → grp sel e1[oid] void A6 DxA3 0.9M 0.9 6.3 6.3 0.0
06 enum unique(view mirror (grp sel)) → grp grp e1[oid] e1[oid] SKA7 SKA7 7 0.0 6.3 6.3 0.0
07 positional equi join (grp grp,selyea) → grp yea e1[oid] sht SKA7 A8 7 0.0 6.3 6.3 0.0

free(sel yea ) → in memory(ord nil,grp sel ) -1.8 4.5 4.5 0.0
load(”item order”, vm seq ); → item order void oid D1000Ai SAio 6.0M 24.0 28.5 4.5 0.0

08 int merge equi join (item order,ordsel) → itm sel oid oid SKA8 SA9 3.6M 28.8 57.3 33.3 0.0
free(item order,ord nil ) → in memory(grp sel,itm sel ) -27.6 29.7 29.7 0.0

09 view reverse(view mark (itm sel,0)) → pos itm void oid D0A8 SKA8 3.6M 0.0 29.7 29.7 0.0
10 view mark (view reverse(itm sel),0) → sel pos oid void SA9 D0A8 3.6M 0.0 29.7 29.7 0.0

load(”item price”, vm seq ); → item price void e2[flt] D1000Ai SAip 6.0M 12.0 41.7 29.7 0.0
11 positional equi join (pos itm,item price) → pos pri void e2[flt] D0A8 A10 3.6M 7.2 48.9 36.9 0.0

free(item price ) → in memory(itm sel,pos pri,grp sel ) -12.0 36.9 36.9 0.0
load(”item tax”, vm seq ); → item tax void e1[flt] D1000Ai SAit 6.0M 6.0 42.9 36.9 0.0

12 positional equi join (pos itm,item tax) → pos tax void e1[flt] D0A8 A11 3.6M 3.6 46.5 40.5 0.0
free(item tax ) → in memory(itm sel,pos pri,pos tax,grp sel ) -6.0 40.5 40.5 0.0

13 e2fix e1fix array map(pos pri,postax,
flt flt mult() ) → pos tot void flt D0A8 A12 3.6M 14.4 54.9 54.9 0.0

free(pos pri,pos tax ) → in memory(itm sel,pos tot,grp sel ) -10.8 44.1 44.1 0.0
14 positional equi join (grp sel,selpos) → grp pos e1[oid] void A13 D0A8 3.6M 3.6 47.7 47.7 0.0

free(itm sel,grp sel ) → in memory(grp pos,pos tot ) -29.7 18.0 18.0 0.0
15 array equi join (grp pos,postot) → grp tot e1[oid] flt A13 A11 3.6M 28.8 46.8 46.8 0.0

free(grp pos,pos tot ) → in memory(grp tot ) -28.0 28.8 28.8 0.0
create(grp tot, ”hash”, 5) 17.3 46.1 46.1 2.9

16 chr norfix hash pump(grp tot,grp grp,
flt scan sum()) → grp sum e1[oid] flt SKA7 A14 7 0.0 48.2 48.2 46.1

of committed memory (’use’) and the minimum amount of
memory each operator needs to fit its hot set into main mem-
ory (’hot’).

3.4.1 Memory management

Query execution starts by loading theorder discount BAT.
The vm seq flag tells Monet to map the file that stores the
BUN array into virtual memory, instead of directly loading
it, and to give the OS virtual-memory advice, telling that
access to this mapped region will be sequential. Given such
advice, the Solaris OS uses memory prefetching and DMA
to load large chunks of pages in the background, while the
CPU can continue processing. It also places all swapped-in
pages directly on the swap-out list. This has the effect that
when a MIL operator sequentially scans the BAT, the OS
uses only a few memory pages to swap it in.

Up to line 15, the hot set column of the execution
trace is zero, since all algorithms used had sequential ac-
cess. Such sequential main-memory algorithms take optimal
profit from complex bus and memory cache architectures
found in modern computing hardware, and have a small
hot set, so they may process virtual-memory sizes that ex-
ceed the main-memory size and still deliver good perfor-

7 Properties are abbreviated as follows:S ⇔ column is sorted,K ⇔
column is key,Dseqbase ⇔ column is densely ascending fromseqbase
(also impliesSK), Aid is the alignment-id of a column (in order to easily
detect equal columns).

mance. The pump operator in line 16, however, first con-
structs a hash table with thecreate() operator, and then
executeschr norfix hash pump() that uses this hash table
to iterate over the groupoid s from grp grp . The pump has
random access to both the BUN array and the hash table;
its hot set hence is 46.1 MB. The tactical optimization of
the pump actually computes this number beforehand, and
compares it with the run time statistics on available mem-
ory. If too little is available, it could decide to go for the
chr norfix merge pump() implementation that first sorts the
grp tot BAT. This algorithm performs a little more slowly
in main memory, but requires a smaller hot set (and also
profits from theslice viewtechnique from Sect. 3.3.2). Prob-
lems with hot sets that do not fit the main memory can also
be prevented by generating ’pipelined’ MIL programs (see
Sect. 2.3.3).

3.4.2 Join processing

The tactical optimization resolves all joins in lines 3, 7, 11,
12 and 14 topositionaljoins. This is a cheap kind of join that
computes a BUN array position by subtracting theseqbase
property value from eachoid that is looked up. Such joins
normally have a hit rate of exactly 1, in which case the
non-join column of the smaller operand reappears identically
in the result. Thepositional equi join() exploits this by
propagating avoid non-join column to the result. Due to this
optimization, the intermediate BATs stays relatively small.
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The join in line 15 is even simpler: from the equal-
ity of the align properties of the join columns (head of
pos tot and tail of grp pos ) it can be deduced that both
columns are identical. This join can hence be constructed
without any lookup by simply iterating through both BATs
and combining both tuples in the join result. A similar con-
dition in line 13 leads to execution of the map operator
[*] with e2fix e1fix array map. The ’e2fix e1fix’ indicates
a macro-expanded implementation for a binary map oper-
ator on two BATs, of which the first has ae2[] tail type
that encodes fixed-size values, and the second ae1[] tail
type that also encodes fixed-size values. As explained in
Sect. 3.3.5, all unary, binary, and tertiary combinations of
{ ’e1’, ’e2’, ’nor’ } and{ ’fix’,’var’ } are coded out in 69
separateXX array map() implementation routines. On line 4,
for example, we used thenorfix array map() for a unary
[year] map.

In the OQL query, the joins of lines 3, 7, 11, 12 and 14
are not present; they are a necessary result of the vertical
fragmentation applied in Monet. It is interesting to see that
tactical optimization is sufficient to neutralize the extra joins
introduced by vertical fragmentation. All such joins get exe-
cuted by the positional or array implementations, which just
move data without lookup. This effectively eliminates the
disadvantages of vertical fragmentation, and leaves us with
its advantages, namely a reduction of I/O cost. Whereas our
example query (with its 60% selectivity) would require a
full scan of 1 GB of relational data structures, Monet just
scans 40 MB of data from disk. In query-intensive tasks like
these, we have shown in the TPC-D and DD Benchmarks
that Monet achieves an order of magnitude of performance
improvement over conventional DBMS technology [2, 3].

4 Conclusion

The research described in the paper reports on progress in
three key areas of modern database management. First, we
defined a simple-yet-powerful query algebra on the binary
table model. The MIL language is quite small, yet has proven
successful in supporting relational, object-oriented and other
database applications efficiently. It provides constructs for
parallelism and is extensible in all its dimensions.

Second, we show how important physical query opti-
mization decisions can be deferred to run time, both en-
hancing their quality and simplifying the query optimization
process. What makes MIL stand out from other database lan-
guages is that it is both a logical and an execution language.
By providing a direct implementation for this logical alge-
bra language, the Monet system separates query optimization
in a strategical and a tactical phase. Query-optimizing sys-
tems producing MIL code must transform a high-level query
in a sequence of appropriate MIL primitives. This includes
determining a good (join)order, but excludes translation to
physical primitives. Choosing an algorithms is performed at
run time inside each MIL operator during the process of
tactical query optimization. By usingpropertiesmaintained
on relation fragments and full propagation of these proper-
ties across operators, MIL conserves maximum information
about the data that is being processed, which is also com-
bined with run time system statistics. By off-loading these

activities from the compile-time phase, this approach sim-
plifies the task of query optimizers, and results in a system
that takes better decisions, as more run time information is
taken into account.

Third, it provides insight in the techniques employed and
lessons learned by implementing MIL in the Monet system.
We were successful in achieving our goal of constructing a
system that provides high performance on query-intensive
application areas like and data mining [2–4, 6]. This success
can firstly be attributed to the use of vertical fragmentation,
which enables MIL to avoid much I/O otherwise spent in
table scans and reduces the volumes of data movement dur-
ing query processing. Another reason is that the simple and
concise definition of MIL allowed us to put much optimiza-
tion effort in its implementation. Techniques like implicit
storage, type remappings and view implementations were
effective in eliminating the extra join-overhead that is en-
countered when relational or object-oriented applications are
fully decomposed into the binary table model. Main-memory
optimization methods like code expansions were employed
throughout the system to make it perform well on modern
hardware architectures, in which memory latency and band-
width are increasingly limiting factors for achieving high
performance.

At this moment, we have a mature implementation of
Monet that is deployed on a commercial basis as part of
the data mining toolkits of Data Distilleries8, including a
packaged version as an Oracle data cartridge. In our group,
Monet is also used as a research system in various areas, like
multi-media, scalable distributed data structures, and cost
modeling. We plan to publish parallel performance results on
large versions of the TPC-D benchmark in the near future.
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