
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

CSE: a modular architecture for computational steering

R. van Liere, and J.J. van Wijk

Computer Science/Department of Interactive Systems

CS-R9615 1996

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301646026?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Report CS-R9615
ISSN 0169-118X

CWI
P.O. Box 94079
1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.
SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)

Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

CSE

A Modular Architecture for Computational Steering

Robert van Liere

Centrum voor Wiskunde en Informatica

P�O� Box ������ ���� GB Amsterdam

The Netherlands

E-mail: robertl@cwi.nl

Jarke J� van Wijk

Netherlands Energy Research Foundation ECN

P�O� Box �� ��		 ZG Petten

The Netherlands

Centrum voor Wiskunde en Informatica

P�O� Box ������ ���� GB Amsterdam

The Netherlands

E-mail: vanwijk@ecn.nl

Abstract

Computational steering is the ultimate goal of interactive simulation� Steering enables users to supervise and

dynamically control the computation of an ongoing simulation� We describe CSE � a modular architecture for

a computational steering environment� The kernel of the architecture is designed to be very simple� �exible and

minimalistic� All higher level system functionality is pushed into modular components outside of the kernel�

resulting in a rich and powerful environment� For these modular components �called satellites� a uniform

user interface metaphor for users� based on a tray of cards� has been used� The card tray metaphor is very

simple to understand and provides users with a simple mechanism to organize and retrieve the tools� Several

applications of the environment are shown�

CR Subject Classification (1991): I���	� I���

Keywords & Phrases: computational steering� scienti�c visualization� three�dimensional graphics and in�

teraction

Note: This paper was presented at the th Eurographics Workshop on Visualization in Scienti�c Computing�

April ������ Prague� ���

1. INTRODUCTION.

Computational steering is the ultimate goal of interactive simulation in which users have direct

control over the parameters of a simulation and are able to supervise and dynamically control

�� Introduction� 2

the computational process. The benefits of computational steering are well known. For example,

according to Marshell et al. [1] : “Interaction with the computational model and the resulting graphics

display is fundamental in scientific visualization. Steering enhances productivity by greatly reducing

the time between changes to model parameters and the viewing of the results”.

There are three reasons why software tools for computational steering are more demanding than

those found in traditional scientific visualization environments. First, in traditional visualization

systems, a visualization expert can first prepare a visualization, which then is analyzed by the

scientific user. Inherent to computational steering is that the user will be an active participant in the

visualization loop. Furthermore, due to the exploratory nature of steering, these tools will be used

iteratively. Hence, tools must be programmable and modifiable during the analysis cycle, preferably

by the end users. Second, end users are usually non-professional programmers who have neither the

time nor the training to create a new interface. Therefore, the specification and usage of tools must

be very simple and hide the underlying complexity of the system. Third, because of the inherent

complexity of large scale simulations, effective usage of distributed computing resources must be

guaranteed.

In [2] we introduced CSE , an Computational Steering Environment that encourages exploratory

investigation by the researcher of an ongoing simulation. The kernel of CSE is designed to be very

simple, flexible and minimalistic. Although we were able to demonstrate a number of applications,

the CSE required substantial knowledge and expertise to use. In particular, it was tedious to develop

individual tools and use these tools in concert. In this paper we focus on how original design principles

of the CSE are used to overcome these difficulties. The governing concept is the modularity of tools.

Instead of extending the CSE kernel, we extend the environment by defining new tools that build upon

the basic CSE primitives. These tools provide functionality that is usually hard wired in the kernel of

other environments.

In section 1.1 we summarize the kernel and the underlying concepts of the CSE . In section 2 we

present the underlying principles of the visualization tools – called satellites – and discuss the life

cycle of a satellite. In section 3, a standard user interface metaphor based on a card tray is introduced.

Sections 4 and 5 give two examples of how CSE ’s system functionality is extended. In section 4

the trigger manager satellite is introduced. Trigger management allows users to define the control of

satellites. In section 5 the transport tuple satellite is introduced. This satellite optimizes data transport

between two distributed databases. In section 6 we give an example of how all pieces of the CSE fit

together. Finally, in section 7 we compare the CSE with other extensible visualization environments.

1.1 Background.

An overview of the architecture of the environment is shown in figure 1.

�� Introduction� 3

Researcher

Rendering

Satellite

text drag pick visualization

Data Manager

Simulation

 . . .

selection expression

 Selection

 Satellite
 Calculator

 Satellite

datadatadata data

data

Figure 1: The CSE architecture

The architecture of the environment is centered around a data manager that acts as a blackboard

for communicating values, and satellites that produce and visualize data. The purpose of the data

manager is twofold. First, it manages a database of variables. Satellites can create, open, close, read,

and write variables. For each variable the data manager stores a name, type, and value. Variables can

be scalars or arrays, in which case the number of dimensions and size of the dimensions is also stored.

Array sizes can change dynamically during the lifetime of the variable. Second, the data manager

acts as an event notification manager. Satellites can subscribe to events that represent state changes

in the data manager. Whenever such an event occurs the satellite will receive an event from the data

manager. For example, if a satellite subscribes to mutation events on a particular variable, the data

manager will send a notification to that satellite whenever the value of the variable is mutated.

The foremost satellite is the PGO editor, an interactive graphics editing tool, [3]. The central

concept for the graphics editor is the Parametrized Graphics Object (PGO) : an interface is built

up from graphics objects whose properties are functions of data in the data manager. Users sketch

an interface and bind the graphics objects to variables by parameterizing geometry and attributes

with data in the data manager. Simulations may drive the interface by mutating the data bound to

the graphics objects. Similarly, users may drive the simulation by interacting with graphics objects.

Hence, a two-way communication between graphics and data in the simulation is supported. Since

the PGO satellite is an interactive graphics editor, users may incrementally define the interface or

change bindings, thus encouraging exploration of the simulation.

The design of the CSE kernel was driven by the following underlying concepts :

� The exclusiveuse of low-level primitives. The CSE kernel uses a simple data model and graphics

objects. The interfaces to these are familiar to the satellite developer and user : a UNIX-like

I/O library is the API to the data manager and a MacDraw-like editor for the graphics.

� No higher level semantics are defined for data and graphics. For example, the data manager

� Satellite Framework� 4

provides no support for defining and maintaining data dependencies between variables. As a

result, the environment is general and flexible.

� All operations in both the data manager and the graphics editor are based entirely on data.

Dragging, picking and text input are translated into mutations of data.

� Satellites rely on late binding of variable names. Name matching is used to bind names in a

satellite specification to named variables in the data manager. As a result of late binding, it is

possible to incrementally define new visualizations of the data output by the simulation, while

the simulation continues to run.

We were able to demonstrate a number of applications using the CSE kernel. However, developing

satellites was a tedious task. Developers needed to implement all aspects of the interface to the

satellite, including the interoperability and user interface, from the low level primitives. Moreover,

satellite usage was not straightforward. For example, there was no support for combining satellites

into a network of cooperating tools, and each satellite had a different style of interface. In the next

section we describe a standard satellite framework that was defined to overcome these problems. The

framework defines the behavior of an individual satellite and how it interfaces with its environment.

In section 3 we describe the standard user interface for the satellites.

2. SATELLITE FRAMEWORK.

An abstract satellite is shown in figure 2. Basically, it consists of an operator that transforms input

data into output data. Control determines when this operation has to be carried out, or, in other

words, when a satellite is triggered. By defining control externally, instead of using a fixed, built-in

control-strategy, a wide variety of cooperation styles between satellites can be realized. The actual

definition of the operation is defined by an additional set of parameters. Parameters are manipulated

through the satellites user interface: via predefined widgets or by interactions with geometry within

the PGO editor.

datain dataout

control

parameters

operator

Figure 2: Interfaces to an abstract satellite.

The following phases in the life cycle of a satellite can be distinguished:

�� The Card Tray as a User Interface Metaphor� 5

� satellite development. A satellite developer will design and implement an operator which may

or may not be parameterized. The operator is packaged into a satellite.

Examples of operators are a slicer (selection of data), a calculator (calculation of derived data),

and the PGO editor (the visualization and user input of data).

� edit mode. The user specifies a parameterization of the operator. This is done by entering

names for each parameter of the operator.

Examples of parameterizations are for the slicer the name of the input variable, the name of the

output variable, and the names or values of the slice bounds; for the calculator a mathematical

expression; and for the PGO editor a set of graphics objects, parametrized to names of variables.

� run mode. In run mode the satellite will bind parameter names to values in the data manager.

Name matching is used to bind parameter names to named variables in the data manager. Each

triggering of the satellite will result in the re-evaluation of the operator with new input data and

the effected output values will be written to the data manager.

In run mode, the slice operator will be re-evaluated and the output wil be written whenever

the input variable or a slice bound is mutated. For the calculator, if a name in the right hand

side of the expression is mutated the left hand side is re-evaluated and written. Finally, when a

name in the drawing of the PGO editor is mutated, either by changes in the data manager or by

interaction on a graphics object, the drawing will be re-rendered.

Users will typically iterate a number of times between edit and run mode.

Development and usage of the satellite is simplified through standardization. A satellite devel-

opment environment is offered, that includes high level libraries and tools that hide the underlying

complexities of the satellite’s interface. In addition to the development environment, a standard user

interface metaphor to a satellite is provided. Standardization on the user interface of the satellite

reduces the learning time to operate a satellite.

3. THE CARD TRAY AS A USER INTERFACE METAPHOR.

All satellites in the CSE adhere to a simple user interface metaphor. The metaphor is a tray of cards,

with a browsing mechanism to iterate through the cards. Each tray implements a class of operations

and each card represents a particular parameterization of the operation. On the left side of figure 3 the

user interface for the slicing satellite is shown. It consists of three panels, of which the top and bottom

panel are the same for all satellites. The top panel is responsible for the connection administration

with the data manager. Every satellite contains a variable browser and trigger editor. The right side of

figure 3 shows the popup panels for the variable browser and trigger editor. The variable browser can

�� The Card Tray as a User Interface Metaphor� 6

be used to define or inspect properties of variables that belong to the satellite. The trigger editor is

used to specify variable names that will control the satellite. By default a unique variable name will be

generated, but users can change this to any name. The details of triggering and trigger names will be

explained in sections 4. The bottom panel of the card tray is responsible for the card administration.

In edit mode, users can add or delete operators by creating or destroying cards. In run mode, users

can browse through the tray and pull cards out of the tray.

The middle panel contains the operator specific user interface. In figure 3 the user interface consists

of specifying an input and output variable and a slice name. The slice name itself is parameterized

with four variable names and two constants.

Figure 3: The slicer card tray with variable and trigger browser.

There are a number of advantages in choosing a simple user interface metaphor :

� Since the interface of the satellite is standardized, the user interface to this functionality is

the same for all satellites. Uniform variable and trigger editors are generated giving powerful

browsing facilities for names local to each satellite. These editors provide the functionality

needed to interface the satellite to the rest of environment. Satellite developers need only to

supply the functionality of the operator itself.

� The card tray administration is also standardized. The user interface to this functionality is the

same for all satellites and is generated automatically.

� Users have a standardized way of interacting with the functionality provided by the card tray.

Only the user interface to the operator must be learned. This facilitates the user’s task of

learning to use new satellites.

�� Trigger Manager Satellite� 7

� The use of card trays reduces clutter of the screen. Push and pop functions allow for selective

control on the number of simultaneously visible cards. The card tray metaphor is scalable in

the number of cards in the tray. Efficient card browsing facilities can help locate individual

cards within the tray.

The CSE contains a large collection of general purpose satellites. For example, dmpgo2D and

dmpgo3D are the general purpose graphics editors, dmslice allows data selections, dmannot is a

generalized annotation satellite, dmcalc is a calculator for scalar and array values, dmtrans is a

fourier transformation satellite, dmtimer provides a general purpose clock, dmscheme is a satellite

that interprets Scheme scripts, and dmlog logs a history of values. The development time of these

satellites was greatly reduced by the standard framework provided.

4. TRIGGER MANAGER SATELLITE.

Satellites cooperate via the basic input/output mechanisms that are provided by the data manager

for variables. Writing to a variable will cause an event to be sent to all satellites subscribed to that

variable. This mechanism is used in two ways. First, the user can specify that only if one particular

variable, the input trigger variable is changed, the operator has to be re-evaluated. The action of

operator re-evaluation is called triggering. Second, if no such trigger variable is specified, then upon

each mutation of any input variable the output variables are re-evaluated. The satellite will subscribe

to all its input variables, and every mutation will cause the satellite to re-evaluate the operator.

Further, the user can also specify an output trigger variable. This variable is written to each time

the operator has been re-evaluated, and can be used to link the control flow for satellites.

Using mutations on data to trigger satellites provides tremendous flexibility. However, this flexi-

bility also introduces additional complexity. Users must provide distinct output trigger names of the

producing satellite which, in turn, must match the input name of the consuming satellite. This is not

a problem when using a few satellites, but becomes unmanageable when many satellites are involved.

A trigger manager satellite, dmTM, has been developed to simplify the definition of trigger variables.

The dmTM satellite allows users to define triggers by linking two named variables from independent

satellites together. When one variable is written, the trigger manager will copy its value to the second

variable. The effect is that the satellites owning the second variable will get a mutation event from the

data manager. Notice that copying can be potentially inefficient when applied to large data values. In

practice, however, only scalar variables will be used as triggers.

Linking two variables defines a data dependency between these two variables. Linking a number

of variables results in an undirected graph, which we call the trigger graph. Users may build and

edit the trigger graph whenever satellites are connected to the data manager. The task of dmTM is to

�� Trigger Manager Satellite� 8

manage the trigger graph.

In addition to managing triggers, dmTM is used to monitor the flow of data between satellites. This

is done by recording the satellite that has written to a variable, resulting in a directed flow dependency

graph of write operations on a variable.

The user interface of the trigger manager satellite can be implemented in many ways. However,

since the CSE already provides a general purpose graphics editor, the user interface of dmTM is

implemented as a card in the PGO satellite. Figure 4 is a snapshot of the satellite configuration of

the smog prediction model discussed in section 6. The nodes of the graph represent the satellites

connected to the data manager. The blue edges indicate data flow dependency. A blue arrow indicates

a directed data dependency. Green edges indicate the trigger graph. The trigger graph can be edited

at any time. The panel on the top right provides additional variable information of a selected satellite.

The panel on the bottom is the interface to the trigger graph editor.

europe

CWIROS

dmannot

dmTMdmcalc

dmlog

dmslice

pgo

C
C_s
xlo
xhi
ylo
yhi

dmslice

CREATE DELETE

PORT

LINK

LINK EDITOR

Figure 4: PGO interface to the trigger manager satellite

There are a number of advantages in having a satellite, rather than the kernel, manage the trigger

and dependency graphs :

� Since the satellite makes use of the API to read/write and query with the data manager, it

implies that synchronization is not intrinsically defined within the kernel of the CSE . Alternative

synchronization schemes can be realized by replacing the trigger manager satellite.

� The visual representation and interactions with the underlying data dependency and trigger

graph is a card in the PGO editor. The user interface to the graph can be modified at any time.

	� Transport Tuple Satellite� 9

As an illustration of the functionality provided by dmTM, consider the three cases illustrated in

figure 5. This typical satellite configuration consists of a simulation satellite, a data mapper satellite

and the PGO editor. The time dependent simulation dumps its output to the data manager after

every time step. In the configuration on the left, the simulation will run asynchronously with the

PGO editor. Data may not be visualized, as the simulation may be dumping data at a higher rate

than the mapper or PGO can consume. In the configuration in the middle, the simulation will run

synchronously with the PGO editor. The PGO editor will trigger the simulation after it renders one

frame. In the configuration on the right, the satellite dmbutton will trigger the simulation. dmbutton

is triggered manually.

MAP PGO SIM MAP PGO SIM MAP PGOSIM

BUT

a b c

Figure 5: Three different synchronization configurations.

By editing trigger graph, the user can switch between the three configurations while the simulation

is running. When the simulation is in a non-interesting state, the user may wish to run the simulation

asynchronously. When the simulation is in a semi-interesting state, the user may wish to run

synchronously. Finally, when the simulation is in a critical state and each time step requires careful

study, the user may wish to trigger the simulation manually.

5. TRANSPORT TUPLE SATELLITE.

Due to the quantity of data, efficient data transport is crucial in a distributed data visualization

environment. In the case of a centralized data manager, data transport between two satellites can be

inefficient if these satellites reside on one computing node and the data manager resides on a different

node. Data will be written from one satellite to the data manager and will be read by the other, all via

the network. Obviously, for small data sets this is no problem, but for large data sets the network can

be a severe bottle neck.

The CSE approach to solve this problem was to develop a satellite that can control data transport

between data managers. The satellite that manages this functionality is called the transport tuple

satellite, dmTT.

The basic idea of dmTT is to transport a tuple of variables between two data managers. Each dmTT

card parameterization contains an input tuple and an output tuple. Each tuple is a description of a set

of named variables, denoted as tin �� v1in � v2in � ���� vnin �. The properties of each variable viin in

	� Transport Tuple Satellite� 10

the input tuple must match the corresponding properties of the output variable viout . When dmTT is

triggered it will copy the input tuples to the output tuples. Tuples may optionally have a name.

Figure 6 illustrates the transport tuple satellite. To the left is one data manager that manages named

variables of all its connecting satellites. To the right is a second data manager. Data managers reside

on different hosts. The satellites themselves may or may not execute on these hosts. The transport

tuple satellite is responsible to pass data between managers. Data managers do not know of each

others existence.

Researcher

Rendering

Satellite

text drag pick visualization

data data

dmTT

selection expression

 Selection

 Satellite
 Calculator

 Satellite

datadata

Simulation

data

data

Data Manager 1 Data Manager 2

Figure 6: The transport tuple satellite.

There are three options for the triggering of dmTT. First, dmTT may have one global trigger which,

when fired, will copy all input tuples to the output tuples. Second, each input tuple can be triggered

through its name, resulting in the copying of one single tuple. Finally, each variable can be triggered

through its name, resulting in the copying of one single variable. These three triggering cases ensures

that the granularity of data transport can be controlled.

There are a number of advantages of having dmTT manage data transport between compute

resources :

� Data managers can run on the same machine as the satellites which are connected to it.

Communication between satellites local to one machine is substantially faster than over a

network. Hence, computing resources can be utilized more effectively.

� Data movement between data managers can be controlled by a satellite. The amount of data to

be moved and the time the movement is to take place can be parameterized within dmTT.

� The functionality of the data manager can stay simple. No additional support for efficient data

transport is necessary in the CSE kernel.

As an example of dmTT’s functionality, consider a configuration in which the simulation is running

�� Application� 11

on one machine (say mach A) and the slicer and the PGO on a second machine (say mach B). The

slicer takes its input data from the simulation and gets its slice bounds from a user defined region in

the PGO. We consider two extreme cases. First, the simulation generates a large quantity of data at a

very fast rate, but the user is only interested in a very small portion of this data. Second, the simulation

does not generate data that frequently, but the slicer is triggered very rapidly by the changing of the

region of interest. Without dmTT, data transport can be very inefficient. If the data manager resides

on mach B, then the first case will cause a bottleneck because much data must be transported over the

network that not will be visualized. On the other hand, if the data manager resides on mach A, then

the second case will cause a bottleneck because the slicer will need to read its input over the network

for each evaluation. However, when dmTT is used, both cases can be handled efficiently. For the first

case we configure dmTT to transport only the sliced data, and hence only these data are copied to

mach B. For the second case we configure dmTT to transport all data to mach B. A local copy of the

data is then available for rapid selections of the data.

6. APPLICATION.

The CSE was applied to the simulation of a model for smog prediction over Europe. The full blown

model forecasts the levels of air pollution, which is characterized by approximately 104 reactions

between ca. 70 species. For example, the concentrations of ozone (O3), sulphur dioxide (SO2) and

sulphate aerosol (SO4) are calculated. The vertical stratification is modeled by four layers; the surface

layer, the mixing layer, the reservoir layer, and the upper layer. The physical and chemical model is

described by a set of partial differential equations that describe advection, diffusion, emission, wet

and dry deposition, fumigation, and chemical reactions.

An important numerical utility to solve these equations is local grid refinement. This technique is

used to improve the quality of the model calculations in areas with large spatial gradients (for example

in regions with strong emissions). The tradeoff to be made in local grid refinement is calculation

accuracy versus computation speed.

We have used the CSE to steer various aspects of the smog prediction simulation. We name a few

of these aspects:

� control of the tolerance value that determines where refinement is necessary.

� editing of emission data.

� use of a bounding box as a concentration probe. The coordinates of the bounding box steer the

slicing satellite, which in turn triggers the calculator and logging satellites. The result of the

logging satellite triggers the PGO editor.

� interactive control over simulation time.

�� Application� 12

12.0
Saturday 27 March 1993

279.8

0.2

show grid hide grid

SO2

SO4

NOx

Ox

NO3

Component

Layer

1

2

3

4

Numerical Smog Prediction

upper

0

-10

-20

20100

Ox

ug / m3

Numerics Emission

SOx NOx

tolerance
0.394

Number of refinment pnts 622

Concentration Probe

Wind Field

On Off

Max Courant Number 1.1

Total avg: 24.233Probe avg: 60.3

dt = 0.5

Figure 7: Smog prediction

Figure 7 shows a snapshot of a step in the simulation. An example of a question a numerical

mathematician would pose would be to gain insight in the relationship between grid refinement

tolerance, the maximal Courant number, and the simulation time. Satellites can easily be configured

to address this question. The graph on the lower left shows a log of the number of cells that were

refined and the maximum Courant number. The dmlog satellite records the data for display. Hence

the effects of changes on the tolerance or the simulation time will be displayed immediately.

Similarly, average concentration probes of a region of interest can be defined through the combi-

nation of the dmslice, dmcalculator and dmlog satellites. The user specifies the region of interest

is specified by dragging the red bounding box. dmslice slices the region of interest, dmcalculator

calculates the average of the sliced area, and dmlog maintains the log. The log of these variables is

plotted in the lower right of figure 7. Notice that values output from dmslice, dmcalculator, and dmlog

are derived variables and are not variables in the simulation. A different operation on the area of

interest, for example the maximum concentration, can be plotted by simply changing the expression

in dmcalculator. Figure 4 shows a view of the trigger manager of this configuration.

This particular configuration runs at approximately two frames a second on a modern workstation.

The amount of data involved is substantial. Depending on tolerance level, the amount of data may vary

between one and four megabytes per time step. The simulation has 447 time steps. Approximately

�� Comparison with Other Systems� 13

90 percent of the CPU time was taken by the simulation satellite. The remaining 10 percent was used

by the other satellites.

7. COMPARISON WITH OTHER SYSTEMS.

Many research and development teams have designed and implemented interactive visualization en-

vironments. Williams, Rashure and Hanson [4] provide a framework to understand design tradeoffs

when developing data flow based visualization systems. Giving an in depth analysis of other vi-

sualization environments is outside the scope of this paper. Instead, we discuss only some issues

that resemble those in the CSE . Many of the concepts in this paper have their counterparts in other

systems. However, their combination and application to steering is novel.

� In data flow environments operators are combined by linking output and input ports. Operators

are executed upon availability of data on the input port. Operators are packaged as modules,

and most environments provide high level tools for building modules.

IRIS Explorer [5] is an example of an advanced data flow visualization environment. How-

ever, there are many fundamental differences between IRIS Explorer and CSE . First, direct

manipulation is very difficult to achieve in data flow environments. In IRIS Explorer there is

no one-to-one relation between geometry and the corresponding Lattice object in an upstream

module. This makes direct manipulation of objects in the simulation very tedious. In con-

trast, with CSE ’s binding mechanism direct manipulation is ensured. Second, IRIS Explorer’s

mechanism to manage data transport differs from CSE ’s. Global and local controllers are

configured as a result of the topology of the data flow map. In contrast, data transport in CSE is

managed by a centralized data manager. When efficient data transport is necessary, the tuple

transport satellite can be used. Finally, in contrast to IRIS Explorer’s rigid and hard-wired

firing algorithm, CSE ’s control rules are very flexible and are managed by a satellite. Many

other IRIS Explorer functions are built in the run-time system.

� Glyphmaker [6] is a system that allows users to customize graphical representations using a

glyph editor and a simple point-to-click binding mechanism. Glyphmaker is implemented as a

collection of modules in IRIS Explorer.

Allowing users to specify customized graphical representations resembles the main idea of the

PGO editor, although the implementations are very different. Glyphmaker’s graphics primitives

are targeted to glyph specifications for the visualization of data, whereas the PGO’s graphics

primitive set is larger, and aims at both visualization and user input. Also, Glyphmaker’s

variable names are distilled from an input file by the Read Module. These names can then be

used by the binder to bind to active elements. In CSE , names in the data manager are explicit

and can be used in the satellites’ parameterization.

� Conclusion 14

� VIEW [7] is a system that is based on a tight coupling of on-screen geometry with a database.

A data drawing tool allows users to define composite geometric objects by selecting primitive

graphical components from the database. In addition, an event-definition mechanism allows

the user to customize interaction sequences. A tool scripting language is used to specify these

interaction sequences, and simple selection functions are offered to bind names in the scripts

to geometry in the database. Event monitors are used to execute scripts.

A principle difference between VIEW and CSE is event handling. VIEW provides event

monitors to customize interaction sequences. Events in VIEW include changes in input device

state and picking of geometry. CSE notion of events is based exclusively on state changes

within the data manager. Satellites may receive events by subscribing on the state change.

� Spreadsheet Images [8] is a data visualization system based on spreadsheets. Cells may contain

graphical objects, widgets, or formulas written in a scripting language. The output of a cell can

be referenced by other cells, resulting in a number of dependency relationships between cells.

These dependency relationships are represented by a directed acyclic graph which, when a cell

is modified, is updated through a predefined firing algorithm.

A similar aspect with Spreadsheet images is the strong emphasis of a common user interface

metaphor. Spreadsheets are conceptually easy to learn, and the screen space is used very

effectively. In contrast, however, CSE groups operators with similar functional behavior in one

card tray instead of scattering them throughout the spreadsheet.

8. CONCLUSION

CSE is a modular computational steering environment that provides an interface between a researcher

and an ongoing simulation. The interface consists a wide range of cooperating satellites that implement

various visualization functions. The kernel of the CSE architecture is designed to be very simple,

flexible and minimalistic. All higher level functionality is pushed into the satellites, thus ensuring that

a rich environment can be developed yet maintaining the simplicity and flexibility of the underlying

architecture.

The notion of modular satellites is certainly not new, and has been applied to many visualization

environments. However, CSE takes this modularity one step further by defining systems functions

in satellites. These system functions, which are usually hard-wired in the runtime systems of other

visualization environments, can be tailored to meet the specific needs of the simulation environment.

We presented dmTM and dmTT as two examples of systems satellites.

We have presented a standard user interface metaphor for all satellites. The card tray can be viewed

as a generic operator and individual cards are viewed as parameterizations of the operator. The card

tray is easy to understand since it provides an intuitive metaphor for organizing and retrieving cards.

REFERENCES 15

CSE can be used in many configurations. The minimal would include one data manager, the PGO

editor and the simulation, which ensures lean but efficient support for many tasks. A full blown

application can include many visualization satellites in combination with system satellites.

REFERENCES

1. R.E. Marshall, J.L. Kempf, D. Scott Dyer, and C-C Yen. Visualization Methods and Simulation

Steering a 3D Turbulence Model of Lake Erie. 1990 Symp. on Interactive 3D Graphics, Computer

Graphics, 24(2):89–97, 1990.

2. J.J. van Wijk and R. van Liere. An Environment for Computational Steering. Technical Report

CS-R9448, Centre for Mathematics and Computer Science (CWI), 1994. Presented at the Dagstuhl

Seminar on Scientific Visualization, 23-27 May 1994, Germany, proceedings to be published.

3. J. Mulder and J.J. van Wijk. 3D Computational Steering with Parameterized Graphics Objects. In

Proceedings Visualization ’95. IEEE Computer Society Press, Los Alamitos, CA, 1995.

4. C. Williams, J. Rasure, and C. Hansen. The State of the Art of Visual Languages for Visualization.

In Proceedings Visualization ’92, pages 202–209, 1992.

5. Explorer Development Team. Iris Explorer 2.0 Module Writer’s Guide. Technical Report 007-

1369-020, Silicon Graphics Inc, 1993.

6. W. Ribarsky, E. Ayers, J. Eble, and S. Mukherjea. Glyphmaker: Creating Customized Visualization

of Complex Data. IEEE Computer Graphics and Applications, 14(4):57–64, 1994.

7. L. Bergman, J. Richardson, D. Richardson, and F. Brooks Jr. VIEW – An Exploratory Molecu-

lar Visualization System with User-Definable Interaction Sequences. Computer Graphics, 27(6

(SIGGRAPH ’93)):117–126, 1993.

8. M. Levoy. Spreadsheets for Images. Computer Graphics, 28(6 (SIGGRAPH ’94)):139–146, 1994.

