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Abstract Mathematical scripting languages are commonly used to develop new
tomographic reconstruction algorithms. For large experimental datasets, high perfor-
mance parallel (GPU) implementations are essential, requiring a re-implementation
of the algorithm using a language that is closer to the computing hardware. In this
paper, we introduce a new MATLAB interface to the ASTRA toolbox, a high per-
formance toolbox for building tomographic reconstruction algorithms. By exposing
the ASTRA linear tomography operators through a standard MATLAB matrix syn-
tax, existing and new reconstruction algorithms implemented in MATLAB can now
be applied directly to large experimental datasets. This is achieved by using the Spot
toolbox, which wraps external code for linear operations into MATLAB objects that
can be used as matrices. We provide a series of examples that demonstrate how this
Spot operator can be used in combination with existing algorithms implemented in
MATLAB and how it can be used for rapid development of new algorithms, resulting
in direct applicability to large-scale experimental datasets.
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1 Introduction

Tomography is an imaging technique for reconstructing an object from projections.
In medical imaging, projections can be obtained as X-ray images by CT-scanners.
In the scientific community, many devices and setups are used for tomographic data
acquisition, from electron microscopes to large synchrotron facilities [13, 25]. Hard-
ware advances have pushed the ability to image on smaller scales and at large pixel
densities. Projection images in the order of 4000 by 4000 pixels can now be obtained
routinely [21]. At the same time, many innovative tomography applications are inher-
ently limited in the number of projections that can be acquired, and their associated
noise level.

In recent years, we have seen many advances in reconstruction algorithms for
tomography that incorporate prior knowledge about the scanned object. Examples
can be found in sparse reconstruction techniques and discrete tomography [4, 14,
16, 31, 33, 34]. The benefit of these methods is their ability to produce accurate
reconstructions from limited projection data. To develop such algorithms, high-level
mathematical scripting languages such as MATLAB are commonly used due to the
complex mathematics involved. As a result, the initial implementations may not be
suitable for dealing with large experimental datasets due to the inherent performance
and memory limits of the scripting platform.

Tomography algorithms are usually constructed by combining two linear opera-
tors — forward projection and backprojection — with additional algorithmic steps. For
large-scale datasets, the corresponding matrices are too large to store explicitly. For
this reason, MATLAB implementations based on explicit matrix computations can-
not be used in a straightforward manner. Efficient, parallel (GPU) implementations
are used instead [2, 22]. Although software packages that exploit parallelism are
widespread [10, 24, 29, 30, 36], it is not trivial to use these software implementations
in combination with algorithms written in scripting languages.

The work presented in this paper is based on two popular toolboxes for MATLAB:
the ASTRA toolbox [1, 27, 28] and the Spot toolbox [7]. The ASTRA toolbox is a
MATLAB toolbox for tomographic reconstruction, based on high-performance GPU
primitives. It supports multiple geometries (parallel beam, fan beam, cone beam)
with highly flexible source/detector positioning. The Spot toolbox exposes external
implementations of linear operations through a standard MATLAB matrix interface.

Our key contribution is the introduction of a Spot operator for ASTRA, which we
have named opTomo. We will show how it can be used to easily develop complex
tomography algorithms that are directly applicable to large datasets. Our examples
show that the opTomo operator enables the use of a range of built-in and exter-
nal MATLAB packages for tomography. Additionally, the Spot operator can be used
to develop new algorithms without having to deal with complex implementation
details. The code resembles pseudocode and is therefore easy to understand and
maintain. Moreover, the code is highly generic, since it can still be used with explicit
matrices.

We focus on the MATLAB interface of the ASTRA toolbox rather than the optional
Python interface. MATLAB is commonly used by applied mathematicians who work
on new reconstruction methods, linear solvers and sparse reconstruction. Therefore,
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many MATLAB templates are available of such algorithms which can benefit from
using our opTomo Spot operator.

The paper is structured in six sections. First we give a short introduction to tomog-
raphy in Section 2. In Section 3 we describe the software elements that are used for
implementing the opTomo operator. Several use cases of the opTomo operator are
described in Section 4. To give an idea of the efficiency that is achieved by using
the opTomo operator, performance benchmarks are discussed in Section 5. Finally,
conclusions are drawn in Section 6.

2 Tomography

As an example of the scanning geometry we first introduce the common paral-
lel beam geometry, illustrated in Fig. la. In this setup, the detector consists of an
array of pixels that measure the radiation intensity along parallel lines. Projections
are measured along a range of angles, rotating around the object. The object is
subsequently reconstructed from these projections by a tomographic reconstruction
algorithm.

Until recently, analytical reconstruction methods such as filtered backprojection
(FBP) [35] were used almost exclusively due to their computational efficiency and
accuracy, provided that sufficient data is available. Throughout this paper we will
focus on algebraic reconstruction methods (see, e.g., Chapter 7 of [35] and [3, 12, 15,
17]). These methods are based on a particular discretization of the data in pixels and
involve algebraic equations for the values of the pixels. This approach offers more
flexibility for enforcing constraints on the reconstructed image, in contrast to analyt-
ical methods. In algebraic reconstruction methods, the object is assumed to have a
constant density in each pixel, which is represented in the image by the grey value.
The contribution of an object pixel to a detector pixel measurement is proportional
to its grey value. In many cases, a weight for the pixel is determined from the length

DPi
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(a) geometry (b) model
Fig. 1 Tomography with parallel beam geometry. The left image shows the geometry of a typical parallel

beam scanner. The image on the right shows the corresponding discretization. The object is represented
by an image and a projection is modeled as a linear combination of the pixel values
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(line model) or area of intersection of the beam and the pixel (strip model), but there
are many other options [11, 23, 26, 32]. The strip model is illustrated in Fig. 1b.

This linear relation between object pixels and a detector pixel measurement is
expressed by the ray sum or line projection

N
pi= ) wijxj, ey
j=1

where w;; is the weight assigned to image pixel j and detector pixel i. The full set of
equations leads to the following linear system:

Wx = p. 2)

The object x € RY and the projection data p € RM are represented by vectors. The
sparse matrix W € RM*N referred to as projection matrix or system matrix, holds
the weights of each pixel.

In many applications, the system in Eq. (2) is underdetermined and the projection
matrix does not have full row rank. This results in a challenging ill-posed reconstruc-
tion problem. A basic approach for solving it is by minimizing the residual norm,
which is referred to as projection distance:

minimize |Wx — p|3. 3)
X

If the system is underdetermined, there is no unique solution. Moreover, if
noise is present in the projection data, the system of equations can be inconsistent.
Regularization techniques should be used to alleviate both of these problems.

3 Software implementation

In this section we discuss the implementation of the opTomo operator and introduce
the software tools that are used.

3.1 The ASTRA toolbox

The ASTRA toolbox is an open source software package for tomographic reconstruc-
tion and algorithm design [28]. The toolbox provides tools and building blocks for the
development and implementation of tomographic reconstruction methods. Moreover,
it provides many popular reconstruction algorithms, such as filtered backprojection
(FBP) and several iterative reconstruction methods such as SIRT and CGLS [8, 15].
The toolbox has a MATLAB and Python interface, which give access to the for-
ward and backprojection operations. These operations are based on the model in
Eq. (2). The forward projection generates projections from an image vector, i.e., this
corresponds to multiplying an image vector by the projection matrix W. A backpro-
jection corresponds to multiplication by W, the transpose of the projection operator.
The ASTRA toolbox uses ray-tracing techniques to compute these matrix-vector
products, such that matrices are not stored, but their elements are generated when
needed. High memory usage is avoided in this way; only the reconstruction and the
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projections should fit in memory (and possibly a few copies, depending on the recon-
struction algorithm). The GPU can be used for fast computation of the forward and
backprojection steps, allowing large datasets to be processed in reasonable time.

We will not go into detail about the inner workings of ASTRA’s MATLAB inter-
face, but rather briefly introduce the main ideas to call the GPU backend. In Listing 1,
a utility function is shown for the forward projection algorithm on the GPU through
MATLAB’s mex interface. A few details need to be clarified here. The data MAT-
LAB array represents (a slice of) the object. It can be a phantom image or a (partial)
reconstruction, from which we want to compute projections. The computation of the
projections depends on the particular scanner geometry being used. Therefore, the
proj_geom structure contains details about the beam type (parallel, fan, cone), the
angles at which projections need to be generated and the detector dimensions. The
output consists of a data identifier (used internally in ASTRA) and a MATLAB array
containing the projection data. Similarly, the volume geometry or vol_geom struc-
ture contains details about the dimension of the object, from which projections are
computed. Because the ASTRA toolbox is very flexible in setting up geometries,
many acquisition schemes can be modeled, including circular cone-beam, helical
cone-beam, and laminography setups. More details about the geometries are given
in Appendix B. For further details about the use of and possibilities of the ASTRA
toolbox, we refer the reader to [28].

Listing 1 Utility function for forward projection

1 % forward projection
2 [id, sinogram] = astra.create_sino_cuda (data, proj.-geom,
vol_geom) ;

3.2 The Spot toolbox

For implementing algorithms based on a linear operation, it is very convenient to use
matrix-vector notation, as used in MATLAB, because it is similar to the mathematics
and results in clean and concise code. However, in many use cases it is not practical
to form the matrix corresponding to the linear operation explicitly. As a solution,
the Spot toolbox provides a MATLAB framework that wraps linear operations into
MATLAB objects that act like matrices [7]. The toolbox introduces a new kind of data
type (by using classes), called Spot operators.

A Spot operator for a linear operation A relies on (external) software implementa-
tions of the following operations:

y = Ax, 4
y = ATx. Q)

The matrix operations listed in Table 1 are overloaded for Spot operators and are
based on these basic operations of Egs. (4) and (5). Most MATLAB functions which
would not directly support a Spot operator are overloaded as well. One example is
the sum function. Applying any operation listed in Table 1 to a Spot operator (except
for division), does not produce a matrix, but generates another Spot operator of a
different type. If the Spot operator is applied to a vector, the result will be computed
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Table 1 Operations overloaded by Spot

Matrix operations

ctranspose A plus A+B

divide A\B subsasgn A(sl,s2,..,sn) =B
horzcat [A B] subsref A(sl,s2,..,sn)
minus A-B transpose AL

mldivide A\B uminus —A

mpower AN uplus +A

mrdivide A/B vertcat [A; BI]

mtimes AxB

based on the implementation of Eqs. (4) and (5). All other operations can be derived
from these. For example, if we want to extract rows or columns from a matrix, we
use the parentheses syntax and subscript sets s1 and s to indicate which rows and
columns we want to extract.

Since the matrix elements of a Spot operator A are never stored explicitly, some
operations can be slower than expected. For example, if a vector is multiplied
by the first row of A (using MATLAB notation), vy =A (1, :) x*x, Spot uses the
implementation of Eq. (4) and effectively computes:

1 y = AxX;
=vy();

o
<
I

which takes more time if the first row of A could have been formed explicitly. For
the same reasons, operations that work element-wise are not implemented for Spot
operators, such as element-wise multiplication: B = A. A, or using functions such
as norm (A) . However, in many typical use cases, such operations can be avoided or
if possible can be implemented at a lower level (e.g., in the ASTRA toolbox).

By using the Spot toolbox, MATLAB code that uses matrices can now also be used
with Spot operators that are linked to fast, external implementations of operations
Egs. (4) and (5). So, without modification, the same MATLAB code can be used with
different implementations of the linear operations.

3.3 The ASTRA Spot operator

For the tomography Spot operator, which we refer to as opTomo, we use the forward
and backprojection operations from the ASTRA toolbox as implementations of Egs.
(4) and (5), based on the model in Eq. (2).

In code Listing 2 the construction of an opTomo object is shown, requiring three
arguments:

1. The linear model used to generate W
2. The projection geometry
3. The volume geometry
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These arguments are used to set up the forward and backprojection algorithms of
ASTRA and to allocate data structures. With the creation of this new Spot operator,
we can directly use the matrix operations listed in Table 1. In line 5 of Listing 2 we
compute a forward projection of a sample image. We will now explain the internals
of these operations in greater detail. The matrix multiplication operation mt imes is
overloaded for opSpot (the superclass from which all Spot operators are derived).
Therefore, the image is passed through the mtimes function to the multiply
function of opTomo. We implemented the multiply function which: reshapes the
vector to an image, passes the data to the ASTRA toolbox and calls the forward pro-
jection algorithm. Similarly, the backprojection is called if we use the transpose of
the opTomo operator (also through the multiply function). This typical code flow
is illustrated in Fig. 2 and shows how the components (MATLAB, Spot, opTomo,
ASTRA) are connected.
Listing 2 opTomo operator

1 % Create a tomography Spot operator 'opTomo'

2 W = opTomo('cuda', proj_geom, vol_geom);

3

4 % can be used to create projection data as a vector
5 p = Wxim(:);

6

7 % reconstruction using a Krylov subspace method

s x = lsqr(W,p);

Through the opTomo operator, we expose the forward and backprojection oper-
ations of ASTRA to MATLAB. By choosing the first argument in line 1 of Listing 2
we can choose the model used for the forward and backprojection (to generate W
in Eq. (2)). For the CPU projectors, the models '1inear' [23], '1ine' [32] and

MATLAB
p = Wxx;
1

Spot

% overloaded in superclass
opSpot.mtimes (W, x)

1

opTomo operator

$multiply function contains ASTRA code
% input argument two: 1 — no transpose, 2 — transpose
opTomo.multiply (x,1)

1

ASTRA

% ASTRA code for forward projection

x = reshape (x, vsize);

% store data in C++
astramex_data3d('store', vol_id, x)

[

% run forward projection

astramex_algorithm('iterate', cfg_-fp);
% obtain Matlab array
p = astramex.-data3d('get', sino-id);

Fig. 2 Typical code flow of the opTomo operator
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'strip'[38] are available. If we pass the option 'cuda’, the fast GPU projector is
used, which is based on the Joseph interpolation kernel [23] for the forward projec-
tion and uses a pixel-driven method with linear interpolation for the backprojection
[20]. Note that the backprojector in ASTRA is not exactly equivalent to the trans-
pose of the matrix corresponding to the forward projector. This design was chosen to
greatly improve performance of the backprojector [27]. As a result, the corresponding
matrices of these operators are not fully consistent with Eqgs. (4) and (5). How-
ever, it was shown that an unmatched forward and backprojector can even improve
convergence rates of reconstruction algorithms [19, 37].

Listing 2 illustrates that using the opTomo operator we can compute projection
data by using intuitive syntax similar to Eq. (2). The code in line 8 reconstructs the
ground truth image from its projections. By using opTomo, the code in Listing 2 is
short and stays close to the mathematics, is generic and easy to follow for someone
not familiar with the toolbox.

4 Case studies

In the previous sections we have discussed the motivation and implementation details
of the opTomo Spot operator. In this section we will demonstrate that the opTomo
operator in combination with ASTRA enables the application of MATLAB scripts,
ranging from simple scripts to large external packages, to large experimental datasets.

4.1 Custom SIRT implementation

Our first use case is an implementation of SIRT [15] using opTomo. This example
demonstrates the simplicity of implementing existing or new algorithms based on
their pseudocode. Although SIRT is already implemented in ASTRA, using the code
of the current example can have benefits. For example, if we want to use Tikhonov
regularization with SIRT we can simply do this by concatenating Spot operators.
To see this, note that Tikhonov regularization is based on Eq. (3) with an addi-
tional penalty term A||x ||% on the Euclidean norm of the solution. We can rewrite this

problem as:
w v p
VI 0

The corresponding concatenated matrices and right-hand side can now be used as
input for SIRT to enable Tikhonov regularization.

The pseudocode of SIRT is listed in Algorithm 1. Note that SIRT converges to a
weighted least squares solution [18],

2
(6)

minimize
X

2

x* = argmin |[Wx — p||%e @)
X
where the norm ||u||%e = u” Ru, is scaled by inverse row sums.

We use the notation diag(x) to represent a diagonal matrix with x on its diagonal.
SIRT iteratively refines an image vector x by adding a weighted backprojection of the
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Algorithm 1 SIRT

Input: Projection data p, projection operator W and initial guess x°.

Output: Reconstruction x.
Compute inverse column sums:

=1 wjforj=1,....,N

Compute inverse row sums:
ri = I/Zj-v:lwij fori=1,...,. M

Let C = diag(c) and R = diag(r)

fork=0,1,... do

uk = p— W xk
XK= xk + cwT Rut
end for

residual projection data. Such an algorithm is presented very compactly in matrix-
vector products. As a result, the MATLAB code for SIRT, shown in Listing 3, is almost
identical to the pseudocode.

Listing 3 The SIRT algorithm using opTomo

o

To use Tikhonov regularization:

V = [W; lambda % opEye (size(W,2))];
p = [p; zeros(size(W,2),1)1;

and use V below instead of W

oe o

o0

determine scaling matrices
r =1./sum(W,2);
c

© % N e wm B W o —
o

=1./sum(W,1);
10 c(c==Inf) = 0;
11 (r==Inf) = 0;

13 % set up diagonal Spot 'matrices'

4 C opDiag(c);

15 R = opDiag(r);

16

17 for 1 = l:maxit

18 % compute residual

19 u =p — Wxx;

20

21 % update current solution
22 x = x + CxW'*Rxu;

23 end

4.2 Cone beam reconstruction

In practice, most tomographic scanners use a point X-ray source that emits a cone-
shaped beam, in contrast to a parallel beam. This cone beam geometry is also
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Fig. 3 Cone beam dataset acquired using a Skyscan 1172. The left image shows one slice of the recon-
struction of size 1000 x 1000 x 524. On the right an isosurface is rendered in 3D, showing the structure
of the pores

supported by the ASTRA toolbox. A detailed description of the geometric parameters
is given in Appendix B.

Listing 2 can directly be applied if the proj_geom structure has been set up
for a cone beam geometry, as the geometry is not hard-coded in the algorithm. To
demonstrate that the code is not restricted to small test problems, we have applied it to
a large dataset. The dataset consists of projections from a metal foam and are of size
1000 x 524 taken at 511 angles. The reconstruction grid was 1000 x 1000 x 524. We
used LSQR for the reconstruction and stopped the computation after 100 iterations.
The central slice and isosurface of the reconstruction are shown in Fig. 3.

For the computation we used a workstation with an NVIDIA Tesla C2070 GPU.
The details of the hardware are given in Section 5.1. The computation took 1 hour
and 51 minutes, which is about 67 seconds per LSQR iteration. For this dataset, a
forward projection takes about 44 seconds and the backprojection takes about 21
seconds.

4.3 Sparse image reconstruction

Ideas and methods used in compressive sensing are now commonly applied in
tomography. If the object is sparse in a suitable basis, it can often be reconstructed
accurately by using £;-regularization. Algorithms using ¢{-regularization are more
elaborate to implement compared to linear least squares solvers.

One approach to compute a sparse solution of the algebraic reconstruction problem
in Eq. (3) is basis pursuit denoising, formulating the sparse reconstruction problem
as minimizing the £1-norm of the image under consistency conditions:

minimize ||x||; subjectto |[Wx — pll2 < o. ()
X

The £1-norm promotes solutions with few nonzeros. The parameter o is an estimate
of the noise level.
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(a) phantom (b) LSQR solution (c) SPGLI1 solution

Fig. 4 A foam phantom presented as a sparse image. An algebraic reconstruction method LSQR is
compared to the method SPGL1. The SPGL1 method exploits the sparsity prior of the solution

The basis pursuit denoising approach is implemented in the MATLAB pack-
age SPGL1, written by Friedlander and van den Berg [6]. This solver is based on
matrix-vector products and is therefore suitable for Spot operators without any mod-
ifications to the code. In the following experiments we will use SPGL1 for sparse
image reconstruction.

In Fig. 4a a foam phantom is shown that has around 7 % of nonzero pixels. This
dataset is therefore very suitable for sparse image reconstruction. The ground truth
image has dimensions 8192 x 8192. In total 25 projections were generated using
Eq. (2) with a total of 512 detector elements per projection angle. The projection data
was reconstructed at an image size of 512 x 512. In Fig. 4b a least squares solution
computed with LSQR is shown. The high angular separation of the projections and
the sparse character of the ground truth results in many streak artifacts. Resolving
the edges of this reconstruction, e.g., by segmentation, will be difficult. In Fig. 4c a
reconstruction using SPGL1 and the opTomo operator is shown. This result shows
that including sparsity priors during the reconstruction drastically improves the qual-
ity of the reconstruction. Moreover, it is easier to resolve the edges of the foam, by
segmentation.

For computations we used a workstation with an NVIDIA GTX 570 GPU, the
details of the hardware are given in Section 5.1. LSQR was set to stop after 100
iterations or if a relative residual of 0.01 was achieved. In total 11 iterations were
needed and the total runtime was 162 ms. The SPGLI routine was set to a fixed
number of 100 iterations, which took 3.5 s. Both the forward- and backprojection
took about 4 ms.

4.4 Sparse wavelet reconstruction

The approach of the previous section is not limited to objects that are sparse in a
pixel basis, but can also be used with other sparsity priors. For example, images that
have few edges and large homogeneous regions with a constant grey value (such as
the Shepp—Logan phantom in Fig. 5a), have a sparse representation in a Haar wavelet
basis. In this case, we need to minimize the £-norm of the wavelet coefficients. Note
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(a) phantom (b) LSQR solution  (c) wavelet based (d) TV-min solution
SPGL1 solution

®

\ )

Fig. 5 Comparison of several reconstruction algorithms. LSQR 1is an algebraic reconstruction method.
The SPGLI1 solution exploits sparsity of the ground truth in a Haar wavelet basis. The TV-min solution
exploits sparsity of the gradient image

that an image x can be decomposed in its wavelet coefficients y, by using a linear
transformation:
y = Bx. ©)]
The matrix B is formed from the basis vectors corresponding to the discrete
wavelet decomposition. Because B is unitary for the Haar wavelet, the image can
be formed from its wavelet decomposition by multiplying the coefficient vector y
with its transpose BT from the left. The system matrix is adjusted to incorporate the
wavelet coefficients:

minimize ||y||; subjectto [WBTy — p|l2 < o. (10)
y

Note that this approach is the same as the basis pursuit denoising problem in
Eq. (8), which is solved with SPGL1. The linear operator involved is now a com-
bination of the wavelet operator and tomography operator. The corresponding Spot
operators can be combined in a straightforward manner, as shown in Listing 4.
This results in very compact code that is easy to understand from a mathematical
perspective.

Listing 4 Combined Spot operator

1 % Projection operator

2 W = opTomo ('cuda', proj.geom, vol_geom);

3 % 2D wavelet operator

4 B = opWavelet2(n, n, 'Haar', [], levels);

5 sigma = 200;

6 y-spgll = spgll (WxB', sinogram(:), [], sigma);

We applied the algorithm on a dataset based on the Shepp—Logan phantom of size
4096 x 4096. A total of 100 projections were generated with 4096 detector elements
per angle. The data was perturbed by applying a moderate amount of Poisson noise
to the projection data. The reconstruction size was also 4096 x 4096.

The results are shown in Fig. 5. Note that we abort LSQR (Fig. 5b) after three
iterations, to prevent overfitting (such that it has a similar £,-norm as the SPGL1
solution). For brevity, we do not provide quantitative details on the noise generation,
but the noise level can be observed quite clearly in the LSQR reconstruction. The
resulting reconstruction contains substantial noise and details have been blurred. The
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wavelet based SPGL1 solution in Fig. 5c is an improvement. Due to the shape of
the Haar wavelet, most of the noise is in the detail coefficients that are likely to be
suppressed. Although the Haar wavelet is causing block-like artifacts, the edges are
better pronounced compared to the least squares solution. For comparison, we also
show the results of applying the Chambolle—Pock algorithm for Total Variation (TV)
minimization, which will be introduced in the next section. For the Shepp-Logan
phantom, TV-minimization appears to be a more suitable prior as shown in Fig. 5d.
Both the wavelet and total variation minimization method suppress high gradients
and therefore produce reconstructions with less noise, compared to LSQR.

For these computations we used a workstation with a GTX 570 GPU. LSQR took
3.8 s, SPGL1 138 s, Chambolle—Pock 679 s, with a total number of iterations of 3,
30 and 350 respectively. For this dataset the forward- and backprojections took 338
ms and 278 ms.

4.5 TV-minimization using the Chambolle-Pock algorithm

For images consisting of large homogeneous regions, Total Variation based priors are
commonly used. Formally, the (anisotropic) total variation of an image is defined as:

m n m n
6 () = X(i—Dn+j =X (= Dn+j-1 X(i—n+j =X (—2n+]
TV, (x) | [+ | | (11)

i=1j=2 i=2 j=1

We assume that the image vector corresponds to an m X n image, stored row-wise.
In practice, TV-minimization is often applied in a generic minimization approach
where the data consistency term is mixed with the TV-norm:

1
minimize ~ |Wx — p|13 + ATV, (x). (12)

N
xeRY 2

Note that Rf denotes the set of nonnegative real numbers.

One method for solving this convex minimization problem was presented by
Chambolle and Pock [9]. Their approach is to use a primal-dual formulation of the
problem. The algorithm they propose is short and has few parameters.

Sidky et al. discussed and elaborated on the Chambolle-Pock TV-minimization
method applied to the tomography problem [33]. They present the essential part
of the algorithm in four lines of pseudocode. Compared to other TV-minimization
algorithms, for example based on FISTA [5], the implementation in a MATLAB
environment is straightforward. Because it only uses matrix-vector operations, Spot
operators can be used.

In addition to the projection operator, a discrete TV operator based on Eq. (11)
is needed, which computes horizontal and vertical differences of an image. The TV
operator can either be constructed from a diagonal band matrix, with 1 and —1 on
the (sub)diagonals, or it can be formulated as an image processing step using a con-
volution. In this case, the vertical differences are computed using a convolution of
the filter [—1, 1] and the image. In the horizontal difference operator, this filter is
simply transposed. To implement the Chambolle—Pock TV-minimization algorithm,
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we chose to construct a TV Spot operator opTV based on the image convolution,
because it is fast.

We applied the algorithm to a dataset from the ESRF synchrotron facility. This
dataset was recorded at beamline ID19, which is dedicated for high-resolution
diffraction topography. The monochromatic source’s energy level was 60 keV. In
total 1500 projection images were measured from seven teeth, each image having
a resolution of 2048 x 290. For this dataset, which has been obtained using a high
beam intensity, a standard FBP reconstruction can provide very accurate results. To
make the reconstruction problem more challenging, Poisson noise was applied to the
experimental projection data to simulate a dataset with a low signal-to-noise ratio.
TV-minimization is not only an effective technique to apply on limited angle datasets,
but should enhance the quality of reconstructions for noisy datasets as well.

For this example, we focus on the reconstruction of a single slice and run
the Chambolle—Pock algorithm for 200 iterations. Even for a single slice, the
Chambolle—Pock algorithm would require at least 23 GB memory if matrices were
formed explicitly (in single precision). Therefore, on most workstations this MAT-
LAB code would not have been applicable to this dataset without using the ASTRA
toolbox. And without using the opTomo and opTV operators, the implementation
would have required substantially more effort. The reconstruction was run on a work-
station with GTX 570 GPU (see Section 5.1 for details of the hardware) and took 248
seconds. The forward and backprojections took 213 ms and 245 ms respectively. The
TV Spot operator opTV does not employ the GPU, but is performed in MATLAB.
Multiplication by this operator takes approximately 80 ms.

The reconstructions are shown in Fig. 6. The sparse gradient prior results in a much
sharper reconstruction that has more homogeneous areas of constant grey values.
Moreover, the background is completely black, due to the nonnegativity constraint
specified in Eq. (12) and supported by the Chambolle—Pock algorithm. Also the noise
does not affect the reconstruction as much as it does in a least squares solution.

To assess the convergence of the Chambolle—Pock algorithm we have plotted the
relative residual and the objective function from Eq. (12) in Fig. 7a. In Fig. 7b,
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(a) LSQR solution (b) TV-min solution

Fig. 6 Reconstructed slice for the ESRF teeth dataset
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Fig. 7 Convergence results of the Chambolle—Pock algorithm applied to the experimental teeth dataset
from ESRF. The primal-dual gap starts out negative and around 80 iterations becomes positive which
explains the dip in the absolute value of the primal-dual gap (on a logarithmic scale)

the (conditional) primal-dual gap is shown [33]. Note that the relative residual does
not converge to zero, due to the noise in the projection data. The primal-dual gap
is initially negative, but becomes positive after about 80 iterations and converges
to5 x 10%.

This example illustrates that using the Spot operator, the pseudocode given in the
paper from Sidky et al. [33], can directly benefit from the fast GPU ASTRA back
end, which enables application of Chambolle—Pock to a real experimental dataset.

5 Performance benchmarks

In this section we show benchmarks of the GPU and CPU code of the ASTRA tool-
box in combination with the Spot operator. Since the memory use of explicit matrices
is the key limitation in standard MATLAB code, we compare memory usage of the
major components of the forward projection operator, such as copies of volume data
and projection data, with that of explicit MATLAB matrices. Finally, we measure
the computational overhead that is introduced by the Spot toolbox, when using the
opTomo operator

5.1 The forward and backprojection operations

The code that we run as a benchmark is line 5 of Listing 2. All the benchmarks were
timed using the timeit function of MATLAB, which takes care of “warming up”
the CPU and GPU. The wall clock time is averaged over the total number of runs,
which is chosen automatically by t imeit. The machine we used for benchmarking
was a Linux workstation with an Intel Core i7-2600K@ 3.4 GHz CPU with 16 GB
of system RAM and a NVIDIA GTX 570 GPU. We compared the results with a
TESLA C2070 GPU in a server machine with Intel Core i7-3930K@ 3.2 GHz and
64 GB of system RAM. We report results only for the Linux version of the software.
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For a similar workstation running the Windows operating system (also supported by
the ASTRA toolbox), similar results were observed. A pre-release of the ASTRA
toolbox version 1.6 was used.

First we explicitly form the system matrix as a sparse MATLAB matrix. This can
be done using a utility function in ASTRA. Then we also time the code for two
opTomo operators: one of type ' cuda’, and one of type  1inear’. Both of these
generate the matrix elements on the fly based on the slice-interpolation kernel [23].
The CUDA version uses the GPU, while the other uses the CPU code of the ASTRA
toolbox. The Shepp—Logan phantom was used in both 2D and 3D cases, with sizes
n xn and n x n x n respectively. A slice of the phantom is shown in Fig. 5a. For each
experiment, a square (or line in 2D) detector was used that matches the width and
height of the phantom in combination with a parallel beam geometry. The number of
angles was fixed at 100.

In Fig. 8, the timings of the 2D forward projection are shown for different sizes of
the phantom. We were able to use explicit matrices in MATLAB up to phantom sizes
of 2048 x 2048, above which the explicit system matrix no longer fits in memory.
For these data, 9 GB of memory was required. The ASTRA CPU code is somewhat
slower than the use of explicit matrices, which is expected due to the need to generate
matrix elements and overhead from the Spot operator. Also note that the GPU code
outperforms the CPU code for image sizes larger than 32 x 32.

In the 3D case it is not practical to form matrices and we omit the use of explicit
MATLAB matrices. Instead we compare two different GPUs, the GTX 570 and
TESLA C2070. The results show that both cards are performing similarly, but the
TESLA card can reconstruct a larger volume of 512 x 512 x 512, since it has more
memory (5.4 GB compared to 1.3 GB).

The estimated memory use of the forward projection is listed in Table 2 (in terms
of data elements). It has been determined as follows: for the forward projection, the
volume and its projections need to be stored. For the 2D case, this is n” for the volume
and kn for the projections, where k is the number of angles. Similarly, the 3D volume
consists of n3 voxels and projections are kn?. For the MATLAB code, additionally

GTX 570
10! {| —*—Matlab 10! —¥—TESLA C2070
—8—CPU
GTX 570
Q. |[=¥—TESLA C2070 g
»10° % 10°
£ £
g £
=103 1073
10°° : : : 107° : :
10° 102 104 10° 108 10° 10° 10° 10°
image size image size
(a) 2D (b) 3D

Fig. 8 Performance of the forward projection operator. The image size represents the total number of
pixels/voxels in the volume
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Table 2 Memory use of the forward projection operation

MATLAB ASTRA CPU ASTRA GPU
2D Gk + Dn? +kn n? +kn 2n? + kn
3D Bk + Dn® + kn? n3 + kn? 213 + kn?

the matrix should be stored, which has the same number of rows as detector mea-
surements and the same number of columns as volume pixels/voxels. If we assume
that at most 3n voxels have a nonzero contribution to a detector measurement, this
adds 3n times the number of detector elements to the storage requirements. In Fig. 9
we have plotted the memory use corresponding to Table 2 for single precision floats.
Note that the GPU code uses twice the storage for the input of the forward projec-
tion algorithm (which is the volume itself). This is because GPU textures are used to
speed up data access.

We also benchmarked the backprojection operation of the ASTRA toolbox using
the Spot operator. The results are shown in Fig. 10 and they are comparable to the
timings of the forward projection. The memory use of the backprojection operation is
the same as the forward projection, except that the GPU code needs to store the input
twice and output once. For the backprojection, the input corresponds to the projection
data, which is usually somewhat smaller than the volume.

Nowadays, CPU memory is limited to several 10s of gigabytes in a regular
workstation, or up to hundreds of gigabytes in a high-end server. For example, 32
GB RAM limits the image size to approximately 300 x 300 x 300 for explicit
matrices. Whereas GPU RAM is limited to 12 GB of RAM. However, since the
memory requirements of the GPU code are lower, the maximum image size is now
900 x 900 x 900, for this amount of RAM. We see a clear improvement in the
maximum size of datasets that can be handled by a single GPU.
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10 —— MATLAB
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ol GPU | @10t ]
2 10 g1o
c IS
810° | $10° ¢
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Fig. 9 Memory use of the forward projector. The image size represents the total number of pixels/voxels
in the volume
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Fig. 10 Performance of the backprojection operator. The image size represents the total number of
pixels/voxels in the volume

5.2 Overhead of the Spot toolbox

The use of the Spot operator opTomo results in computational overhead due to the
Spot toolbox, compared to using the ASTRA toolbox directly. In order to quantify
this overhead, we benchmark the LSQR algorithm as provided by MATLAB using
three different ways to call it:

1. using opTomo

2. aversion using ASTRA’s MATLAB interface optimized for code length, referred
to as ASTRA util,

3. aversion using ASTRA’s MATLAB interface optimized for speed, referred to as
ASTRA optim.

LSQR allows the use of a function handle instead of a matrix. The function
handle, afun, is specified, such that afun (x, 'notransp’) returns A+x and
afun (x, 'transp’) returns A’ xx. The second variant of LSQR (ASTRA util)
uses a function handle of the ASTRA utility functions for the forward and backpro-
jection, as show in Listing 5. This can be done with a few lines of code and is a
straightforward implementation which is most likely used in practice. However, these
functions allocate memory and set up the algorithm whenever they are called, which
is every LSQR iteration.

In the third variant (ASTRA optim) we use an implementation at a lower
level that preallocates memory and sets up the algorithm, the same as is done in
the operator opTomo internally. However, this optimized code requires substan-
tially more lines of code. Because the ASTRA code in this version is the same
as used in opTomo, it allows us to see the exact overhead caused by the Spot
toolbox.

In Table 3 and Table 4 the computation times of the three variants of LSQR using
20 iterations are shown for various sizes of the volume/detector. The same settings
are used as in the previous paragraph. The code was run on the workstation with the
GTX 570 GPU.
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Table 3 2D: LSQR runtimes in seconds

n ASTRA optim ASTRA util opTomo
32 0.020 0.039 0.040
64 0.022 0.042 0.044
128 0.036 0.057 0.060
256 0.085 0.112 0.111
512 0.278 0.308 0.306
1024 1.137 1.140 1.178
2048 4.885 5.030 5.040

In the 2D case, shown in Table 3, ASTRA util and opTomo have com-
parable run times. If we look at the overhead caused by Spot by comparing
ASTRA optim and opTomo we see that for small n the overhead is large. For
n = 32, LSQR using opTomo is twice as slow compared to LSQR using func-
tion handle ASTRA optim. However, the total overhead is only 20 ms. If the
amount of work is increased the relative overhead becomes drastically smaller.
For a data size of n = 2048, the overhead of the opTomo operator com-
pared to ASTRA optim is 155 ms. Relative to the total runtime, this overhead is
3 %.

In 3D, see Table 4, the amount of work compared to the overhead becomes
large. In this case, the ASTRA utility functions are slower than opTomo due
to overhead from memory allocation and initializing the forward and backpro-
jection algorithms. The overhead of opTomo compared to ASTRA optim is still
in the order of 20 ms. Therefore, the relative overhead with respect to total
runtime is almost negligible in 3D. For n = 256, the relative overhead is
0.2 %.

In Listings 5 and 6 we compare the amount of code that is needed for ASTRA
util and opTomo. We omit the code used for ASTRA optim, since it requires about
50 lines of code. From these code snippets it is clear that the opTomo operator can
hide a lot of code and interface details that were necessary for implementing ASTRA
util. Moreover, the optimizations used in ASTRA optim are also part of the opTomo
Spot operator.

Table 4 3D: LSQR runtimes in seconds

n ASTRA optim ASTRA util opTomo
32 0.138 0.176 0.158
64 0.408 0.444 0.437
128 2.379 2.519 2434
256 15.615 16.506 15.643
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Listing 5 LSQR ASTRA util

1 % set up data size (100 projection angles)

2 vsize = [n,n,n];

3 psize = [n,100,n];

4 % set up function handle

5 f = @(x, type) Afun2(x, type, vsize, psize, proj_geom,

vol_geom) ;

6 % create forward projections

7 p = f£(im, 'notransp');

8 % solve with 1lsqgr

9 x = lsqgr(f, p);
10
11
12
13 % used for function handle £
14 function y = Afun2(x, type, vsize, psize, proj-geom, vol_geom)
15 if strcmp(type, 'notransp')
16 % vector to volume
17 x = reshape (x, vsize);
18 % fp
19 [y-id,y] = astra.create._sino3d.cuda (x, proj-geom, vol_geom);
20 astra-mex_data3d('delete', y_id);
21 else
22 % vector to projections
23 x = reshape (x, psize);
24 % bp
25 [y-id, y] = astra.create_backprojection3d_cuda (x,

proj_geom, vol_geom);
26 astra-mex_data3d('delete', y_id);
27 end
28 y = y(:);
29 end
Listing 6 LSQR opTomo

1 % create Spot operator

2 W = opTomo('cuda', proj_geom, vol_geom);

3 % create forward projections

4 p = Wxim(:);

5 % solve with lsqgr

6 x = lsqr(W,p);

6 Discussion and Conclusions

Advances in hardware for tomographic projection acquisition have led to an increase
in data sizes. At the same time, advances in computational methods for limited data
reconstruction have resulted in a broad range of algorithms that are powerful, yet
highly computationally demanding. As a result, reconstruction software has to be
implemented for parallel computation architectures such as computer clusters and
graphics processing units (GPUs) to handle large-scale datasets efficiently.

Many novel reconstruction algorithms are prototyped in a high-level scripting
language such as MATLAB. The syntax for these languages can be similar to
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mathematical notation, which makes prototyping easier. Due to the nature of high-
level languages, these implementations are often not suitable to apply on large-scale
datasets. For tomographic datasets, the system matrix corresponding to the linear
model of the forward projection Wx = p, is too large to store explicitly for even
moderately sized datasets. The opTomo operator is able to bridge the gap between
the flexibility of MATLAB scripts on one hand, and the fast and scalable GPU back
end of the ASTRA toolbox. The opTomo operator allows using matrix syntax to call
the fast GPU projection and backprojection implementations of the ASTRA tool-
box. By overloading many common matrix operations, the Spot toolbox delivers an
effective framework for linear operators.

We remark that the opTomo operator exposes ASTRA’s highly efficient imple-
mentations of the forward and backprojection operations, but when more detailed
access to the matrix is required, the user may find that certain operations are either
computationally inefficient or simply not implemented. This includes operations that
work element-wise on the matrix, such as element-wise multiplication. Therefore,
MATLAB scripts that rely on such operations, for example to compute column or
row norms, are currently not supported. Usually, it is possible to work around these
limitations and as the ASTRA toolbox is continuously evolving, efforts are currently
ongoing to extend the range of operations for which the opTomo operator provides
a high level of efficiency.

In our benchmarks we have seen that a very small overhead is paid by using the
Spot operator for ASTRA. As the data sizes increase the relative overhead becomes
negligible and should not pose any problems.

Our software is freely available under an open source license (GPL), enabling easy
implementation of novel advanced reconstruction algorithms in materials science,
biomedical imaging, and other fields.
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Appendix A: Availability of source code and data

The ASTRA toolbox and opTomo operator can be downloaded as open source soft-
ware [1]. The Spot toolbox is available separately [7]. The MATLAB code of all
the examples in this paper and the corresponding datasets can be obtained from
https://github.com/astra-toolbox/astra-toolbox/.

Appendix B: Geometries in the ASTRA toolbox
In this section we describe the use of volume and projection geometries for the

ASTRA toolbox. Since the 2D geometries can be embedded into a 3D geometry, we
will not discuss these separately.
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B.1 Volume geometry

The volume geometry describes the dimensions of the reconstruction area in terms
of voxels. The reconstruction volume is always centered around the origin, and its
voxels are cubes of unit size. This defines the Cartesian coordinate system in which
the rest of the geometry is specified. To set up a reconstruction volume we can use
the following MATLAB code:

1 vol_geom = astra.create_vol_geom(vx, vy, Vvz);

which results in a structure that contains the size of the reconstruction volume.

B.2 3D parallel beam

The parallel beam geometry for the 3D case is similar to the 2D case, except that the
detector is two dimensional.
In the ASTRA toolbox this geometry can be specified in one of two ways:

1 proj-geom = astra.create_proj_geom('parallel3d',
det_spacing.x, det_spacing.y, det_row_count,
det_col_count, angles);

2 proj_geom_.vec = astra.create_proj_geom('parallel3d.vec',
det_row_count, det_col_count, vectors);

In the first case, a circular path (rotating around the z-axis) of the source
and detector is used. The parameters det_spacing x and det_spacing.y
specify the distance between two adjacent detector pixels. The det_row_count
and det_col_count determine the number of rows and columns of the detec-
tor. The angle array contains all angles in radians at which projections are
measured.

In the second case, besides the number of rows and columns of the detector, an
array vectors is passed. This array has K rows, one for each angle. A row contains
the following parameters in order:

— rayX, rayY, rayZ. This vector gives the direction of the rays.

— dx, dy, dz. These are the x, y and z coordinates of the center of the detector.
— ux, uy, uz. The vector from detector pixel (0, 0) to (0, 1).

- vx, vy, vz. The vector from detector pixel (0, 0) to (1, 0).

In Fig. 11, we show an example of the geometric parameters. In this example, a
projection is taken at an angle of 0°. Note that this specifies the acquisition of one
projection image and therefore, the parameters for all other angles should be passed
as well. Using the vectors d and ray, many projection acquisition schemes can be
parametrized.

Note that it is not necessary for the detector and volume pixel to have the same
size, although this setting is commonly used for reconstructions.
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Fig. 11 Illustration of the t
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Setting up a cone beam geometry is very similar to setting up a 3D parallel beam
geometry. In this case, the rays are not parallel, but they originate from a single point:
the ray source. Therefore, instead of indicating the ray direction, the center of the ray
source is passed.

1 proj-geom = astra.create_proj_geom('cone', det_spacing-x,

det_spacing.y,
source_origin,
2 proj_geom =
det_row_count,

det_row_count,
origin_det);

det_col_count,

det_col_count,

astra.create_proj_geom('cone_vec',

vectors) ;

angles,
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