
II

Centrum
voor

Wiskunde
en

lnformatica ·
Centre for Mathematics and Computer Science

D.A. Duce, R. van Uere, P.J.W. ten Hagen

An approach to hierarchical Input devices

Computer Scla1oe/Oepartment of Interactive ~ Report CS-A8846 November

1989

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301645934?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Centrum voor Wiskunde en lnformatica
Centr~ for Mathematics and Computer Science

D.A. Duce, R. van Liere, P.J.W. ten Hagen

An approach to hierarchical input devices

Computer Science/Department of Interactive Systems Report CS-R8946 November

----~~

•:" =-~---=--

The Centre for Mathematics and Computer Science is a research institute of
the St ichting Mathemat isch Centrum, which was founded on February 11 ,
1946, as a nonprofit institution aiming at the promotion of mathematics, com
puter science, and their applications. It is sponsored by the Dutch Govern
ment through the Netherlands Organ ization for the Advancement of Research
(N .W.O.).

Copyright © Stichtinn Mathematisch Centrum, Amsterdam

An Approach to Hierarchical Input Devices

D. A. Ducat. R. van Liere.t, P.J.W. ten Hagen.t

tRuthertord Appleton Laboratory, Chilton, Didcot, OXON, U.K.
tCWI, Amsterdam, The Netherlands

This paper shows how a formal description of the GKS Input model can be
extended to include hierarchically structured Input devices.

1980 Mathematics Subject Claslficatlon : 69K32
1983 CR Categories : 1.3.2
Key Words & Phrases : Graphics systems, formal descriptions, CSP,
Component/Frameworks.

Note : This report will be submitted for publication elsewhere.

I. Introduction

It has been shown in1 how a fonnal description of the GKS input model can be given using Hoare's CSP
notation.2 This paper considers an extension to the OKS input model which introduces hierarchically struc
tured input devices, which is described using the same approach as that taken in.1

OKS logical input devices can be described in tenns of a class, operating modes and attributes. The
class defines the type of value which is returned. OKS recognizes six classes: LOCATOR, STROKE,
VALUATOR, CHOICE, PICK and STRING. The operating mode detennines how the input is obtained
from the logical input device. Attributes are parameters which allow the application program some degree
of control over the device, for example the type of prompting and echoing to be used.

The OKS input model is described in3 in tcnns of six processes:

(1) measure;

(2) trigger;

(3) prompt;

(4) echo;

(5) acknowledgement;

(6) control.

The measure value of a logical input device is the type and value of the input to be returned to the applica
tion program. The measure mapping defines the relationship between input values from the physical input
device by which the logical device is realized, and the measure value. The measure process maintains the
current measure value of the logical input device as the operator manipulates the physical device.

The trigger is an event, which for certain styles of input detennines when the measure value is
returned to the application program.

The prompt indicates to the operator when the device is available for input, the echo process gives
feedback of the current measure value to the operator and the acknowledgement process infonns the opera
tor of the value delivered to the application program.

Report ~R8946
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

-2 -

The control process controls the operation of the device. Diagrammatically a logical input device
can be represented as shown in Figure 1.

Control

I
I I I I I

Measure Prompt Echo Acknowledgement Trigger

t t ...
Figure 1

Logical input devices in GKS have three different operating modes:

• REQUEST. Logical input devices in REQUEST mode behave rather like FORlRAN READ. A
request is made by the application program for a measure to be returned from a specified device.
OKS waits until the operator has set the measure to the desired value and has activated the trigger.

• SAMPLE. In SAMPLE mode the current measure is rerumed whenever requested by the application
program. No triggering is involved when a logical device is sampled so that the application program
will immediately continue after issuing a sample call.

• EVENT. A number of input devices may be active together. Each time the trigger for a particular
device is activated, the current measure value and data identifying the device are added to a single
queue of input events for all the devices used in event mode. The application program can interro
gate the queue to retrieve the input events. It is possible to couple more than one input device to the
same trigger so that multiple events can be generated from a single trigger event.

The event queue is structured as a queue of event reports. The event queue is interrogated by the
GKS function A WAIT EVENT. This function removes the event repon at the top of the queue,
writes it into a buffer known as the current event report and returns the identification of the device
which produced the report (workstation identifier, input class, logical input device number) to the
application program. If the queue is empty, GKS is suspended until either input arrives (in which
case the function behaves as before) or a timeout period expires (in which case input class NONE is
returned), whichever happens first. GKS provides a set of functions, one for each device class,
which return the logical input value contained in the current event report.

The input subgroup at the Eurographics GKS Review Workshop4 in 1987 spent considerable time discuss
ing the role of logical input devices in interactive applications and arrived at the diagram shown in Figure
2. The model was that interactive techniques would use some form of composite input device, built up
from logical input devices (although there might be more than one layer of composite devices) which in
turn are constructed from measures and triggers which map onto physical devices. Each level in this struc
ture has associated prompts, echo and acknowledgements which are realized using the facilities provided
by the graphical output pan of the graphics system.

Recent work within ISO on a reference model for computer graphics5 and an Improved Input Model6
is making some generalizations and simplifications to this model. The notion of logical input device tradi
tionally applies to an input device at a cenain level of abstraction. The point about logical input devices, is
that they can be realized by a wide range of different physical devices and are not tied to a single physical
device. The generalization that has been made now is to realize that the GKS model comprising the six
processes listed above can be used to describe input devices at any number of different levels of abstraction
and that a device at one level of abstraction may provide the measure or trigger processes for a device at a
higher level of abstraction. Even physical input devices can be described with the notions of measure and
trigger and what is thought of as a measure in GKS can be described as a logical measure which is con
structed from physical measure values.

- 3 -

Interaction Techniques

/~
Composite Device Composite Device

Logical Device Logical Device

/\
Measures Triggers

Physical Devices

Figure 2

The remainder of this paper explores how such hierarchically structured input devices can be for
mally described. The aim is that the descriptions should fit within the same framework and behaviour pat
terns as was used for the single level of device in the OKS input specification.

For the remainder of this paper, the term input device will be used in preference to the term logical
input device in recognition of the fact that input devices in the paper may be at many levels of abstraction
in addition to that normally associated with logical input devices.

2. Review of the GKS Input Model Description

This section summarizes the formal description of OKS input contained in. 1 The description is given in
Hoare's CSP notation, for a full explanation of which the reader is referred to Hoare's book.2 A brief intro
duction to the key ideas is given here, which in conjunction with1 should be adequate for an understanding
of this paper.

Hoare, in the preface to his book, writes •'The most obvious application of the new ideas is to the
specification, design, and implementation of computer systems which continuously act and interact with
their environment. The basic idea is that these systems can be readily decomposed into subsystems which
operate concurrently and interact with each other as well as with their common environment The parallel
composition of subsystems is as simple as the sequential composition of lines or statements in a conven
tional programming language'' . The OKS input model would seem to lend itself naturally to expression in
this language, describable as it is in terms of the subsystems listed in the introduction.

CSP sets out to describe the behaviour patterns of objects. The first step is to decide what kinds of
event or action will be of interest, and to give a different name for each kind. Each event name then
describes a class of events; there may be many occurrences of events in a single class, separated in time.

-4 -

The set of names of events which are used to describe a particular object are called its alphabet. Selection
of the alphabet focuses attention on the properties and actions of the object that are important and deli
berately ignores events of lesser interest. For the specification to be presented here, prompting and ack
nowledgement are deliberately ignored and no events corresponding to these actions appear in any of the
processes.

CSP regards occurrences of events as instantaneous or atomic actions without duration. The exact
timing of events is also ignored in CSP; where timing concerns are important, these are to be treated
separately from the logical correctness of the design. When simultaneity of a pair of events is important
(as, for example, in synchronization), it is represented as a single event occurrence; when it is not, poten
tially simultaneous events are allowed to be recorded in either order.

In CSP, the behaviour pattern of an object is termed a process. If trigger is an event and T is a pro
cess, then:

(trigger --+ n
denotes an object that first engages in the event trigger and then behaves like T. The event trigger has to
be in the alphabet of T.

This prefix notation can be used to describe the entire behaviour of an object that eventually stops;
however, to use it in the way described above would be extremely tedious. Recursion can be used to give
an implicit definition of the behaviour of an object. For example, an object T which first engages in the
event trigger and then continues to behave exactly like T can be defined implicitly by the equation:

T = (trigger --+ D

A process description which begins with a prefix is said to be guarded. If F(X) is a guarded expression
containing the process name X, and A is the alphabet of X, then it turns out that the equation:

X=F(X)

has a unique solution with alphabet A, which it is sometimes convenient to denote by

µX:A .F(X)

where X is a local name which can be changed at will. The alphabet A is often omitted when it is clear
from the content or context of the process. The process T above could be expressed in this notation as

µT.(trigger--+ D

Objects frequently exhibit choice in their behaviour through interaction with the environment. If trigger 1

and trigger2 are distinct events,

(trigger 1 --+ T 1) I (trigger2 --+ T 2)

describes an object which initially engages in either of the events trigger 1 or trigger2. The behaviour fol
lowing event trigger 1 is described by T 1 and that following trigger 2 by T 2• The choice between T 1 and
T 2 is determined by the first event that actually occurs.

The process with alphabet A which never engages in any of the events of A is called STOP A.

The next operator to be discussed is the concurrency operator 'II'. When processes are combined to
evolve concurrently, it is usually intended that they will interact with each other. The interactions can be
thought of as events that require the simultaneous participation of the processes involved. Considering first
the case of interaction, assume two processes with the same alphabet are combined, then each event that
actually occurs must be a possible event in the independent behaviour of each process separately. The
notation:

PllQ

denotes the process composed of processes P and Q interacting in lock-step synchronization in this way.

If P and Q have different alphabets, then event.<> that are in both their alphabets require the simultane
ous participation of both P and Q. Events in the alphabet of P and not Q are of no concern to Q and hence
can occur independently of Q whenever P engages in them. Similarly events in the alphabet of Q which

- 5 -

are not in the alphabet of P can be engaged in by Q independently of P.

The choice operator (xll --+ P(x)) defines a process which exhibits a range of possible behaviours
depending on which event x from the set B occurs and the concurrency operator II permits some other pro
cess to make a selection between the alternatives in B. Whenever there is more than one event possible, the
choice between them is made by the environment of the process. Such processes are called deterministic .

Sometimes the selection between alternatives is not influenced by the environment, but is made inter
nally by the process in an arbitrary or non-deterministic fashion. The choice is not controlled by the
environment. This kind of non-determinism arises from a deliberate decision to ignore the factors which

influence the selection. It is used below in the description of the process OP which describes the behaviour
of the operator of an input device in setting a new measure value or firing the trigger. A non-deterministic
process is used because we deliberately choose to ignore the factors that lead the operator to make these
selections. The notation

P CT Q

denotes the process which behaves either like P or like Q. The operator

CTP(x)
x:S

where S is a finite nonempty set, is a multiple choice operator which denotes the non-deterministic choice
between the alternative events in the set S.

The final piece of notation to be introduced is used to describe the communication of a value
between processes. A communication is an event described by a pair c.v where c is the name of the chan
nel over which the communication takes place, and v is the value of the message which passes. A process
which first outputs v on the channel c and then behaves like P is denoted

(c!v--+ P)

and a process which is initially prepared to input any value x communicable on the channel c and then
behave like P(x) is denoted:

(c?x--+ P(x))

By convention, channels are only used for communication in one direction and between only one pair of
processes.

With this background, the CSP specification of the OKS input model contained inl excluding
prompting and acknowledgement is now briefly reviewed. Logical input devices are described in terms of
an operator process, OP, a measure, M, trigger, T, and echo, E, processes and a control process, LJD. In
addition EVENT mode requires a storage process, S. For each of the operating modes, the processes com
municate as shown in Figure 3.

The REQUEST mode processes are described below. Process descriptions for the other operating
modes follow similar lines and are given in Table 1.

Operator process, OP

In REQUEST mode, the operator can either set a new measure value from the values available (denoted by
the set V) or fire the trigger. In the latter case the process can engage in no further behaviour. The operator
process is modelled as a non-deterministic process. The mechanism by which the operator decides what
selection to make is not modelled. The process description is:

· ~ -~- -::_·-_ -

-6-

REQUEST SAMPLE

OP OP

EVENT

trigger

T

OP

Figure 3

OP= (fl m!v-. OP) TI (trigger--. STOP a0p)
v: v

a.OP denotes the alphabet of the process OP.

Measure process, M

When the operator sets a new measure value, the state of the measure process is updated to contain the new
value. The measure process recording the current measure value vis denoted Mv. The new value is com
municated to the echo process. When the trigger fires, the current measure value is communicated to the
control process over channel si and the process engages in no further activity.

Mv = (m?v'--. e!v'--. M.·) I (trigger si!v STOP aM)

Trigger process, T

When the trigger fires, this process engages in no further activity.

T = (trigger STOP aT)

- 7 -

Echo process, E

This process echoes the value communicated on channel e. The mechanism by which the value is echoed
is not described. The state of the echo process records the value echoed.

Control process, UD

The application program requests a value from the input device, denoted by the event read. When the
trigger has been fired by the operator, the current measure value is communicated to the control process
along channel si and communicated to the application program along channel so. Thereafter the process
engages in no further actions.

UD =(read --+ si?v-+ o!v--+ STOP o.Uo)

The overall behaviour is described by the composition of the above processes:

OPllMllT llEllUD

The definitions of each of the processes in each of the operating modes are given in Table I .

REQUEST SAMPLE EVENT
OP <Il m!v--+OP) (fl m!v--+OP) <Il m!v--+OP)

v:V v: v v : v
n (trigger--+ STOP a0p) n (trigger--+ OP)

M (m?v' --+ e ! v' --+ M v') (m?v'--+ e!v'--+ Mv•) (m'?v'--+ e!v'--+ Mv•)
I (trigger--+ si!v-+ STOP aM) I (sample--+ silv--+ Mv) I (trigger--+ si!v--+ Mv)

T (trigger --+STOP aT) (trigger --+ 1)

E (e?v' --+ Ev•) (e?v' --+ Ev•) (e?v' --+ Ev•)
UD (read--+ si?v--+ o!v--+ STOP o.Uo) (sample --+ si?v --+ o!v --+ UD) (trigger--+ si?v --+ so!v --+ UD)

Sq <s> = (await_event--+ o!s--+ Sq) I (trigger--+ so?s'--+ S <hq <s»

S <> = (await_event--+ ((time_out--+ o!NONE--+ S <>) I (trigger--+ so?v--+ o!v--+ S <>}})

I (trigger--+ so?v -+ S <v »
Table 1

3. Description of Hierarchical Input Devices

3.1. Introduction

The intention is to describe hierarchical input devices using the components and descriptions given above
at each level. Thus a measure process at one level might receive input values from an input device at a
lower level, as illustrated in Figure 4. Here the operator may manipulate the measure and trigger processes
of the input device at level 1 and the trigger process of the device at level 2. The measure process at level
2 is manipulated by the input device at level 1.

The approach will be illustrated through a number of examples.

3.2. STROKE input

3.2.1. Description

The STROKE logical input device in OKS returns a sequence of positions in world coordinates, the
LOCATOR logical input device returns a single position in world coordinates. It is possible to think of a
STROKE device being constructed from a LOCATOR device which defines individual positions. OKS is
more complicated than this in that the conversion from world coordinates is done using the highest priority
normalization transformation within whose viewport all the points lie. In this example, this complication
and the details of coordinate system mapping in general are not described, but could be included in a

- 8 -

Level 1

Level 2

Flgure4

complete description of the LOCATOR and STROKE measure processes.

Process descriptions follow. The description will be given for EVENT mode operation of the
STROKE device. The processes and communications channels are shown in Figure 5.

s

so

Im

ELOC

Figure 5

The operator process, OP

The operator of the STROKE input device can change the value of the LOCATOR measure process, fire
the LOCATOR trigger to define a point in the STROKE and fire the STROKE trigger to indicate definition
of a complete STROKE. The behaviour is characterized by the process:

- 9 -

OP = (TI om!m --+OP) n (loctrigger--+ OP) n (stroketrigger--+ OP) (1)
m : Pui111

The LOCATOR measure process, MLOC

The measure process receives new measure values from the operator, communicates the new value to the
echo process, and communicates the current value over channel Im when the LOCATOR trigger fires.

MLOC, = (om?v'--+ el!v'--+ MLOC,·) I (loctrigger--+ mllv--+ MLOC,)

The LOCATOR echo process, ELOC

This process receives a LOCATOR measure value from the measure process and echoes it

ELOC, = (el?v' --+ ELOC.·)

The LOCATOR trigger process, TLOC

The behaviour is just:

TLOC = (loctrigger --+ TLOC)

The LOCATOR input device control process, WCATOR

(2)

(3)

(4)

This process receives the current measure value when the LOCATOR trigger fires and communicates it
over channel Im.

LOCATOR= (loctrigger--+ ml?v--+ lm!v--+ LOCATOR) (5)

The STROKE measure process, MSTROKE

This process receives new measure values from the LOCATOR input device and communicates the value
to the STROKE echo process. This process occupies the position that the storage process would occupy if
the LOCATOR device were used in EVENT mode in the normal way. The current stroke value is com
municated over channel ms when the STROKE trigger fires. A STROKE is represented as a sequence of
points. The notation <v> denotes the sequence containing just the point v and juxtaposition of sequences
denotes concatenation.

MSTROKEs = (lm?v'--+ 01s<v'> --+ MSTROKE1 <v'» I (stroketrigger--+ ms!s--+ MSTROKE <>) (6)

After the stroketrigger fires the process reverts to a state in which the current measure value is the empty
stroke. This corresponds to clearing the device's buffer and Is the action taken by the OKS STROKE dev
ice. If this is not done, each subsequently generated stroke would have the previously generated stroke as a
prefix.

The STROKE echo process, ESTROKE

This process echoes the stroke:

ESTROKEs = (0?v --+ ESTROKEs•)

The STROKE trigger process, TSTROKE

The behaviour is just:

TSTROKE = (stroketrigger --+ TSTROKE)

(7)

(8)

- 10-

The STROKE input device control process, STROKE

This process receives the current stroke measure value when the trigger fires and communicates it to the
storage process along channel so.

STROKE= (stroketrigger-+ ms?s-+ so!s-+ STROKE)

The storage process, S

The storage process is the nonnal storage process for EVENT mode input.

Sq <s> = (await _event--+ o!s --+Sq) I (stroketrigger-+ so?s'--+ S <s'> q <.r»
S <> = (await_event-+ ((time_out--+ o!NONE--+ S <>)I

(stroketrigger --+ so?v --+ olv -+ S <>)))
I (stroketrigger -+ so?v --+ S <»)

The application process, AP

The application process can interrogate the storage process through await ...event.

AP = (awaitevent--+ o?s -+ AP)

The overall system

The overall system behaviour is described by the composition of the above processes:

SYS= OP II MLOC II ELOC II TLOC II WCATOR II
MSTROKE 11 ESTROKE II TSTROKE II STROKE II
SllAP

Questions of input device initialization and tennination have been ignored in this description.

3.2.2. Discussion

(9)

(10)

(11)

(12)

(13)

The operator process in equation (1) corresponds to the form of the event mode operator process In Table
1. A generalization Is made to accept multiple triggers.

The LOCATOR measure (2), echo (3) and trigger (4) processes all correspond to the form for
EVENT mode measure, echo and trigger processes given in Table 1. The LOCATOR control process,
LOCATOR (5) also corresponds to the general form in Table 1. The process MSTROKE occupies the posi
tion that the storage process would occupy if the LOCATOR device were used in EVENT mode in the nor
mal way. The STROKE processes (6) - (9) are exactly the same as the general form in Table 1, as is the
storage process ((10) and (11)).

The input device described is an EVENT mode device, built using another EVENT mode device. A
STROKE input device operating in SAMPLE mode is obtained by removing the stroketrigger event from
the operator process, eliminating the storage process and stroke trigger process and replacing await ...event
in AP by samp/estroke and stroketrigger in MSTROKE and STROKE by samplestroke. The output of
STROKE is directed to the application rather than the storage component. Sampling a stroke does not
remove the portion of the stroke defined up to that moment. The resulting equations are:

OP= (Il om!m --+ OP) n (loctrigger--+ OP)
m :Poinl

MSTROKE, = (lm?s<v'>--+ 0!s <v'>--+ MSTROKE, 0 ·» I (samplestroke--+ ms!s--+ MSTROKEs)
STROKE= (samplestroke--+ ms?s--+ o!s--+ STROKE)

AP = (samplestroke--+ o?s ~ AP)

Notice that the LOCATOR part of the description remains unchanged and that this input device continues
to operate in an EVENT type mode. Sampling a STROKE device in this way returns to the application
program the portion of the stroke which the operator has actually defined. The point that the operator is
currently defining (if any) is not included in the stroke measure and so is not returned to the application.

- 11 -

3.3. String input

3.3.1. Description

This example follows the same general approach as the previous example, but is slightly more complex.
The example is character string input, but the character strings may contain codes to change font and char
acter size. Although the font and size coding will not be defined here, it may help the reader to give an
example of what this might look like. Suppose the operator wanted to input the string:

A Fancy String
This might be represented by the input value:

A \fB Fancy\tP \s 14String\s0

The operator is provided with a keyboard to input characters, a choice device to select fonts and a choice
device to select character size.

The input device hierarchy is shown in Figure 6.

OP

The operator process, OP

-The operator of the string input device can input a character, select a font and select a character size. The
behaviour is characterized by:

OP= (Il om!k -+OP) n (Il of'./-+ OP) n (Il os!s-+ OP) n
k:Char /:Fon/ s:Si:e

(keypress -+ OP) n (setfont-+ OP) n (setsize -+ OP) n
(entlstring -+ OP)

The operator has available four triggers, keypress, setfont, setsize, and endstring. The first deserves a short
explanation. The trigger keypress corresponds to the action of depressing a key. First the event om!k
occurs which transmits the new character to the keyboard measure process. The event keypress then
transmits this value to the measure process of the string device.

The remaining processes follow exactly the same style as the first example.

-~·:::-:::.. -~ · ·

- 12 -

The keyboard measure process, MKB

The measure process receives new measure values from the operator and communicates the value to the
echo process. The keypress event causes the current measure to be communicated to the string measure
process, MSTRJNG, through the keyboard control process.

MKBt = (om?k'-+ ek!k'-+ MKBt•) I (keypress-+ mk!k-+ MKB1J

The keyboard echo process, EKB

The keyboard echo process echoes the last key pressed.

EKB1: = (ek?k' -+ EKB1:·)

The keyboard trigger proceu, TKB

The behaviour is:

TKB = (keypress -+ TKB)

The keyboard input device control process, KB

This process receives the current character measure from process MKB when a keypress event occurs and
communicates it over channel ks to the string measure process, MSTRING.

KB = (keypress -+ mk'!k -+ ks!k -+ KB)

The font measure pr~, MF

The font measure process receives new measure values from the operator and communicates the new value
to the echo process. This allows the operator to step through the available choices for fonts. The event set

font causes the current measure value (the currently selected font) to be communicated to the string meas
ure process, MSTRING, through the font input device control process, FONT.

M F1 = (oflf -+ ej!f -+ MF r) I (setfont-+ mj!f-+ MF1)

The font echo process, EF

The font echo process echoes the current value of the font measure process.

The font trigger process, TF

The behaviour is:

TF = (setfont -+ TF)

The font input device control proce~, FONT

When the setfont trigger fires, the current value of the font measure process is transmitted to the string
measure process, MSTRING.

FONT= (setfont-+ mflf-+ fs!f-+ FONT)

The size measure process, MS

The size measure process is identical in form to the font measure process. The event setsize causes the
current measure value (the currently selected size) to be communicated to the string measure process,
MSTRING, through the size input device control process, SIZE.

- 13 -

MSs = (os?s'--+ 01s'--+ MSs·) I (setsize--+ ms!s--+ MS3)

The size echo process, ES

The size echo process echoes the current size.

ESs = (0?s' --+ ESs')

The size trigger process, TS

The behaviour is:

TS = (setsize --+ TS)

The size input device control process, SIZE

When the setsize trigger fires, the current value of the size measure process is transmitted to the string
measure process, MSTRING.

SIZE = (setsize--+ ms?s--+ ss!s--+ SIZE)

The string measure process, MSTRING

This measure process accepts inputs from 3 different sources (the keyboard, font and size input device con
trol processes) and maintains a current input value obtained by concatenating these values in the order in

which they arrive. When the endstring trigger fires, the current value of the string measure process is com
municated to the string input device control process, STRING.

MSTRINGsr = (ks?k--+ est!st<k>--+ MSTRINGsr<1c» I
(js?f--+ est!st<f> --+ MSTRING51 <t» I
(ss?s--+ est!st<s>--+ MSTRING51 <s» I
(endstring --+ mst!st--+ MSTR/NG <>)

The endstring trigger here is defined to be a destructive read on the input device in that the device's buffer
is cleared by the trigger.

The string echo process, ESTRING

This follows the normal pattern of behaviour:

ESTRINGsr = (est?st'--+ ESTRING51•)

The string trigger process, TSTRING

This follows the normal pattern:

TSTRING = (endstring --+ TSTRING)

The string input device control process, STRING

This process receives the current string measure value from the string measure process when the endstring
trigger fires and communicates this value to the storage process, S.

STRING= (endstring--+ mst'!st--+ so!st--+ STRING)

The equations of the storage process, S, are not given here, but are identical in form to those given in the
previous section.

- 14 -

3.3.2. Discussion

This example has described an input device whose measure process has 3 inputs, each provided by a
separate input device. The equations follow exactly the same fonn as those given in Table 1.

3.4. Bicycle input

3.4.l. Description

This example is an elaboration of an example given in.4 It describes an input device whose values are bicy
cles. A bicycle is defined as a frame plus two wheels. A wheel is defined as a rim and (in this case) an
unspecified number of spokes. Rims, spokes and frames are treated as primitive input types, but it should
be clear how these could be constructed from more primitive input types.

This example is considered here because it involves more levels than the examples given previously.
The hierarchy is shown in Figure 7.

OP

Figure 7

The operator process, OP

The operator of the bicycle input device can input a rim, spoke and frame, and indicate whether a particular
wheel is the front wheel (Fwheel) or back wheel (Bwheel). The triggers endrim, endspoke, endwheel and
endbicycle indicate that the definition of a rim, spoke, wheel or bicycle, respectively, is complete. The rim,
spoke, and frame input devices allow the operator to select one of the available values for these entities,
firing the corresponding trigger indicates that the current value is the one chosen.

- 15 -

OP = (fl or!r --+ OP) n (fl os!s --+ OP) n (fl ofl/--+ OP) n
r :Rim s:Spou f :FIYllfU

(oc!Fwheel --+ OP) n (oc!Bwheel --+ OP)
(endrim --+ OP) n (endspoke --+ OP) n (endwheel--+ OP) n
(endbicycle --+ OP)

The rim input device

The behaviour of the rim input device measure (MR), echo (ER), trigger (TR) and control (RIM) processes

are given by the equations:

MR, = (or?r'--+ er!r'--+ MR,·) I (endrim--+ mr!r--+ MR,)
ER,= (er?r'--+ ER,·)
TR = (endrim --+ TR)

RIM= (endrim--+ mr?r--+ rm!r--+ RIM)

The measure process, MR, communicates a new measure value from the operator to the echo process, and
when the endrim trigger fires, communicates the current measure value to the rim input device control pro

cess.

The spoke input device

This is identical in form to the rim input device.

MSs = (os?s'--+ 0!s'--+ MSs') I (endspoke --+ ms!s--+ MSs)
ESs = (0?s'--+ ESs')
TS = (endspoke--+ TS)

SPOKE= (endspoke --+ ms?s --+ sm!s --+ SPOKE)

The wheel input device

A wheel is represented by a rim and a sequence of spokes. The current measure value of a wheel is thus

denoted by a pair (r, s), where r denotes the rim and s the sequence of spokes. The wheel measure process

receives new rim and spoke values from the RIM and SPOKE input devices. The rim value replaces the

existing rim value in the measure and a new spoke value is concatenated to the existing sequence of
spokes. When the endwheel trigger fires, the current wheel measure is communicated to the bicycle meas

ure process, MB, through the wheel input device control process, WHEEL. The wheel process reverts to an
initial measure value denoted by the pair (r0 ,<>), a default rim with no spokes.

MWcr.s) = (rm?r'--+ ew!(r',s)--+ MW (r'.s» l(sm?sp--+ ew!(r,s<sp>)--+ MWcr,s<sp>)) I
(endwheel--+ mw!(r,s)--+ MW er •. <>»

EWw = (ew?w'--+ EWw•)

TW = (endwheel --+ 7W)
WHEEL= (endwheel--+ mw?w--+ wm!w--+ WHEEL)

The frame input device

The behaviour of this device is identical to the rim and spoke Input devices.

MF1 = (of?f--+ eflf--+ MF r) I (endframe --+ mflf--+ MF1)
EF1 = (ef?f --+ EF r)
TF = (endframe --+ TF)

FRAME= (endframe--+ mf!f--+ far!/--+ FRAME)

·:- = =-~ -.= - -·

- 16 -

The choice input device

The operator uses this device to indicate which wheel is being defined, the front wheel (value Fwheel) or
the rear wheel (value Rwheel). This device operates in SAMPLE mode. The behaviour is:

CMc = (oc?c'-+ ec!c'-+ CMc·) I (samplec-+ mc!c-+ CMc)
ECc = (ec?c'-+ ECc•)

CHOICE= (samplec -+ mc?c -+ cm!c-+ CHOICE)

The event samplec communicates the current choice value to the measure of the bicycle input device, MB.

The bicycle input device

A bicycle consists of a front wheel, a frame and a backwheel. The current measure value of the bicycle
device is represented by a tuple (w 1,J, w 2). When a wheel is communicated to the device by the WHEEL
process, the CHOICE input device is sampled to determine whether a wheel delivered to it is the front
wheel or the back wheel of the bicycle. New wheel or new frame values supplied by the operator through
the WHEEL and FRAME devices replace existing values in the current measure. The trigger bicycle
causes the value of the current bicycle measure to be communicated to the storage process.

MB (w,,J.w,) = (wm?w-+ samplec-+ ((cm?Fwheel-+ ebl(w 1,f,w)-+ MB(w,J,wi> I
(cm?Bwheel-+ eb!(w,f, w2)-+ MB (w.f,w,,l) I

<Jm?f-+ ebl(w1.f,w2)-+ MB(w,J',w,)) I
(endbicycle -+ mb!(w 1./. W2) -+MB (w,J,w,i)

EBb = (eb?b'-+ EBb')
TB = (endbicycle -+ TB)

BICYCLE= (endbicycle -+ mb?b -+ solb -+BICYCLE)

3.4.2. Discussion

This example has shown how an input device with a 3-level hierarchy can be constructed. The principles
are exactly the same as in the previous examples.

4. Conclusions

This paper has shown how hierarchically structured input devices can be described as a composition of sin
gle level devices. The description follows exactly the framework developed in the earlier paper.

References

1. D.A. Duce, P.J.W. ten Hagen, and R. van Liere, "Components, Frameworks and GKS Input," in
EUROGRAPHICS '89 European Computer Graphics Conference and Exhibition, ed. F.R.A. Hop
good and W. Strasser, North-Holland, Amsterdam (1989).

2. C.A.R. Hoare, Communicating Sequential Processes, Prentice-Hall International, London (1985).

3. ISO, "Information processing systems - Computer graphics - Graphical Kernel System (GKS)," ISO
7942, ISO Central Secretariat (1985).

4. Eurographics Association, Proceedings of the GKS Review, Eurographics Association, P.O. Box 16,
1288 Aire-la-Ville, Switzerland (1987).

5. ISO, "Information processing systems - Computer graphics - Reference model of computer graph
ics,'' Second Working Draft, RM/20 (January 1989).

6. ISO, Report of the Improved Graphical Input Model Special Rapporteur Group, ISO Central Secre
tariat (1989). (In Preparation)

