
A Pattern-Based Game Mechanics Design Assistant

Riemer van Rozen
∗

Amsterdam University of Applied Sciences
Duivendrechtsekade 36-38 1096 AH

Amsterdam, The Netherlands
r.a.van.rozen@hva.nl

ABSTRACT
Video game designers iteratively improve player experience
by play testing game software and adjusting its design. De-
ciding how to improve gameplay is difficult and time-con-
suming because designers lack an effective means for explor-
ing decision alternatives and modifying a game’s mechan-
ics. We aim to improve designer productivity and game
quality by providing tools that speed-up the game design
process. In particular, we wish to learn how patterns en-
coding common game design knowledge can help to improve
design tools. Micro-Machinations (MM) is a language and
software library that enables game designers to modify a
game’s mechanics at run-time. We propose a pattern-based
approach for leveraging high-level design knowledge and fa-
cilitating the game design process with a game design assis-
tant. We present the Mechanics Pattern Language (MPL)
for encoding common MM structures and design intent, and
a Mechanics Design Assistant (MeDeA) for analyzing, ex-
plaining and understanding existing mechanics, and gener-
ating, filtering, exploring and applying design alternatives
for modifying mechanics. We implement MPL and MeDeA
using the meta-programming language Rascal, and eval-
uate them by modifying the mechanics of a prototype of
Johnny Jetstream, a 2D shooter developed at IC3D Media.

1. INTRODUCTION
Video game designers work to improve player experience
by iteratively play testing game software and adjusting the
game’s design. Improving gameplay is difficult and time-
consuming because designers lack an effective means for
quickly exploring design alternatives and modifying a game’s
mechanics. Specifically, designers cannot efficiently 1) au-
thor, modify and fine-tune mechanics—rules of games that
influence gameplay—without help of programmers; 2) re-
ceive immediate feedback for comparing design intent to
change result; and 3) explore decision alternatives efficiently.

∗
This work is part of the Automated Game Design Project, and this

research is carried out at the SWAT group of CWI, Amsterdam, NL.

Since making well-informed design decisions is costly due to
long iteration times, play testing is limited to fewer software
versions than necessary for achieving the best game quality.
We aim to improve designer productivity and game quality
by providing tools that speed-up the game design process. In
particular, we wish to learn how patterns encoding common
game design knowledge can help to improve such tools.

Micro-Machinations (MM) is a visual language and soft-
ware library that facilitates brief design iterations by en-
abling game designers to modify a game’s mechanics while
it is running, and to play test simultaneously [10, 21]. MM
programs can be represented as visual diagrams that are
directed graphs describing game-economic mechanics using
various kinds of nodes and edges. A diagram works inside
a game, steering its mechanics, and when set in motion
through run-time and player interaction, the nodes redis-
tribute resources along the edges between the nodes. Un-
derstanding the dynamics of diagrams is hard because de-
signers combine elements in non-trivial ways, expressing de-
sign intent by providing choices, challenges, trade-offs and
strategies for interesting gameplay. Adams and Dormans
have suggested patterns for MM’s evolutionary predecessor
Machinations, as a mental framework for understanding, ex-
plaining and designing game mechanics, and they provide a
mechanics design rationale with example diagrams [1].

We propose a pattern-based approach that assists design-
ers in the discipline of modeling mechanics for modifying
game software. We define parameterized micro-mechanism
patterns (patterns for short) that capture a wide range of
diagrams with shared structures and design intent. We pro-
vide a Mechanics Pattern Language (MPL) for programming
patterns and a Game Mechanics Design Assistant (MeDeA)
that recognizes patterns in existing diagrams, explains in-
tent of design choices in understandable text and enables
interactively and visually exploring design choices that can
be step-by-step filtered and applied yielding new diagrams
and software versions. We contribute the following:

• A Mechanics Pattern Language (MPL) for program-
ming patterns that capture a wide range of diagrams
with shared structures and design intent.

• A Mechanics Design Assistant (MeDeA) implemented
in the Rascal meta-programming language for analyz-
ing, explaining and understanding existing mechanics
and generating, filtering, exploring and applying de-
sign alternatives for modifying mechanics.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by CWI's Institutional Repository

https://core.ac.uk/display/301645869?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.cwi.nl/research-groups/software-analysis-and-transformation

scope/concern language tool/system goals/functionality
“2D games” (research platform) PyVGDL [15] PyVGDL lib. Design games and analyze dynamics and learning algorithms
board games GDL / Ludemes [3] Ludi system Playing, measuring, and synthesizing board games
mechanics of “board-games” Prolog subset [16] BIPED Prototype complete board-like games and analyze their dynamics
mechanics (avatar-centric) PDDL subset [23] Generator sys. Generate playable mechanics using a constraint solver+planner
mechanics (game-economic) Machinations [1] Flash Tool Conceptually analyze mechanics designs (not software artefacts)

MM, MPL [this paper] MeDeA Statically analyze & modify embedded mechanics using patterns
discrete domain games Gamelan [14] “Tool set” Analyze Gamelan game dynamics against Computational critics
stories of Zelda-like 2D RPGs Plot points sequence [7] Game Forge Generate & render playable game world & story configurations
stories in interactive drama Praxis [6] Prompter Author & analyze stories in agent-based interactive drama

Table 1: Game Description Languages and tools for authoring, analyzing and modifying different game facets

Gameplay
Gameplay

Design Patterns

Player

Game Software

User
Interface

MM Library MM Game
Mechanics

MeDeA
MPL Mechanics
Design Patterns

Game Designer

modifyanalyze

program

runs on

author, explore, fine-tune

implemented by

emerge
describe and explain

describe and explain

interact

Figure 1: Relating design patterns to a game system

2. RELATED WORK
We relate our work to languages, game design patterns and
design tools providing analysis or procedural generation tech-
niques. Fig. 1 schematically shows how a designer modifies
mechanics during play testing for improving the gameplay
of a working game system, which includes both players and
software. Before we elaborate on our approach for improving
designer productivity we first sketch the research context.

Languages. Game designers have expressed the need for a
common game design vocabulary [4]. Languages and tools
are necessary for describing, communicating and improving
game designs using both mental frameworks and authoring
tools for constructing parts of game software. We relate
our perspective to the Mechanics Dynamics and Aesthetics
(MDA1) framework of Hunicke et al. who describe an ap-
proach to game design and game research [8]. As shown
in Fig. 1, we view mechanics as part of the game software,
dynamics as its run-time and player interaction, and aes-
thetics as good player experience (gameplay) that emerges.
MeDeA is an authoring tool that uses Micro-Machinations
(MM), a language for game-economic mechanics described
by Klint, van Rozen and Dormans [10,21]. MM is an evolu-
tionary successor of Machinations, a mental framework for
understanding the effect of game mechanics on gameplay
introduced by Adams and Dormans [1]. MM and MPL are
so-called Domain-Specific Languages (DSLs) [20], declara-
tive languages that offer designers expressive power focussed
specifically on game-economic mechanics [10]. Domains other

1Not to be confused with the Model-Driven Architecture
(MDA), a software design approach for developing software
systems by the Object Management Group (OMG) and a
proprietary form of Model Driven Engineering (MDE).

than game development have benefited from DSLs and seen
substantial gains in productivity and software quality at the
cost of maintenance and education of DSL users [20]. Unlike
ontologies [22] or mental frameworks that focus on analyz-
ing and understanding games, DSLs also serve to modify
software systems.

Patterns. Kreimeier made a general case for game design
patterns [11]. Design patterns have been used to describe
recurring patterns of gameplay [2] and game mechanics [1].
Björk et al. propose game design patterns for analyzing and
describing gameplay that enable understanding and explain-
ing games and how they relate, and together form a game
design body of knowledge [2]. We view these patterns as
gameplay design patterns, which can be used to understand
what gameplay goals a completed game has, or should have
while play testing during a game’s construction. In con-
trast, game mechanics patterns can be used to describe how
a game’s mechanics work before it is built, and to modify
them afterwards, offering a way to achieve gameplay goals.
MPL can be used to model mechanics design patterns and
MM offers a way to implement a game’s mechanics aimed at
improving gameplay as shown in Fig. 1. We view both pat-
tern kinds as complementary, and discovering relationships
between them as an exciting direction of future research.
Unlike gameplay design patterns, MeDeA facilitates under-
standing mechanics by recognizing and visualizing patterns
that run in software, and offering high-level explanations
about their dynamics.

Tools. Game Description Languages (GDLs) are DSLs for
the game domain. GDLs, tools and libraries have been
described that offer game designers affordances for author-
ing, analyzing, understanding and modifying different game
facets, e.g., measuring a game’s qualities or by procedurally
and/or iteratively generating content in a mixed-initiative
way [17] or for automatic improvements. Comparing GDLs
is hard because their goals, tools and notations differ, and
their expressive power over specific or general abstractions
and behaviors for achieving novel gameplay goals vary greatly.
Therefore their effectiveness and usage scenarios range from
game- or genre-specific, to more general and abstract. Ta-
ble 1 shows a small list of representative GDLs. Disci-
plines include modeling mechanics of game-economies [10,
21], avatar acts [23] and board games [3, 16] but also lev-
els [17], missions and stories of e.g., Zelda-like 2D games
[7] or interactive drama [6]. Declarative textual notations
have been proposed for specific classes of games. Nelson
an Mateas’ game design assistant facilitates iteratively pro-
totyping micro-games with stock mechanics by authoring
nouns, verbs and constraints [13]. Smith et al. propose pro-
totyping abstract board-like games in a lightweight logic-

Figure 2: Screenshot of a Johnny Jetstream prototype that
embeds the Micro-Machinations library

based sketching language that models game state and muta-
tion events on the BIPED system, which integrates the logi-
cal LUDOCORE engine and produces gameplay traces using
answer-set-programming [16]. Browne and Maire demon-
strate the feasibility of evolutionary techniques for closed-
system combinatorial board games by measuring specific
playability qualities in Ludi [3]. In contrast, Osborn et al. ar-
gue for a more general procedural language. They propose
Gamelan for games over discrete domains (e.g., board, card
games), and modular computational critics that can mea-
sure rule coverage, turn-taking fairness and existence of un-
interesting strategies [14]. Evans and Short describe the
Versu storytelling system, which is specific for interactive
drama but also more generally reusable. Their Praxis lan-
guage describes autonomous agents and social practices, and
Prompter is a tool for debugging emergent stories [6].
MM is a visual and textual DSL aimed at reuse that raises
the abstraction level above that of game- or genre-specific,
tightly integrated languages. MM separates the concern of
game economies and supports both closed systems and in-
tegration into larger systems composed of parts. In prior
work, MM was analyzed against invariants using model-
checking [10], and used to rapidly modify the mechanics of a
tower defense game iteratively at run-time using the embed-
dable reusable MM library2 [21]. MeDeA extends MM’s tool
set and the spectrum of mixed-initiative interactive game de-
sign tools with a novel and general pattern-based approach
for deciding how to improve a game’s mechanics, offering
alternatives designers might otherwise overlook.

3. MECHANICS DESIGN ASSISTANT
We present a Game Mechanics Design Assistant (MeDeA)
and evaluate it using game mechanics of Johnny Jetstream
(JJ), a 2D side-scrolling shooter developed at Dutch game
business IC3D Media that embeds MM. Fig. 2 shows a screen-
shot of JJ. MM programs can be represented as visual dia-
grams which are directed graphs that consist of two kinds of
elements, nodes and edges. Both may be annotated with ex-
tra textual or visual information. These elements describe
the rules of internal game economies, and define how re-
sources are step-by-step propagated and redistributed through
the graph. A diagram works inside a game, controlling
its internal economy, and when set in motion through run-
time and player interaction, the nodes redistribute resources
along the edges through the graph.

2https://github.com/vrozen/MM-Lib

costUpgrade:
10 * bonus^2

buyShield

hp

getMedkit:
20

dmgHp:
(100-shield)*0.1

Income:
bonus

kill

costShield:
10 + shield

getShield:
10

0
$

gold

buyMedkit

costMedkit: 10

0
+

shield

100
+

getBonus:
1

upgrade

*

*

dmgShield: 5

damage

bonus

2
+

Figure 3: MM diagram of example mechanics of JJ

pattern

+

Property

Benefit:
BenefitExp

$

Energy

Cost:
CostExp

Acquire

Intent: Activating converter 〈Acquire〉 costs 〈CostExp〉 resources
from pool 〈Energy〉 as specified by resource connection 〈Cost〉 and
yields 〈BenefitExp〉 resources in pool 〈Property〉 as specified by
resource connection 〈Benefit〉.

Figure 4: Palette: an Acquisition pattern

Fig. 3 shows a sample MM implementation part of JJ that is
hard to read for novices. This is our running example. We
introduce MM and the Mechanics Pattern Language (MPL)
by analyzing it against patterns with MeDeA. The tool ex-
plains the design by generating explanations from patterns
and templates explained in Section 3.1. Next, we describe
the mixed-initiative decision making process of MeDeA in
Section 3.2 and show how MeDeA also assists in authoring
the example using the same patterns in Section 3.3. We
sketch MeDeA’s architecture in Section 3.4.

3.1 Pattern-Based Analysis and Explanation
We analyze and explain example mechanics of JJ using a
collection of patterns we call our pattern palette. Although
usually such a collection is called a catalogue, we will show
that the term palette more closely resembles its uses. Our
example palette is written in MPL, which enables palette
composition and maintenance. It is based on a subset of
patterns proposed by Adams and Dormans, to whom we
refer for a high level discussion that omits programmed pa-
rameterized patterns as discussed here [1]. We introduce
MM and MPL by example, briefly stating pattern intent.
For conciseness we omit general explanations on motivation
and applicability, focusing on how the patterns work. We
do not claim these patterns are complete for explaining and
authoring all interesting MM diagrams, and we expect that
designers will have varying opinions on what makes a good
palette. Here we give concise explanations. We provide a
complete description3 and a movie4 as supplemental mate-
rial. We now begin MeDeA’s automated analysis.

3https://vrozen.github.io/fdg2015/fdg2015_rozen.pdf
4https://vrozen.github.io/fdg2015/MeDeA_analysis.mp4

https://github.com/vrozen/MM-Lib
https://vrozen.github.io/fdg2015/fdg2015_rozen.pdf
https://vrozen.github.io/fdg2015/MeDeA_analysis.mp4

role A1 A2 A3

Energy gold gold gold
Acquire buyMedkit buyShield upgrade
Property hp shield bonus
Cost costMedkit costShield costUpgrade
CostExp 10 10 + shield 10 * bonus2

Benefit getMedit getShield getBonus
BenefitExp 20 10 1

Table 2: Acquisition pattern cases in JJ

Acquisition. Designers can apply the Acquisition pattern
for offering players a way to acquire property by spending
currency. The visual representation of the Acquisition pat-
tern is shown in Fig. 4. Visual MPL can be distinguished
from MM by the a rectangle with a crooked edge pattern
label on the top left, its name appearing in the top center.
Patterns consist of named elements called participants. Ac-
quisition has five participants, three nodes and two edges.
Each participant name represents the role the participant
plays in its context. We explain them one by one.

• Energy is a node of type pool, which abstracts from
an in-game entity modeled by an MM diagram and
can contain resources. Pools appear as a circle that
contains an optional amount of starting resources, and
zero or more categories that specify design intent. In
our example palette, the category symbol ($) marks
that a node abstracts from currency such as gold, crys-
tals or lumber, and is intended for spending.

• Property is another pool. Its category symbol (+)
marks that it abstracts from a diagram node whose
resources players desire to have such as health (hp).

• Cost is a resource connection, an edge with a flow rate
expression that specifies the amount of resources that
can flow, in this case how much the acquisition costs.

• Benefit is another resource connection that specifies
how much Property the acquisition yields.

• Acquire is a converter, appearing as a triangle point-
ing to the right with a vertical line through the mid-
dle, that converts one type of resource into another.
Acquire is the only node that acts in this pattern by
pulling resources along its input (Cost), and pushing
resources along its output (Benefit). Using the game’s
user interface, players can activate nodes that have an
interactive activation modifier, visually marked with
a double line, but converters only work when all re-
sources on its inputs are available.

MeDeA analyzes our example diagram of Fig. 3 against the
Acquisition pattern, and recognizes three cases. Fig. 5 shows
pattern instances A1, A2 and A3 (in light gray) that overlap
in role Energy played by diagram pool gold (dark gray).
Table 2 shows how roles are assigned over diagram elements
and flow rates. MeDeA uses the pattern template to explain
each pattern case to designers as shown in Table 3.

Dynamic Engine. Players require resources for activating
one or more game-economic actions, in this case gold. The
Dynamic Engine pattern, shown in Fig. 6, introduces income

costUpgrade:
10 * bonus^2

buyShield

hp

getMedkit:
20

dmgHp:
(100-shield)*0.1

Income:
bonus

kill

costShield:
10 + shield

getShield:
10

0
$

gold

buyMedkit

costMedkit: 10

0
+

shield

100
+

getBonus:
1

upgrade

*

*

dmgShield: 5

damage

bonus

2
+

A1

A2

A3

Figure 5: MM diagram showing three Acquisition cases

case explanation
A1 Activating converter buyMedkit costs 10 resources from

pool gold as specified by resource connection costMedit
and yields 20 resources in pool hp as specified by resource
connection getMedkit.

A2 Activating converter buyShield costs 10+shield resources
from pool gold as specified by resource connection cost-
Shield and yields 10 resources in poolshield as specified
by resource connection getShield.

A3 Activating converter upgrade costs 10*bonus2 resources
from pool gold as specified by resource connection cos-
tUpgrade and yields 1 resources in pool hp as specified by
resource connection getBonus.

Table 3: MeDeA explains three Acquisition cases in JJ

+

Upgrades

Benefit:
BenefitExp

Cost:
CostExp

pattern

IncomeExp

Upgrades

Producer

Income:
IncomeExp

*

Invest

 Spend:
 SpendExp

Act

$

Energy

Intent: Source 〈Producer〉 produces an adjustable flow 〈Income〉 of
〈IncomeExp〉 resources. Players can invest using converter 〈Invest〉
to improve the flow. Apply when: Apply Dynamic Engine for in-
troducing a trade-off between spending currency 〈Energy〉 on long-
term investment 〈Invest〉 and short-term gains 〈Act〉.

Figure 6: Palette: a Dynamic Engine pattern

and a tradeoff between long-term investments and short-
term gains [1]. We explain its participants.

• Producer is a source. A source node, appearing as
a triangle pointing up, is the only element that can
generate resources. A source can be thought of as
a pool with an infinite amount of resources. It can
push any amount of resources, and therefore provides
the flow rates specified by its outputs to the respec-
tive targets. The automatic activation modifier (*) of
Producer specifies it automatically provides Income-
Exp resources via resource connection Income.

• Energy is a pool specifying currency ($) gained.

costUpgrade:
10 * bonus^2

buyShield

hp

getMedkit:
20

dmgHp:
(100-shield)*0.1

Income:
bonus

kill

costShield:
10 + shield

getShield:
10

0
$

gold

buyMedkit

costMedkit: 10

0
+

shield

100
+

getBonus:
1

upgrade

*

*

dmgShield: 5

damage

bonus

2
+

D1

D2

Figure 7: MM diagram showing two Dynamic Engine cases

Energy

Loss:
LossExp

*

Lose

pattern

Intent: Drain 〈Lose〉 causes a loss by pulling flow rate 〈LossExp〉
via resource connection 〈Loss〉 from pool 〈Energy〉.

Figure 8: Palette: a Static Friction pattern

• Invest is a converter converting Energy into Upgrades.

• Act is an abstract node, visually represented as a star,
that represents any kind of node that players can ac-
tivate for spending Energy. In this pattern it also rep-
resents an alternative user action to Invest.

• Upgrades is a pool whose resource amount influences
Income positively and is marked as property (+).

• Income is a resource edge where its flow rate Income-
Exp grows monotonically with Upgrades, as defined
by the constraint on the left bottom of the diagram.
This has to be the case for investment to be beneficial.
A dashed edge signifying Upgrades is used in Income
makes the feedback loop explicit.

• Cost is a resource edge specifying the cost of Invest
from Energy.

• Benefit is resource edge specifying the benefit of In-
vest to Upgrades.

• Spend is a resource edge specifying the cost of Act.

MeDeA again analyzes our example diagram, now using
the Dynamic Engine pattern and finds it twice as shown
in Fig. 7, and the pattern roles are distributed as shown
in Table 4. The difference between instances D1 and D2 is
buyMedkit is replaced by buyShield. MeDeA’s explanation
of pattern case D1 is shown in Table 5. We omit its explana-
tion of D2. We remark that in JJ kill happens automatically,
but only when a player shoots an enemy, not every step.

Static Friction. So far our palette contains only patterns
for gaining and converting resources. We need just one more

role D1 D2

Producer kill kill
Energy gold gold
Invest upgrade upgrade
Act buyMedkit buyShield
Upgrades bonus bonus
Income income income
IncomeExp bonus bonus
Cost costUpgrade costUpgrade
CostExp 10 + bonus2 10 + bonus2

Benefit getBonus getBonus
BenefitExp 1 1
Spend costMedkit costShield
SpendExp 10 10 + shield

Table 4: Dynamic Engine pattern cases in JJ

case explanation
D1 Source kill produces an adjustable flow income of bonus

resources. Players can invest using converter upgrade to
improve the flow. Apply Dynamic Engine for introducing
a trade-off between spending currency gold on long-term
investment upgrade and short-term gains buyMedkit.

Table 5: MeDeA explains a Dynamic Engine case in JJ

role F1 F2

Energy shield hp
Loss dmgShield dmgHp
LossExp 5 (100-shield)*0.1
Lose damage damage

Table 6: Static Friction pattern cases in JJ

case explanation
F1 Drain damage causes a loss by pulling flow rate (100-

shield)*0.1 via resource connection dmgHp from pool hp.
F2 Drain damage causes a loss by pulling flow rate 5 via re-

source connection dmgShield from pool shield.

Table 7: MeDeA explains Static Friction cases in JJ

Pattern
Palette

Pattern
Selection

1
Pattern

Pattern
Restriction
2

Search
Parameters

Diagram
Analysis

3
Diagram

Design
Decisions

Decision
Filtering

4

Filtered
Decisions

Decision
Selection

5Selected
Decision

Decision
Application
6

Figure 9: MeDeA iterative decision making process

pattern to explain all elements in the diagram. The Static
Friction pattern is intended to counter positive effects a
player tries to achieve, posing a challenge [1]. Its visual
representation and pattern cases and MeDeA’s explanations
are shown in Fig. 8, Table 6 and Table 7. This concludes
our concise explanation of MeDeA’s pattern-based analysis.

3.2 Mixed-Initiative Design Decision Making
MeDeA facilitates the process of understanding and making
game design decisions as we have seen in the previous sec-
tion. It supports a process that consists of a sequence of
simple steps as shown in Fig. 9. Rectangles represent data
structures and rounded rectangles represent processes either

Figure 10: MeDeA: A Pattern-Based Game Mechanics Design Assistant

primarily controlled by the user (light gray) or MeDeA (dark
gray). By default MeDeA recognizes a full pattern in a dia-
gram, associating a diagram element to each role in the pat-
tern. However, MeDeA can also recognize partial matches,
where not all roles in the pattern are represented, yielding
a possibly large set of extension points to the diagram with
respect to the pattern. Each extension point is associated
with a set of pattern elements that did not match we call the
extension. Given a designer’s decision to apply the pattern,
we reason that each extension is a possible design decision.
The problem is that exploring a large set of decisions alter-
natives is not feasible. Our solution is to step-by-step filter
the design alternatives by letting the designer associate roles
to diagram elements for cherry picking from a restricted set
of alternatives. We explain the decision-making process and
detail the steps designers take.

1. Pattern Selection. Select a pattern from the palette
displayed by MeDeA for modifying a diagram.

2. Pattern Restriction. Choose the minimum amount
of pattern elements (minimum match size) for which
roles must be mapped to diagram elements, affecting
the size of the extension point. Optionally, restrict the
search for design decisions by step-by-step assigning
roles to names of elements in the diagram. This yields
role constraints that target the search.

3. Diagram Analysis. Initiate the analysis of the di-
agram against the pattern. MeDeA generates a po-
tentially large set of design decisions, every way the
pattern applies to the diagram, given the minimum
match size and predefined role constraints.

4. Decision Filtering. Filter the generated design de-
cisions by further assigning roles to names of elements
in the diagram. This yields additional role constraints
that exclude generated decisions by filtering them out.

5. Decision Selection. Visually inspect the remaining
design decisions, and select one that expresses design
intent. MeDeA shows a visual rendering of diagram
resulting from the design decision, providing colors for
distinguishing between existing (black), found (blue),

added/not found (green). For each visual representa-
tion MeDeA also shows the design intent specified by
the pattern in which roles and amounts are replaced
by their concrete names and values in the diagram.

6. Decision Application. Apply the selected design de-
cision after providing MeDeA with names for all added
elements (green) and flow amounts for all added edges.
Additionally, found elements (blue) are optionally ad-
justed and replaced. MeDeA then then replaces the
current diagram by the newly created one. This con-
cludes the iteration, continue at step 1.

3.3 Assisted Game Mechanics Authoring
We now demonstrate how MeDeA assists in authoring5 the
mechanics of our running example shown in Fig. 3 by follow-
ing the decision process of Fig. 9. We start with an empty
diagram that we view as an empty canvas. First we select
the Acquisition pattern from our palette. The pattern can-
not match, because the canvas is empty, but we restrict the
pattern to a minimum match size of zero, allowing us to add
it. We provide MeDeA with the role names and edge flow
rates specified by A1 shown in Table 2 and apply the change.
We again select Acquisition, restricting the pattern to a min-
imum match size of one, which yields seven decisions. We
restrict the role Energy to gold, leaving four decisions. We
select the decision where the other roles are added, provid-
ing values for them from A2 as before and repeat these steps
for A3. Our diagram now has the elements highlighted with
gray in Fig. 5.

Next we select the Dynamic Engine pattern from our palette
and restrict the minimum match size to five. MeDeA offers
twenty-seven design decisions. We associate the role Up-
grades to bonus, Energy to gold and Invest to upgrade, leav-
ing just three decisions. We pick one of two where buyMedkit
or buyShield play role Act and apply it. The unassigned roles
are Producer and Income, which we name kill and income
respectively. We give income a flow rate of bonus, thereby
satisfying the pattern constraint. Our diagram now contains
the elements highlighted in gray in Fig. 7.

5https://vrozen.github.io/fdg2015/MeDeA_authoring.mp4

https://vrozen.github.io/fdg2015/MeDeA_authoring.mp4

diagram
d

parse
MM

td1
desugar

MM
td2

1

pattern
p

parse
MPL

tp1
desugar

MPL
tp2

2

generate
match

4
Rascal
source

eval
5

extension
points

generate
decisions

6

decisionsfilter
7

filtered
decisions

visualize
3 8

Figure 11: MeDeA: Model Transformation Steps

Next we select the Static Friction pattern from our palette,
restricting Energy to hp yielding one design decision. We
apply it, providing vales for pattern roles Loss and Lose as
specified by F1 shown in Table 6. Finally, we select Static
Friction one more time for also applying Static Friction to
shield using the values specified by F2 for pattern role Loss.
With these simple steps our diagram is now complete.

3.4 Tool Architecture
MeDeA is implemented in Rascal, a functional metapro-
gramming language and language workbench for source code
analysis and manipulation [9]. MeDeA’s implementation6

counts just 2.7K lines of code excluding comments and white-
space. Each of MeDeA’s analysis and transformation steps is
controlled from its UI shown in Fig. 10, which is programmed
using the Rascal Figure library as interactive visualization
offering designers UI elements for mixed-initiative decision
making as explained in Section 3.2.

Fig. 11 schematically shows the steps of how MeDeA pro-
cesses diagrams and patterns. MM and MPL each have
their own grammar for parsing 1 textual programs that are
represented as visual diagrams and patterns in this paper.
MM and MPL parse trees are imploded against an Algebraic
Data Type (ADT) such that we get Abstract Syntax Trees
(ASTs). These ASTs are desugared 2 , a transformation in
which syntactic constructs added for user convenience are
transposed to a more fundamental ADT that we visualize
3 . In our case the desugared ADT is the same for MM and
MPL, which is necessary for our approach because we rely
on a Rascal feature called set matching for our results.

We generate Rascal programs 4 in which parameterized
ADTs for patterns are matched against the ADTs of di-
agrams. Some ADT fields are parameters and some are
constants, depending on the pattern, the diagram and op-
tional user-supplied constraints for limiting the search space.
When we evaluate 5 these programs with Rascal it uses
backtracking to bind the parameters to constants in every
possible way, yielding a possibly large set of extension points
to the diagram with respect to the pattern. From these ex-
tension points we generate design decisions 6 , which are
visualized as partial diagrams without values for the added
diagram elements. Filtering 7 happens over this set us-
ing constraints posed by assigning diagram element names
to roles. We again use Rascal’s matching to filter out un-
wanted solutions in which the roles (the pattern parameters)
are bound to different constants. When applying a decision
the current diagram is replaced with a new one 8 in which
added elements have their variables bound to user supplied
constants such as element names and flow rate expressions.

6https://github.com/vrozen/MeDeA

4. DISCUSSION
MeDeA simplifies authoring, understanding and modifying a
game’s game-economic mechanics, and for its users is an im-
provement over editing textual MM programs. However, the
tool is currently limited to text or pattern-based authoring
because Rascal does not yet support visual edits on fig-
ures. Moreover, MeDeA is intended for game designers that
can work as gameplay engineers, because mechanics mod-
eling is an inherently complex technical discipline. MeDeA
performs exhaustive calculations, which means that larger
diagrams matched against patterns with fewer user-defined
constraints result in larger search spaces, more extension
points and longer calculation times. However, diagrams are
composed of modular constructs called components [10] (ab-
stracted away in this paper), which ensures that diagrams
are relatively small. MeDeA supports a programmable ex-
tensible pattern palette for maintaining patterns, which mit-
igates the lack of MPL patterns mined from software.

5. CONCLUSION
We have presented a Mechanics Pattern Language (MPL)
for programming patterns that capture a wide range of game-
economic mechanics with shared structures and design in-
tent, and a Mechanics Design Assistant (MeDeA) for analyz-
ing, explaining and understanding existing mechanics that
also supports exploring and applying decision alternatives
for modifying mechanics. Its simple interface enables gen-
erating decisions from patterns, filtering and selecting us-
ing simple point-and-click controls, and all mechanics mod-
ifications result from applying generated design decisions.
MeDeA is implemented in the Rascal, a meta-programming
language and language workbench. Of course, MeDeA is an
academic prototype, and the case study on modifying the
mechanics of Johnny Jetstream is a relatively small informal
evaluation. Because the approach is general, embeddable,
reusable and maintainable we believe it is a step towards in-
dustrially applicable game design tools. A more systematic
evaluation is part of future work.

5.1 Future Work
Our pattern-based mixed-initiative model-driven game de-
sign approach can be extended by automating additional
game disciplines and facets representing separated concerns.

• Our approach for generating alternative design deci-
sions for modifying mechanics can also be used for fully
automatic game design. It complements evolutionary
approaches [18], which can also provide an alternative
for filtering, and can drive a game generator such as
the Game-O-Matic [19], Ludi [3] or the Angelina sys-
tem [5]. Because MM is a reusable embeddable for-
malism that expresses extensible game economies in
general, it is less dependent on specific generators and

https://github.com/vrozen/MeDeA

constrained input. Recipes can consist of names of
patterns, resources and actions, and designers can an-
alyze, modify and fine-tune the generated results.

• Modifying games live—while they run—may help tackle
adaptivity challenges [12]. Modeling player behaviors
and player experience respectively enable automating
mechanics testing and play testing.

• The gap between high-level game design patterns and
programming game mechanics may be bridged by fur-
ther automating pattern-based transformations. Case
studies on games embedding MM can help evaluate
how MPL patterns relate to game design patterns,
and how predictive they are for emergence. MPL can
support pattern mining, relating palettes to existing
game design knowledge for forming genre-specific pat-
tern palettes of game-economic game design lore.

• A major challenge remains engineering languages and
tools for different experts participating in game de-
velopment processes. We argue for software language
engineering of game languages which entails domain
analyses and meta-programming of game design tools,
e.g., writers require view points on storylines whereas
game designers need view points on game mechanics,
gameplay, levels and missions. Each of these view
points could exist as separated concerns modified via
live user interfaces designed to model, analyze and gen-
erate content for composing high quality games that
are pieced together from sets of expressive, reusable,
extensible, interoperable and embeddable formalisms.

Acknowledgements. I thank Paul Klint for discussions
and proof reading, and the anonymous reviewers for their
insightful comments that helped restructure this paper.

6. REFERENCES
[1] E. Adams and J. Dormans. Game Mechanics:

Advanced Game Design. New Riders Publishing,
Thousand Oaks, CA, USA, 1st edition, 2012.

[2] S. Björk, S. Lundgren, and J. Holopainen. Game
Design Patterns. In Level Up: Digital Games Research
Conference 2003, pages 4–6, 2003.

[3] C. Browne and F. Maire. Evolutionary Game Design.
Computational Intelligence and AI in Games, IEEE
Transactions on, 2(1):1–16, March 2010.

[4] D. Church. Formal Abstract Design Tools. Game
Developer, 1999.

[5] M. Cook and S. Colton. Multi-faceted Evolution of
Simple Arcade Games. In Computational Intelligence
and Games (CIG), 2011 IEEE Conference on, pages
289–296, Aug 2011.

[6] R. Evans and E. Short. Versu - A Simulationist
Storytelling System. Computational Intelligence and
AI in Games, IEEE Transactions on, 6(2):113–130,
June 2014.

[7] K. Hartsook, A. Zook, S. Das, and M. Riedl. Toward
Supporting Stories with Procedurally Generated
Game Worlds. In Computational Intelligence and
Games (CIG), 2011 IEEE Conference on, pages
297–304, Aug 2011.

[8] R. Hunicke, M. Leblanc, and R. Zubek. MDA: A
Formal Approach to Game Design and Game

Research. In In Proceedings of the Challenges in
Games AI Workshop, Nineteenth National Conference
of Artificial Intelligence, pages 1–5. Press, 2004.

[9] P. Klint, T. v. d. Storm, and J. Vinju. RASCAL: A
Domain Specific Language for Source Code Analysis
and Manipulation. In Proceedings of the 2009 Ninth
IEEE International Working Conference on Source
Code Analysis and Manipulation, SCAM ’09, pages
168–177, 2009.

[10] P. Klint and R. van Rozen. Micro-Machinations: A
DSL for Game Economies. In M. Erwig, R. Paige, and
E. Van Wyk, editors, Software Language Engineering,
volume 8225 of Lecture Notes in Computer Science,
pages 36–55. Springer International Publishing, 2013.

[11] B. Kreimeier. The Case For Game Design Patterns.
Gamasutra, 2002.
http://www.gamasutra.com/view/feature/4261/the_

case_for_game_design_patterns.php?print=1.

[12] R. Lopes and R. Bidarra. Adaptivity Challenges in
Games and Simulations: a Survey. Computational
Intelligence and AI in Games, IEEE Transactions on,
3(2):85–99, 2011.

[13] M. J. Nelson and M. Mateas. An Interactive
Game-Design Assistant. In Proceedings of the 2008
International Conference on Intelligent User
Interfaces, pages 90–98, 2008.

[14] J. C. Osborn, A. Grow, and M. Mateas. Modular
Computational Critics for Games. In AIIDE, 2013.

[15] T. Schaul. A Video Game Description Language for
Model-Based or Interactive Learning. In
Computational Intelligence in Games (CIG), 2013
IEEE Conference on, pages 1–8, Aug 2013.

[16] A. M. Smith, M. J. Nelson, and M. Mateas.
Computational Support for Play Testing Game
Sketches. In AIIDE, 2009.

[17] G. Smith, J. Whitehead, and M. Mateas. Tanagra: An
Intelligent Level Design Assistant for 2D Platformers.
In AIIDE, 2010.

[18] J. Togelius and J. Schmidhuber. An Experiment in
Automatic Game Design. In Computational
Intelligence and Games, 2008. CIG’08. IEEE
Symposium On, pages 111–118. IEEE, 2008.

[19] M. Treanor, B. Blackford, M. Mateas, and I. Bogost.
Game-O-Matic: Generating Videogames That
Represent Ideas. In Workshop on Procedural Content
Generation in Games, PCG’12, pages 11:1–11:8, New
York, NY, USA, 2012. ACM.

[20] A. van Deursen, P. Klint, and J. Visser. Domain-
Specific Languages: An Annotated Bibliography. ACM
SIGPLAN NOTICES, 35:26–36, 2000.

[21] R. van Rozen and J. Dormans. Adapting Game
Mechanics with Micro-Machinations. In Proceedings of
the Foundations of Digital Games Conference, 2014.

[22] J. P. Zagal, M. Mateas, C. Fernández-vara,
B. Hochhalter, and N. Lichti. Towards an Ontological
Language for Game Analysis. In Proceedings of
International DiGRA Conference, pages 3–14, 2005.

[23] A. Zook and M. O. Riedl. Automatic Game Design via
Mechanic Generation. In Proceedings of the
Twenty-Eighth AAAI Conference on Artificial
Intelligence, July 27 -31, 2014, Québec City, Québec,
Canada., pages 530–537, 2014.

http://www.gamasutra.com/view/feature/4261/the_case_for_game_design_patterns.php?print=1
http://www.gamasutra.com/view/feature/4261/the_case_for_game_design_patterns.php?print=1

APPENDIX
This appendix is a supplement to the above paper.

A. MECHANICS DESIGN ASSISTANT
This section details the automated pattern-based analysis of
Section 3 using three additional patterns.

A.1 Pattern-Based Analysis and Explanation
Static Friction. We detail the Static Friction pattern,
which is intended to counter positive effects a player tries
to achieve, posing a challenge [1]. Its visual representation
and pattern cases and MeDeA’s explanations are shown in
Fig. 8, Table 6 and Table 7. We explain the participants.

• Energy is a pool that represents currency or property
a player has (no symbol).

• Loss is a resource edge that specifies the (usually con-
stant, i.e. static) flow rate of resources lost.

• Lose is a drain that acts automatically (*), e.g., when
an enemy shoots the player’s ship. A drain node, ap-
pearing as a triangle pointing down is the only element
that can delete resources. Drains can be thought of as
pools with dan infinite negative amount of resources,
and have capacity to pull whatever resources are avail-
able, or whatever resources are pushed into them. Lose
pulls all resources specified by Loss from Energy.

MeDeA finds two cases F1 and F2 of Static Friction in our
example shown in Table 6 and explains them in Table 7.

Mitigating Friction. Mitigating Friction, a pattern shown
in Fig. 12, is form of dynamic friction that enables players
to counter the effect of losing resources [1]. Its roles differ
from Static Friction as follows.

• Mitigate is an added pool whose resource amount neg-
atively influences the amount of resources lost.

• Loss is a resource edge whose flow rate expression is
modified such that it shrinks monotonically with Mit-
igate. Visually, this added constraint is shown inside
the pattern by a diagram on the right. Additionally,
a dashed edge signifies Mitigate is used in Loss, which
makes the feedback loop explicit.

MeDeA finds one case F3 of Mitigating Friction that extends
Static Friction case F2 where pool shield plays role Mitigate
shown in Table 8. The explanation MeDeA gives is shown
in Table 9.

Stopping. The Stopping pattern, shown in Fig. 13, is a way
to express the law of diminishing returns [1]. Compared to
the Acquisition pattern we just impose one extra constraint,
namely that the flow amount CostExp on resource edge Cost
increases monotonically with the amount of Property owned.
Visually, this is represented by the constraint diagram ap-
pearing on the right. MeDeA finds two cases of Stopping
that are also Acquisition cases A2 and A3. The explana-
tions MeDeA gives are shown in Table 10.

Energy

Loss:
LossExp

+

Mitigate

*

Lose

pattern

LossExp

Mitigate

Intent: Mitigates a loss caused by drain 〈Lose〉, because the flow
rate 〈LossExp〉 on resource connection 〈Loss〉 decreases with the
amount of resources in pool 〈Mitigate〉.

Figure 12: Palette: a Mitigating Friction pattern

role F1 F2 F3

Energy shield hp hp
Loss dmgShield dmgHp dmgHp
LossExp 5 (100-shield)*0.1 (100-shield)*0.1
Lose damage damage damage
Mitigate shield

Table 8: Friction pattern cases in JJ

case explanation
F1 Drain damage causes a loss by pulling flow rate (100-

shield)*0.1 via resource connection dmgHp from pool hp.
F2 Drain damage causes a loss by pulling flow rate 5 via re-

source connection dmgShield from pool shield.
F3 Mitigates a loss caused by drain damage, because the flow

rate (100-shield)*0.1 on resource connection dmgHp de-
creases with the amount of resources in pool shield.

Table 9: MeDeA explains Friction cases in JJ

pattern

+

Property

Benefit:
BenefitExp

$

Energy

Cost:
CostExp

Acquire

CostExp

Property

Intent: Makes activating converter 〈Acquire〉 increasingly expen-
sive because flow rate 〈CostExp〉 on resource edge 〈Cost〉 increases
with the resource amount in pool 〈Property〉.

Figure 13: Palette: a Stopping pattern

case explanation
A2 Makes activating converter buyShield increasingly expen-

sive because flow rate 10+shield on resource edge cost-
Shield increases with the resource amount in pool shield.

A3 Makes activating converter upgrade increasingly expensive
because flow rate 10*bonus2 on resource edge costUpgrade
increases with the resource amount in pool bonus.

Table 10: MeDeA explains two Stopping cases in JJ

	Introduction
	Related Work
	Mechanics Design Assistant
	Pattern-Based Analysis and Explanation
	Mixed-Initiative Design Decision Making
	Assisted Game Mechanics Authoring
	Tool Architecture

	Discussion
	Conclusion
	Future Work

	References
	Mechanics Design Assistant
	Pattern-Based Analysis and Explanation

