
MEASURING QUALITY OF GRAMMARS FOR PROCEDURAL
LEVEL GENERATION 1

Abstract

Grammar-based procedural level generation raises the productivity of level
designers for games such as dungeon crawl and platform games. However,
the improved productivity comes at cost of level quality assurance. Authoring,
improving and maintaining grammars is difficult because it is hard to predict how
each grammar rule impacts the overall level quality, and tool support is lacking.
We propose a novel metric called Metric of Added Detail (MAD) that indicates if a
rule adds or removes detail with respect to its phase in the transformation pipeline,
and Specification Analysis Reporting (SAnR) for expressing level properties and
analyzing how qualities evolve in level generation histories. We demonstrate
MAD and SAnR using a prototype of a level generator called Ludoscope Lite. Our
preliminary results show that problematic rules tend to break SAnR properties and
that MAD intuitively raises flags. MAD and SAnR augment existing approaches,
and can ultimately help designers make better levels and level generators.

1.1 introduction

Grammar-based level generation is a form of Procedural Content Generation (PCG)
that raises the productivity of game level designers. Instead of hand-crafting levels,
designers create a level transformation pipeline that generates levels for them by
authoring modules, grammars and rewrite rules. The grammar rules work on data
structures such as strings, tile maps and graphs, which can be used for generating
names, level layouts and missions. These artifacts are step-by-step transformed and
combined until a final detailed and fully populated level is generated, with missions,
power-ups, challenges, enemies, hidden treasures, secret pathways, encounters, etc.
Ideally, each generated level has the intended qualities. Unfortunately, improving the
productivity of level designers comes at the cost of quality assurance.

In practice, many small problems arise, such as levers in walls, blocked pathways,
missing encounters and lava adjacent to water. A lack of direct manipulation
compromises the ability of designers to isolate and improve level qualities, e.g., when
authoring bridges, forests or paths. As a result, some generated levels may lack
intended goals, challenges and missions.

This chapterwas previously published as R. vanRozen andQ.Heĳn. “MeasuringQuality of Grammars
for Procedural Level Generation”. In: Proceedings of the 13th International Conference on Foundations of Digital
Games, FDG 2018, as part of the 9th Workshop on Procedural Content Generation, PCG 2018, Malmö, Sweden,
August 7–10, 2018. Ed. by S. Dahlskog, S. Deterding, J. Font, M. Khandaker, C.M. Olsson, S. Risi, and
C. Salge. ACM, 2018, pp. 1–8. isbn: 978-1-4503-6571-0. doi: 10.1145/3235765.3235821

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301645839?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3235765.3235821

The qualities of generated levels depend on the composition of grammar rules and
how they are combined in sequence. Therefore, potential bugs often remain unknown
until they are observed during playtesting. Additionally, the combinatorial explosion
resulting from recursive rule expansions complicates formingmental models required
for reasoning about intended qualities, and how they are represented in the grammar
or intermediate data. Moreover, it is hard to predict how individual rules affect the
overall level quality.

Grammars are brittle, i.e. code that is liable to break easily. Designers require
special measures to ensure that qualities once introduced, remain intact, preventing
successive rewrites from breaking levels. Fixing one level with a rule that prevents an
occurrence may introduce new problems in others. In general, there is a lack of tools
and techniques for authoring, debugging, testing and improving rules that introduce
and preserve design intent. As a result, the full potential of these techniques has not
yet been realized.

We aim to improve the quality of grammar-based procedural level generation in
general, and focus on grammars that work on tile maps in particular. We motivate
our research by studying and improving Ludoscope, a state-of-the-art development
environment for generating very diverse game levels. Since its inception, Ludoscope
was developed by Ludomotion for indie game development, and successfully applied
to a rogue-like dungeon crawler calledUnexplored. We address the need of developers
for better tools. This paper proposes and contributes two enabling techniques:

1. Metric of Added Detail (MAD), a novel metric that indicates if a grammar rule
adds or removes detail to a tile map. We hypothesize that grammars gradually
add detail. MAD leverages a detail hierarchy, a binary relation on alphabet
symbols indicating which symbol is more detailed, which can easily be derived
from transformation pipelines.

2. Specification Analysis Reporting (SAnR), a technique that offers a level property
language for expressing level qualities. SAnR analyzes and reports how these
properties evolve over time in level generation histories.

We demonstrate the feasibility of MAD and SAnR by implementing Ludoscope
Lite (LL), a light-weight version of Ludoscope intended to study level quality. LL is
implemented using Rascal, ameta-programming language and languageworkbench.
Our preliminary evaluation shows that SAnR can express and analyze simple level
properties, and that MAD raises flags for rules that remove detail. MAD and SAnR
augment existing approaches by supporting gradually adding detail and analyzing
level generation histories, which ultimately helps designers make better levels and
level generators.

2 chapter 1 measuring quality of grammars for procedural level generation

1.2 related work

Evaluating content generators and their output is a key open research problem
[STN16; SMS+17; YT18]. Generators can be analyzed in terms of generated content,
e.g., Summerville et al. evaluate metrics for difficulty, visual aesthetics and enjoyment
of platform games [SMS+17].

We take an authoring perspective on level grammars. Our approach stands apart
by also taking into account how generated levels are generated. This enables level
designers to relate qualities of generated levels back to the source code of the generator
(grammar rules) and make targeted improvements.

Level grammars are under-specified, since they also generate many levels that
are bad with respect to design constraints. The challenge is authoring a set of rules
that efficiently generates varied and well-structured results capturing design intent
while limiting the recursion. Smith and Mateas propose explicitly describing design
spaces as an answer set programs, and show generators can be sculpted for a variety
of content domains [SM11]. Van der Linden et al. focus on improving authoring and
controlling level generators by expressing gameplay-related design constraints. They
use graph grammars to encode these constraints, and generate action graphs that
associate player actions and content for generating complete layouts of game levels
[vdLLB13]. We refer to a survey of van der Linden et al. for a wider discussion on
techniques for procedural dungeon generation [vdLLB14].

We relate our work to other content generators that use grammars. Tracery is
a grammar-based tool for authoring stories and art as structured strings that has
been used for generating names, descriptions, stories in poetry, Twitter bots and
games [Com15; CKM15]. PuzzleScript is a language and authoring environment
which uses rewrite rules to express puzzle mechanics [Lav15]. Ludoscope is a visual
environment for authoring level transformation pipelines as grammars that builds
upon the mission and spaces framework [Dor10; DB11]. Pipelines consist of modules
that contain grammars, alphabets and recipes that transform level artifacts such as
strings, tile maps, graphs and Voronoi diagrams. In particular, recipes are crucial to
control the generation and focus the application of rules for obtaining aesthetically
pleasing levels. Recipes parameterize modules with instructions, that determine
the ordering of rules and limit how often rules work. Member values annotate
tiles with extra information. Both help reducing the generation space, but neither
are well-suited to check qualities off-line and independently. Ludoscope is neither
extensively documented, nor currently available as open source software. Karavolos
et al. report experiences on applying Ludoscope to a platformer and a dungeon
crawl game, which require very different transformation pipelines [KBB15]. Our
approach closely follows the pipeline structure of Ludoscope, but it improves upon
its capabilities for analyzing grammar and level quality.

1.2 related work 3

Module m1: add walls

r1: (R,U)

(a) Adding walls on the
room borders

⇒ Module m2: add doors

r2: (1x)

r3: (1x)

(b) Adding north (r2) and east (r3)
doors

⇒ Module m3: add traps

r4: (3x)

r5: (1x)

(c) Adding three fire pillar
obstacles (r4) and a pond (r5)

=off map =empty =wall
=door =pillar =water

Figure 1.1: Level transformation pipeline consisting of three modules

(a) Empty room with walls (b) Example room with content

Figure 1.2: Tile maps that are input and output of the pipeline

1.3 grammars for level generation

Here, we introduce quality issues in grammar-based level design using a simple
example that generates a room for a dungeon crawler, which illustrates some of the
challenges that arise during authoring grammars. It isolates problems that have larger
more complex forms in practice, e.g., in Unexplored. We relate questions designers
might have in Section 1.3.2 to technical challenges in Section 1.3.3.

1.3.1 Introductory Example

In dungeon crawlers, tile maps often represent rooms connected by pathways. Our
level generation pipeline, shown in Figure 1.1, generates rooms with two doors
connecting to a larger dungeon. It consists of three modules of grammar rules that
represent sequential level transformation phases. The grammar rules rewrite pieces
of the tile map matched by their pattern on their left hand side to the pattern on their
right hand side. The pipeline takes an empty tile map as input, e.g., of 6x6 tiles. Each

4 chapter 1 measuring quality of grammars for procedural level generation

module m4a: remove obstacles

r6: (R,U)

(a) Module removing pillars

MADscore heatmap

-1 (+0-1)

−

(b) MAD score and heat map

Figure 1.3: Module for removing pillars that block doors

module m4b: move obstacles

r7: (R,U)

r8: (R,U)

(a) Moving pillars left (r7) or right (r8)

MADscore heatmap

0 (+1-1)

− +

0 (+1-1)

− +

(b) MAD score and heat map

Figure 1.4: Module for moving pillars that block doors

phase randomly selects and applies rules, gradually adding detail. Many levels can
result, and as we will see, not all of these are what a designer might deem desirable.

First, module m1 adds walls on the borders of the tile map (Figure 1.1(a)). It
contains one rule called r1, whose left hand pattern matches on an empty tile on
the north edge of the map. Grammar rule r1 replaces an empty tile on the north
edge of the map with a wall. Rules can have modifier symbols to its right. The (U)
symbol to the right indicates that rule r1 is applied as many times as possible. The (R)
symbol indicates that rule r1 is also applied to the east, south and west borders of
the map. The result of module m1 is always a tile map with walls on its borders, e.g.,
Figure 1.2(a) is the output at 6x6.

Next, module m2 adds doors in the north and east walls that connect the room to
other parts of the dungeon (Figure 1.1(b)). The rules r2 and r3 respectively add a door
in the north and east walls. These rules are applied exactly once (1x).

Finally, module m3 introduces challenge (Figure 1.1(c)). Rule r4 places three fire
pillars, traps that set players on fire if they remain close too long. In addition, rule r5
adds a pond of water the player can use to extinguish the flames.

1.3 grammars for level generation 5

1.3.2 Level designer questions

R

(a) Module m4a removed a pillar at R

→ M

(b) Module m4b moved pillar M

Figure 1.5: Repairing the example level of Figure 1.2(b) in two ways

A
1 2 3

B

(a) No space to move pillar 2 away
from door A

A
1
2 3 B

(b) Moving pillar 3 can block door A
Water remains unreachable

Figure 1.6: Levels that cannot be repaired by Module m4b

The pipeline of Figure 1.1 can also generate problematic levels. For instance, in
Figure 1.2(b), a fire pillar in front of the north door prevents players from passing.
One way to fix this is to patch the level by removing obstacles, as shown in Figure 1.3(a)
results in Figure 1.5(a). However, fewer pillars than intendedmay reduce the difficulty.
Another way is moving obstacles away from doors, as shown in Figure 1.4(a), which
results in Figure 1.5(b). Unfortunately, other problematic output still exists, e.g.,
Figure 1.6. Authoring level grammars is hard, even for this tiny example. Questions
about quality a designer might have are:

1. Efficiency. Do the grammar rules efficiently generate levels, or is time wasted
on overwritten dead content?

2. Effectiveness. Do the grammar rules effectively generate levels that contain all
the intended objects, composite structures, problems and solutions, or are some
parts missing?

3. Root-cause analysis. Given a level with a problem, by which rules were the
affected tiles generated?

6 chapter 1 measuring quality of grammars for procedural level generation

Application of Module m1: add walls

a01 r1: @(0,-1)

... ...
a20 r1: @(-1,1)

(a) Adding walls on the room borders

Application of Module m2: add doors

a21 r2: @(2,0)

a22 r3: @(4,3)

(b) Adding north (a21) and east (a22) doors

Application of Module m3: add traps

a23 r5: @(4,1)

a24 r4: @(2,1)

a25 r4: @(3,3)

a26 r4: @(1,4)

(c) Adding three pillars (a24,a25,a26) and a pond (a23)

Figure 1.7: Level generation history showing how rules generated the example level shown in
Figure 1.2(b)

4. Bug-fixing. Does changing a rule improve levels, or does it also introduce new
problems?

5. Bug-free. How can unwanted situations be prevented and removed from the
level generation space?

Other relevant questions not further discussed here are, e.g.,

• Playability. Are the challenges of all generated levels solvable, or are there
ways in which players can get stuck?

• Challenge. Are the levels challenging to play?

1.3 grammars for level generation 7

1.3.3 Challenges

Here, we identify technical challenges that need to be addressed for answering
questions of level designers described in Section 1.3.2.

1. Static analysis and metrics. Profiling the applications of rules helps to asses
efficiency measuring (relative) times and amounts. However, static analysis
may also help predict rule efficiency. Upper bounds on rule applications enable
reasoning about worst-case scenarios. Left hand patterns that can never match
indicate dead code. In addition, metrics can help assess to which extent rules
contribute to generating an intended result, to find bad rules.

2. Analyzing the level generation space. Viewed as a state-space exploration
problem, rules might rewrite levels to prior states. For a given level, the shorter
its trace of rewrites, the more efficient its generation.

3. Expressing and analyzing level qualities. Grammar rules lack ways to specify
properties at specific points in the pipeline, e.g., if objects are (not) adjacent,
contained, intact or missing. Designers need an additional formalism for
effectively specifying properties that intuitively capture design intent. To see
how qualities evolve, levels can be checked against these properties after each
transformation.

4. History analysis. Generators produce tile maps by applying grammar rules
in sequence, e.g. Figure 1.7. However, these generation histories are usually
not stored. For identifying rules that impact tiles, or groups of tiles, designers
require an analysis of the level transformation history.

5. Impact analysis. Assessing the impact of rules on many generated results
requires isolating rule effects. The position in the pipeline scopes the locality of
impact, and a dependency analysis can exclude side-effects, but an exhaustive
impact analysis requires generating examples.

6. Test Automation. Testing the impact of changes on all possible levels is not
feasible. As a result, levels may exist that contain bugs. The challenge is devising
a test harness that generates representative levels for finding bugs.

7. Debugging. Identifying and fixing bugs requires appropriate views and tools
for setting break points and making modifications, e.g., selecting one or more
adjacent tiles to filter and analyze selected properties.

1.4 grammar analysis and debugging

We approach the challenges of Section 1.3.3 from a software evolution perspective.
We propose two solutions, Metric of Added Detail (MAD) and Specification Analysis
Reporting (SAnR). Figure 1.8 schematically shows how designer activities and algo-
rithmic processes (respectively shown as pink and blue rounded rectangles) produce
(outgoing arrows) and consume (incoming arrows) artifacts (rectangles). The field of
software evolution studies how software evolves over time [MWD+05]. As software
ages, it conforms less and less to the changing expectations of its users. In addition,

8 chapter 1 measuring quality of grammars for procedural level generation

Level
Design

Rules
Detail

hierarchy

MAD
Analysis

Rules +
Metrics

derive

(a) MAD Level Design

Level
Design

Select
a level

Rules
Level

Properties
Level +
History

SAnR
AnalysisGenerator

Level +
Report

Levels +
Histories

(b) SAnR Level Design

Figure 1.8: Producing MAD and SAnR level design artifacts

for developers it also becomes harder over time to adjust software and maintain its
quality. Research includes methods and techniques for analyzing source code and for
making changes to improve the software quality. Since game requirements are mainly
non-functional and evolve rapidly, these techniques are also vital for game quality.

1.4.1 Metric of Added Detail

Metrics have been proposed to analyze how changes to source code impact software
quality. Volume (or size) can be measured by counting Lines Of Code (LOC), and
branch points in the control flow of methods can be measured using Cyclometric
Complexity (CC). At any moment, metrics are just abstract values, but when studied
over time they can provide insight into phenomena and quality, in particular when
developers have questions regarding the effect of maintenance and new requirements
that require programming. Heitlager et al. describe a software maintainability model
[HKV07], which requires that measures are 1) technology independent; 2) simply
defined; 3) easy to understand and explain; and 4) enablers of root cause-analysis,
relating source code properties to system qualities.

Herewe introduce theMetric ofAddedDetail (MAD), a simplemetric for grammars
operating on tile maps, which is easy to explain and understand. MAD does not
directly predict level quality, but instead measures the effect on detail of individual
rules by leveraging the assumption that details are gradually added (Figure 1.8(a)).

We define MAD in Figure 1.9, using the concise functional notation of Rascal.
MAD requires a detail hierarchy, represented as a binary relation on grammar symbols
(line 2). Rules are represented as lists of tuples of source and target symbols that
abstract from tile map dimensions (line 3). The result of the metric adds a score

1.4 grammar analysis and debugging 9

1 module util::mad::Metric
2 alias Detail = rel[str greaterSymbol, str lesserSymbol];
3 alias Rule = lrel[str lhs, str rhs];
4 alias RuleScore = lrel[str lhs, str rhs, int score];
5

6 RuleScore getRuleScore(Rule r, Detail d)
7 = [<lhs, rhs, getTileScore(lhs, rhs, d)> | <lhs, rhs>←r];
8

9 int getTileScore(str lhs, str rhs, Detail d){//rewriting a tile
10 if(<lhs,rhs> in d) return −1; //removes detail
11 else if(<rhs,lhs> in d) return 1; //adds detail
12 else return 0; //retains detail
13 }

Figure 1.9: Metric of Added Detail as a Rascal program

element to each tuple that records if detail is added (score +1), removed (score -1) or
persisted (score 0) (line 4). The function getRuleScore specifies the rule metric as a list
comprehension (lines 6–7). Given a rule and a detail hierarchy, it calculates for each
symbol on the left hand side if the right hand side adds or removes detail using the
function getTileScore (lines 9–13). Displayed as a heat map, the result is aggregated as
a sum of tile detail scores.

1.4.2 Deriving Detail Hierarchies

MAD is tool independent and rule parametric, but it requires a detail hierarchy,
which needs to be derived. Modules imply a natural hierarchy for tools that use level
transformation pipelines, each phase introducing symbols that are more detailed
than the last. Using this approach, we derive the following detail hierarchy for the
example of Section 1.3.1 Figure 1.1 {water, pillar} > door > wall > empty, or visually { ,
} > > > .
Competing non-deterministic rules do not sequentially add detail, e.g., r4 or r5

adds or first. Therefore, deriving a symbol hierarchy for exposing data
generated and overwritten within a module is less straightforward. We see the
following alternatives:

1. Allow an explicit user-defined detail hierarchy, or derive it from an explicit rule
ordering such as a Ludoscope recipe.

2. Assume detail is sequential to the rules in the module.
3. Add the inverse to the relation for symbols with the same rank in the hierarchy,

e.g., > and > . However, this is not very intuitive.

10 chapter 1 measuring quality of grammars for procedural level generation

1 s ta r t syntax LevelSpec
2 = spec : Proper ty ∗ ;
3 syntax Proper ty
4 = proper ty : Cond i t ion T i l eSe t ;
5 syntax Condi t ion
6 = none : " no " / / t i l e set i s empty
7 | count : INT s ize " x " ; / / t i l e set i s o f s p e c i f i c s ize
8 syntax T i l eSe t / / de f ines a set o f t i l e s (now v i s i b l e)
9 = t i l e S e t : ID t i leName Fi l te rNow Fi l te rWhere ;

10 syntax Fi l te rNow / / f i l t e r s the t i l e set (now v i s i b l e)
11 = nowAny : / / empty a l t e r n a t i v e , no f i l t e r
12 | nowAdjacent : " ad jacent to " ID t i leName ;
13 syntax Fi l te rWhere / / f i l t e r s a t i l e set (h i s t o r i c a l l y)
14 = everAny : / / empty a l t e r n a t i v e , no f i l t e r
15 | everRule : " i n " ID ruleName ; / / topograph ica l l o c a t i o n

Figure 1.10: Syntax of Level Property Language in Rascal

1.4.3 Analyzing Rules with MAD

Using the detail hierarchy derived in Section 1.4.2 we calculate MAD scores for rules
of modules m4a and m4b intended to fix broken levels, shown in Figure 1.3(a) and
Figure 1.4(a). Rule r6, which removes fire pillars, has a negative effect on detail, as
shown in Figure 1.3(b). The effect of rules r7 and r8 that instead move them, shown in
Figure 1.4(b), is neutral. MAD helps designers assess if rules contribute to generating
intended results, and augments intuitions with facts. Rules that remove details may
be fixes, but may also cause dead content or regressions in the level generation space
that waste time.

1.4.4 Expressing and Analyzing Level Properties

Here we address the challenges of expressing and analyzing level qualities from
a Software Language Engineering perspective [Läm18]. We propose Specification
Analysis Reporting (SAnR), a technique for analyzing level grammars against level
properties. In the mixed-initiative design process shown in Figure 1.8(b), designers
author a grammar (rules and modules) and SAnR level properties, a generator
generates levels, and the designers selects one level to analyze, for which SAnR
generates a report.

SAnR provides a property notation. This is a so-called Domain-Specific Language
(DSL), a language that offers appropriate notations and abstractions with expressive
power and affordances over a particular problem domain [vDKV00], in this case
specifying properties of tile maps as correct outcomes of tile map transformations.

1.4 grammar analysis and debugging 11

2x door in walls
1x water
3x pillar
no pillar adjacent to door
no water adjacent to pillar
(a) Level Property Language
specification encoding level
qualities

a01 . . . a21 a22 a23 a24 a25 a26

3

3

3

3 7

3

(b) Level generation report showing how
the level of Figure 1.2(b) evolved over time
in Figure 1.7

a27 (alt.)

7

3

(c) Certain
result of
module m4a

a27 (alt.)

3

7

(d) Possible
result of
module m4b

Figure 1.11: Level properties and a level generation report showing two alternatives

We show its syntax in Figure 1.10, and give an informal description of its language
semantics. Instead of writing new grammar rules, a SAnR level specification is a set of
declarative properties, which refer to names used in the grammar (line 1). Given a level
history as a sequence of rule-based model transformations, e.g., Figure 1.7, properties
can be evaluated at each point in time, yielding either true or false. Properties work on
tile locations, places on tile maps specified by x and y coordinates denoted as @(x,y),
the top left tile being @(0,0). A property is a condition on a set of tile locations visible
on a tile map (line 2), which must either be empty (line 4) or of a specific size (line 5).
The set is built by collecting tile locations using names from the grammar alphabet,
e.g., “door” retrieves a set containing each location of a door. On the example of
Figure 1.2(b) this yields {@(2,0), @(4,2)}, which means “2x door” is true and “1x door”
is false. Locations can be filtered in two optional ways.

1. Adjacency. The adjacent to keyword (lines 8-10), filters locations that do not
share at least one side with tiles of another kind, e.g.,“door adjacent to pillar”,
denotes a set of locations of door tiles next to at least one pillar.

2. Topography. The in keyword (lines 11-13), filters out locations that were never
affected by a rule rewrite. In other words, we use rule names to collect sets of
tile locations from the level generation history as “topographical regions”. The
resulting set is the intersection between the left and right hand operands. For
example “door in walls” gives the set of door locations in the region affected by
rule walls.

1.4.5 Analyzing Level Generation Histories

The SAnR analysis uses properties for generating level generation reports that
show when properties were valid, and when they became invalid. For example,
given the level generation history of Figure 1.7, and the properties of Figure 1.11(a),
SAnR evaluates the properties after each transformation step, yielding the report of
Figure 1.11(b). From the report we read that at step a24 transformation r4: →

12 chapter 1 measuring quality of grammars for procedural level generation

@(2,1) places a pillar in front of the north door, which invalidates the property
“no pillar adjacent to door”.

1.4.6 Analyzing Rule Impact

SAnR can also be used to analyze the impact of new rules on existing levels
with respect to level properties. For instance, we can spot problems at
alternative steps a27 in the report of Figure 1.11 caused by modules m4a and
m4b intended as fixes, shown in Figure 1.3(a) and Figure 1.4(a). On the one
hand, Figure 1.11(c) shows that when module m4a removes the pillar with
transformation r6: → @(2,0) this breaks the property “3x pillar”. On the
other hand, Figure 1.11(d) shows that when module m4b moves the pillar to
the east with transformation r7: → @(2,0) this breaks the property
“no pillar adjacent to water”.

1.5 preliminary evaluation

Here, we report on a preliminary evaluation of the use of MAD and SAnR in
the implementation of a prototype level generator called Ludoscope Lite.

1.5.1 Implementation of LudoScope Lite

Ludoscope Lite (LL) is a light weight version of Ludoscope intended for
rapid prototyping, research and experimentation with analysis and generation
techniques for making better grammar-based game levels and generators. Its
focus is initially on designing and validating approaches for tile maps, which
are later implemented and applied in Ludoscope. We use language work
bench [EVV+13] and meta-programming language Rascal∗ [KvdSV09] to
implement MAD and SAnR as separate reusable modules and integrate both
in LL†.

Table 1.1 gives an overview of the components of LL and their size in Lines
of Code (LOC) relative to Ludoscope. Of course, the user-friendly IDE of
Ludoscope has many features LL lacks, explaining the size difference. LL
integrates a grammar-based parser that reads the storage format of Ludoscope.
The ultimate goal is compatibility, sharing syntax and semantics for generating
and analyzing rules. We apply test-driven development, encoding expected
behaviors for most of its features in a combination of unit and integration

∗https://www.rascal-mpl.org
†https://github.com/visknut/LudoscopeLite

1.5 preliminary evaluation 13

https://www.rascal-mpl.org
https://github.com/visknut/LudoscopeLite

Table 1.1: Source code size of Ludoscope and Ludoscope Lite

Component Ludoscope (KLOC) LL (KLOC)
IDE (features differ) 10.5 0.3
Parser + execution 10 1.7 + 0.4
Test + test data ? 1.5 + 0.7
Metric of Added Detail not yet 0.1
Level Property Language not yet 0.3
Extension wrappers - 0.4
Total 20.5 5.5

Table 1.2: SAnR data on the example the pipeline of Figure 1.1 and its two extensions modules
m4a and m4b

Data Example + m4a + m4b

Unique histories 9846 9858 9844
Unique tile maps 9171 9014 8775
Broken tile maps 6254 6132 4613
Bugs found 2 2 4

Table 1.3: SAnR level generation reports for 10K random executions. The rules rn refer to
Figure 1.1, Figure 1.3(a) and Figure 1.4(a)

Property Example + m4a + m4b

2x door in walls - - -
1x water - - -
3x pillar - r6 (3226x) r7 (111x)

r8 (112x)
no pillar adjacent to door r5 (3164x) - r5 (438x)
no water adjacent to pillar r5 (5686x) r5 (5209x) r5 (5482x)

tests for regression testing. The histories and reports shown in this paper are
generated by LL, which currently still generates them as strings. A more user
friendly visualization is work in progress.

14 chapter 1 measuring quality of grammars for procedural level generation

1.5.2 Test Automation

We use LL to evaluate SAnR on the running example of Section 1.3.1‡ We
wish to learn if LL and SAnR can help automate tests, and run 10K random
executions (or simulations) on the pipeline Figure 1.1, and its extensions,
shown in Figure 1.3(a) and Figure 1.4(a), which makes 30K executions total.
For each execution, we record the model transformation history and use SAnR
and the properties of Figure 1.11(a) to obtain a report.

Table 1.2 displays an overview of the results, which were obtained in
about 10 minutes of run time. The unique number of histories is lower than
10K because some executions yielded the same transformations. In addition,
different transformation sequences can produce the same tile map, which
explains why there are fewer unique tile maps. We consider a tile map broken
when not all SAnR property are satisfied. In addition, Table 1.3 shows which
rules break properties (in howmany histories) for each pipeline version, which
helps designers compare and analyze causes.

We gain the following insights. The test automation approach is feasible,
and issues can be found in seconds. In addition, by relating the number of
unique outputs to the number of broken outputs we can get an idea how
serious issues are. Naturally, 10K random executions says nothing about test
coverage, but it improves upon random manual testing. We confirm that
module m4a is a bad fix. We note that although extension m4b increases the
number bugs, it also generates fewer broken tile maps. Clearly, the pipeline
still requires fixes. Of course, the example is small and not representative of the
size and complexity of transformation pipelines of games such as Unexplored.
However, our test automation setup is reusable, and enables testing other
grammars with larger pipelines too.

1.6 discussion

MAD and SAnR provide a means for answering designer questions of Sec-
tion 1.3.2. Here we discuss the befits and limitations of the approaches and
threats to validity.

‡There is one difference, LL implements Ludoscope recipes for limiting the amount of times that rules
are applied. As a side-effect, this limits sequences and reduces the level generation space.

1.6 discussion 15

1.6.1 MAD Level Design

MAD gives a partial answer to the question if rules generate levels efficiently.
Themetric helps designers identify rules that remove detail, and possiblywaste
time on generating cause dead content. It supports the single responsibility
principle, exposing modules add many details at once. However, MAD does
not address the challenge of analyzing the state space. At best, it can help
identify rules that may lead to longer level generation traces. In addition, we
do not know if MAD can be used for data structures other than tile maps,
e.g., for grammars that work on graphs. Finally, MAD is not yet empirically
validated.

1.6.2 SAnR Level Design

SAnR properties enable analyzing how effectively rules generate intended
levels, e.g. for simple tile adjacency, counting, missing tiles, and topographical
inclusion. Properties depend only on the names of rules and tiles, which
separates concerns but complicates refactoring grammar rules. SAnR analyzes
levels by checking properties against generation histories, and assumes these
are correctly generated. Therefore, SAnR reports are only as good as the
grammar engine, which may also contain bugs. Of course, our approach is
not the first that checks simple invariant conditions. However, to the best of
our knowledge, checking properties that use level generation histories and
grammar rule names to collect topographical regions of tile locations is new.

SAnR can help designers analyze quality and remove unwanted situations
from the level generation space by identifying transformations and rules that
break properties. However, those rules may not be the root cause of the
problem, which can originate earlier in the pipeline. In addition, it is hard for
developers to analyze the history, since it is not clear where the branch points
in the generation process are, and how alternatives would have played out.
Finally, the expressive range of properties is currently still rather limited, and
a formal semantics relating properties and histories is not yet defined.

1.7 conclusion

This paper proposes two novel techniques that aim to improve the quality
of grammar-based procedural level generation for grammars that work on
tile maps. The first, is the Metric of Added Detail (MAD), a novel metric that
indicates if a grammar rule adds or removes detail to a tile map. The second, is

16 chapter 1 measuring quality of grammars for procedural level generation

Specification Analysis Reporting (SAnR), a technique that offers level property
language for expressing level qualities. SAnR analyzes and reports how these
properties evolve over time in level generation histories. We demonstrated the
feasibility of MAD and SAnR with LudoScope Lite, a light-weight version of
Ludoscope intended to study level quality.

Our preliminary evaluation shows that SAnR can express and analyze
simple level properties, and that MAD is intuitive and raises flags for rules that
remove detail. In addition, SAnR can be used in test automation. MAD and
SAnR augment existing approaches by supporting gradually adding detail
and analyzing level generation histories, which ultimately helps designers
make better levels and level generators. Of course, LL is an academic research
prototype that is not yet extensively validated in practice.

1.7.1 Future Work

Future work includes the following.
• Validation. A case study on Boulder Dash is current work. We also

plan to study Unexplored to identify which additional SAnR property
features are needed to express design intent more fully, e.g., better filters,
validity ranges, and for shapes, paths and relative positions. We hope to
identify bugs that would otherwise be hard or impossible to find.

• Analyses. Additional analyses on rule dependencies, and partial or-
derings may be identified of different rule orders generating the same
levels, e.g., for increasing test coverage and level generation variety. For
assessing the variety of generated content, existing metrics can be reused.
For instance, Smith and Whitehead assess the expressive range of a
generator by comparing metrics for linearity and leniency of platform
levels [SW10].

• Generation. Here we use SAnR for analyzing level generation histories
after they are generated. However, by integrating SAnR into a level
generator we could also prune the search space and filter out potential
unwanted levels before they are ever produced. A feasibility study can
assess the impact on efficiency and scalability of this approach.

• Formal semantics. Reproducible dynamic analyses require a formal
semantics for the execution of generative grammars, separate from tools
and games that interpret them.

• Parsing. We observe that ambiguous grammars for parsing and level
grammars generating the same tile map with different rule orderings are

1.7 conclusion 17

related. Given a bugged tile map, how many different rule orderings can
reproduce it? When changing the rules, can the new rules produce the
tile map with a different generation history?

• Debugging. Debugging level grammars requires an interactive debugger,
in particular for back in time debugging, exploring what-if scenarios and
saving and replaying generated levels while testing new rules. Additional
visualizations are needed to see how the generation space unfolds.

Acknowledgements

We thank Paul Klint, Anders Bouwer, Rafael Bidarra and the anonymous
reviewers for their insightful comments that helped improve this paper. We
thank Joris Dormans for collaborating with us and answering our many
questions about the design of Ludoscope.

18 chapter 1 measuring quality of grammars for procedural level generation

REFERENCES

[Com15] K. Compton. Tracery. 2015. url: http://tracery.io (visited on May 19, 2018) (cit. on
p. 3).

[CKM15] K. Compton, B.A. Kybartas, andM.Mateas. “Tracery: An Author-Focused Generative Text
Tool”. In: Interactive Storytelling – Proceedings of the 8th International Conference on Interactive
Digital Storytelling, ICIDS 2015, Copenhagen, Denmark, November 30–December 4, 2015. Ed. by
H. Schoenau-Fog, L. E. Bruni, S. Louchart, and S. Baceviciute. Vol. 9445. LNCS. Springer,
2015, pp. 154–161. isbn: 978-3-319-27035-7. doi: 10.1007/978-3-319-27036-4_14
(cit. on p. 3).

[Dor10] J. Dormans. “Adventures in Level Design: Generating Missions and Spaces for Action
Adventure Games”. In: Proceedings of the 1st Workshop on Procedural Content Generation
in Games, PCG 2010, Monterey, California, USA, June 18, 2010. ACM, 2010, pp. 1–8. isbn:
978-1-4503-0023-0. doi: 10.1145/1814256.1814257 (cit. on p. 3).

[DB11] J. Dormans and S. Bakkes. “Generating Missions and Spaces for Adaptable Play Experi-
ences”. In: IEEE Transactions on Computational Intelligence and AI in Games 3.3 (Sept. 2011),
pp. 216–228. issn: 1943-068X. doi: 10.1109/TCIAIG.2011.2149523 (cit. on p. 3).

[EVV+13] S. Erdweg, T. Van Der Storm, M. Völter, M. Boersma, R. Bosman, W.R. Cook, A. Gerritsen,
A. Hulshout, S. Kelly, A. Loh, et al. “The State of the Art in Language Workbenches –
Conclusions from the Language Workbench Challenge”. In: Software Language Engineering
– Proceedings of the 6th International Conference, SLE 2013, Indianapolis, IN, USA, October
26–28, 2013. Ed. by M. Erwig, R. F. Paige, and E. Van Wyk. Vol. 8225. LNCS. Springer, 2013,
pp. 197–217. isbn: 978-3-319-02653-4. doi: 10.1007/978-3-319-02654-1_11 (cit. on
p. 13).

[HKV07] I.Heitlager, T. Kuipers, and J. Visser. “APracticalModel forMeasuringMaintainability”. In:
Proceedings of the 6th International Conference on the Quality of Information and Communications
Technology, QUATIC 2007, Lisbon, Portugal, September 12–14, 2007. Ed. by R. J. Machado,
F. B. e Abreu, and P. R. da Cunha. IEEE, 2007, pp. 30–39. isbn: 0-7695-2948-8. doi:
10.1109/QUATIC.2007.8 (cit. on p. 9).

[KBB15] D. Karavolos, A. Bouwer, and R. Bidarra. “Mixed-Initiative Design of Game Levels:
IntegratingMission and Space into LevelGeneration”. In:Proceedings of the 10th International
Conference on the Foundations of Digital Games, FDG 2015, Pacific Grove, CA, USA, June 22–25,
2015. Ed. by J. P. Zagal, E.MacCallum-Stewart, and J. Togelius. Society for the Advancement
of the Science of Digital Games, 2015 (cit. on p. 3).

[KvdSV09] P. Klint, T. van der Storm, and J. J. Vinju. “Rascal: A Domain Specific Language for Source
Code Analysis andManipulation”. In:Ninth IEEE International Working Conference on Source
Code Analysis and Manipulation, SCAM 2009, Edmonton, Alberta, Canada, September 20–21,
2009. IEEE, 2009, pp. 168–177. isbn: 978-0-7695-3793-1. doi: 10.1109/SCAM.2009.28
(cit. on p. 13).

[Läm18] R. Lämmel. Software Languages: Syntax, Semantics, and Metaprogramming. Springer, 2018.
isbn: 978-3-319-90798-7. doi: 10.1007/978- 3- 319- 90800- 7. url: http://www.
softlang.org/book (cit. on p. 11).

[Lav15] S. Lavelle. PuzzleScript. 2015. url: https://www.puzzlescript.net (visited on May 20,
2018) (cit. on p. 3).

[MWD+05] T. Mens, M. Wermelinger, S. Ducasse, S. Demeyer, R. Hirschfeld, and M. Jazayeri. “Chal-
lenges in Software Evolution”. In: Proceedings of the 8th International Workshop on Principles of
Software Evolution, IWPSE 2005, Lisbon, Portugal, September 5–7, 2005. IEEE, 2005, pp. 13–22.
isbn: 0-7695-2349-8. doi: 10.1109/IWPSE.2005.7 (cit. on p. 8).

19

http://tracery.io
https://doi.org/10.1007/978-3-319-27036-4_14
https://doi.org/10.1145/1814256.1814257
https://doi.org/10.1109/TCIAIG.2011.2149523
https://doi.org/10.1007/978-3-319-02654-1_11
https://doi.org/10.1109/QUATIC.2007.8
https://doi.org/10.1109/SCAM.2009.28
https://doi.org/10.1007/978-3-319-90800-7
http://www.softlang.org/book
http://www.softlang.org/book
https://www.puzzlescript.net
https://doi.org/10.1109/IWPSE.2005.7

[STN16] N. Shaker, J. Togelius, and M. J. Nelson. Procedural Content Generation in Games: A Textbook
and an Overview of Current Research. Computational Synthesis and Creative Systems.
Springer, 2016. isbn: 978-3-319-42714-0. doi: 10.1007/978- 3- 319- 42716- 4. url:
http://pcgbook.com (cit. on p. 3).

[SM11] A.M. Smith andM.Mateas. “Answer Set Programming for Procedural Content Generation:
A Design Space Approach”. In: IEEE Transactions on Computational Intelligence and AI
in Games 3.3 (Sept. 2011), pp. 187–200. issn: 1943-068X. doi: 10.1109/TCIAIG.2011.
2158545 (cit. on p. 3).

[SW10] G. Smith and J. Whitehead. “Analyzing the Expressive Range of a Level Generator”.
In: Proceedings of the 1st Workshop on Procedural Content Generation in Games, PCG 2010,
Monterey, California, USA, June 18, 2010. ACM, 2010, pp. 1–7. isbn: 978-1-4503-0023-0. doi:
10.1145/1814256.1814260 (cit. on p. 17).

[SMS+17] A. Summerville, J. R.H. Mariño, S. Snodgrass, S. Ontañón, and L.H. S. Lelis. “Under-
standing Mario: An Evaluation of Design Metrics for Platformers”. In: Proceedings of the
International Conference on the Foundations of Digital Games, FDG 2017, Hyannis, MA, USA,
August 14-17, 2017. Ed. by S. Deterding, A. Canossa, C. Harteveld, J. Zhu, and M. Sicart.
ACM, 2017, pp. 1–10. isbn: 978-1-4503-5319-9. doi: 10.1145/3102071.3102080 (cit. on
p. 3).

[vdLLB13] R. van der Linden, R. Lopes, and R. Bidarra. “Designing Procedurally Generated Levels”.
In: Proceedings of the the 2nd workshop on Artificial Intelligence in the Game Design Process.
AAAI, 2013 (cit. on p. 3).

[vdLLB14] R. van der Linden, R. Lopes, and R. Bidarra. “Procedural Generation of Dungeons”. In:
IEEE Transactions on Computational Intelligence and AI in Games 6.1 (Mar. 2014), pp. 78–89.
issn: 1943-068X. doi: 10.1109/TCIAIG.2013.2290371 (cit. on p. 3).

[vDKV00] A. van Deursen, P. Klint, and J. Visser. “Domain-Specific Languages: An Annotated
Bibliography”. In: ACM SIGPLAN Notices 35.6 (June 2000), pp. 26–36. issn: 0362-1340.
doi: 10.1145/352029.352035 (cit. on p. 11).

[vRH18] R. van Rozen and Q. Heĳn. “Measuring Quality of Grammars for Procedural Level
Generation”. In: Proceedings of the 13th International Conference on Foundations of Digital
Games, FDG 2018, as part of the 9th Workshop on Procedural Content Generation, PCG 2018,
Malmö, Sweden, August 7–10, 2018. Ed. by S. Dahlskog, S. Deterding, J. Font, M. Khandaker,
C.M. Olsson, S. Risi, and C. Salge. ACM, 2018, pp. 1–8. isbn: 978-1-4503-6571-0. doi:
10.1145/3235765.3235821 (cit. on p. 1).

[YT18] G.N. Yannakakis and J. Togelius. Artificial Intelligence and Games. Springer, 2018. isbn:
978-3-319-63518-7. doi: 10.1007/978-3-319-63519-4. url: http://gameaibook.org
(cit. on p. 3).

20 references

https://doi.org/10.1007/978-3-319-42716-4
http://pcgbook.com
https://doi.org/10.1109/TCIAIG.2011.2158545
https://doi.org/10.1109/TCIAIG.2011.2158545
https://doi.org/10.1145/1814256.1814260
https://doi.org/10.1145/3102071.3102080
https://doi.org/10.1109/TCIAIG.2013.2290371
https://doi.org/10.1145/352029.352035
https://doi.org/10.1145/3235765.3235821
https://doi.org/10.1007/978-3-319-63519-4
http://gameaibook.org

	Measuring Quality of Grammars for Procedural Level Generation
	Introduction
	Related Work
	Grammars for Level Generation
	Grammar Analysis and Debugging
	Preliminary Evaluation
	Discussion
	Conclusion

	References

