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Purpose: Projections acquired with continuous gantry rotation may suffer from blurring effects,
depending on the rotation speed and the exposure time of each projection. This leads to blurred
reconstructions if conventional reconstruction algorithms are applied. In this paper, the authors pro-
pose a reconstruction method for fast acquisitions based on a continuously moving and continuously
emitting x-ray source. They study the trade-off between total acquisition time and reconstruction
quality and compare with conventional reconstructions using projections acquired with a stepwise
moving x-ray source.
Methods: The authors introduce the algebraic reconstruction technique with angular integration
concept, which models the angular integration due to the relative motion of the x-ray source during
the projection.
Results: Compared to conventional reconstruction from projections acquired with pulsed x-ray
emission, the proposed method results in substantially improved reconstruction quality around the
center of rotation. Outside this region, the proposed method results in improved radial resolution
and a decreased tangential resolution. For a fixed reconstruction quality of this region of interest, the
proposed method enables a lower number of projections and thus a faster acquisition.
Conclusions: The modeling of the continuous gantry rotation in the proposed method substantially
improves the reconstruction quality in a region of interest around the rotation center. The proposed
method shows potential for fast region of interest tomography. C 2015 American Association of
Physicists in Medicine. [http://dx.doi.org/10.1118/1.4914422]

Key words: continous scanning, azimuthal blurring, ROI tomography, motion blur, continuous gantry
rotation

1. INTRODUCTION

Computed tomography (CT) is increasingly used to study
dynamic processes, often referred to as 4D CT. The time
resolution with which such processes can be studied strongly
depends on the rotation speed of the gantry. Pushing the
rotation speed to its limits, however, may result in blurred
x-ray projections depending on the type of acquisition, which
in turn leads to blurring in the reconstructed images.1,2

In a step-and-shoot acquisition setup, the x-ray source and
detector are stepwise moved on a predefined path and kept
still during the exposure.3 While this approach yields sharp
projection images, precisely controlling, moving, and stopping
the x-ray source is challenging. As a result, the focal spot
often still moves during exposure, which causes blurring in the
reconstructed images.4 In addition, step-and-shoot protocols
typically lead to longer acquisition times.5

An alternative acquisition strategy is to keep the gantry in
a constant motion, a so called continuous acquisition mode.
This mode allows shorter acquisition times but also suffers
from blurred projection data, even if a pulsed x-ray source
is employed, as the gantry is still moving during the pulse.
A related blurring effect is caused by detector lag, where the
detector still partly contains the signal of the previous exposure
and hence also appears to store photon beams from multiple
angles.6

Most acquisition protocols are designed to limit the angular
integration as much as possible, either by increasing the detec-
tor frame rate,7,8 by reducing the rotation speed of the gantry, or
by decreasing the exposure time of the x-raypulse.9,10 Recently,
efforts have been made to model the focal spot motion during
these x-ray flashes in the reconstruction algorithm to improve
the reconstruction quality.11 Another previous approach to
reduce the angular integration consisted of a pixel shifting
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F. 1. (a) shows an example image acquisition geometry. Parallel beam
projections are acquired at angles θn = n∆ with n = 1, . . .,N . (b) shows the
corresponding lines of these projections in the Fourier space. In a continuous
acquisition, the detector integrates photons between θn and θn+1 and hence
gathers information about a wedge of angular width ∆ in the Fourier space.

technique.12 Closely related to angular integration, overlapping
beams were modeled originating from multiple sources.13

While reducing blurring effects has obvious advantages, the
main consequence seems to be prolongation of the acquisition
time. An alternative approach, which we will follow in this
paper, consists of accurately modeling the blurring effect and
integrating it in an image reconstruction framework. Iterative
reconstruction methods are known to be suitable to model
various physical effects, such as the focal spot size, the beam
energy spectrum, and the finite detector elements.14 In this
work, the blurring due to gantry rotation during the acquisition
of a single projection is modeled and integrated into a novel
acquisition/reconstruction method: the algebraic reconstruc-
tion technique with angular integration concept (ARTIC). AR-
TIC is based on the continuous acquisition mode as described
above,but usingacontinuously emittingx-raysource insteadof
apulsedsource.Thecontinuouslyemittingsourcecausesdelib-
erate angular integration of the x-rays along its full motion path
from the start of the exposure until the start of the next exposure.
Thus, for a given total scan angle, the angle of integration
increases with decreasing number of projections. Opposed to
conventional reconstruction methods, in ARTIC, the angular
integration is modeled and integrated into an iterative recon-
structionscheme.TheperformanceofARTICin termsof image
reconstruction quality is evaluated on simulation phantoms and
real datasets.

2. METHODS
2.A. Continuous projections

In this section, we explain the concept of continuous projec-
tions for parallel beam geometry. Generalization to other
geometries is straightforward. In what follows, a point source
and point detector are assumed.

The attenuation of an x-ray beam in the case of a pulsed
x-ray source, further referred to as a “static” projection, can
be expressed as follows:

I sn(r)= I0exp*
,
−

Lr,θn

µ(x,y)ds+
-

(1)

with (x,y) = (r cos θn − ssin θn,r sin θn + scos θn). Further-
more, I0 is the intensity measured by the detector without
object and I is the intensity after attenuation by the object. The
attenuation coefficients of the imaged object are represented
by µ(x,y), and the line integral is taken over the x-ray beam
Lr,θn from source to detector as illustrated in Fig. 1(a).

After transformation of the projection data by−ln(I sn(r)/I0)
and discretization, Eq. (1) can be expressed as a linear com-
bination of the attenuation coefficients

bi =

j

as
i, jx j, (2)

where bi represents the measured projection data at detector
position i and x j is a pixel in the discrete representation of µ.
The contribution of image pixel j to detector value bi is as

i, j,
which is related to the intersection length of the ray with this
pixel.

The combination of Eq. (2) for all projection pixels leads
to a system of linear equations

b=Asx, (3)

where As = {as
i, j} represents the system matrix, x = {x j}

represents the vector of unknown attenuation coefficients in
the discrete representation of µ, and b= {bi} represents the
vector of the projection data.

In case of continuous projections, each projection value
Icn(r) is the result of the integration of photons during rotation
of the source–detector system from θn to θn+1 = θn +∆.
An equivalent approach can be described with a fixed
source–detector system and a continuously rotating object,
e.g., in synchrotron imaging. In this case, θ refers to the
rotation of the object instead of the source–detector system.
If the same total radiation dose is administered and the x-ray
source and detector move with constant angular velocity, the
measured intensity is given by

Icn(r)= I0

∆

 θn+1

α=θn

exp
(
−

Lr,α

µ(x,y)ds
)

dα (4)

with (x,y)= (r cos α− ssin α,r sin α+ scos α). For simplicity,
we assume the source emits a constant intensity. Also, the
delay for reading out the detector is assumed to be negligible
compared to the integration time.

To obtain a discrete formulation of Eq. (4), S number
of rays are projected between θn and θn+1. Equation (2) is
modified to

bi =−ln*.
,

1
S

S
s=1

exp

−

j

ai, j,sx j



+/
-
, (5)

where ai, j,s now represents the weight of the attenuation coef-
ficient at image pixel j for the beam arriving at detector pixel
i with angle θn+

s
S
∆. The sampling factor S should be chosen

high enough to sample the full area between the corresponding
lines in the Fourier space as illustrated in Fig. 1(b).

Furthermore, under the assumption (see Appendix) that
each ray sum bi,s ≡


jai, j,sx j only differs slightly from the

average ray sum bi,avg≡ 1/S
S

s=1bi,s, Eq. (5) can be approxi-
mated using the fact that exp(x)≈ 1+ x for small x,
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bi = −ln*
,

1
S

S
s=1

exp(−bi,s)+
-

= −ln*
,

1
S

S
s=1

exp
�
bi,avg−bi,s−bi,avg

�+
-

= −ln*
,

1
S

S
s=1

exp
�
bi,avg−bi,s

�
exp

�
−bi,avg

�+
-

= bi,avg− ln*
,

1
S

S
s=1

exp
�
bi,avg−bi,s

�+
-

(6)

≈ bi,avg− ln*
,

1
S

S
s=1

�
1+ (bi,avg−bi,s)�+

-
= bi,avg

=

j

ac
i, jx j (7)

with ac
i, j ≡ 1/S

S
s=1ai, j,s.

In this work, we use the linear approximation of Eq. (7) to
model the forward continuous projection, which leads to the
following linear system:

b=Acx, (8)

where Ac= {ac
i, j} represents the system matrix for the conti-

nuous projections.
The linear system in Eq. (8) can then be solved by different

techniques. In the remainder of this work, the simultaneous
iterative reconstruction algorithm (SIRT) is chosen as an
example implementation. In SIRT, the update step can be
written as15

x(k+1)= x(k)+CATR(b−Ax(k)) (9)

with A the system matrix, and R and C the inverse row and col-
umn sums of A, respectively. The reconstructed image in itera-
tion k is represented by x(k). In this work, we will further refer
to “ARTIC” for solving the continuous projections system
in Eq. (8) with SIRT, as opposed to “SIRT” for solving the
static projections system in Eq. (3) with SIRT.

3. EXPERIMENTS

Section 3.A describes experiments with resolution phan-
toms. In Sec. 3.B, we describe a simulation experiment using
the Forbild16 phantom. In Sec. 3.C, we perform an experiment
on real data, acquired with a synchrotron.

3.A. Resolution phantoms

To compare the reconstruction quality in a region of interest
(ROI) between filtered backprojection (FBP),17 SIRT, and
ARTIC, a phantom was created consisting of nonoverlapping
randomly placed Gaussian blobs with radius 10 px and a
maximal intensity of 1, which decreases to 0 toward the
border of the dot [Fig. 2(a)]. The phantom dimensions were
700×700 px. All projections were simulated using parallel
beams, with projection angles equally distributed over 180◦.

F. 2. Phantoms for evaluation of the spatial resolution.

The detector contained 525 elements with a relative pixel
width of 2 compared to the phantom pixels. Reconstructions
were computed on a grid of size 350×350 px. To measure
the reconstruction quality in a ROI, the following local root
mean square error (RMSE) was defined:

RMSE(r)≡


1
|D(r)|


j ∈D(r )

�
x j−x j

�2
, (10)

where x j represents the jth pixel of the phantom, x j is the
jth pixel of the reconstructed image, and D(r) is the set of
pixels within a circular ROI of relative radius r around the
source–detector rotation center, and |D(r)| is its cardinality.
A relative radius r = 1 corresponds to a circular field of view
with a radius of half the image width. To exclude differences
in convergence speed between both methods, reconstruct-
ion iterations were stopped at the iteration at which the
reconstructed image showed a minimal RMSE in a ROI of
r = 0.5.

In a first experiment, the relationship between the number
of projections and ROI size was investigated. Reconstructions
were made using 20, 40, and 60 simulated projections with
moderate noise (I0 = 105). The RMSE was measured in
function of the size of the ROI around the rotation center.

Second, to compare the noise propagation of SIRT and
ARTIC through subsequent iterations, three sets of 30 noisy
projections with I0 = 5× 103, 104, 105 were simulated. The
RMSE of the reconstruction was evaluated in function of the
number of iterations in a ROI with radius r = 0.5.

Third, to illustrate the possible gain in total acquisition
time, the RMSE was computed as a function of the number
of projections. Moderate noise was added (I0= 105) and both
SIRT and ARTIC reconstructions were again stopped at the
iteration with minimal RMSE.

The phantom images in Figs. 2(b)–2(d) were designed to
illustrate the local radial and angular resolution of ARTIC.

Medical Physics, Vol. 42, No. 5, May 2015
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F. 3. Forbild phantom.

Pixel intensities are within [0,1]. Phantom dimension, recon-
struction grid, detector size, and geometry were identical to
the random dots phantom experiments. FBP, SIRT, and ARTIC
reconstructions were computed from 20 noiseless projections.

3.B. Anthropomorphic phantom

Simulation experiments were run using the Forbild phan-
tom (Fig. 3). For the simulation of the continuous projections
of the anthropomorphic phantoms, Eq. (5) was used to allow
validation of the linearization in the reconstruction algorithm
in Eq. (7).

The Forbild phantom was generated on a 351×351 pixels
grid with pixels of size 75 µm. Projections were simulated
with 45 parallel beams, equally distributed over 180◦, on
a detector of 527 px width to avoid truncation. Moderate
noise (I0= 105) was added to the projections. Reconstructions
were computed with FBP, SIRT, and ARTIC for different
source–detector rotation centers and the RMSE was evaluated
around the rotation center for different ROI sizes r . All recon-
struction iterations were stopped at the iteration for which the
RMSE in a ROI with r = 0.3 was minimal.

3.C. Synchrotron measurements

We evaluated our method on two sets of parallel beam
projections of an Al8Cu metal rod, made with a synchrotron.
The angles of both sets were equally distributed over 180◦.
The first set consisted of 1000 continuous projections and was
considered the reference set. The second set contained only
125 continuous projections.

We reconstructed the set of 1000 projections with SIRT,
ignoring the small angular integration, and used it as a refer-
ence image. Then, we reconstructed the set of 125 continuous
projections with FBP, SIRT, and ARTIC and compared the
RMSE with the reference image after rigid registration. We set

F. 4. Reconstructions with FBP (left column), SIRT (middle column), and ARTIC (right column) of the random dots phantom for 20, 40, and 60 projections.
Displayed grayscale set to [0,1]. (a) FBP (N = 20), (b) SIRT (N = 20), (c) ARTIC (N = 20), (d) FBP (N = 40), (e) SIRT (N = 40), (f) ARTIC (N = 40), (g) FBP
(N = 60), (h) SIRT (N = 60), (i) ARTIC (N = 60).

Medical Physics, Vol. 42, No. 5, May 2015
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F. 5. RMSE in circular ROI with increasing radius r , for various FBP,
SIRT, and ARTIC reconstructions of the random dots phantom.

r to cover the full metal rod excluding the background. We also
computed the structural similarity (SSIM)18 with the reference
image for the same region.

4. RESULTS
4.A. Resolution phantoms

Figure 4 shows reconstructions from FBP, SIRT, and
ARTIC for an increasing number of projections. Whereas
the resolution is not spatially dependent for FBP and SIRT,
the results from ARTIC clearly show an improved resolution
in a local region around the rotation center, with a decreasing
tangential resolution further away from the rotation center.
The radius of this local region increases with the number of
projections.

Figure 5 shows the RMSE in function of the radius r
of the ROI. A substantial improvement is observed with
ARTIC for regions with radius r < 1. For increasing ROI
radius r , the RMSE of SIRT and ARTIC gradually converges
toward approximately the same global RMSE. The difference
in RMSE between SIRT and ARTIC reconstructions also
lowers with increasing number of projections, which can be

F. 6. RMSE in a circular ring of width 0.2 and outer radius r for various
FBP, SIRT, and ARTIC reconstructions of the random dots phantom.

F. 7. RMSE (r = 0.5) in function of the number of iterations, for various
noise levels and N = 30.

understood intuitively as this reduces the angular integration.
To illustrate the spatial dependency of the RMSE in ARTIC
reconstructions, Fig. 6 displays the RMSE in a ring of width
0.2 and outer radius r . Around r = 0.75 and above, the RMSE
of ARTIC is higher than the RMSE of SIRT.

The RMSE of a fixed ROI (r = 0.5) in function of the
iterations is plotted in Fig. 7 for a fixed number (30) of
projections. As can be observed, the RMSE of ARTIC
reconstructions increases faster after the optimal stopping
iteration compared to SIRT. This illustrates the stronger noise
propagation of ARTIC compared to SIRT.

The RMSE in a fixed ROI with radius r = 0.5 is displayed
in Fig. 8. Note that the RMSE of ARTIC at 30 projections is
similar to the RMSE of SIRT at 60 projections, showing its
potential for reduction of the scan time.

The reconstructions from projections of the circles
phantom [Fig. 9(a)] are displayed in the first row of Fig. 9.
Whereas the FBP [Fig. 9(b)] and SIRT reconstructions
[Fig. 9(c)] show many artifacts, the ARTIC reconstruction
is nearly perfect [Fig. 9(d)]. This demonstrates the improved
radial resolution of ARTIC.

The radial lines phantom [Fig. 9(e)] contains lines through
the center of rotation and was specifically designed to illustrate

F. 8. RMSE (r = 0.5) of FBP, SIRT, and ARTIC reconstructions in func-
tion of the number of projections.

Medical Physics, Vol. 42, No. 5, May 2015
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F. 9. Reconstructions of the circles phantom (a), radial lines phantom (e), and random lines phantom (i) with FBP, SIRT, and ARTIC. Grayscales displayed at
[0,0.5] for increased contrast. N = 20 for all reconstructions. (a) Concentric circles, (b) FBP, (c) SIRT, (d) ARTIC, (e) radial lines, (f) FBP, (g) SIRT, (h) ARTIC,
(i) random lines, (j) FBP, (k) SIRT, (l) ARTIC.

the decreased tangential resolution of ARTIC. Compared to
the FBP [Fig. 9(f)] and SIRT reconstructions [Fig. 9(g)], the
ARTIC reconstruction [Fig. 9(h)] shows substantial angular
blurring with increasing distance from the rotation center.
The angle of this blurring corresponds to the covered angle of
the continuous projections. Note that the radial lines phantom
illustrates the worst effect of the angular blurring. Figure 9(l)
shows the ARTIC reconstruction of a phantom consisting of
lines with random orientations [Fig. 9(i)].

4.B. Anthropomorphic phantom

The reconstructions with FBP, SIRT, and ARTIC using two
different rotation centers of the Forbild phantom are displayed
in Fig. 10. Both SIRT reconstructions had minimal RMSE at
148 iterations, whereas the ARTIC reconstruction iterations
stopped at 404 (left) and 1090 (right) iterations. Compared to
the FBP [Fig. 10(a)] and SIRT [Fig. 10(c)] reconstructions,
the ARTIC reconstruction [Fig. 10(e)] with rotation center in
the left of the image shows greater detail and less artifacts in
the region around the rotation center. This is reflected in the
RMSE, which is displayed in Table I. At the other side of
the phantom, the matrix of black holes suffers from angular

blurring. Moving the rotation center to this black holes region
on the right improved the result in this region for ARTIC
[Figs. 10(f) and 11] but resulted in a smaller improvement
compared to FBP [Fig. 10(b)] and SIRT [Fig. 10(d)].

4.C. Synchrotron measurements

The reconstructions with FBP, SIRT, and ARTIC from
the synchrotron images are displayed in Fig. 12. The lowest
RMSE for SIRT was at 200 iterations and for ARTIC at 400
iterations. Compared to the FBP reconstruction in Fig. 12(a),
the ARTIC reconstruction [Fig. 12(c)] shows less noise and a
higher contrast in the outer region of the object. In the region
close to the rotation center, less differences can be observed.
This is due to the relatively high number of 125 projections.
The SIRT reconstruction [Fig. 12(b)] shows an overall lower
contrast than the ARTIC reconstruction.

Table II shows the quantitative analysis of the reconstruc-
tions with the reference image. An improvement is observed
for ARTIC, which modeled the relative movement of object
and source–detector system during the acquisition of the
projections into the reconstruction, compared to FBP and
SIRT which ignored the movement.

Medical Physics, Vol. 42, No. 5, May 2015
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F. 10. Reconstructions from 45 projections of the Forbild phantom with
rotation center at the left (left column) and right (right column) of the
phantom. All images displayed with grayscale [−50,150] HU. The red circle
indicates the border of the ROI around the rotation center with radius r = 0.3.
(a) FBP, left, (b) FBP, right, (c) SIRT, left, (d) SIRT, right, (e) ARTIC, left,
(f) ARTIC, right.

5. DISCUSSION

A relatively slow detector that limits the number of projec-
tions to maintain temporal resolution can, for example, be
found in systems where a flat panel detector is used to capture
x-rays19 from a patient holding his breath. Other examples
include synchrotron imagers, where the rotation speed of a
sample is limited by the detector read out time.

To avoid reconstruction artifacts, a set of projection images
for reconstructing an image should consist of a large number
of projections from all angles.20 For a parallel beam geometry,

T I. Local RMSE for reconstructions of the Forbild phantom with vari-
ous ROI radii r . Compared to FBP and SIRT, the results for ARTIC (in bold)
show a lower RMSE.

r = 0.15 r = 0.30

Rotation center FBP SIRT ARTIC FBP SIRT ARTIC

Left 0.299 0.087 0.039 0.279 0.107 0.061
Right 0.434 0.518 0.336 0.338 0.302 0.215

F. 11. Profiles through the middle line of FBP, SIRT, and ARTIC recon-
structions of the Forbild phantom. Rotation center was in the black holes
region on the right of the phantom.

the central slice theorem states that the Fourier transform of
a 1D projection of an image corresponds to a line in the
Fourier transform of the image.21 A reconstruction from only
a few projections therefore suffers from the well known streak
artifacts, due to insufficient information about the Fourier
space.

Often applied techniques to deal with few view artifacts
are based on compressed sensing, where prior knowledge
about the object is incorporated into the reconstruction by a
regularization term, which steers the reconstruction toward a
more desired result. A typical example of prior knowledge is
the assumption that the object can be described by a piecewise
constant function, expressed by a low total variation of the
image,22 or a minimal distance to a high resolution prior

F. 12. Reconstruction of 125 continuous projections of Al8Cu sample
using FBP (a), SIRT (b), and ARTIC (c). (d) shows the reference image,
reconstructed with FBP for N = 1000. All images are displayed at the same
grayscale. (a) FBP (N = 125), (b) SIRT (N = 125), (c) ARTIC (N = 125), (d)
FBP (N = 1000).

Medical Physics, Vol. 42, No. 5, May 2015
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T II. RMSE and SSIM for FBP, SIRT, and ARTIC reconstructions of 125
continuous projections of the Al8Cu sample. Compared to FBP and SIRT,
ARTIC (in bold) shows a lower RMSE and a higher SSI.

Reconstruction method RMSE SSIM

FBP 0.1553 0.7947
SIRT 0.1417 0.7644
ARTIC 0.1088 0.8273

reconstruction.23 In our work, we applied no prior knowledge
about the object in the reconstruction other than modeling the
continuous acquisition.

In Fig. 1, the nth continuous projection integrates all rays
between the angles θn and θn+∆ and thus gathers information
from the entire area in the Fourier space between the two
angles of the static projections. This reduces the typical streak
artifacts caused by reconstructing with too few projections,
however at the cost of a decreasing tangential resolution
outside the rotation center as discussed in Sec. 4.A. Any
form of regularization with prior knowledge could easily be
integrated with ARTIC, depending on the type of object being
reconstructed.

If detectors are fast enough, distributing the total radia-
tion dose over a high number of S×N static projections with
unattenuated beam intensity I0/S results in a better overall
reconstructed image quality than reconstructing from a few
number N continuous projections with beam intensity I0.
In this case, the advantage of ARTIC reduces to a smaller
memory footprint of the algorithm on a computing device, as
it requires the storage of only a few projection images.

6. CONCLUSION

We propose ARTIC, a reconstruction method for projec-
tions that were acquired with a continuously rotating and
continuously emitting x-ray source, which causes blurring in
the projection images due to the angular integration of the
x-ray beams. Compared to conventional reconstruction from
a limited number of projections acquired with a pulsed x-ray
source, ARTIC improves the resolution in the local neigh-
borhood around the source detector rotation center, at the
cost of decreasing tangential resolution further away from
this rotation center. Possible applications include region of
interest tomography, especially systems where a short total
scanning time and a relatively slow detector limit the number
of projections that can be acquired.
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T III. Average attenuation factors of common tissues in the human body
and titanium, as reported by Hubbell and Seltzer (Ref. 25).

Material µ(1/cm)
Lung tissue 0.2270
Cortical bone 0.4242
Soft tissue 0.2264
Titanium 1.213

Networking support was provided by the EXTREMA COST
Action MP1207. Reconstructions were computed with the
ASTRA toolbox.26,27

APPENDIX: LINEARIZATION OF FORWARD
PROJECTOR

The linearization of the forward projector in Eq. (7) is based
on the assumption that each ray sum bi,s ≡


jai, j,sx j only

differs slightly from the average ray sum bi,avg≡ 1/S
S

s=1bi,s.
The following example of a cross section of a human

thorax illustrates this assumption. We assume a body width of
approximately 40 cm and use the attenuation coefficients of
Table III. We further assume the x-ray beam is produced by
a 100 kV source, which corresponds to an approximate beam
energy of 50 keV.24

A beam s passing mostly through soft tissue or lung tissue
would result in bi,s ≈


j ac

i, jx j = 40 cm×0.2270/cm= 9.08.
A beam s encountering a lung nodule of 1 cm with an approxi-
mate attenuation value of cortical bone results in bi,s

= 9.2772. If half of the beams contributing to bi encoun-
tered the nodule, this leads to bi,avg = 9.1786. The error
made by the linearization is 9.1786− (−log((exp(−9.08)
+exp(−9.2772))/2))= 0.0049 or a relative error of 0.0534%
on bi,avg.

As a counterexample, assume some of the beams s hit
a long structure which is aligned with the beam direction,
e.g., a metallic implant of 20 cm length. In this case,
bi,s = 20 cm×1.213/cm+20 cm×0.2270/cm= 28.8, which
differs substantially from beams passing only through soft
tissue. In this case, the linearization of Eq. (7) would be
invalid.
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