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Abstract — The purpose of this paper is to introduce discretization methods of
discontinuous Galerkin type for solving second-order elliptic PDEs on a structured,
regular rectangular grid, while the problem is defined on a curved boundary. The
methods aim at high-order accuracy and the difficulty arises since the regular grid
cannot follow the curved boundary. Starting with the Lagrange multiplier formulation
for the boundary conditions, we derive variational forms for the discretization of 2-D
elliptic problems with embedded Dirichlet boundary conditions. Within the framework
of structured, regular rectangular grids, we treat curved boundaries according to the
principles that underlie the discontinuous Galerkin method. Thus, the high-order DG-
discretization is adapted in cells with embedded boundaries. We give examples of
approximation with tensor products of cubic polynomials. As an illustration, we solve
a convection-dominated boundary-value problem on a complex domain. Although,
of course, it is impossible to accurately represent a boundary layer with a complex
structure by means of cubic polynomials, the boundary condition treatment appears
quite effective in handling such complex situations.
2000 Mathematics Subject Classification: 65N50; 65N99.
Keywords: discontinuous Galerkin discretization, structured grid, irregular boundary,
embedded boundary.

1. Introduction

The purpose of this paper is to introduce methods of discontinuous Galerkin type for solving
second-order elliptic PDEs on a structured, regular rectangular grid while the problem is
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defined on a curved boundary. The methods aim at high-order accuracy and the difficulty
arises because the regular grid cannot follow the curved boundary.

Earlier, several techniques were proposed to handle boundary conditions on irregular,
curvilinear boundaries. The most convenient is, of course, the FEM, where elements near
the boundary are adapted to the shape of the boundary curve. Generally, this results in an
unstructured grid. This relatively straightforward technique can be used with an arbitrarily
high order of accuracy and produces good results.

In contrast, finite difference methods are usually applied on regular grids. Here, curved
boundaries are treated by locally adapted finite differences as, e.g., the Shortley-Weller
approximation [4, Sect.4.8]. Generally, such discretizations are not used for higher orders of
accuracy.

A more recent technique for treatment of complex boundaries on orthogonal grids, in
two or three dimensions, is the Embedded Curved Boundary (ECB) method. Here –usually
in the context of the discretization of conservation laws– piecewise linear segments are em-
bedded in the grid to represent the boundary. The method is also used, e.g., for solutions
across interfaces [7,8]. In many cases the ECB method shows clear advantages compared to
the traditional stair-step method [10] but no higher-order accuracy than order two can be
expected.

A higher order may be obtained by Immersed Boundary Methods (IBM) [11–13,16], e.g.,
in pseudo-spectral codes [3], where the presence of the boundary within the computational
domain is simulated by specifying a body force term, without altering the computational grid.
This technique is very flexible as it allows for bodies and interfaces of almost arbitrary shape.
The method is quite popular in situations with interfaces and rather complex geometries [9]
and, e.g., elastic boundaries [15]. Usually the method is applied so as to maintain a second-
order accuracy (first order near the boundaries). However, fourth-order convergence rates are
reported in [2], where the same methodology is used with PDEs for thin flexible membranes
in an incompressible fluid domain.

In contrast with the above methods, we take the Lagrange multiplier formulation of
the boundary conditions as a starting point, in the same manner as used in [14] or in the
derivation of the discontinuous Galerkin discretization. Within the framework of structured,
regular rectangular grids we introduce the treatment of curved boundaries in full agreement
with the principles that lead to the discontinuous Galerkin method. We apply a high-order
DG-discretization in the interior and adapt the method in cells with embedded boundaries.
The order of approximation of the boundary condition corresponds with the accuracy of
the DG-method. In the present paper we give examples of an approximation with tensor
products of cubic polynomials.

In [6], we explain why the treatment of this cubic polynomial case is the basis for a higher-
order approximation. In the DG discretization, the information exchange over the interior
cell boundaries is restricted to the function values and normal fluxes. At the endpoints of an
interval, the function values and fluxes are determined by four independent parameters, that
correspond with the four degrees of freedom in the cubic polynomial approximation on a cell.
A higher-order approximation can be achieved by additional bubble functions with vanishing
values and derivatives at the cell boundary. In the multi-dimensional case, on a structured
rectangular grid, the same principle holds with tensor-products for approximation.

For the treatment of embedded boundary conditions, we give in Section 2 of this paper
an exposition of the weak forms used for different discretization alternatives. In Section 3,
we start with simple experiments in one and two dimensions to see the differences between
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the various methods. In Section 4, we identify the discrete function spaces in which the
approximate solution is found. In the last section, we solve a convection-dominated equation
on an irregular domain, partitioned into two cells only. We show how well, on this mesh, a
complex problem can be solved with a piecewise cubic approximation.

2. Weak forms for the Poisson equation

2.1. The Lagrange multiplier form for the embedded boundary problem

To apply DG-methods for structured rectangular grids on complicated domains, we are
interested in solving an elliptic second-order problem Lu = f on a fictitious open domain
Ω̂, which is larger than the open domain Ω on which the elliptic BVP is originally defined.
The solution u on Ω is determined by the Dirichlet boundary condition u = u0 on ∂Ω, the
boundary of Ω, and we want to discretize the problem on a fictitious domain Ω̂ ⊃ Ω. For
this purpose we assume that the solution u on Ω allows a sufficiently smooth extension, u,
defined on Ω̂, solving Lu = f . Of course, this excludes certain types of singularities near the
boundary.

For the sake of simplicity, in this initial treatment we assume Ω̂ to be a unit cube and we
consider the Poisson equation with an embedded Dirichlet boundary condition as follows:
let Ω̂ be an open unit cube, with boundary ∂Ω̂, which consists of two non-overlapping open
sub-domains, Ω and Ω̃, such that

Ω̂ = Ω ∪ Ω̃, Ω ∩ Ω̃ = ∅,

where Ω̃ is the fictitious part of the domain Ω̂. We now consider the boundary value prob-
lem consisting of the Poisson equation defined on the whole of Ω̂ and Dirichlet boundary
conditions on ∂Ω, the boundary of Ω:

Lu ≡ −∆u = f on Ω̂, u = u0 on ΓD = ∂Ω, (2.1)

under the assumption that the solution u on Ω has a sufficiently smooth extension to Ω̃,
satisfying the Poisson equation on the whole of Ω̂.

Ω̃

Ω

∂Ω̂

∂Ω

∂Ω

Figure 1. The domain of interest Ω and the fictitious part Ω̃ make the domain Ω̂ = Ω ∪ Ω̃.

To arrive at the corresponding weak formulation of the Poisson equation with an ‘em-
bedded’ Dirichlet boundary condition, we multiply the left- and right-hand sides of (2.1) by

a sufficiently smooth function v, and integrate over the domain Ω̂, to get: find u ∈ H1(Ω̂)
such that

(∇u,∇v)bΩ − 〈n · ∇u, v〉∂bΩ = (f, v)bΩ ∀v ∈ H1(Ω̂) (2.2)
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under the constraint that u = u0 on ∂Ω. By the Lagrange multiplier theorem, the following
formulation is equivalent to (2.2): find u ∈ H1(Ω̂) and p ∈ H−1/2(∂Ω) such that

(∇u,∇v)bΩ − 〈n · ∇u, v〉∂bΩ + 〈p, v〉∂Ω = (f, v)bΩ, ∀v ∈ H1(Ω̂),

〈q, u〉∂Ω = 〈q, u0〉∂Ω , ∀q ∈ H−1/2(∂Ω).
(2.3)

We call this the Lagrange multiplier form of the embedded boundary problem. We see
that if u satisfies the Poisson equation (2.1) and the embedded Dirichlet boundary condition,
the Lagrange multiplier p in (2.3) vanishes.

2.2. The weak form for boundaries along gridlines

In the classical case that Ω̃ = ∅, we can combine the boundary terms in (2.3) to obtain

(∇u,∇v)bΩ − 〈p, v〉∂bΩ = (f, v)bΩ ∀v ∈ H1(Ω̂),

〈q, u〉∂Ω = 〈q, u0〉∂Ω ∀q ∈ H−1/2(∂Ω),

with p = n · ∇u− p on ∂Ω = ∂Ω̂.
This leads to a hybrid form of (2.1) with Dirichlet BCs: find u ∈ H1(Ω̂) and p ∈

H−1/2(∂Ω) such that

(∇u,∇v)bΩ − 〈p, v〉∂bΩ − 〈q, u〉∂Ω = (f, v)bΩ − 〈q, u0〉∂Ω ∀v ∈ H1(Ω̂), q ∈ H−1/2(∂Ω). (2.4)

When u satisfies (2.1) we have p = n ·∇u, the normal flux at the boundary ∂Ω̂. Substituting
this value for p and replacing similarly the weighting function q by q = −σn · ∇v, with
σ = 1 or σ = −1, we obtain the weak form used in DG-methods (viz., Baumann’s and the
symmetric DG-method respectively). Other DG-methods (viz., IPG, NIPG) are obtained
by taking q = −σn · ∇v − µv with parameters σ and µ. Thus, our DG weak form reads:
find u ∈ H1(Ω̂) such that

(∇u,∇v)bΩ−〈n · ∇u, v〉∂bΩ+σ 〈n · ∇v, u〉∂Ω = (f, v)bΩ+σ 〈n · ∇v, u0〉∂Ω , ∀v ∈ H1(Ω̂). (2.5)

2.3. The hybrid and the DG-form for the embedded boundary problem

Not only the Lagrange multiplier form (2.3) can be used for the embedded boundary problem,

we can also apply (2.4) or (2.5). In the case Ω̃ 6= ∅, form (2.4) reads: find u ∈ H1(Ω̂) and

p ∈ H−1/2(∂Ω̂) such that

(∇u,∇v)bΩ −〈p, v〉∂bΩ − 〈q, u〉∂Ω = (f, v)bΩ − 〈q, u0〉∂Ω ∀v ∈ H1(Ω̂), q ∈ H−1/2(∂Ω), (2.6)

which we call the hybrid form of the interior boundary problem. In the case Ω̃ 6= ∅, equation
(2.5) is written: find u ∈ H1(Ω̂) such that

(∇u,∇v)bΩ−〈n · ∇u, v〉∂bΩ +σ 〈n · ∇v, u〉∂Ω = (f, v)bΩ +σ 〈n · ∇v, u0〉∂Ω ∀v ∈ H1(Ω̂), (2.7)

which we call the DG-form (the Baumann-Oden weak form if σ = 1 or the symmetric form
if σ = −1) of the interior boundary problem. Note that this symmetric weak form is no

longer symmetric if Ω 6= Ω̂.
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3. Numerical experiments in one and two dimensions

3.1. Numerical experiments on one-dimensional problems

To see the difference in practice, we first study the three weak forms (2.3), (2.6) and (2.7) for

a simple one-dimensional problem. On the unit interval Ω̂ = (0, 1) we consider the Poisson
equation with homogeneous Dirichlet boundary conditions:

−d2u

dx2
= f, on Ω̂, with u(d) = 0, u(1) = 0, (3.1)

where d ∈ [0, 1) and Ω = (d, 1). To discretize this problem, we take for test and trial spaces

the (p + 1)-dimensional space Sh(Ω̂) = P p(Ω̂) ⊂ H1(Ω̂), i.e., the space of polynomials of
degree 6 p. We write for the approximate solution

uh =
∑

06i6p

ciφi(x), φi(x) ∈ Sh(Ω̂).

Further, we provide the boundary spaces Qh(∂Ω̂) ⊂ H−1/2(∂Ω̂) and Qh(∂Ω) ⊂ H−1/2(∂Ω),

with the trace of polynomials on the boundary, hence Qh(∂Ω̂) = {ψ0(x) = (1 − x)|x=(0,1),
ψ1(x) = x|x=(0,1))} and Qh(∂Ω) = {ψ0(x) = x−1

d−1
|x=(d,1), ψ1(x) = x−d

1−d
|x=(d,1))}, d ∈ [0, 1).

Then we write for the approximation of the Lagrange multiplier

ph =
∑

06i61

aiψi(x)|x=0,d,1.

Because of the 1-D character of this example, the boundary values are parameterized by
only two values for both ∂Ω̂ and ∂Ω. Given the approximating spaces, the three forms (2.3),
(2.6) and (2.7) become:

(i) in the case of the Lagrange multiplier formulation: find uh ∈ Sh(Ω̂), ph ∈ Qh(∂Ω̂) such
that

1∫

0

u′hv
′
hdx− [u′h(1)vh(1)− u′h(0)vh(0)] + [ph(1)vh(1)− ph(d)vh(d)]

+ [qh(1)uh(1)− qh(d)uh(d)] =

1∫

0

vhfdx ∀vh ∈ Sh(Ω̂), qh ∈ Qh(∂Ω̂);

(3.2)

(ii) in the case of the hybrid form: find uh ∈ Sh(Ω̂), ph ∈ Qh(∂Ω) such that

1∫

0

u′hv
′
hdx− [ph(1)vh(1)− ph(0)vh(0)]− [qh(1)uh(1)− qh(d)uh(d)]

=

1∫

0

vhfdx, ∀vh ∈ Sh(Ω̂), qh ∈ Qh(∂Ω̂);

(3.3)
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(iii) whereas the DG-formulation reduces to: find uh ∈ Sh(Ω̂) such that

1∫

0

u′hv
′
hdx− [u′h(1)vh(1)− u′h(0)vh(0)] + σ [v′h(1)uh(1)− v′h(d)uh(d)]

=

1∫

0

vhfdx ∀vh ∈ Sh(Ω̂).

(3.4)

As a first experiment, we check if the three discrete forms (3.2), (3.3) and (3.4) will lead
to the exact solution, when we choose f(x) = x in (3.1) and d = 1/2, and if we take

Sh(Ω̂) = P 3(Ω̂). The result is shown in Fig. 2. It appears that all three formulations
compute the exact solution.
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x

Figure 2. The solution u(x) = − 1
6x3 + 7

24x− 1
8 computed by the hybrid, Lagrange and symmetric Baumann

methods, σ = ±1

The computed Lagrange multipliers for the hybrid and Lagrange formulation are shown
in Table 1. We see that in the case of the hybrid formulation, the Lagrange multipliers
correspond with the fluxes at the boundaries, i.e., ph(0) = du

dn
(0) and ph(1) = du

dn
(1), whereas

for the Lagrange formulation the Lagrange multipliers vanish.

Table 1. The values of the Lagrange multipliers of the hybrid and Lagrange methods for the solution as in
Fig. 2

Lagrange method (3.2) ph(d) = 0 ph(1) = 0
hybrid method (3.3) ph(0) = −5/25 ph(1) = −7/24

Next we check if we can solve (2.1) for an arbitrary location d ∈ [0, 1) of the interior
Dirichlet boundary condition. Now we see that the dependencies on d and σ differ for the
three methods. In the case of the symmetric- or Baumann-Oden method, we have to solve
a full (p + 1) × (p + 1) linear system Lσ,d uh = fh, where the matrix depends on both the
method parameter σ and the interior boundary location d.
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In contrast, if we consider the coefficients of the linear system arising from the hybrid
and the Lagrange methods, we observe the following block-partitioning:

Ld uh =

(
A B
C 0

)
uh = fh,

where, for the Lagrange method, A ∼= ∫ 1

0
u′hv

′
hdx− [u′h(1, 0)vh(1, 0)] is the (p + 1)× (p + 1)

leading submatrix, and B ∼= [ph(d, 1)vh(d, 1)] and C ∼= [qh(d, 1)uh(d, 1)] have, respectively,
dimensions (p + 1)× 2 and 2× (p + 1). The dependence on d is reflected in the elements of
B and C.

On the other hand, in the case of the hybrid-method, we have a (p + 1)× (p + 1) leading

submatrix A ∼= ∫ 1

0
u′hv

′
hdx. Now the (p+1)×2 submatrix B ∼= [ph(0, 1)vh(0, 1)] is independent

of d. The dependence on d is only reflected in the 2× (p + 1) matrix C ∼= [qh(d, 1)uh(d, 1)].

Thus, we check if there are locations d ∈ [0, 1) in which any of the three methods may
become singular. The results are shown in Table 2. We see that both the Lagrange and the
symmetric Baumann methods have interior boundary locations where the methods become
singular. The number of points where a singularity appears increases with the degree of
polynomial. The hybrid method, however, shows no singular points. This motivates us to
continue mainly with the hybrid method for the two-dimensional numerical experiments.

Table 2. Values of d for which the discrete system becomes singular.

p The Lagrange method The symmetric Baumann method
2 1/3 − − − −
3 2/5− 1/10

√
6 2/5 + 1/10

√
6 − 2/5 −

4 0.08858795951 0.4094668644 0.7876594618 3/7− 1/7
√

2 3/7 + 1/7
√

2

The discretizations are made for Sh(Ω̂) = P p(0, 1), p = 2, 3, 4.

3.2. Numerical experiments for the hybrid method on two-dimensional problems

Having studied the one-dimensional discretization for various weak formulations with an em-
bedded Dirichlet boundary condition, we now consider the two-dimensional Poisson equation
on the unit square Ω̂ as in (2.1) with an embedded Dirichlet boundary condition on a line
parallel to the diagonal. For this line we use the following parametrization (see Fig. 3):

{
x(s) = 1− d/

√
2 + s,

y(s) = 1− d/
√

2− s,
with

{ |s| < d/
√

2 if 0 6 d 6 1/
√

2,

|s| < 1− d/
√

2 if 1/
√

2 < d <
√

2.

Approximation with piecewise quadratics. To discretize the hybrid formulation, we
first introduce the quadratic polynomial basis on the unit interval

P 2([0, 1]) = Span{1− t, t, t(1− t)}.
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d

d

Figure 3. The domain Ω and its parametrization

We provide the test and trial function spaces with the 9-dimensional subspace Sh(Ω̂) =

P 2×2(Ω̂) = P 2(x) ⊗ P 2(y) ⊂ H1(Ω̂), i.e., the tensor product set of polynomials of degree
6 2 in the two coordinate directions. Since we know that the Lagrange multiplier of the
hybrid method corresponds with the flux p = n · ∇u on the boundary ∂Ω̂, we choose to
discretize the Lagrange multiplier as ph = nxψx(x, y)|∂bΩ + nyψy(x, y)|∂bΩ, with ψ ∈ P 2×2(Ω̂)

which defines the polynomial subspace Qh(∂Ω̂) ⊂ H−1/2(∂Ω̂) and also Qh(∂Ω) ⊂ H−1/2(∂Ω)
by ph|∂Ω = nxψx(x, y)|∂Ω + nyψy(x, y)|∂Ω. Then the discrete formulation of the hybrid form

is: find uh ∈ Sh(Ω̂), ph ∈ Qh(∂Ω̂) such that

〈∇uh,∇vh〉Sh(bΩ) − 〈ph, vh〉Qh(∂bΩ) = 〈f, vh〉Sh(bΩ) ∀vh ∈ Sh(Ω̂),

〈qh, uh〉Qh(∂Ω) = 〈q, u0〉Qh(∂Ω) ∀q ∈ Qh(∂Ω),
(3.5)

where the approximations are given by (9 degrees of freedom describe the polynomial in the
interior)

uh(x, y) =
∑

06i68

ciφi(x, y), φi ∈ Sh(Ω̂), (x, y) ∈ Ω̂, (3.6)

and (note that 8 degrees of freedom describe the quadratic polynomials at the 4 boundaries)

ph(x, y) =
∑

06i67

ai

[
nxψx,i(x, y)|∂bΩ + nyψy,i(x, y)|∂bΩ

]
,

ψx,i|∂bΩ, ψy,i|∂bΩ ∈ Qh(∂Ω̂), (x, y) ∈ ∂Ω̂.

(3.7)

The result is a 17 × 17 linear system depending on the diagonal distance of the embedded
Dirichlet boundary to the origin. It is obvious that all methods will become ill-conditioned
for values of d close to

√
2, when the region Ω vanishes. In order to see how the singularity

develops for the hybrid method (2.6), we plot the 17 singular values as a function of the
diagonal distance d. The result is shown in Fig. 4. We see that, as in the one-dimensional
experiment, also for this experiment, there are no values of d for which the discretization
matrix becomes singular. Furthermore, the method is not ill-conditioned for values of d even
larger than one.
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Figure 4. Singular values σi, 1 6 i 6 17 as a function of the diagonal distance 0 6 d <
√

2 for the
third-order discretization of the hybrid method

Approximation with piecewise cubics. Next we want to study the stability of a higher-
order discretization of the hybrid method (2.6) for the same two-dimensional model problem.
To this end, we consider on the unit interval the cubic polynomial basis

P 3([0, 1]) = {1− t, t, t(1− t)2, t2(1− t) }, (3.8)

and we choose for the test- and trial function spaces the 16-dimensional subspace Sh(Ω̂) =

P 3×3(Ω̂) = P 3(x) ⊗ P 3(y) ⊂ H1(Ω̂), i.e., the tensor product polynomials of a degree less

than four in the two coordinate directions. We choose the polynomial subspaces Qh(∂Ω̂) =

γ∂bΩ
1 (Sh(Ω̂)) ⊂ H−1/2(∂Ω̂) and Qh(∂Ω) = γ∂Ω

1 (Sh(Ω̂)) ⊂ H−1/2(∂Ω). The choice of the basis
functions in Qh(∂Ω) will be explained in the next section, where we study the general case
with a curved boundary.

As explained in Section 4, using (3.5) and (3.6), we obtain a 28 × 28 system depending
on the diagonal distance d of the interior Dirichlet boundary to the origin. For this hybrid
discretization, the 28 singular values as a function of d are shown in Fig. 5. Generally, we
observe the same behavior as for the quadratic polynomials.
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Figure 5. Singular values σi, 1 6 i 6 28 as a function of the diagonal distance 0 6 d <
√

2 for the
fourth-order discretization of the hybrid method
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4. Weak forms for embedded boundary conditions

4.1. The boundary condition on a curved embedded boundary

In this section, we study the stability and accuracy of the fourth-order hybrid discretization
of the Poisson equation on the unit square, with a part of the circular boundary embedded.
So, we solve the equation

−∆u = f on Ω̂ with u = u0 on ΓD = ∂Ω (4.1)

on the unit square from which a circle sector has been removed: i.e., Ω̂ is the unit square
and Γint ⊂ ∂Ω, with Ω ⊂ Ω̂, is the circular curve

Γint =
{
(x, y) | x2 + y2 = R2 < 1, x > 0, y > 0

}
,

and the fictitious part is

Ω̃ =
{
(x, y) | x > 0, y > 0, x2 + y2 < R2

}
.

The corresponding discrete hybrid formulation reads: find uh ∈ Sh(Ω̂), χh ∈ Qh(Ω̂) such
that

(∇uh,∇vh)bΩ −
〈
γ
bΩ
1 (χh), γ

bΩ
0 (vh)

〉
∂bΩ

= (f, vh)bΩ , ∀vh ∈ Sh(Ω̂),
〈
γΩ

1 (qh), γ
Ω
0 (uh)

〉
∂Ω

=
〈
γΩ

1 (qh), u0

〉
∂Ω

, ∀qh ∈ Qh(Ω̂),
(4.2)

where Sh(Ω̂) ⊂ H1(Ω̂) and Qh(Ω̂) ⊂ H1(Ω̂) are the proper finite dimensional polynomial

subspaces, and γΩ
0 , γΩ

1 and γ
bΩ
0 , γ

bΩ
1 are the usual trace operators on ∂Ω and ∂Ω̂, respectively.

To provide these subspaces with a basis, we choose the cubic polynomials and consider the
following polynomial basis on the unit interval:

φ1 = 1− t, φ2 = (1− t)2t, φ4 = t, φ3 = (1− t)t2. (4.3)

We recognize that φ1(t) and φ4(t) are associated with the function values at t = 0, 1, re-
spectively, while φ2(t) and φ3(t) can be associated with the corrections for the derivatives
at t = 0, 1. These facts help us to understand the structure behind different polynomial
subspaces that are constructed below.

First we choose for the test and trial function spaces a 16-dimensional subspace, i.e.,
Sh(Ω̂) = P 3×3(Ω̂) = P 3(x) ⊗ P 3(y) ⊂ H1(Ω̂), the usual tensor product of polynomials of a

degree less than four in the two coordinate directions. Hence, on the unit square Ω̂ we get
the approximation uh ∈ Sh(Ω̂)

uh =
∑

16i,j64

ci,jφi(y)φj(x) .

Next we consider the usual trace operators, γ
bΩ
0 : H1(Ω̂) → H1/2(∂Ω̂) and γΩ

0 : H1(Ω̂) →
H1/2(∂Ω) applied to the boundary of Ω̂ and Ω respectively, and, similarly, γ

bΩ
1 : H1(Ω̂) →

H−1/2(∂Ω̂) and γΩ
1 : H1(Ω̂) → H−1/2(∂Ω) the traces for the normal derivatives. We see

that the approximating space of tensor product cubics, Sh(Ω̂) ⊂ H1(Ω̂), is a 16-dimensional

subspace. The trace of this space on ∂Ω̂, the space γ
bΩ
0 (Sh(Ω̂)), however, is 12-dimensional,

because the trace consists of independent cubics on the four edges, related by four continuity
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conditions at the vertices. Choosing the polynomial basis (4.3), in Sh(Ω̂) the basis for

γ
bΩ
0 (Sh(Ω̂)) can readily be found as a subset of the tensor product of the basis functions (4.3),

by splitting Sh(Ω̂) into two linearly independent subspaces:

Sh(Ω̂) = Q̃h(Ω̂)⊕ K̃h(Ω̂) ,

with
K̃h(Ω̂) = ker(γ

bΩ
0 ) ∩ Sh(Ω̂) = Span

(
φi(x)φj(y) | i, j = 2, 3

)

and

Q̃h(Ω̂) = Span (φ1(x)φj(y), φ4(x)φj(y), φi(x)φ1(y), φi(x)φ4(y); i, j = 1, 2, 3, 4) .

For the approximating space for γ
bΩ
0 (H1(Ω̂)) we take

Q∗
h(∂Ω̂) = γ

bΩ
0 (Sh(Ω̂)) = γ

bΩ
0 (Q̃h(Ω̂)) ⊂ H1/2(∂Ω̂).

Similarly, we introduce the approximation space for the traces on ∂Ω as

Q∗
h(∂Ω) = γΩ

0 (Q̃h(Ω̂)) ⊂ H1/2(∂Ω) .

On the other hand, for the approximation of the trace of the normal derivatives we split

the space Sh(Ω̂) as

Sh(Ω̂) = Qh(Ω̂)⊕Kh(Ω̂)

with

Kh(Ω̂) = ker(γ
bΩ
1 ) ∩ Sh(Ω̂) = Span

(
ψi(x)ψj(y) | i, j = 1, 4

)
with ψk = φk − φ3 − φ2,

and

Qh(Ω̂) = Span (φ2(x)φj(y), φ3(x)φj(y), φi(x)φ2(y), φi(x)φ3(y), i, j = 1, 2, 3, 4) .

We see that Qh(Ω̂) is 12-dimensional and Kh(Ω̂) is 4-dimensional. The normal derivatives

on the four edges of Ω̂ are all approximated by cubic polynomials related by the condition
that at the vertices 1

∂x
(∂uh

∂y
) = 1

∂y
(∂uh

∂x
). So we find the approximating space for the normal

derivatives at the boundary of Ω̂, viz.,

Qh(∂Ω̂) = γ
bΩ
1 (Sh(Ω̂)) = γ

bΩ
1 ( Qh(Ω̂)) ⊂ H−1/2(∂Ω̂)

and at the boundary of Ω as

Qh(∂Ω) = γΩ
1 ( Qh(Ω̂)) ⊂ H−1/2(∂Ω) .

Considering the Lagrange multiplier function p ∈ H−1/2(∂Ω̂) in (2.6), we know that if u
satisfies the Poisson equation (4.1) and also the Dirichlet boundary condition, the Lagrange

multiplier p on ∂Ω̂ represents the normal flux n · ∇u at the boundary ∂Ω̂, i.e., p = n · ∇u.
Thus, in the discrete hybrid formulation (4.2), we write for the Lagrange multiplier ph =
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n · ∇χh on ∂Ω̂, where n is the unit outward normal vector and χh ∈ Qh(Ω̂) is the master
flux function given by

χh =
∑

16i,j64

ai,jφi(x)φj(y) with ai,j = 0, i, j = 1, 4 .

So we recognize the discrete hybrid formulation (4.2): find uh ∈ Sh(Ω̂), χh ∈ Qh(Ω̂) such
that

(∇uh,∇vh)bΩ −
〈
γ
bΩ
1 (χh), γ

bΩ
0 (vh)

〉
∂bΩ

= (f, vh)bΩ ∀vh ∈ Sh(Ω̂),
〈
γΩ

1 (qh), γ
Ω
0 (uh)

〉
∂Ω

=
〈
γΩ

1 (qh), u0

〉
∂Ω

∀qh ∈ Qh(Ω̂),

as a (16 + 12)× (16 + 12) linear system.

To study the stability of this hybrid formulation, we plot the singular values of the
discrete 28× 28 system as a function of the circle radius, 0 < R 6

√
2. The result is shown

in Fig. 6. In this figure we see 28 singular values as a function of the circle radius, R. The
discrete formulation is sufficiently stable up to circle radii of R ≈ 1.1. In this case, more
than 80% of the total domain Ω̂ consists of the fictitious domain Ω̃. The reason for the cusps
in the figure near R = 0.4 and R = 0.9 is unknown.

Next, we check how the cubic approximation will be solved for the exact solution by
taking in (4.1) the right-hand side and the boundary conditions such that the solution is
given by u = x3 +y3 +xy. The solution and the error for two possible domains (R = 2/5 and
R = 4/5) are shown in the Figs. 7 and 8. We see that the hybrid formulation finds the exact
solution on the domain Ω, except for the rounding errors corresponding to the condition of
the linear system.

To check the approximation behavior of the method we repeat the experiment for the
solution u(x, y) = ex+y in (4.1). The solution and the error for both domains (R = 2/5 and
R = 4/5) are shown in the Figs. 9 and 10.
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Figure 6. Singular values as a function of the embedded circle bow radius for the fourth-order hybrid
discretization. On the fictitious part of the domain, the solution and the error are set equal to zero
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Solution on domain of interest

0

0.2

0.4

0.6

0.8

1

x

0

0.2

0.4

0.6

0.8

1

y

0

0.5

1

1.5

2

2.5

3

Error on domain of interest

0

0.2

0.4

0.6

0.8

1

x

0

0.2

0.4

0.6

0.8

1

y

–6e–09

–4e–09

–2e–09

0

2e–09

4e–09

6e–09

8e–09

1e–08

Figure 7. The solution u = x3 + y3 + xy and the error on the domain Ω of the fourth-order hybrid
discretization (R = 2/5)
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Figure 8. The solution u = x3 + y3 + xy and the error on the domain Ω of the fourth-order hybrid
discretization (R = 4/5)
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Figure 9. The solution u = ex+y and the error on the domain Ω of the fourth-order hybrid discretization
(R = 2/5)
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Solution on domain of interest
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Figure 10. The solution u = ex+y and the error on the domain Ω of the fourth-order hybrid discretization
(R = 4/5)

4.2. The combination of the hybrid and the discontinuous Galerkin formulation

In the previous sections we have seen that the hybrid form is stable on a cell with an
embedded Dirichlet boundary condition, whereas the discontinuous Galerkin method is not
always stable. On the other hand, the discontinuous Galerkin method is cheaper, because
the Lagrange multiplier has been eliminated and hence less degrees of freedom are involved.
So, to reduce computational costs, if we consider a large regular rectangular grid on which,
locally, there exist cells with embedded Dirichlet boundary conditions, it is natural to treat
these cells with the hybrid method for stability, while the ‘normal’ rectangular cells are
treated with the DG-Galerkin discretization.

To study such a method, we consider two adjacent rectangular cells Ω̂1 and Ω̂2, where
only Ω̂1 has an embedded Dirichlet boundary condition. The cells have a common interface
Γ1,2. Because the cell Ω̂1 has an embedded boundary condition, we treat this cell with a

hybrid discretization. The cell Ω̂2 is discretized by the DG discretization. So, on the cell Ω̂1

we have∫

bΩ1

∇uh · ∇uhdx−
∫

Γ1,2

(n1,2 · ∇χh)vhds−
∫

∂bΩ1\Γ1,2

(n · ∇χh)vhds−
∫

Γ1,2

(n1,2 · ∇qh)uhds

−
∫

∂Ω1\Γ1,2

(n · ∇qh)uhds =

∫

bΩ1

fvhdx−
∫

∂Ω1\Γ1,2

n · ∇qhu0ds,

(4.4)

where n is the unit normal on the interface Γ1,2 pointing from the cell Ω̂1 towards the

cell Ω̂2. On the other hand, on the cell Ω̂2 we consider (for simplicity) the symmetric DG
discretization. Hence∫

bΩ2

∇uh · ∇uhdx−
∫

Γ1,2

(n · ∇uh)vh ds−
∫

∂bΩ2\Γ1,2

(n · ∇uh)vh ds−
∫

Γ2,1

(n · ∇vh)uh ds

−
∫

∂bΩ2\Γ1,2

(n · ∇vh)uh ds =

∫

bΩ2

fvdx−
∫

∂bΩ2\Γ1,2

(n · ∇vh)u0 ds.

(4.5)

Now we have to couple the two cells at the interface Γ1,2. Therefore, we have to satisfy
the locality, consistency, and conservation conditions, as discussed in [1]. To meet these
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conditions, we define the average fluxes across the interface by

〈
∇̃uh

〉
=

1

2
(∇χh|∂bΩ1

+∇uh|∂Ω2) and
〈
∇̃vh

〉
=

1

2
(∇qh|∂bΩ1

+∇vh|∂Ω2),

and the jumps by
[uh] = uh|∂bΩ1

n1,2 + uh|∂bΩ2
n2,1.

Then, combining (4.4) and (4.5), together with the flux and jump relations, we arrive at the
form

∫

bΩ1∪bΩ2

∇uh · ∇vhdx−
∫

Γ1,2

〈
∇̃uh

〉
· [vh] ds−

∫

Γ1,2

〈
∇̃vh

〉
· [uh] ds−

∫

∂bΩ1\Γ1,2

(n · ∇χh)vhds

−
∫

∂bΩ2\Γ1,2

(n · ∇uh)vhds−
∫

∂Ω1\Γ1,2

(n · ∇qh)uhds−
∫

∂bΩ2\Γ1,2

(n · ∇vh)uhds

=

∫

bΩ1∪bΩ2

fvhdx−
∫

∂Ω1\Γ1,2

(n · ∇qh)u0ds−
∫

∂bΩ2\Γ1,2

(n · ∇vh)u0ds.

This weak form can immediately be used for discretization as described above. The
solution and the error of such a combined discretization with cubic polynomials is shown in
Fig. 11.
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Figure 11. The approximate solution u = x + y of ∆u = 0, and the error on the domain Ω1 ∪ Ω̂2 for
a fourth-order combined hybrid-symmetric DG discretization with an embedded circle segment Dirichlet
boundary condition (R = 3/4)

4.3. An embedded boundary for the convection equation

Having studied the discretization of the Poisson equation, we now consider the convection
equation with an interior Dirichlet boundary condition

b · ∇u = f in Ω̂, u = u0 on ∂Ωin,

where b is a constant vector denoting the direction of the convection and ∂Ωin is the inflow
boundary of Ω such that the boundary of Ω is ∂Ω = ∂Ωin ∪ ∂Ωout. The inflow and outflow
boundaries are defined by b ·n < 0 on ∂Ωin and b ·n > 0 on ∂Ωout, respectively. Considering
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the boundary of the whole domain ∂Ω̂, we also split this boundary in an upwind and down-
wind boundary such that ∂Ω̂ = ∂Ω̂in ∪ ∂Ω̂out. Then, according to the Lagrange multiplier
theorem, we arrive, for the boundary value problem, at the following weak formulation:
find u ∈ H1(Ω̂) and χ ∈ H1/2(∂Ω̂in) such that

−
∫

bΩ

∇v · bu dx +

∫

∂bΩin

n · b χv ds +

∫

∂bΩout

n · b uv ds +

∫

∂Ωin

n · b qu ds

=

∫

bΩ

fv dx +

∫

∂Ωin

n · b qu0 ds ∀v ∈ H1(Ω̂), ∀q ∈ H1/2(∂Ωin),

(4.6)

in which we assume that u on the fictitious domain Ω̃ satisfies the differential equation and
is the continuation of the solution u on the domain Ω. Fig. 12 shows the solution and the
error if (4.6) is used as the starting point for the discretization with cubic polynomials, as
discussed above.
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Figure 12. The approximate solution u = 1 of the convection equation b · ∇u = 0 and the error on the
domain Ω for the fourth-order hybrid discretization with an embedded circle segment Dirichlet boundary
condition (R = 8/10)

4.4. Two adjacent cells with a common interior embedded boundary condition

In this section, we study the finite element discretization of the convection diffusion equation

−ε∆u + b · ∇u = 0 , (4.7)

discretized on two adjacent cells Ω̂1 and Ω̂2, with vertices (−1, 0), (0, 0), (0, 1), (−1, 1)
and (0, 0), (1, 0), (1, 1), (0, 1), respectively. The embedded Dirichlet boundary condition is
given on the half circle x2 + y2 = R2, 0 6 y 6 1, so that the domain of interest is given by

Ω = (Ω̂1 ∪ Ω̂2) \
{
(x, y) | x2 + y2 < R2

}
.

We first consider the diffusion part of the equation. Then the weak hybrid formulation
of the problem reads: find u ∈ H1(Ω̂h) and p ∈ H−1/2(∂Ω̂ ∪ Γ̂int) such that:

(∇u,∇v)bΩh
− 〈p, v〉∂bΩ − 〈p,n · [v]〉bΓint

− 〈q, u〉∂Ω − 〈q,n · [u]〉Γint

= (f, v)bΩh
− 〈q, u0〉∂Ω ∀v ∈ H1(Ω̂h), q ∈ H−1/2(∂Ω ∪ Γint),

(4.8)
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where H1(Ω̂h) is the broken Sobolev space on Ω̂1 ∪ Ω̂2 and the common interface is given by

Γ̂int = Ω̂1 ∩ Ω̂2, and n is the normal vector. The interface Γint, not including the fictitious
part, is defined by Γint = Ω1 ∩ Ω2. Recognizing in p|bΓint

a normal flux on the common

interface Γ̂int, we define the trace operators, γ̃
bΩ
1 : H1(Ω̂) ∩ C1(Ω̂) → H−1/2(∂Ω̂ ∪ Γ̂int) and

γ̃Ω
1 : H1(Ω̂) ∩ C1(Ω̂) → H−1/2(∂Ω ∪ Γint). In order to approximate the normal derivatives

on ∂Ω̂ ∪ Γ̂int, we proceed as in Section 4.1 and introduce the polynomial subspace Sh(Ω̂) ⊂
H1(Ω̂) ∩ C1(Ω̂). We split this space as:

Sh(Ω̂) = Qh(Ω̂)⊕Kh(Ω̂),

with

Kh(Ω̂) = ker(γ̃
bΩ
1 ) ∩ Sh(Ω̂).

Then the discrete version of (4.8) reads: find uh ∈ Sh(Ω̂h) and χh ∈ Qh(Ω̂) such that

(∇uh,∇vh)bΩh
−

〈
γ̃
bΩ
1 (χh), γ0(vh)

〉
∂bΩ
−

〈
γ̃
bΩ
1 (χh), [vh]

〉
bΓint

− 〈
γ̃Ω

1 (qh), γ0(uh)
〉

∂Ω
− 〈

γ̃Ω
1 (qh), [uh]

〉
Γint

= (f, vh)bΩh
− 〈

γ̃Ω
1 (qh), u0

〉
∂Ω

∀vh ∈ Sh(Ω̂h), qh ∈ Qh(Ω̂).

(4.9)

(Note the polynomial spaces used!). For the polynomial space Sh(Ω̂h) we can take the
usual space of piecewise cubic polynomials in each coordinate direction on the partitioning
Ω̂1 ∪ Ω̂2. On the other hand, it is not trivial to find a cubic polynomial space for Qh(Ω̂) ⊂
H1(Ω̂) ∩ C1(Ω̂). As we do not want to make our discretization unnecessarily complicated
and expensive, we eliminate the extra degrees of freedom for χh by identifying them with
∇uh. Similarly, identifying qh and σ∇vh on ∂Ω∪ Γint, we arrive at a discontinuous Galerkin
discretization.

As our first interest is an efficient fourth-order discretization, we expect it to be highly
improbable that instability will occur in the discrete operator, because the one-dimensional
experiment shows only a single pole. Nevertheless, the use of the DG discretization forces
us to monitor for possible singularities. Now the DG version of (4.9) is: find uh ∈ Sh(Ω̂h)
such that

(∇uh,∇vh)bΩh
− 〈∇uh, vh〉∂bΩ − 〈〈∇uh〉 , [vh]〉bΓint

+ σ 〈∇vh, uh〉∂Ω + σ 〈〈∇vh〉 , [u]〉Γint

= (f, vh)bΩh
+ σ 〈〈∇vh〉 , u0〉∂Ω ∀v ∈ Sh(Ω̂h)

(4.10)

with the usual choices for the normal flux functions.

Next we consider the convection part of (4.7). So, on the domain Ω̂ we consider the
equation

b · ∇u = f, u = u0 on ∂Ωin.

For simplicity, we set b = (1, 0). Then the embedded boundary is an outflow boundary for

Ω̂1, whereas for Ω̂2 it is an inflow boundary. Hence, we can neglect this embedded boundary
in Ω̂1, whereas in cell the Ω̂2 we must introduce a Lagrange multiplier in order to satisfy the
upwind boundary condition on the circle bow. Hence, we arrive at the following weak form
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for the convection part: find u, χ ∈ H1(Ω̂h) = H1(Ω̂1 ∪ Ω̂2)

−
∫

bΩ

∇v · budx +

∫

∂bΩ1,out

(n · bu)vds +

∫

∂bΩ2,in

(n · bχ)vds +

∫

∂bΩ2,out

(n · bu)vds

+

∫

∂Γint

(n · bq)uds−
∫

Γint

(n · bq)u−ds

=

∫

bΩ

fvdx−
∫

∂bΩ1,in

(n · bu0)vds +

∫

ΓD

(n · bq)u0ds ∀v, q ∈ H1(Ω̂),

(4.11)

where u− = u|∂Ω1 = u|Γint
. If we want to eliminate in (4.11) the extra degrees of freedom,

we set χ = u and q = v.

Solution on domain of interest
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Figure 13. The approximate solution u = x3 + y3 + xy of −∆u + ux = f and the error on the domain
Ω = Ω1 ∪ Ω2 for the fourth-order symmetric DG discretization with an embedded circle Dirichlet boundary
condition (R = 3/4)
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Figure 14. The approximate solution u = ex+y of −∆u+ux = f and the error on the domain Ω1∪Ω2 for the
fourth-order symmetric DG discretization with an embedded circle Dirichlet boundary condition (R = 3/4)

The linear combination of (4.10) and (4.11) gives a discretization of the convection dif-
fusion equation

−∆u + b · ∇u = f in Ω̂, u = u0 on ∂Ω. (4.12)
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Figs. 13 and 14 show the solution and the error of the discretization of (4.12) by means of
(4.10) and (4.11) with tensor-product cubics as an approximation and test spaces.

5. A singularly perturbed PDE on only two cells with a half circle
excluded

In this section, we are interested to solve the following convection diffusion problem (see
Fig. 15). More details about this problem can be found in [5]

Ω̂1 Ω̂2

Γint ΓN

ΓD

ΓD

ΓNΓN

ΓD

Figure 15. The domain for problem (5.1–5.2)

−ε∆u + ux = f on Ω̂ = { (x, y) | − 1 < x < 1, 0 < y < 1} , (5.1)

u = 0 on ∂Ω = { (x, y) | x = −1, 0 < y < 1; − 1 < x < 1, y = 1} ,

u = 1 on ΓD =
{

(x, y) | x2 + y2 = R2, y > 0; R < 1
}

, (5.2)

n · ε∇u = 0 on ΓN = { (x, 0) | R < |x| < 1} ∪ { (1, y) | 0 < y < 1} .

Let Ω̂1 and Ω̂2 be two unit cells with respective vertices (−1, 0), (0, 0), (0, 1), (−1, 1) and

(0, 0), (1, 0), (1, 1), (0, 1) so that Ω̂ = Ω̂1 ∪ Ω̂2. For this problem, we want to study the
symmetric and the Baumann-Oden DG-method.

First we study the diffusion part of (5.1) and replace the homogeneous Neumann bound-
ary condition on ΓN = { (x, y) | x = 0, 0 < y < 1} with the homogeneous Dirichlet bound-
ary condition in order to obtain a problem symmetric around x = 0. Now the corresponding
hybrid formulation (2.6) for (5.1) reads: find u ∈ H1(Ω̂h) and p ∈ H−1/2(∂Ω̂∪ Γ̂int) such that

(∇u,∇v)bΩ − 〈p, v〉∂bΩ − 〈q, u〉∂Ω∪ΓD
− 〈p,n · [v]〉bΓint

− 〈q,n · [u]〉Γint
=

= (f, v)− 〈q, u0〉∂Ω∪ΓD
∀v ∈ H1(Ω̂h), q ∈ H−1/2(∂Ω̂ ∪ Γint).

(5.3)

Here H1(Ω̂h) is a broken Sobolev space on Ω̂1 ∪ Ω̂2 and the jump operator is given by
[v] = n1v|∂bΩ1

+ n2v|∂bΩ2
. Further, Γint = ∂Ω1 ∩ ∂Ω2 is the interior wall on which the true

solution is continuous. However, continuity is not required outside Ω and hence not on all
Γ̃int = Γ̂int ∩ Ω̃.

To arrive at the DG-discretization of (5.3), we take for the test and trial space, Sh(Ω̂) ⊂
H1(Ω̂h), the tensor product of polynomials of degree p < 4 in each of the coordinate directions
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and we write for the approximation

uh =
∑

06e<2

∑
06i,j<4

ce,i,j φe,i(x) φe,j(y) .

In practice, we construct a basis from (4.3).
Next, for the DG discretization, we eliminate the extra equations and degrees of freedom

for the Lagrange multiplier using the fact that p represents the normal flux of u at ∂Ω̂ and
at the internal wall Γ̂int. Thus, replacing p by n · ∇uh on ∂Ω̂ and by 〈n · ∇uh〉 on Γ̂int and

replacing, similarly, q by −σn · ∇v, we get the DG discretization of (5.3): find uh ∈ Sh(Ω̂)
such that

(∇uh,∇vh)bΩ − 〈n · ∇uh, vh〉∂bΩ + σ 〈n · ∇vh, uh〉∂Ω∪ΓD
− 〈〈∇uh〉 , [v]〉bΓint

+ σ 〈〈∇vh〉 , [u]〉Γint
= (f, vh) + σ 〈n · ∇vh, u0〉∂Ω∪ΓD

∀vh ∈ Sh(Ω̂).
(5.4)

Solution on domain of interest
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Figure 16. The approximate solution uh of ∆u = 0 on the domain Ω with symmetric boundary conditions
and fourth-order discretizations with an embedded circle Dirichlet boundary condition (R = 3/10)
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Figure 17. The approximate solution uh of ∆u = 0 on the domain Ω̂ with the boundary conditions (5.2) for
a fourth-order symmetric and Baumann-Oden discontinuous Galerkin discretisation. The embedded circle
Dirichlet boundary condition is located at R = 3/10.
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Fig. 16 shows the solution of the symmetric (σ = −1) and Baumann-Oden (σ = 1)
discretization. We see that both solutions are symmetric, indeed, because of the symmetric
structure of the problem. On the other hand, we recognize the unstable behavior of the
symmetric DG method, which is of a poor quality compared to the solution of the Baumann-
Oden method.

We proceed by considering both methods for the diffusion part of the equation and
boundary conditions as in (5.2). Then the discrete formulation is also given by (5.4), except
that the Dirichlet boundary condition at {(1, y) | 0 < y < 1} is replaced by the homogeneous
Neumann boundary condition n · ∇u = 0. The corresponding solutions of the symmetric
and the Baumann-Oden method are shown in Fig. 17. Now the solutions are not symmetric.
Again, the solution of the symmetric DG-method is poor compared to the solution of the
Baumann-Oden DG method.
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Figure 18. The approximate solution uh of −ε∆u + ux = 0, on the domain exterior of the circle for a
fourth-order Baumann-Oden DG discretization with a Dirichlet boundary condition u0 = 1 on the circle,
(R = 3/10)

Finally, we take the convection part of (5.1). The Lagrange weak formulation of the

convection term for the cell Ω̂2 reads: find u ∈ H1(Ω̂2) and p ∈ H1/2(∂Ωin) such that

− (∇v · b, u)bΩ2
+

∮

∂bΩ2

vn · bu ds + 〈p n · b, v〉∂Ωin
= 0 ∀v ∈ H1(Ω̂2),

〈qn · b, u〉 = 〈qn · b, u0〉 ∀q ∈ H1/2(∂Ωin),

(5.5)
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with b = (1, 0) and u0 = 1 on the embedded circle, ΓD∩∂Ωin, while u0 = u− on the common

interior boundary, Γint ∩ ∂Ωin, with u− being the upwind value of u obtained from Ω̂1.
As for the diffusion term, we can rewrite (5.5) in a hybrid formulation, where the Lagrange

multiplier is computed on ∂Ω̂in– the inflow edge of the domain Ω̂2. Thus, we obtain: find
u ∈ H1(Ω̂2) and p̃ ∈ H1/2(∂Ω̂in) such that

− (∇v · b, u)bΩ2
+

∮

∂bΩ2

vn · bu ds + 〈p̃ n · b, v〉∂bΩin
=0 ∀v ∈ H1(Ω̂2),

〈qn · b, u〉∂Ωin
=〈qn · b, u0〉∂Ωin

∀q ∈ H1/2(∂Ωin).

(5.6)

Next, the second term in (5.6) is split into an integration part over the inflow and a part

over the outflow edge of ∂Ω̂2 so that we can combine the integration of u and p̃ over the
inflow wall ∂Ω̂in. This yields: find u ∈ H1(Ω̂2) and p ∈ H1/2(∂Ω̂in) such that

− (∇v · b, u)bΩ2
+ 〈(p̃ + u) n · b, v〉∂bΩin

+ 〈u n · b, v〉∂bΩout
+ 〈qn · b, u〉∂Ωin

= 〈qn · b, u0〉∂Ωin
∀v ∈ H1(Ω̂2), ∀q ∈ H1/2(∂Ωin).

(5.7)

Writing p = p̃ + u, this is simplified to: find u ∈ H1(Ω̂2) and p ∈ H1/2(∂Ω̂in) such that

− (∇v · b, u)bΩ2
+ 〈p n · b, v〉∂bΩin

+ 〈u n · b, v〉∂bΩout
+ 〈qn · b, u〉∂Ωin

= 〈qn · b, u0〉∂Ωin
∀v ∈ H1(Ω̂2), ∀q ∈ H1/2(∂Ωin).

To eliminate the Lagrange multiplier p, we recognize this function as the value of u at the
boundary ∂Ω̂in. The corresponding equations are eliminated by taking q = σv on ∂Ωin,
yielding the DG-formulation of the convection term: find u ∈ H1(Ω̂2) such that

− (∇v · b, u)bΩ2
+

∮

∂bΩ2

vn · bu ds + σ
〈
v n · b,

(
u− u−

)〉
Γint

+ σ 〈v n · b, u〉ΓD

= σ 〈v n · b, u0〉ΓD
∀v ∈ H1(Ω̂2).

(5.8)

In the cell Ω1, the embedded boundary is an outflow boundary and, therefore, for the convec-
tion part there is no boundary condition. Therefore, we may treat Ω̂1 as a normal convection
DG-cell.

The discretization of problem (5.1) is obtained by combining (5.4), (5.7), and (5.8): find

uh ∈ Sh(Ω̂) such that

(ε∇uh,∇vh)bΩ − 〈n · ε∇uh, vh〉∂bΩ + σ 〈n · ε∇vh, uh〉∂Ω∪ΓD
− 〈〈ε∇uh〉 , [vh]〉bΓint

+ σ 〈〈ε∇vh, [uh]〉〉Γint
− (∇vh · b, uh)bΩ + 〈vhn · b, uh〉∂bΩ1,out

+

∮

∂bΩ2

vhn · buh ds + σ
〈
vhn · b,

(
uh − u−h

)〉
Γint

+ σ 〈vhn · b, uh〉ΓD∩∂Ω2

= σ 〈n · ε∇vh, 1〉ΓD
+ σ 〈vhn · b, 1〉ΓD∩∂Ω2

∀vh ∈ Sh(Ω̂).

(5.9)

Fig. 18 shows the solutions of the fourth-order discretization of (5.9) for R = 3/10, for
different values of ε = 1, 0.1, 0.02, 0.01. We see that in all cases the solution is stable. For
values of ε = O(1) we clearly see the approximation of the boundary condition u0 = 1 on the
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circle bow, while for small values of ε, when the true solution shows a thin boundary layer,
typical effects of the weak boundary requirement show up. Fig. 19 shows the solution for
ε = 1/50. Although it seems that the solution is not able to catch the boundary layer in Ω on
the upwind side of the circle, we clearly see a boundary layer arising in the fictitious part of
the domain if we consider the total Ω̂. Clearly, the cubics are not able to represent the thin
circular boundary layer. Note, in particular, that at x = 0, y < R, there is a discontinuity
in the fictitious part Ω̃. For small values of ε << 1 the boundary layer disappears.

Solution on total domain
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Figure 19. The approximate solution uh for the same problem as in Fig. 18, with ε = 1/50. At the right,
the approximate solution on Ω, the domain of interest. Left, the approximate solution on Ω̂, the whole
domain where the approximation is constructed, including the fictitious part

6. Conclusions

In this paper, we propose a technique for treating second-order elliptic PDEs with complex
Dirichlet boundary conditions in combination with a discontinuous Galerkin discretization.
The aim is to maintain the structured, regular rectangular grid while solving problems with
irregular curved boundary conditions.

The complex domain on which the solution is sought is covered by a fictitious domain
with a structured, regular rectangular grid. An embedded boundary is the transition between
the domain of interest and the fictitious part of the computational domain.

We present and compare several weak forms for the diffusion part of the equation: the
Lagrange multiplier form, the hybrid form, and the DG-form. The hybrid form shows sta-
bility for an arbitrary location of the embedded boundary, whereas for the other forms the
discretization may become unstable for particular locations of the Dirichlet BC. The problem
is studied first for a single cell and then for a couple of adjacent cells, either sharing or not
sharing the embedded boundary. We also describe the treatment of the convection part in
the equation.

As an example, we solve a singularly perturbed boundary value problem on a complex
domain by means of a fourth-order DG-discretization on only two cells. Although, as ex-
pected, it appears to be impossible to accurately represent sharp boundary layers with a
complex structure by means of a few cubic polynomials, the boundary condition treatment
is quite effective in handling such complex situations.



158 P. W. Hemker, W. Hoffmann, and M. H. van Raalte

References

[1] D. N. Arnold, F. Brezzi, B. Cockburn, and D. Marini, Unified analysis of discontinuous Galerkin
methods for elliptic problems, SIAM J. Numer. Anal., (2002), pp. 1749–1779.

[2] R. Cortez and M. Minion, The BLOB projection method for immersed boundary problems, J. Comput.
Phys., 161 (2000), pp. 428–453.

[3] D. Goldstein, R. Handler, and L. Sirovich, Modeling a no-slip flow boundary with an external flow field ,
J. Comp. Phys., 105 (1993), pp. 354–366.

[4] W. Hackbusch, Theorie und Numerik Elliptischer Differentialgleichungen, Teubner Studienbuecher,
1986.

[5] P. W. Hemker, A singularly perturbed model problem for numerical computation, J. Comp. Appl. Math.,
76 (1997), pp. 277–285.

[6] P. W. Hemker, W. Hoffmann, and M. H. van Raalte, Two-level Fourier Analysis of a multigrid Approach
for Discontinuous Galerkin Discretisation, Tech. Rep. MAS-R0206, CWI, Amsterdam, 2002, To appear
in SIAM SISC.

[7] D. W. Hewett, The embedded curved boundary method for orthogonal simulation meshes, J. Comp.
Phys., 138 (1997), pp. 585–616.

[8] D. W. Hewett and C. S. Kueny, The Dielectric Boundary Condition for the Embedded Curved Boundary
(ECB) Method , Tech. Rep. UCRL-JC-129703, Lawrence Livermore Nat. Lab., 1998, presented at the
16th International Conference on the Numerical Simulation of Plasmas, February 1998, Santa Barbara,
CA.

[9] J. Kim, D. Kim, and H. Choi, An immersed-boundary finite-volume method for simulations of flow in
complex geometries, J. Comput. Phys., 171 (2001), pp. 132–150.

[10] C. S. Kueny, Embedded Curved Boundaries and Adaptive Mesh refinement , Tech. Rep. UCRL-JC-
129729, Lawrence Livermore Nat. Lab., 1998.

[11] R. J. LeVeque and Z. Li, The immersed interface method for elliptic equations with discontinuous
coefficients and singular sources, SIAM J. Numer. Anal., 31 (1994), No. 4, pp. 1019–1044.

[12] R. J. LeVeque and Z. Li, Immersed interface methods for Stokes flow with elastic boundaries or surface
tension, SIAM J. Sci. Comput., 18 (1997), No. 3, pp. 709–735.

[13] Z. Li, The Immersed Interface Method - A Numerical Approach for Partial Differential Equations with
Interfaces, Ph.D. thesis, University of Washington, 1994.
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