View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by CW!I's Institutional Repository

Centrum voor Wiskunde en Informatica

REPORTRAPPORT

CSE: a modular architecture for computational steering
R. van Liere, and J.J. van Wijk
Computer Science/Department of Interactive Systems

CS-R9615 1996

https://core.ac.uk/display/301646026?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Report CS-R9615
ISSN 0169-118X

CWwiI

P.O. Box 94079

1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.

SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

CSE
A Modular Architecture for Computational Steering

Robert van Liere

Centrum voor Wiskunde en Informatica
P.O. Box 94079, 1090 GB Amsterdam
The Netherlands

E-mail: robertl@ecwi.nl

Jarke J. van Wijk

Netherlands Energy Research Foundation ECN Centrum voor Wiskunde en Informatica
P.O. Box 1, 1755 ZG Petten P.O. Box 94079, 1090 GB Amsterdam
The Netherlands The Netherlands

E-mail: vanwijke@ecn.nl

Abstract

Computational steering is the ultimate goal of interactive simulation. Steering enables users to supervise and
dynamically control the computation of an ongoing simulation. We describe CSE : a modular architecture for
a computational steering environment. The kernel of the architecture is designed to be very simple, flexible and
minimalistic. All higher level system functionality is pushed into modular components outside of the kernel,
resulting in a rich and powerful environment. For these modular components (called satellites) a uniform
user interface metaphor for users, based on a tray of cards, has been used. The card tray metaphor is very
simple to understand and provides users with a simple mechanism to organize and retrieve the tools. Several
applications of the environment are shown.

CR Qubject Classification (1991): 1.3.4, 1.3.6

Keywords & Phrases: computational steering, scientific visualization, three-dimensional graphics and in-
teraction

Note: This paper was presented at the 7th Eurographics Workshop on Visualization in Scientific Computing,
April 23-25, Prague, 1996

1. INTRODUCTION.
Computational steering is the ultimate goal of interactive simulation in which users have direct
control over the parameters of a simulation and are able to supervise and dynamically control

1. Introduction. 2

the computational process. The benefits of computational steering are well known. For example,
accordingto Marshell etal. [1] : “Interaction with the computational model and the resulting graphics
display isfundamental in scientific visualization. Steering enhances productivity by greatly reducing
the time between changesto model parameters and the viewing of the results’.

There are three reasons why software tools for computational steering are more demanding than
those found in traditional scientific visualization environments. First, in traditional visualization
systems, a visualization expert can first prepare a visualization, which then is analyzed by the
scientific user. Inherent to computational steering is that the user will be an active participant in the
visualization loop. Furthermore, due to the exploratory nature of steering, these tools will be used
iteratively. Hence, tools must be programmabl e and modifiable during the analysis cycle, preferably
by the end users. Second, end users are usually non-professional programmers who have neither the
time nor the training to create a new interface. Therefore, the specification and usage of tools must
be very simple and hide the underlying complexity of the system. Third, because of the inherent
complexity of large scale simulations, effective usage of distributed computing resources must be
guaranteed.

In [2] we introduced CSE , an Computational Steering Environment that encourages exploratory
investigation by the researcher of an ongoing simulation. The kernel of CSE is designed to be very
simple, flexible and minimalistic. Although we were able to demonstrate a number of applications,
the CSE required substantial knowledge and expertise to use. In particular, it was tedious to develop
individual toolsand usethesetoolsin concert. Inthispaper wefocusonhow original designprinciples
of the CSE are used to overcome these difficulties. The governing concept is the modularity of tools.
Instead of extending the CSE kernel, we extend the environment by defining new toolsthat build upon
the basic CSE primitives. Thesetools provide functionality that is usually hard wired in the kernel of
other environments.

In section 1.1 we summarize the kernel and the underlying concepts of the CSE . In section 2 we
present the underlying principles of the visualization tools — called satellites — and discuss the life
cycleof asatellite. In section 3, astandard user interface metaphor based on acard tray isintroduced.
Sections 4 and 5 give two examples of how CSE 's system functionality is extended. In section 4
the trigger manager satellite isintroduced. Trigger management allows users to define the control of
satellites. In section 5 the transport tuple satelliteisintroduced. This satellite optimizes datatransport
between two distributed databases. In section 6 we give an example of how all pieces of the CSE fit
together. Finally, in section 7 we compare the CSE with other extensible visualization environments.

1.1 Background.
An overview of the architecture of the environment is shown in figure 1.

1. Introduction. 3

Selection Calculator
Satellite Satellite o
I data 1 data t data

C Data Manager

data

Figure 1: The CSE architecture

The architecture of the environment is centered around a data manager that acts as a blackboard
for communicating values, and satellites that produce and visualize data. The purpose of the data
manager istwofold. Firgt, it manages adatabase of variables. Satellites can create, open, close, read,
and write variables. For each variable the data manager stores aname, type, and value. Variables can
be scalarsor arrays, in which case the number of dimensionsand size of the dimensionsisalso stored.
Array sizes can change dynamically during the lifetime of the variable. Second, the data manager
acts as an event notification manager. Satellites can subscribe to events that represent state changes
in the data manager. Whenever such an event occurs the satellite will receive an event from the data
manager. For example, if a satellite subscribes to mutation events on a particular variable, the data
manager will send a notification to that satellite whenever the value of the variable is mutated.

The foremost satellite is the PGO editor, an interactive graphics editing tool, [3]. The central
concept for the graphics editor is the Parametrized Graphics Object (PGO) : an interface is built
up from graphics objects whose properties are functions of data in the data manager. Users sketch
an interface and bind the graphics objects to variables by parameterizing geometry and attributes
with datain the data manager. Simulations may drive the interface by mutating the data bound to
the graphics objects. Similarly, users may drive the simulation by interacting with graphics objects.
Hence, atwo-way communication between graphics and data in the simulation is supported. Since
the PGO satellite is an interactive graphics editor, users may incrementally define the interface or
change bindings, thus encouraging exploration of the simulation.

The design of the CSE kernel was driven by the following underlying concepts:

e Theexclusiveuseof low-level primitives. The CSE kernel usesasimple datamodel and graphics
objects. The interfaces to these are familiar to the satellite developer and user : a UNIX-like
1/O library isthe API to the data manager and a MacDraw-like editor for the graphics.

¢ No higher level semantics are defined for data and graphics. For example, the data manager

2. Satellite Framework. 4

provides no support for defining and maintaining data dependencies between variables. Asa
result, the environment is general and flexible.

e All operations in both the data manager and the graphics editor are based entirely on data.
Dragging, picking and text input are translated into mutations of data.

e Satellites rely on late binding of variable names. Name matching is used to bind namesin a
satellite specification to named variables in the data manager. As aresult of late binding, it is
possible to incrementally define new visualizations of the data output by the simulation, while
the simulation continues to run.

We were able to demonstrate a number of applications using the CSE kernel. However, developing
satellites was a tedious task. Developers needed to implement al aspects of the interface to the
satellite, including the interoperability and user interface, from the low level primitives. Moreover,
satellite usage was not straightforward. For example, there was no support for combining satellites
into a network of cooperating tools, and each satellite had a different style of interface. In the next
section we describe a standard satellite framework that was defined to overcomethese problems. The
framework defines the behavior of an individual satellite and how it interfaces with its environment.
In section 3 we describe the standard user interface for the satellites.

2. SATELLITE FRAMEWORK.

An abstract satellite is shown in figure 2. Basicaly, it consists of an operator that transforms input
data into output data. Control determines when this operation has to be carried out, or, in other
words, when a satellite is triggered. By defining control externally, instead of using a fixed, built-in
control-strategy, a wide variety of cooperation styles between satellites can be realized. The actual
definition of the operation is defined by an additional set of parameters. Parameters are manipul ated
through the satellites user interface: via predefined widgets or by interactions with geometry within
the PGO editor.

datain dataout

o

parameters

Figure 2: Interfacesto an abstract satellite.

Thefollowing phasesin the life cycle of a satellite can be distinguished:

3. The Card Tray as a User Interface Metaphor. 5

¢ satellite development. A satellite developer will design and implement an operator which may
or may not be parameterized. The operator is packaged into a satellite.

Examples of operatorsare adlicer (selection of data), acalculator (calculation of derived data),
and the PGO editor (the visualization and user input of data).

e edit mode. The user specifies a parameterization of the operator. This is done by entering
names for each parameter of the operator.

Examples of parameterizations are for the dicer the name of the input variable, the name of the
output variable, and the names or values of the dlice bounds; for the calculator a mathematical
expression; and for the PGO editor a set of graphicsobjects, parametrized to names of variables.

e run mode. In run mode the satellite will bind parameter names to values in the data manager.
Name matching is used to bind parameter namesto named variablesin the data manager. Each
triggering of the satellite will result in the re-evaluation of the operator with new input dataand
the effected output values will be written to the data manager.

In run mode, the slice operator will be re-evaluated and the output wil be written whenever
the input variable or a dice bound is mutated. For the calculator, if a name in the right hand
side of the expression is mutated the left hand sideis re-evaluated and written. Finally, when a
namein the drawing of the PGO editor is mutated, either by changesin the data manager or by
interaction on a graphics object, the drawing will be re-rendered.

Userswill typically iterate a number of times between edit and run mode.

Development and usage of the satellite is simplified through standardization. A satellite devel-
opment environment is offered, that includes high level libraries and tools that hide the underlying
complexities of the satellite’s interface. In addition to the devel opment environment, a standard user
interface metaphor to a satéllite is provided. Standardization on the user interface of the satellite
reduces the learning time to operate a satellite.

3. THE CARD TRAY AS A USER INTERFACE METAPHOR.

All satellites in the CSE adhere to a simple user interface metaphor. The metaphor is atray of cards,
with a browsing mechanism to iterate through the cards. Each tray implements a class of operations
and each card represents a particul ar parameterization of the operation. Ontheleft side of figure 3 the
user interface for the dicing satelliteis shown. It consistsof three panels, of which the top and bottom
panel are the same for all satellites. The top panel is responsible for the connection administration
with the datamanager. Every satellite containsavariable browser and trigger editor. Theright side of
figure 3 showsthe popup panelsfor the variable browser and trigger editor. The variable browser can

3. The Card Tray as a User Interface Metaphor. 6

be used to define or inspect properties of variables that belong to the satellite. The trigger editor is
used to specify variable namesthat will control the satellite. By default aunique variable namewill be
generated, but users can change thisto any name. The details of triggering and trigger names will be
explained in sections 4. The bottom panel of the card tray is responsible for the card administration.
In edit mode, users can add or delete operators by creating or destroying cards. In run mode, users
can browse through the tray and pull cards out of the tray.

Themiddle panel containsthe operator specific user interface. Infigure 3the user interface consists
of specifying an input and output variable and a slice name. The slice name itself is parameterized
with four variable names and two constants.

[[30 owpw |

Type |E float ||D integer |
|D double ||D string |

Stat/Dyn |D Static ||E Dynamic |

Var Name

Srn v ||ou |

Direction |E Input

Dim Min Max Samp

Figure 3: The dlicer card tray with variable and trigger browser.

There are anumber of advantagesin choosing a simple user interface metaphor :

e Since the interface of the satellite is standardized, the user interface to this functionality is
the same for all satellites. Uniform variable and trigger editors are generated giving powerful
browsing facilities for names local to each satellite. These editors provide the functionality
needed to interface the satellite to the rest of environment. Satellite developers need only to
supply the functionality of the operator itself.

e Thecard tray administration is also standardized. The user interface to this functionality isthe
samefor all satellites and is generated automatically.

e Users have a standardized way of interacting with the functionality provided by the card tray.
Only the user interface to the operator must be learned. This facilitates the user’s task of
learning to use new satellites.

4. Trigger Manager Satellite. 7

e Theuse of card trays reduces clutter of the screen. Push and pop functions allow for selective
control on the number of simultaneously visible cards. The card tray metaphor is scalable in
the number of cards in the tray. Efficient card browsing facilities can help locate individual
cards within the tray.

The CSE contains a large collection of general purpose satellites. For example, dmpgo2D and
dmpgo3D are the general purpose graphics editors, dmslice allows data selections, dmannot is a
generalized annotation satellite, dmcalc is a calculator for scalar and array values, dmtrans is a
fourier transformation satellite, dmtimer provides a general purpose clock, dmscheme is a satellite
that interprets Scheme scripts, and dmlog logs a history of values. The development time of these
satellites was greatly reduced by the standard framework provided.

4. TRIGGER MANAGER SATELLITE.

Satellites cooperate via the basic input/output mechanisms that are provided by the data manager
for variables. Writing to a variable will cause an event to be sent to all satellites subscribed to that
variable. This mechanism is used in two ways. First, the user can specify that only if one particular
variable, the input trigger variable is changed, the operator has to be re-evaluated. The action of
operator re-evaluation is called triggering. Second, if no such trigger variable is specified, then upon
each mutation of any input variable the output variables are re-evaluated. The satellite will subscribe
to al itsinput variables, and every mutation will cause the satellite to re-evaluate the operator.

Further, the user can also specify an output trigger variable. This variable is written to each time
the operator has been re-evaluated, and can be used to link the control flow for satellites.

Using mutations on data to trigger satellites provides tremendous flexibility. However, this flexi-
bility also introduces additional complexity. Users must provide distinct output trigger names of the
producing satellite which, in turn, must match the input name of the consuming satellite. Thisis not
aproblem when using afew satellites, but becomes unmanageable when many satellites are involved.

A trigger manager satellite, dmTM, hasbeen devel oped to simplify the definition of trigger variables.
The dmTM satellite allows usersto define triggers by linking two named variables from independent
satellites together. When one variable iswritten, the trigger manager will copy its value to the second
variable. The effect isthat the satellites owning the second variablewill get amutation event from the
datamanager. Notice that copying can be potentially inefficient when applied to large datavalues. In
practice, however, only scalar variables will be used as triggers.

Linking two variables defines a data dependency between these two variables. Linking a number
of variables results in an undirected graph, which we call the trigger graph. Users may build and
edit the trigger graph whenever satellites are connected to the data manager. The task of dmMTM isto

4. Trigger Manager Satellite. 8

manage the trigger graph.

In addition to managing triggers, dmTM is used to monitor the flow of databetween satellites. This
isdoneby recording the satellite that haswritten to avariable, resulting in adirected flow dependency
graph of write operations on avariable.

The user interface of the trigger manager satellite can be implemented in many ways. However,
since the CSE already provides a general purpose graphics editor, the user interface of dmTM is
implemented as a card in the PGO satellite. Figure 4 is a snapshot of the satellite configuration of
the smog prediction model discussed in section 6. The nodes of the graph represent the satellites
connected to the datamanager. The blue edgesindicate dataflow dependency. A bluearrow indicates
adirected data dependency. Green edges indicate the trigger graph. The trigger graph can be edited
at any time. The panel on thetop right provides additional variableinformation of a selected satellite.
The panel on the bottom is the interface to the trigger graph editor.

4 N
dmslice
W i
H| o
Wl xhi
[| xlo
H| cs
B c
AV
LINK EDITOR
CREATE DELETE
PORT - -
LINK - -
. J

Figure 4: PGO interface to the trigger manager satellite

There are a number of advantagesin having a satellite, rather than the kernel, manage the trigger
and dependency graphs:

e Since the satellite makes use of the API to read/write and query with the data manager, it
impliesthat synchronizationisnot intrinsically defined withinthe kernel of the CSE . Alternative
synchronization schemes can be realized by replacing the trigger manager satellite.

e The visua representation and interactions with the underlying data dependency and trigger
graph isacard in the PGO editor. The user interface to the graph can be modified at any time.

5. Transport Tuple Satellite. 9

As an illustration of the functionality provided by dmTM, consider the three cases illustrated in
figure 5. Thistypical satellite configuration consists of a simulation satellite, a data mapper satellite
and the PGO editor. The time dependent simulation dumps its output to the data manager after
every time step. In the configuration on the left, the simulation will run asynchronously with the
PGO editor. Data may not be visualized, as the simulation may be dumping data at a higher rate
than the mapper or PGO can consume. In the configuration in the middle, the ssimulation will run
synchronously with the PGO editor. The PGO editor will trigger the simulation after it renders one
frame. In the configuration on the right, the satellite dmbutton will trigger the simulation. dmbutton
istriggered manually.

]

Figure 5: Three different synchronization configurations.

By editing trigger graph, the user can switch between the three configurationswhile the ssimulation
isrunning. When the simulation isin a non-interesting state, the user may wish to run the simulation
asynchronously. When the simulation is in a semi-interesting state, the user may wish to run
synchronously. Finally, when the simulation isin acritical state and each time step requires careful
study, the user may wish to trigger the simulation manually.

5. TRANSPORT TUPLE SATELLITE.

Due to the quantity of data, efficient data transport is crucial in a distributed data visualization
environment. In the case of a centralized data manager, data transport between two satellites can be
inefficient if these satellites reside on one computing node and the data manager resides on a different
node. Datawill bewritten from one satellite to the data manager and will be read by the other, all via
the network. Obviousdly, for small data sets thisis no problem, but for large data sets the network can
be a severe bottle neck.

The CSE approach to solve this problem was to develop a satellite that can control data transport
between data managers. The satellite that manages this functionality is called the transport tuple
satellite, dmTT.

Thebasicideaof dmTT isto transport atuple of variables between two datamanagers. EachdmTT
card parameterization contains an input tuple and an output tuple. Each tupleis a description of a set

of named variables, denoted ast;, =< vy, , v2 Un,, >. Thepropertiesof each variable v;,, in

in Tt

5. Transport Tuple Satellite. 10

the input tuple must match the corresponding properties of the output variable v;,,,. When dmTT is
triggered it will copy the input tuplesto the output tuples. Tuples may optionally have a name.

Figure6illustrates the transport tuple satellite. To theleft is one data manager that manages named
variables of al its connecting satellites. To the right is a second data manager. Data managersreside
on different hosts. The satellites themselves may or may not execute on these hosts. The transport
tuple satellite is responsible to pass data between managers. Data managers do not know of each
others existence.

| Researcher |

text drag pick visualization selection expression
Rendering "
Selection Calculator
Satellite dmTT
Satellite Satellite

I data I data 1 data

[Data Manager 1] l Data Manager 2

data

Figure 6: The transport tuple satellite.

data data

There arethree optionsfor thetriggering of dmTT. First, dMTT may have one global trigger which,
when fired, will copy all input tuples to the output tuples. Second, each input tuple can be triggered
through its name, resulting in the copying of one single tuple. Finally, each variable can be triggered
through its name, resulting in the copying of one single variable. Thesethree triggering cases ensures
that the granularity of data transport can be controlled.

There are a number of advantages of having dmTT manage data transport between compute
resources:

e Data managers can run on the same machine as the satellites which are connected to it.
Communication between satellites local to one machine is substantially faster than over a
network. Hence, computing resources can be utilized more effectively.

e Data movement between data managers can be controlled by a satellite. The amount of datato
be moved and the time the movement is to take place can be parameterized within dmTT.

e Thefunctionality of the data manager can stay simple. No additional support for efficient data
transport is necessary in the CSE kernel.

Asan exampleof dmT T sfunctionality, consider aconfiguration in which the ssmulationis running

6. Application. 11

on one machine (say mach A) and the slicer and the PGO on a second machine (say mach B). The
dicer takesits input data from the ssimulation and getsits slice bounds from a user defined regionin
the PGO. We consider two extreme cases. First, the simulation generates alarge quantity of dataat a
very fast rate, but the user isonly interested in avery small portion of thisdata. Second, the simulation
does not generate data that frequently, but the dicer istriggered very rapidly by the changing of the
region of interest. Without dmTT, data transport can be very inefficient. If the data manager resides
on mach B, then thefirst case will cause a bottleneck because much data must be transported over the
network that not will be visualized. On the other hand, if the data manager resides on mach A, then
the second case will cause abottleneck because the dlicer will need to read itsinput over the network
for each evaluation. However, when dmTT is used, both cases can be handled efficiently. For thefirst
case we configure dmTT to transport only the sliced data, and hence only these data are copied to
mach B. For the second case we configure dmTT to transport all datato mach B. A local copy of the
dataisthen available for rapid selections of the data.

6. APPLICATION.

The CSE was applied to the simulation of a model for smog prediction over Europe. The full blown
model forecasts the levels of air pollution, which is characterized by approximately 104 reactions
between ca. 70 species. For example, the concentrations of ozone (O3), sulphur dioxide (SO,) and
sulphateaerosol (SO,) arecalculated. Thevertical stratificationismodeled by four layers; the surface
layer, the mixing layer, the reservoir layer, and the upper layer. The physical and chemical model is
described by a set of partia differential equations that describe advection, diffusion, emission, wet
and dry deposition, fumigation, and chemical reactions.

An important numerical utility to solve these equationsis local grid refinement. Thistechniqueis
used to improvethe quality of themodel calculationsin areaswith large spatial gradients (for example
in regions with strong emissions). The tradeoff to be made in local grid refinement is calculation
accuracy versus computation speed.

We have used the CSE to steer various aspects of the smog prediction simulation. We name a few
of these aspects:

e control of the tolerance value that determines where refinement is necessary.
e editing of emission data.

¢ use of abounding box as a concentration probe. The coordinates of the bounding box steer the
slicing satellite, which in turn triggers the calculator and logging satellites. The result of the
logging satellite triggers the PGO editor.

e interactive control over simulation time.

6. Application. 12

Numerical Smog Prediction

nnnnnnnnn

vvvvv

oooCm

Nu S
M show grid [] nide grid ‘

nnnnnnnnnnn

Probeavg: 60.3 Total avg: 24.233

" Saturday 27 March 1993 Wind Field
i dt=05
) | WO

Figure 7: Smog prediction

Figure 7 shows a snapshot of a step in the simulation. An example of a question a numerical
mathematician would pose would be to gain insight in the relationship between grid refinement
tolerance, the maximal Courant number, and the simulation time. Satellites can easily be configured
to address this question. The graph on the lower left shows alog of the number of cells that were
refined and the maximum Courant number. The dmlog satellite records the data for display. Hence
the effects of changes on the tolerance or the simulation time will be displayed immediately.

Similarly, average concentration prabes of a region of interest can be defined through the combi-
nation of the dmslice, dmcalculator and dmlog satellites. The user specifies the region of interest
is specified by dragging the red bounding box. dmslice slices the region of interest, dmcalculator
calculates the average of the sliced area, and dmlog maintains the log. The log of these variablesis
plotted in thelower right of figure 7. Noticethat values output from dmslice, dmcal culator, and dmlog
are derived variables and are not variables in the simulation. A different operation on the area of
interest, for example the maximum concentration, can be plotted by simply changing the expression
in dmcalculator. Figure 4 showsaview of the trigger manager of this configuration.

This particular configuration runs at approximately two frames a second on a modern workstation.
Theamount of datainvolvedissubstantial. Depending ontolerancelevel, theamount of datamay vary
between one and four megabytes per time step. The simulation has 447 time steps. Approximately

7. Comparison with Other Systems. 13

90 percent of the CPU time was taken by the simulation satellite. The remaining 10 percent was used
by the other satellites.

7. COMPARISON WITH OTHER SYSTEMS.

Many research and development teams have designed and implemented interactive visualization en-
vironments. Williams, Rashure and Hanson [4] provide a framework to understand design tradeoffs
when developing data flow based visualization systems. Giving an in depth analysis of other vi-
sualization environments is outside the scope of this paper. Instead, we discuss only some issues
that resemble those in the CSE . Many of the conceptsin this paper have their counterpartsin other
systems. However, their combination and application to steering is novel.

e Indataflow environments operators are combined by linking output and input ports. Operators
are executed upon availability of data on the input port. Operators are packaged as modules,
and most environments provide high level tools for building modules.

IRIS Explorer [5] is an example of an advanced data flow visualization environment. How-
ever, there are many fundamental differences between IRIS Explorer and CSE . First, direct
manipulation is very difficult to achieve in data flow environments. In IRIS Explorer thereis
no one-to-one relation between geometry and the corresponding Lattice object in an upstream
module. This makes direct manipulation of aobjects in the simulation very tedious. In con-
trast, with CSE ’s binding mechanism direct manipulation is ensured. Second, IRIS Explorer’'s
mechanism to manage data transport differs from CSE 's. Global and local controllers are
configured as aresult of the topology of the dataflow map. In contrast, datatransportin CSE is
managed by a centralized data manager. When efficient data transport is necessary, the tuple
transport satellite can be used. Finaly, in contrast to IRIS Explorer’s rigid and hard-wired
firing algorithm, CSE s control rules are very flexible and are managed by a satellite. Many
other IRIS Explorer functions are built in the run-time system.

e Glyphmaker [6] is a system that allows users to customize graphical representations using a
glyph editor and a simple point-to-click binding mechanism. Glyphmaker isimplemented asa
collection of modulesin IRIS Explorer.

Allowing usersto specify customized graphical representations resemblesthe mainideaof the
PGO editor, although theimplementationsare very different. Glyphmaker’sgraphicsprimitives
are targeted to glyph specifications for the visualization of data, whereas the PGO’s graphics
primitive set is larger, and aims at both visualization and user input. Also, Glyphmaker’'s
variable names are distilled from an input file by the Read Module. These names can then be
used by the binder to bind to active elements. In CSE , names in the data manager are explicit
and can be used in the satellites’ parameterization.

8. Conclusion 14

e VIEW [7] isasystem that is based on atight coupling of on-screen geometry with a database.
A data drawing tool allows usersto define composite geometric objects by selecting primitive
graphical components from the database. In addition, an event-definition mechanism allows
the user to customize interaction sequences. A tool scripting language is used to specify these
interaction sequences, and simple selection functions are offered to bind names in the scripts
to geometry in the database. Event monitors are used to execute scripts.

A principle difference between VIEW and CSE is event handling. VIEW provides event
monitors to customize interaction sequences. Eventsin VIEW include changesin input device
state and picking of geometry. CSE notion of events is based exclusively on state changes
within the data manager. Satellites may receive events by subscribing on the state change.

e Spreadsheet Images[8] isadatavisualization system based on spreadsheets. Cellsmay contain
graphical objects, widgets, or formulaswritten in a scripting language. The output of acell can
be referenced by other cells, resulting in a number of dependency relationships between cells.
These dependency relationships are represented by a directed acyclic graph which, when a cell
is modified, is updated through a predefined firing algorithm.

A similar aspect with Spreadsheet images is the strong emphasis of a common user interface
metaphor. Spreadsheets are conceptually easy to learn, and the screen space is used very
effectively. In contrast, however, CSE groups operators with similar functional behavior in one
card tray instead of scattering them throughout the spreadsheet.

8. CONCLUSION

CSE isamodular computational steering environment that provides an interface between aresearcher
and an ongoing simulation. Theinterface consistsawiderangeof cooperating satellitesthat implement
various visualization functions. The kernel of the CSE architecture is designed to be very simple,
flexibleand minimalistic. All higher level functionality is pushedinto the satellites, thus ensuring that
arich environment can be developed yet maintaining the simplicity and flexibility of the underlying
architecture.

The notion of modular satellites is certainly not new, and has been applied to many visualization
environments. However, CSE takes this modularity one step further by defining systems functions
in satellites. These system functions, which are usually hard-wired in the runtime systems of other
visualization environments, can be tailored to meet the specific needs of the simulation environment.
We presented dmTM and dmTT as two examples of systems satellites.

We have presented a standard user interface metaphor for all satellites. Thecard tray can be viewed
as ageneric operator and individual cards are viewed as parameterizations of the operator. The card
tray is easy to understand since it provides an intuitive metaphor for organizing and retrieving cards.

REFERENCES 15

CSE can be used in many configurations. The minimal would include one data manager, the PGO

editor and the simulation, which ensures lean but efficient support for many tasks. A full blown
application can include many visualization satellites in combination with system satellites.

REFERENCES

1

(o]

R.E. Marshall, J.L. Kempf, D. Scott Dyer, and C-C Yen. Visualization Methods and Simulation
Steering a3D Turbulence Model of Lake Erie. 1990 Symp. on Interactive 3D Graphics, Computer
Graphics, 24(2):89-97, 1990.

J.J. van Wijk and R. van Liere. An Environment for Computational Steering. Technical Report
CS-R9448, Centrefor Mathematicsand Computer Science(CWI), 1994. Presented at the Dagstuhl
Seminar on Scientific Visualization, 23-27 May 1994, Germany, proceedings to be published.

J. Mulder and J.J. van Wijk. 3D Computational Steering with Parameterized Graphics Objects. In
Proceedings Visualization ' 95. IEEE Computer Society Press, Los Alamitos, CA, 1995.

C. Williams, J. Rasure, and C. Hansen. The State of the Art of Visual Languagesfor Visualization.
In Proceedings Visualization ' 92, pages 202—209, 1992.

Explorer Development Team. Iris Explorer 2.0 Module Writer's Guide. Technical Report 007-
1369-020, Silicon Graphics Inc, 1993.

W. Ribarsky, E. Ayers, J. Eble, and S. Mukherjea. Glyphmaker: Creating Customized Visualization
of Complex Data. |EEE Computer Graphics and Applications, 14(4):57—64, 1994.

L. Bergman, J. Richardson, D. Richardson, and F. Brooks Jr. VIEW — An Exploratory Molecu-
lar Visualization System with User-Definable Interaction Sequences. Computer Graphics, 27(6
(SIGGRAPH ’93)):117-126, 1993.

M. Levoy. Spreadsheetsfor Images. Computer Graphics, 28(6 (SIGGRAPH ' 94)):139-146, 1994.

