
Adapting Game Mechanics with Micro-Machinations

Riemer van Rozen
∗ †

Amsterdam University of Applied Sciences
Duivendrechtsekade 36-38 1096 AH

Amsterdam, The Netherlands
r.a.van.rozen@hva.nl

Joris Dormans
‡

Amsterdam University of Applied Sciences
Duivendrechtsekade 36-38 1096 AH

Amsterdam, The Netherlands
j.dormans@hva.nl

ABSTRACT
In early game development phases game designers adjust
game rules in a rapid, iterative and flexible way. In later
phases, when software prototypes are available, play testing
provides more detailed feedback about player experience.
More often than not, the realized and the intended game-
play emerging from game software differ. Unfortunately, ad-
justing it is hard because designers lack a means for effi-
ciently defining, fine-tuning and balancing game mechanics.
The language Machinations provides a graphical notation
for expressing the rules of game economies that fits with
a designer’s understanding and vocabulary, but is limited
to design itself. Micro-Machinations (MM) formalizes the
meaning of core language elements of Machinations enabling
reasoning about alternative behaviors and assessing quality,
making it also suitable for software development. We pro-
pose an approach for designing, embedding and adapting
game mechanics iteratively in game software, and demon-
strate how the game mechanics and the gameplay of a tower
defense game can be easily changed and promptly play tested.
The approach shows that MM enables the adaptability needed
to reduce design iteration times, consequently increasing op-
portunities for quality improvements and reuse.

1. INTRODUCTION
In computer game development, developers face problems
that arise from increased complexity. Challenges include
increased development speed, changing technologies, and
growing teams of experts with varying vocabularies. Teams
may consist of artists, software engineers, domain experts
and game designers who work together to create games.
Practice is still catching up with the relatively new profes-
sion of the computer game designer. Game design, despite
the large number of games produced today lacks a com-
mon vocabulary, methods for designing games and sharing

∗
This work is part of the EQuA Project. http://www.equaproject.nl

†
This research is performed at the SWAT group of CWI.

‡
This work is part of the Automated Game Design Project.

knowledge and artifacts. The need for common design vo-
cabularies [6,23], game design patterns [4], specialized game
grammars [9,16], and computer assisted design tools [18,19]
has been expressed for some time, but so far no tool, method,
or framework has surfaced as an industry standard. As re-
sult, game design relies strongly on iterative prototyping,
play-testing, and reprogramming parts to improve games.

Good gameplay is an emergent property of the game sys-
tem defined by the game mechanics [10]. Therefore, game-
play can only be evaluated after the system has been built
and set into motion through play. More often than not,
the realized gameplay differs from the intended gameplay.
Because a designer’s understanding about how game rules
affect the player is constantly changing, they have to make
adaptations quickly and often. However, as software de-
velopment progresses, making changes becomes harder and
more time consuming. This seriously compromises the abil-
ity of the designer to design, play test, gain feedback and im-
prove, which results in longer design iterations and missed
opportunities for improving the quality. From a software
engineering point-of-view gameplay adaptations represent a
problematic stream of badly defined, poorly understood re-
quirements that result in wasted effort, ineffective attempts
at reuse, and repetitive and error-prone coding cycles, in-
stead of focus on maintenance, libraries and tools.

We aim to accelerate the game development process by boost-
ing game designer productivity and improving quality feed-
back. The language Machinations [1] provides a graphical
notation for expressing the rules of game economies that
is gaining popularity with designers. Micro-Machinations
(MM) [14] formalizes the meaning of core language features
of Machinations and adds modularity, making it also suit-
able for software development and formal analysis.

We propose a game design approach for adapting mechan-
ics using MM, that aims for brief design iterations with
informed and well-documented design decisions. The ap-
proach entails modeling game mechanics as embeddable soft-
ware artifacts with MM. Additionally, it provides a means
for adapting game mechanics at run-time using a library.
We demonstrate that changes to the game economy of a
tower defense game can be easily designed and embedded in
software. Our approach shows that it is feasible to signifi-
cantly reduce design iteration times, by improving flexibility
and adaptability, thereby increasing opportunities for qual-
ity improvements and reuse.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301645922?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.equaproject.nl
http://www.cwi.nl/research-groups/software-analysis-and-transformation

2. BACKGROUND
2.1 Related Work
Language-oriented approaches for game development include
Petri Nets [3,5], state machines [13], and rule based and con-
straint based systems [17, 19]. Additionally, configuration
files have been used for loading constants, and interpreters
that provide run-time adaptability using scripts have been
embedded in games, e.g. Lua [22] and Python [8]. Com-
mercial game engines also include script languages [12] and
graphical languages [11]. Script languages are general pur-
pose solutions that can be used for solving problems in many
domains. In contrast, a Domain-Specific Language (DSL)
focuses on providing increased expressiveness over solutions
for a smaller set of problems. We adopt the DSL definition
of van Deursen et al. [21] which states that: “A Domain-
Specific Language (DSL) is a programming language or ex-
ecutable specification language that offers, through appro-
priate notations and abstractions, expressive power focused
on, and usually restricted to, a particular problem domain”.
DSLs have advantages over script languages such as im-
proved productivity and quality, division of labor. However,
DSL approaches also come at a cost. Time and effort goes
into analyzing a domain, choosing appropriate notations and
meanings, learning the language and maintaining it. In com-
parison, using an existing script language is technically eas-
ier to achieve, e.g. through its meta-programming capabili-
ties Lua has been used for creating internal DSLs [15].

2.2 Machinations Evolution
We give a brief history of the evolution of the Machinations
language, its tools and frameworks, from its inception for
game design to its formalization and use in game software.

Game Design. The original Machinations framework, in-
tended solely for game design, helps designers to design, un-
derstand, and balance complex game systems [1, 10]. Its
starting point is the notion of internal economy for games [2]
that describes game dynamics in terms of distribution and
flow of game resources. Game resources include tangible
resources such as money, property, and food, but the con-
cept also applies to abstract notions such as hit points, ex-
perience points, and strategic advantage. The framework
uses a diagrammatic language to visualize a game’s internal
economy. Machinations diagrams foreground the structural
characteristics of the game economy that are critical in the
emergence of gameplay. In particular dynamic gameplay
can be attributed to feedback loops in the internal economy
[2, 20]. The framework augments paper prototyping, and
can be used to assess game balance, emergent properties,
and potential dominant strategies. Diagrams are abstract,
dynamic, and playable representations of a game. More-
over, they are game design artifacts only, and not suitable
as software requirements, since they lack a programmable
semantics. Machinations is used in education and practice.

Formal Analysis. Micro-Machinations (MM) is a DSL
that we describe in Section 2.3 intended for both game de-
sign and software development. It is a formalized extended
subset of Machinations which adds a precise meaning to the
design notation, enabling formal reasoning about alternative
model behaviors and assessing their quality. MM also intro-
duces new features, notably modularization, and has both a
visual and a textual notation. Micro-Machinations Analy-

sis in Rascal (MM AiR) is a framework for analyzing MM
that uses the Rascal meta-programming language1 and the
Spin model checker [14]. It offers an IDE that reads textual
MM and displays visual MM for simulating models inter-
actively or randomly and analyzing behaviors partially or
exhaustively.

Software Development. Thus far, MM have only been
analyzed. Here, we introduce a library for building games
with MM. The Micro-Machinations Library (MM Lib) is
a light-weight software library written in C++ for embed-
ding MM in games and tools2. MM Lib tackles technical
challenges related to interoperability, traceability and de-
bugging. In particular, it enables embedding and adapt-
ing models in game software and replaying behavior traces.
The library interprets textual MM as changes that are re-
flected at run-time in the game economy state, enabling
adapting model elements between evaluation steps. De-
velopers can integrate MM Lib using its simple embedding
APIs, most notably for evaluating model changes, activat-
ing nodes, stepping to a next state and informing its context
about changes to type definitions and instances.

2.3 Micro-Machinations
MM models are directed graphs consisting of nodes and
edges, which can be annotated with extra information. They
describe the rules of internal game economies and define how
resources are redistributed step by step between nodes. We
provide a description of modeling elements needed for the
case study of Section 4, starting with the basic elements of
Figure 1. For conciseness, in this paper we use only the vi-
sual variant. A more detailed explanation is provided in [14].

A pool is a named node, that abstracts from an in-game
entity, and can contain resources, such as coins, crystals,
health, etc. Visually, a pool is a circle with an integer in it
representing the current amount of resources, and the initial
amount at which a pool starts when first modeled.

A resource connection is an edge with an associated expres-
sion that defines the rate at which resources can flow be-
tween source and target nodes. During each transition or
step, nodes can act once by redistributing resources along
the resource connections of the model. The inputs of a node
are resource connections whose arrowhead points to that
node, and its outputs are those pointing away.

The activation modifier determines if a node can act. By
default, nodes are passive (no symbol) and do not act unless
activated by another node. Interactive (double line) nodes
signify user actions that during a step can activate a node
to act in the next state. Automatic (*) nodes act automati-
cally, once every step. Nodes act either by pulling (default,
no symbol) resources along their inputs or pushing (p) re-
sources along their outputs. Nodes that have the any modi-
fier (default, no symbol), interpret the flow rate expressions
of their resource connections as upper bounds, and move as
many resources as possible. Additionally, these nodes may
process their resource connections independently and in any
order. Nodes that instead have the all modifier (&) inter-

1
http://www.rascal-mpl.org

2
https://github.com/vrozen/MM-Lib

http://www.rascal-mpl.org
https://github.com/vrozen/MM-Lib

p

Empty pool

1

p
Pool and resource

Resource connection
flow rate of one

4*p+1

Resource connection
flow expression

p

Passive pool

p
Automatic pool

p
Interactive pool

p

p

&

Pool with pull act
and all modifier

p

p

Pool with push act
and any modifier

p&

p
Pool with push act
and all modifier

s
Source

d
Drain with any

modifier

d

&

Drain with all
modifier

==1

Condition edge
equals one expr

>=2

Condition edge
greater equals expr

Trigger edge

c
converter

c_sc_d

&

desugared converter

Figure 1: Visual Micro-Machinations of Basic Elements

pret them as strict requirements, and the associated flows
all happen or none do.

A source node, appearing as a triangle pointing up, is the
only element that can generate resources. A source can be
thought of as a pool with an infinite amount of resources,
and therefore always pushes all resources or all resources
are pulled from it. The any modifier does not apply, and re-
sources may never flow into a source. Also, infinite amounts
may not flow from sources during a step.
A drain node, appearing as a triangle pointing down, is
the only element that can delete resources. Drains can be
thought of as pools with an infinite negative amount of re-
sources, and have capacity to pull whatever resources are
available, or whatever resources are pushed into them. No
resources can ever flow from a drain.

A node can only be active if all of its conditions are true.
A condition is an edge appearing as a dashed arrow with
an associated Boolean expression. Its source node is a pool
that forms an implicit argument in the expression, and the
condition applies to the target node. A trigger is an edge
that appears as a dashed arrow with a multiply sign. The
origin node of a trigger activates the target node when for
each resource connection the source works on, there is a
flow in the transition that is greater or equal to that of
the associated flow rate expression. Additionally, automatic
pulling nodes without inputs and automatic pushing nodes
without outputs always activate their trigger targets.

5

self

Flare

fade

*

Definition containing
a self pool

food

Tribble

*
eat child

*

Definition containing references
with in and out modifiers

Flare

fireworks

10

show

*p

Instance pool
without interfaces

Tribble

tribbles

110

food

food

 =

 =
child

Instance pool with reference
interfaces and bindings

Figure 2: Visual Micro-Machinations of Modular Elements

Converters are nodes, appearing as a triangle pointing right
with a vertical line through the middle, that consume one
kind of resources and produce another. Converters are not
core elements because they can be rewritten as a combina-
tion of a drain, a trigger and a source. Unlike basic node
types, converters therefore take two steps to complete. Con-
verters always implicitly have pull and all modifiers.

We now explain modularity features, shown in Figure 2. A
type definition is a named diagram that functions as parame-
terized module for encapsulating elements. Type definitions
define internal elements and how they can be used exter-
nally. A reference, represented by a circle with a dashed
line, is an alias that refers to a node that defines it. Internal
nodes annotated with an interface modifier input, output or
input/output become interfaces on the instances of the type.
The input modifier denotes that an interface accepts inputs,
output implies it accepts outputs and input/output accepts
both. Interface modifiers appear as an arrow in the top
right corner of a node, where an input modifier point into
the node, an output modifier points out of the node, and an
in-/output modifier does both.

An instance pool is a pool whose resource type is a defini-
tion. It represents a set of instances, objects with individual
instance data, whose shared interfaces are defined by that
type, and can be bound to other models, acting as formal
parameters. Additionally, the size of the set is the amount
of resources in the pool. Visually, an instance pool appears
as a circle and a rectangle. Instances are local to a pool and
cannot flow out through resource edges. Resources flowing
in create new instances, and those flowing out delete them.
An interface makes internal elements of instances available
to the outside, and can be used by connecting resource con-
nections. Visually, an interface is a small circle at the bor-
der of an instance with its name under it. Input interfaces
have an arrow pointing into the circle, outputs have an ar-
row pointing outward, and in-/outputs have a bidirectional
arrow. The direction of the arrow implies the validity of
the direction of the resource edges that connect to it. Only
reference interfaces appear with a dashed line. References
must be bound to definitions using edges called bindings,
represented by dashed arrows annotated with an equal sign,
that originate from a defining node and target a reference.
When a type definition contains a pool named self, instances
of this type end when the pool is empty.

occupation discipline main artifact expected iteration activity level
concept elaboration construction delivery

game design gameplay design gameplay goals high high medium low
mechanics modeling mechanics model medium high high high

play test aesthetics feed-back medium high high high
mechanics test behavior analysis low low low low

software engineering domain modeling name bindings low high low low
implementation game software low medium high low

Table 1: Disciplines, artifacts and expected iteration activity when using the Micro-Machinations approach

Game Design Software Engineering

Mechanics
Modeling

Play Test

Mechanics
Test

Gameplay
Design

Gameplay
Goals

Behavior
Analysis

Aesthetics
Feed-back

Game
Software

Name
Bindings

Test

Implementation

Design

Micro-
Machinations

Requirements

Domain
Modeling

Figure 3: Game Design Approach for Adapting Mechanics

3. ADAPTING GAME MECHANICS
This section introduces a game design approach for design-
ing, embedding and adapting game mechanics and gameplay
of working software by embedding MM. Its goals are shorten-
ing design iterations, gaining immediate feedback and max-
imizing opportunities for quality improvements. We aim at
flexible integration in processes that employ iterative de-
velopment, agile practices and Scrum. The approach sep-
arates concerns, dividing the work between game designers
and software engineers. Because a game designer’s creative
genius flourishes with expressive freedom, flexibly switching
between activities, we describe only what artifacts game de-
signers and software engineers create, but not when. Work-
ing on disciplines and artifacts is optional at each given time.
Figure 3 shows disciplines (rounded rectangles) and artifacts
(rectangles). Closed arrow heads denote an artifact is re-
quired for activities related to a discipline, whereas open
arrow heads signify optional artifacts that provide added
value. Table 1 describes expected iteration activity during
phases of the project life cycle. These phases are 1) concept :
when a game is conceived of and its feasibility is discussed,
2) elaboration: when plans are made concrete using models
and diagrams documenting intended functionality, 3) con-
struction: when game software is built, tested, balanced and
fine-tuned, and 4) delivery when a product is prepared for
its release. We explain the design disciplines one by one.

• Gameplay Design: How should the game affect the
player experience during play? Designers describe the
intended effect of rules on players [20] in what we call
gameplay goals. Gameplay design includes taking de-
sign decisions concerning patterns, intended behavior
and feedback loops. Activities may include paper pro-
totyping and using other conceptual game design tools
for assisting in the creative process, e.g. the Machina-
tions tool [9].

• Mechanics Modeling: What are the rules composing
the mechanics? The approach centers around the dis-
cipline of mechanics modeling, which involves design-
ing an artifact using MM that we call the mechanics
model. It describes the rules of the game, that when
set in motion by run-time and player interaction aims
to achieve the gameplay goals. The mechanics model
is an embeddable software artifact that interacts with
other parts of the software using its name bindings. It
includes descriptions that relate design decisions and
diagram elements to expected behavior and player in-
teraction. Designers can add, change, balance and fine-
tune mechanics at any development stage.

• Play Test: How do the rules affect player experience?
During play testing designers validate if the mechanics
model achieves the gameplay goals, gathering aesthet-
ics feedback in order to make improvements. Tradi-
tionally play testing happens on paper prototypes in
early stages. Mechanics models enable play testing
without game software, but with the guarantee the
models behave the same when embedded in games.
Later, when game software is available play testing be-
comes less abstract. This approach enables play test-
ing effectively throughout the development process.

• Mechanics Test: How do the rules behave, and how
can that be improved? Mechanics models are not just
embeddable in games. Tools such as MM AiR de-
scribed in Section 2.2 can also interpret MM, enabling
designers to analyze the behavior separately. Applica-
tions include interactively stepping through states and
transitions, analyzing alternatives, programmable test
setups prerecorded or programmed player actions for
random simulation runs or exhaustive analysis, and re-
producing states and transitions using MM traces [14].

For integrating the design and software engineering pro-
cesses we relate shared artifacts to the software engineering
disciplines of domain modeling and implementation.

• Domain Modeling: What are the name bindings for
embedding the mechanics in game software? During
domain analysis software engineers analyze and visu-
alize important concepts and relationships, and agree
with designers on concept names and activation points
in a contract that we call name bindings. Changes to
name bindings may cost time because they affect the
software design, and integration points must be coded.

• Implementation. How are the game mechanics in-
tegrated in software? Software engineers build game

software glue libraries, program integration points spec-
ified in the name bindings, and integrate content and
mechanics models with the rest of the game system.
The MM Lib, introduced in Section 2.2, enables em-
bedding the mechanics model. As soon as the first
prototype runs the model, play testing can commence.

4. CASE STUDY: ADAPTOWER
4.1 Experimental setup
We demonstrate adaptability of the mechanics and gameplay
of AdapTower, a prototype tower defense game built using
the approach discussed in Section 3. The game, shown in
Figure 4, is implemented in C# and embeds the MM Lib
(which is C++) using a wrapper that marshals data to .NET.

Figure 4: Screenshot of Running AdapTower Prototype

AdapTower

Micro-Machinations Library

inform about game
economy changes

activate
nodes

determine locations,
speeds and trajectories

trigger
mechanics

API API

API

Mechanics / Game Economy
Micro-Machinations Model

API

step

User Interface

Physics

evaluate

(a) Layer Diagram

*

gold

bases

towers

++

*
xx

++
*

&

*
&

creeps essence

xx

++
xx

++
x

x

*

*

(b) Machinations Concept

Figure 5: AdapTower Diagrams

Figure 5a shows the a partition of AdapTower in software
layers. Players trigger mechanics in the User Interface (UI)
layer. The Physics layer interprets user actions and tracks
in-game entities, their location, speed and trajectories. It
ensures the UI displays them accordingly. MM Lib inter-
prets Physics calls to activate nodes, e.g. for collisions and
time passing, and evaluates textual MM defining adapta-
tions. MM Lib computes a next game economy state when
the Physics calls the step API, and informs it about changes
to definitions and instances with callbacks and messages.

4.2 Adapting AdapTower
Here we demonstrate adaptations to the game economy of
AdapTower in a series of six design iterations. We provide
visual MM definitions with additions and changes3.

3
The textual MM of AdapTower can be found at https://github.com/

vrozen/MM-Lib/tree/master/mm/tests/towers

Design Iteration 0: Concept Phase
Gameplay Design. In AdapTower, the creeps spawn at
random locations on the top of the screen and march down-
wards. Defensive towers shoot creeps and convert killed
creeps into essence, a resource that falls down. Bases collect
essence and convert it into gold, which can be used to build
more towers and bases. Both are destroyed when they come
into contact with the advancing creeps. To reach the objec-
tive of building a fixed number of bases the player needs to
construct defensive configurations that minimize the risk of
losing bases, but maximize the collection of essence. Adap-
Tower’s internal economy consists of two interconnected pos-
itive feedback loops. First, towers convert creeps into essence
and bases convert essence into gold, which players use to buy
more towers and bases. Second, the more creeps there are,
the more likely it is they collide and destroy more towers,
meaning more creeps will survive. Figure 5b shows a concept
sketch modeled with the Machinations tool [1, 9].

Design Iteration 1: Creeps, towers and bases
Mechanics Modeling. The first mechanics model version
of the game economy of AdapTower consists of three MM
models. The integrated game is modeled in Figure 6. We
model creeps, essence and gold by pools, which are bound to
Tower and Base instances on their shared interfaces using
binding edges. Creeps enter the world by externally activat-
ing the interactive source spawn which pushes one resource
along its edge to the pool creeps. The drain missed models
essence disappearing from the world without being caught.
The converters buyTower and buyBase consume 20 and 50
gold to respectively produce a tower and a base instance.

Tower

=
buyTower

creeps

120

gold

essencecreeps

= = =

essence

buyBase

5020

essence

=

towers bases

spawn missed
gold

1

Base

1

creeps

Figure 6: AdapTower Visual MM Definition

name meaning embedding
spawn a creep enters the world activate node
creeps amount of creeps in the world notify value
essence amount of essence in the world notify value
missed essence leaves the world activate node
towers amount of towers in the world notify new/del
bases amount of bases in the world notify new/del
gold amount of gold the player has notify value
buyTower player buys a tower activate node
buyBase player buys a base activate node

Table 2: Global Name Bindings

name meaning embedding
range tower range in game yards notify value
firePower tower fire power in hit points notify value
rotationSpeed tower rotation speed degree/s notify value
hitByCreep physics: a creep hits a tower activate node
killCreep physics: a tower kills a creep activate node
hitByCreep physics: a creep hits a base activate node
hitByEssence physics: essence hits a base activate node

Table 3: Tower and Base Type Definition Name Bindings

https://github.com/vrozen/MM-Lib/tree/master/mm/tests/towers
https://github.com/vrozen/MM-Lib/tree/master/mm/tests/towers

150

range

50

firePower

20

rotationSpeed

killCreep

hitByCreep

5

1

self

creeps

essence

Figure 7: First Tower Visual MM Definition

hitByCreep

self

1

creeps

essence

goldhitByEssence

Figure 8: First Base Visual MM Definition

Figure 7 models the first Tower type definition. Each tower
has a range of 150, a firePower of 50 and a rotationSpeed of
20. When activated, converter killCreep pulls one resource
from creeps, and produces five resources in essence. Fig-
ure 8 models the first Base type definition. When activated,
converter hitByEssence pulls one resource from essence and
generates one resource in gold. Tower and Base both contain
a converter hitByCreep, which pulls one resource from exter-
nal node creeps and one from self, collapsing the instance.
Domain Modeling. Table 2 and Table 3 show name bind-
ings for embedding versions of the mechanics. Some interac-
tive nodes are activated externally using their names, such
as spawn, missed, killCreep, hitByCreep, and hitByEssence.
Others, such as buyTower and buyBase are UI elements ac-
tivated by the player. For of passive pools, such as creeps,
essence, towers, bases, gold, range, firePower and rotation-
Speed the game registers observers for using current values.
Play Test. The gameplay of the initial version works, but
is not very exciting. Once players set up their bases and de-
fenses, they simply need to wait and collect enough essence
for quickly building the number of bases required to win.

Design Iteration 2: Towers gain experience
Mechanics Modeling. We adapt the Tower definition in
Figure 9 by adding an experience pool xp and by chang-
ing the pools range, firePower and rotationSpeed, adding a
bonus based on xp.
Gameplay Design. The rationale behind this change is
that adding another feedback loop improves positioning ef-
fectively towers and speeds up the end game.

Design Iteration 3: Bases have health
Mechanics Modeling. We adapt the Base definition in
Figure 10 by adding a pool hp that denotes hit points, start-

150

range

50

firePower

20

rotationSpeed

killCreep

hitByCreep

5

1

self

creeps

essence

add 5 * xp

add 2 * xp

add 2 * xp

xp

Figure 9: Second Tower Visual MM Definition

 *

5

hp

hitByCreep

self

1

creeps

essence

gold

collapse

hp == 0

3-heat

heat hitByEssence

tick

Figure 10: Second Base Visual MM Definition

ing at five resources. A resource is drained every time a creep
hits the base, but bases only collapse when hp is empty. Ad-
ditionally, bases gain heat in a pool called heat every time it
is hit by essence. Heat inhibits the conversion from essence
to gold. This change is represented by the modified flow
from converter hitByEssence to reference gold. Heat dimin-
ishes over time, since every time drain tick activates, it pulls
one resource from pool heat.
Gameplay Design. Hit points make bases more stable,
whilst the heat mechanism introduces a negative feedback
loop that diminishes the effectiveness of bases collecting a
lot of essence. These changes aim to force players to spread
bases for collection resources, and reduce the effectiveness
of funneling all essence and creeps into a single place.

Design Iteration 4: Towers lose experience
Gameplay Design. We introduce two feedback loops to
make towers more dynamic. The goal is that towers accu-
mulate experience points much faster, but also lose them
over time. At the same time the experience points inhibit
the number of essence produced by each kill. The effect is
that towers can go into a sort of “killing spree”, but these
towers essence production is reduced at the same time.
Mechanics Modeling. We realize these effects by increas-
ing the flow from converter killCreep to xp and adding a
drain tick that pulls resources from pool xp in Figure 11.
Additionally, the amount of generated essence is reduced by
changing the flow expression to 5 - xp.
Domain Modeling. The drain tick specifies the name of
a node the game must activate once each second.

Design Iteration 5: Bases amplify essence
Play Test. One problem we notice is that the player is not
encouraged to place bases at the top of the screen.

150

range

50

firePower

20

rotationSpeed

killCreep

hitByCreep

5 -
xp

3

1

self

creeps

essence

add 5 * xp

add 2 * xp

add 2 * xp

tick

xp

Figure 11: Third Tower Visual MM Definition

 *

 heat<100

2
5

hp

hitByCreep

self

1

creeps

essence

goldconsume

amplifycollapse

hp == 0

heat>=100

heat

*

 *
hitByEssence

Figure 12: Third Base Visual MM Definition

Gameplay Design. To make positioning bases more in-
teresting we introduce an aging mechanism. A base ages
for every essence it converts into gold. Once a base has
produced 100 gold it evolves into a new mode, duplicating
essence instead. Because essence falls down, it is more effec-
tive to place newer bases below older bases, and this creates
a high-risk reward strategy that encourages players to build
their first bases in relatively exposed positions.
Mechanics Modeling. Figure 12 shows the third Base
definition. We delete drain tick, reversing the decision of
draining heat over time. We change hitByEssence into a
drain and reference essence gains an output modifier. We
add converters amplify and consume and triggers to activate
them from hitByEssence. Consume returns one gold and one
heat for each essence when heat is less than 100, but other-
wise amplify instead returns two essence resources.

Design Iteration 6: Towers are upgradeable
Play Test. We see the problem that all towers act alike.
Gameplay Design. We try to overcome this by allowing
players to chose different possible upgrades for their towers,
for specializing individual towers in different ways.
Mechanics Modeling. The final tower model, shown in
Figure 13, adds a new pool called soulReap, and increases
the amount of essence for killing a creep to 5+soulReap.
Additionally, users can upgrade range, firePower and rota-
tionSpeed and soulReap by respectively activating converters
upgradeRange, upgradePower, upgradeSpeed and upgradeS-
oulReap that require more xp each upgrade.
Domain Modeling. Previous game adaptations only in-
volved mechanics modeling, but choosing different tower up-
grades is a feature not previously agreed upon. The MM
Lib lets games observe type changes, enabling us to meta-
program the handy default of adding new interactive nodes

upgradeRange

150

range

50

firePower

20

rotationSpeed

upgradePower

upradeSpeed

50

10

10

range / 5
– 100

firePower
- 40

rotationSpeed
- 10

killCreep

1

soulReapupgradeSoulReap

soulReap*10
- 10

xp

hitByCreep

5 +
soulReap

1

self

creeps

essence

Figure 13: Fourth Tower Visual MM Definition

name meaning embedding
upgradeRange upgrade range activate node
upgradePower upgrade power activate node
upgradeSpeed upgrade rotation speed activate node
upgradeSoulReap upgrade essence efficiency activate node

Table 4: Additional Name Bindings for the Tower Definition

as clickable names near UI elements. In this case the game
adds different upgrades near towers, and infers the name
bindings of Table 4. This way, designers can continue me-
chanics modeling and play testing.

4.3 Experimental results
We showed that after the AdapTower prototype was built,
its game economy could be modified using MM, with a flex-
ibility reminiscent of the concept phase. Because we expect
continuously high activity levels of mechanics modeling and
play testing, as shown in Table 1, the approach is especially
useful in later project stages. It allowed us to iterate and
explore the design quickly, providing us with time to exper-
iment and improve the game. Each iteration took us about
15 minutes to design gameplay and to model additions and
changes of the mechanics in textual MM. We play tested
briefly, and confirmed that we achieved the emergence we
were looking for. Additionally, we spent only a fraction of
the implementation time on the name bindings that inte-
grate the model.

5. CONCLUSIONS
We proposed a game design approach for adapting game
mechanics with MM. We applied the approach and imple-
mented AdapTower, a prototype tower defense game. We
demonstrated that its mechanics and emergent gameplay
could be modified after its construction. We showed that
MM is a suitable notation for making adaptations.

We argued that structured and clear artifacts and better,
faster feedback about gameplay changes improve designer
productivity. Our approach showed that it is feasible to sig-
nificantly reduce design iteration times and accelerate the
game development process by improving the adaptability,
thereby increasing opportunities for quality improvements
and reuse. We see our contributions as an important step
towards practical game design methods for producing game
software. However, our experience concerns a prototype and
the technology still needs to mature before industry can
adopt this approach. Future work entails the following:

• Game design tools can embed MM Lib and show ed-
itable visual MM, and send textual MM changes to
adapt games like we proposed, e.g. graphical debug-
gers for tracing and replaying behavior, and integrated
analysis tools like MM AiR. We envision a tool-of-tools
approach, using language work-benches and meta-pro-
gramming, for tailoring tools towards games.

• Validation requires that we apply tools and libraries
in industrial case studies. Such experiences provide
valuable information on the usage of language and tool
features, and for making improvements.

• Comparable, reusable, analyzable game designs enable
pattern mining. To do this, we first require a corpus of
MM models to find empirical evidence of patterns, and
an assessment of their gameplay qualities. Then, we
can extract and compare them, e.g. for providing tools
for mechanics comparison and prototype generation.
Using extracted domain knowledge can also augment
evolutionary techniques for mining patterns [7].

• MM do not necessarily describe the full run-time be-
havior of a game system, limiting analyzing it. Pro-
ductivity and quality can be further improved by in-
tegrating MM with other DSLs, e.g. for locations and
speed, and story-lines. Additionally, more accurate
behavior predictions enable preventing bugs.

• Combining player satisfaction information with adapt-
able mechanics enables tailoring mechanics to the skill
and enjoyment of individual players.

Acknowledgements.
We thank Paul Klint for proof reading this paper, and the
anonymous reviewers for their insightful comments.

6. REFERENCES
[1] E. Adams and J. Dormans. Game Mechanics:

Advanced Game Design. New Riders Publishing, 2012.

[2] E. Adams and A. Rollings. Fundamentals of Game
Design. Pearson Education, Inc., 2007.

[3] M. Araújo and L. Roque. Modeling Games with Petri
Nets. In Proceedings of the 3rd annual DiGRA
conference Breaking New Ground: Innovation in
Games, Play, Practice and Theory, 2009.

[4] S. Björk, S. Lundgren, and J. Holopainen. Game
design patterns. In in Level Up: Digital Games
Research Conference 2003, pages 4–6, 2003.

[5] C. Brom and A. Abonyi. Petri Nets for Game Plot. In
Proceedings of Artificial Intelligence and the
Simulation of Behaviour (AISB), 2006.

[6] D. Church. Formal Abstract Design Tools. Game
Developer, San Francisco, CA: CMP Media, 1999.
http://www.gamasutra.com/view/feature/3357/.

[7] M. Cook, S. Colton, A. Raad, and J. Gow. Mechanic
Miner: Reflection-Driven Game Mechanic Discovery
and Level Design. In A. Esparcia-Alcázar, editor,
Applications of Evolutionary Computation, volume
7835 of Lecture Notes in Computer Science, pages
284–293. Springer Berlin Heidelberg, 2013.

[8] B. Dawson. Game Scripting in Python. Game
Developers Conference, 2002.
http://www.gamasutra.com/view/feature/2963/.

[9] J. Dormans. Machinations: Elemental Feedback
Patterns for Game Design. In J. Saur and M. Loper,
editors, GAME-ON-NA 2009: 5th International North
American Conference on Intelligent Games and
Simulation, pages 33–40, 2009.

[10] J. Dormans. Engineering Emergence: Applied Theory
for Game Design. PhD thesis, University of
Amsterdam, 2012.

[11] Epic Games Unreal Developer Network. Unreal Kismet
User Guide. http://udn.epicgames.com/Three/
KismetUserGuide.html.

[12] Epic Games Unreal Developer Network. UnrealScript
Language Reference. http://udn.epicgames.com/
Three/UnrealScriptReference.html.

[13] D. Fu, R. Houlette, and J. Ludwig. An AI Modeling
Tool for Designers and Developers. In IEEE Aerospace
Conference Proceedings, Big Sky, Montana, 2007.

[14] P. Klint and R. van Rozen. Micro-Machinations: A
DSL for Game Economies. In M. Erwig, R. Paige, and
E. Wyk, editors, Software Language Engineering,
volume 8225 of Lecture Notes in Computer Science,
pages 36–55. Springer International Publishing, 2013.

[15] M. Klotzbuecher and H. Bruyninckx. A Lightweight,
Composable Metamodelling Language for
Specification and Validation of Internal Domain
Specific Languages. In R. Machado, R. Maciel,
J. Rubin, and G. Botterweck, editors, Model-Based
Methodologies for Pervasive and Embedded Software,
volume 7706 of Lecture Notes in Computer Science,
pages 58–68. Springer Berlin Heidelberg, 2013.

[16] R. Koster. A Grammar for Gameplay.
http://www.raphkoster.com/gaming/
atof/grammarofgameplay.pdf, 2005.

[17] M. McNaughton, M. Cutumisu, D. Szafron,
J. Schaeffer, J. Redford, and D. Parker. ScriptEase:
Generative Design Patterns for Computer
Role-Playing Games. In Proceedings of the 19th IEEE
international conference on Automated software
engineering, pages 88–99, Washington, DC, USA,
2004. IEEE Computer Society.

[18] K. Neil. Game Design Tools: Time to Evaluate. In
Proceedings of the DiGRA Nordic Conference, 2012.

[19] M. J. Nelson and M. Mateas. An Interactive
Game-Design Assistant. In Proceedings of the 2008
International Conference on Intelligent User
Interfaces, pages 90–98, 2008.

[20] K. Salen and E. Zimmerman. Rules of Play: Game
Design Fundamentals. The MIT Press, 2003.

[21] A. van Deursen, P. Klint, and J. Visser.
Domain-Specific Languages: An Annotated
Bibliography. SIGPLAN Not., 35(6):26–36, June 2000.

[22] B. H. Wasty, A. Semmo, M. Appeltauer, B. Steinert,
and R. Hirschfeld. ContextLua: Dynamic Behavioral
Variations in Computer Games. In Proceedings of the
2nd International Workshop on Context-Oriented
Programming, COP ’10, pages 5:1–5:6. ACM, 2010.

[23] J. P. Zagal, M. Mateas, C. Fernández-vara,
B. Hochhalter, and N. Lichti. Towards an Ontological
Language for Game Analysis. In in Proceedings of
International DiGRA Conference, pages 3–14, 2005.

	Introduction
	Background
	Related Work
	Machinations Evolution
	Micro-Machinations

	Adapting Game Mechanics
	Case Study: AdapTower
	Experimental setup
	Adapting AdapTower
	Experimental results

	Conclusions
	References

