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Moving-boundary approximation for curved streamer ionization fronts: Numerical tests
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Recently a moving boundary approximation for the minimal model for negative streamer ionization fronts
was extended with effects due to front curvature; this was done through a systematic solvability analysis. A
central prediction of this analysis is the existence of a nonvanishing electric field in the streamer interior, whose
value is proportional to the front curvature. In this paper we compare this result and other predictions of the

solvability analysis with numerical simulations of the minimal model.
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I. INTRODUCTION

Streamers characterize the initial stages of electric break-
down in sparks, lightning, and sprite discharges; they occur
equally in technical and natural processes [1-3]. They are
growing plasma channels that appear when strong electric
fields are applied to ionizable matter. The essential features
of negative (anode-directed) streamers in a nonattaching gas
such as argon or nitrogen can be described by the so-called
minimal model [4—14]. This model consists of a set of three
coupled partial differential equations for the electron density
o, the ion density p, and the electric field E. In dimension-
less units the model reads

3,0 -V - (0E) - DV*0 = o|E|a(|E|), (1)
d,p=olE|a(|E|), (2)
V-E=p-0, E=-V¢, (3)

where D is the electron diffusion coefficient and where
af|E[)=e"F. (4)

A general discussion of the physical dimensions for this
model can be found, e.g., in [2,4,5,15]. The model is based
on a continuum approximation with local field-dependent
impact ionization reaction. Equations (1) and (2) are the con-
tinuity equations for the electrons and the ions, taken as im-
mobile due to their much larger mass, while Eq. (3) is the
Coulomb equation for the electric field generated by the
space charge p— o of electrons and ions. Although discharges
in air require extensions of the model, simulation results of
negative air streamers frequently resemble the minimal
model remarkably well [15,16].

Many simulations [6—13] have shown that streamers form
a thin curved space charge layer which separates the ionized
interior region, {1, from the nonionized exterior region, ()*.
This narrow charged layer (the ionization front) enhances the
electric field in ()* ahead of the front and screens it partially
in ). In strong background fields after some transient evo-
lution, the width of the ionization front can be much smaller
than its radius of curvature [12,13,15]. This separation of
scales enables one to consider the front as an infinitesimally
thin sharp moving interface I'(¢). In Fig. 1, we show a rep-
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resentative snapshot of net charge density of the minimal
model (1)-(3), which shows the separation of scales, and
depict the corresponding moving boundary approximation.
The original nonlinear dynamics is then replaced by a set of
linear field equations (frequently of diffusive or Laplace
type) on both sides of I'(¢); the regions on both sides of I'(z)
are denoted as Q0" and ™. The linear fields in these regions
are determined by boundary conditions on both sides of the
interface, I'(r)*, I'(¢)~, respectively, and on the outer bound-
aries [assumed to be located far away from I'(7)]; the non-
linearity enters through the motion of the boundary. The in-
terface dynamics is typically related to gradients of the
Laplacian fields in its vicinity.

In the context of streamer dynamics, the concept of an
interfacial approximation was probably first sketched by
Sdammer in 1933 [17]; later it was developed further by Lo-
zansky and Firsov in the Russian literature and in English in
[18]. They considered the streamer interior, ), as ideally
conducting, i.e., the electric potential ¢ as constant in the
interior. The exterior, {)*, is nonionized and therefore does
not contain space charges; the electric potential here solves

VZp=0 in QF. (5)

The interface was assumed to move with the local electron
drift velocity

o > T
N o
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front
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)

FIG. 1. (Color online) On the left: representative solution (net
charge density) of the minimal partial differential equation (PDE)
model with curvature « and width ¢, [see Eq. (9)] of the ionization
front. The electric field E is pointing downward and the negative
front propagates upward. On the right: depiction of the correspond-
ing moving boundary approximation (MBA) with the ionized re-
gion, ()7, the nonionized region, )*, and the sharp interface, I
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v=V¢". (6)

Hence, superscripts = attached to fields, potential, and den-
sities indicate their limit values as they approach the inter-
face from Q* and 7, respectively. In particular, we denote

However, this simplest moving boundary approximation
is mathematically ill posed; in the context of similar models
in fluid dynamics, this is explained, for example, in Ref. [19]
and references therein. To resolve this problem, the boundary
condition ¢*— ¢~ =0 was replaced by the regularizing bound-
ary condition

[A-Vgt|>1

¢ - =Qy(-Veg) — n-Vg', ()

where 1 is the unit vector normal to the front pointing toward
the nonionized region and Qy(x) is given by Eq. (15). This
boundary condition was proposed in [20] and derived in pla-
nar front approximation in [21]. The boundary condition ac-
counts for the finite width of the charged layer that leads to a
finite variation in the electric potential across the front. The
boundary condition in the limit of large electric fields actu-
ally turns out to be identical to the “kinetic undercooling”
boundary condition that was applied to crystal growth under
certain conditions [22,23]. Solutions of the model (5)—(7) are
discussed in [20,24], and the analysis in [25] shows that
boundary condition (7) indeed regularizes the problem. This
moving boundary approximation is compared with solutions
of the minimal model (1)—(3) in [21,26].

In a recent paper [27], effects associated with curvature of
the front were considered. The moving boundary conditions
for a slightly curved front dynamics were systematically de-
rived from the original nonlinear field equations (1)—(3), with
D=0, using the following procedure. A perturbation of a pla-
nar front is assumed whose curvature in the direction trans-
verse to the front motion is much smaller than the front
width,

e={_ k<1, (8)

where € and « are the width and the curvature of the front,
respectively. The width of the front, €, is taken as the decay
length in the ionized region of the net charge density of the
planar front with D=0 and reads [27]
E+
o (EY)’
where o~ is the value of the electron density far behind the
planar front whose expression is given by Eq. (19) (see, for
example, Refs. [5,27,28]) and E* is the value of the enhanced
field in front of the streamer. €_(E*) is a monotonically de-
creasing function of E* and tends to 1 (in our dimensionless
units) for E*— +o. The computation is carried out in first
order in e. Solvability analysis is then used to connect the
perturbed values of the fields ahead and behind the curved
front to derive the moving boundary approximation. Similar
to other well-studied problems such as solidification dynam-
ics [29,30], this expansion around the planar front solution is

asymptotic and does not necessarily converge. However,
such a solvability analysis provides a valuable approximation

CAE) = )
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for the nonlinear dynamics of the propagating front as long
as e remains sufficiently small. Furthermore, notice that such
an analysis could not be performed on the streamer model
with D>0 as the fronts are pulled [31-33]. However, the
leading edge that pulls the front is diffusive, and it is a physi-
cally and mathematically meaningful approximation to ne-
glect electron diffusion in strong fields, where electron mo-
tion due to drift dominates over the diffusive motion [28,34].
We will come back to this point below.
The complete model derived in Ref. [27] reads

V=0 in QF, (10)
VZ¢p=0 in O, (11)

with the moving boundary conditions
i-V¢ =0, - Véi)k, (12)
¢ =" =Qy(h- V&) + 0,(f - V), (13)
v,=0-Vo¢*. (14)

The curvature of the front creates a nonvanishing electric
field behind the front [see Eq. (12)], and it also adds a term
proportional to the curvature to boundary condition (7) [see
Eq. (13)]. Equation (14) is the projection of Eq. (6) onto the
normal on the interface, Eq. (10) is the unchanged equation
[Eq. (5)], and Eq. (11) will be explained below. The coeffi-
cients Q; depend on the electrostatic field ahead of the front
and are given by analytic expressions derived from the pla-
nar front solution as follows:

y _
Q()(y):f 427 (15)
0 P( s )
b-al) [* (-2
Q)= f xp(6y) Jo Cplzy)?
2
— f v* )ﬁ[puy)y (v =]
y3
20000 Yoty T T O (16)
2
0,(y) = ( (17)
where
y
plx,y) = Hd,ua(,u), (18)
o (y) = f dpal(w), (19)
0

with a(x)=e~"*. The quantity p is related to the ion density
profile of the uniformly translating planar front solution of
the minimal model (1)—(3) with D=0 (see, for example,
Refs. [5,27,28]).
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Boundary condition (12) implies that the electric field just
behind the ionization front is not completely screened but
that it is proportional to the curvature. This implies that the
ideal conductivity approximation in the streamer interior
(¢=0 in Q") must be relaxed. In Ref. [27], the streamer
interior was therefore approximated by assuming charge neu-
trality (V2¢=0 in Q~). Consequently, boundary condition
(12) introduces new physics and leads to a new type of mov-
ing boundary problem.

The purpose of this work is to study the validity of this
moving boundary model and, for the reason just mentioned,
especially the validity of boundary condition (12) by com-
paring it to numerical solutions of the minimal model
(1)=(3). However, it should be noticed that the numerical
simulations are performed with a nonvanishing electron dif-
fusion coefficient D=0.1 while the moving boundary ap-
proximation is derived for D=0. On a technical level, this
cannot be avoided without major efforts. As stated previ-
ously (e.g., in [28,33]), inclusion of diffusion in the moving
boundary approximation creates a leading edge of the ioniza-
tion front that pulls the front along, relaxes algebraically
slowly, and ruins a solvability analysis. On the other hand,
precisely this diffusion dominated leading edge makes the
front smooth and therefore allows the use of the numerical
methods developed in [13]; the model with D=0 leads to a
discontinuity of the electron density that would require quite
different numerical methods. However, the limit of large
electric field E* immediately ahead of the front suppresses
the leading edge in a similar manner as the limit of vanishing
diffusion [5,34,35]. We therefore will see a better agreement
between PDE solutions and boundary approximation for
larger fields. Furthermore, in this manner we test our bound-
ary conditions on a realistic model and see if our moving
boundary model is robust against some changes in the under-
lying minimal model.

Another relation derived in Ref. [27], which does not ap-
pear explicitly in the model (10)—(14), can also be tested
against numerical simulations. This is the curvature correc-
tion to the value of the electron density behind the front,

Opack =0 (- V") + 031 - V') k, (20)
where
Y -X)a
Q3(y)=yf dxw- (21)
0 xp(x’y)

The first term in the right-hand side of Eq. (20), (- V¢*),
is the contribution to the electron density behind the front
obtained from a planar front approximation (see Refs.
[5,27,28]), while the second term takes the effects of the
curvature of the front into account.

The paper is organized as follows. In Sec. II, we describe
the method used for comparing the moving boundary ap-
proximation with the simulation data, and in Sec. III, we
describe in detail the results of our comparison concerning
boundary conditions (12) and (13) and also Eq. (20).
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FIG. 2. (Color online) The two axes (solid, red) along which we
compare the numerical solutions of the minimal model and the
moving boundary approximation. Axis 1 is the symmetry axis of the
streamer; it is located at y=0. Axis 2 intersects with the front at y
=20 and it is normal to it.

II. METHOD FOR COMPARING THE MOVING-
BOUNDARY APPROXIMATION WITH
SIMULATIONS OF THE MINIMAL MODEL

In this section, we test boundary conditions (12) and (13)
as well as Eq. (20) against results of simulations of the mini-
mal model (1)—(3) in two dimensions. The electric field and
the electron density behind the front are essentially constant
over a significant interval; therefore it is relatively easy to
extract their values from simulation data without introducing
significant errors. The comparison with predictions of Egs.
(12) and (20) allows us to test the model with confidence. In
contrast, as explained below, due to some arbitrariness of the
precise location of ¢* in the simulations and since the poten-
tial varies significantly over short distances, the comparison
between Eq. (13) and the simulations is not quite conclusive.

In order to test our boundary conditions, we need to
evaluate the profiles of the net charge density, the electric
field and potential, and the electron density along some given
axis of the two-dimensional simulated streamer. In this paper
we consider a streamer that evolves from initial conditions
with a mirror symmetry y——y. We perform our analysis
along two axes. The first axis is chosen to be the symmetry
axis of the streamer located at y=0. The second axis is nor-
mal to the front and intersects with it at y=20; both axes are
illustrated in Fig. 2.

A. Numerical simulations

The minimal PDE model (1)—(3) with D=0.1 [2,4,5] is
solved numerically in two dimensions on adaptively refined
comoving grids with a second-order explicit Runge-Kutta
time integration. The algorithm is described in detail in Ref.
[13] for three-dimensional cylindrically symmetrical geom-
etries. It is trivially adapted to planar two-dimensional sys-
tems, as previously discussed in Refs. [21,26]. The highest
spatial resolution in the area around the streamer head was
Ax=Ay=1/4 for all simulations. The simulation domain was
0=x=2048 and —-1024=y=1024. The initial conditions
were an electrically neutral Gaussian seed o(r=0)=p(r=0)
=A exp[—(x*+y?)/w?] of width w=16 and height A=2.4
X 1075. We used four different values for the background
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FIG. 3. (Color online) Profiles of the electric potential and of the
negative net charge density along the symmetry axis, y=0, for E,
=-0.5 and t=490[In(r)=2.69]. The linear regression for the linear
part of the potential is also plotted. The slope of this linear part
corresponds to the electric behind the front, E-Gim)_ The difference
between the simulated value of the potential at x=0 and the value of
the extrapolation of the linear part at the same location gives the
jump in the electric potential.

electric field applied between the electrodes, namely, E.
=-0.5, -1, —1.5, and 2. The simulations are the same as in
[21]; for the actual density and field configurations, we refer
to the figures in that paper. Notice that the simulations start
at r=0 but the comparisons between the numerical results
and the predictions of the moving boundary approximation
are performed from a time ¢ such as the streamer is actually
formed, i.e., after the avalanche regime.

B. Extracting relevant quantities from the simulation data

For each value of E.,, we collected at constant time steps,
up to the time of branching, the values of the curvature of the
front, of the enhanced electric field (defined as the maximum
of the electric field along the axis where the analysis is per-
formed) and the profiles of the electric potential and electron
density. These are the ingredients of boundary conditions
(12) and (13) and of Eq. (20) that we test in this paper.

To test both relations (12) and (13) using a unique proce-
dure, we consider Eq. (128) in Ref. [27] (with the leading
contribution of the planar front added),

#(0) = d(x) = Qo(E™) + Q1 (E) k = O5(E") kex,

where |x|> €, and where x=0 corresponds to the position of
the tip of the front, i.e., to the position of the discontinuity
line I'(r). This equation predicts that the correction to the
potential profile due to curvature is a linear function of the
variable x behind the front in an intermediate region between
the inner region and the outer region [27]. The slope Q,(E*)k
of linear curve (22) (indicated with linear regression in Fig.
3) should be identical to the electric field £~ behind the front
through boundary condition (12); therefore this procedure
tests the boundary condition directly. Equation (22) can also
be used to test relation (13). Here the position x=0 where the

(22)
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potential ¢(0) is evaluated has to be fixed; it is taken as the
location of the maximum of the negative net charge density,
while E* is identified with the maximum of the electric field
along the axis along which the analysis is performed (see
Fig. 2). The linear regression of the potential, ¢y, is then
extrapolated up to the tip of the front (x=0) and the differ-
ence between this value obtained for the potential, ¢;;,(0),
and the value of the potential obtained from the simulation at
x=0, ¢(0), is compared. Indeed we have

#(0) = #1in(0) = Qo(E™) + Oy (EV)k, (23)

where ¢(0) can be measured from the simulated potential
and ¢;;,(0) is obtained from the linear regression; the proce-
dure is illustrated for E,=-0.5 and r=490[In(7)=2.69] in
Fig. 3. We then can compare the simulated potential jump
with the theoretical value on the right-hand side of Eq. (23),
which corresponds to boundary condition (13).

In order to compute the curvature of the ionization front,
we need to define a one-dimensional curve from the diffuse
two-dimensional front. For this purpose, we use the follow-
ing procedure. Let the streamer propagate along the x axis, y
being the transverse axis. For a given value of x, we locate
the position of the maximum of the net charge density along
the y axis to get two points (due to mirror symmetry) of the
one-dimensional curve. We repeat the procedure for each
value x along the streamer length to get the complete one-
dimensional curve: y(x) indicates the position of the maximal
charge density for every x. The same procedure was used
previously in Ref. [26]. We estimate the curvature k of the
front by fitting the section of the curve y(x) around a point
[x0,¥0=(x0)] With a polynomial x—xo=a(y—yo)*+b(y=yo)
+0(y%) and using the standard expression x=[2a/(1
+52)%2].

The enhanced field E*™ is identified with the maximum
of the absolute value of the electric field in the simulations
along the axis used to perform the analysis [axis 1 or 2 (see
Fig. 2)].

The extraction of E~ from the simulations, E-®™_ is ob-
tained from the profile of the electric potential along the axis
1 or 2 as already explained above (see also Fig. 3), while its
value, obtained within the moving boundary approximation,
E-MBA) is computed using Eq. (12).

The potential behind the front, ¢~, is obtained together
with E-6'™ gsince the latter is given by the slope of the linear
part of the simulated potential behind the front while the
former is given by the intersection of the linear regression
with the position of the tip of the front [the position of the
discontinuity line I'(r)] that here was chosen to be the maxi-
mum of the net charge density.

The potential ahead of the front, ¢*, is identified with the
value of the potential at the location of the maximum of the
net charge density. We also report later in Fig. 9 the values of
the potential at two grid points on our finest grid, adjacent to
the location chosen to be the discontinuity line, I'(¢), of the
front. ‘

The electron density behind the negative front, o8, is
obtained from the simulations as crback=%[o-(xback)+a'(xend)],
where x,. 1s the position where the net charge density van-
ishes. Such point must exist since we start with a neutral
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FIG. 4. (Color online) Electron and net charge density profiles
for E,,=-0.5 and r=490[In(z)=2.69]. The position of the maximum
of the negative net charge density, x,,,x, and the positions where the
charge density vanishes, xp,c and xqq (see text), are also indicated.
The distance d is equal to X —Xpack-

seed between the electrodes and thus when the streamer
forms, positive and negative net charge densities form at the
streamer edges and, consequently, the charge density van-
ishes somewhere in between. The abscissa x4 is defined as
Xend=Xmax — 2 (Xmax—Xback)» Where Xp.. is the position of the
maximum of the net charge density (see Fig. 4). The quantity
0(xengd) [0(xpack)] is then the lower (upper) end of the error
bars on the value of the electron density behind the negative
front. This procedure gives an estimation of the interval of
variation in ¢ behind the front. In Fig. 4, we illustrate the
procedure for E,,=-0.5 at time r=490[In(z)=2.69].

The main source of errors in extracting the relevant quan-
tities from the simulation data are the diffusive nature of the
simulated front and hence the nonuniqueness in identifying
the interface I'(r). This uncertainty has no influence on the
extraction of the quantities E-™ and o™ from the simu-
lation data since those quantities are evaluated far enough
behind the front where they are essentially constant. The
error on the slope of the linear part of the potential behind
the front, which gives E-'™_is negligible for our purpose.
The interval [xenq. Xpac] Where we chose to measure oS is,
of course, somewhat arbitrary, but since the electron density
is essentially constant behind the front, another procedure
would give equivalent results; only the size of the error bars
could be slightly different. Consequently the errors on these
two quantities are well controlled. The errors for the ex-
tracted value E*™ are also negligible for our purpose since
this quantity is evaluated on the finest grid (Ax=Ay=1/4)
used in the simulations. However, the uncertainty about the
exact position of I'(r) affects the extraction of ¢ and ¢
Indeed, the location where we chose to evaluate ¢* and ¢~
on the potential profile is rather arbitrary. Moreover, the po-
tential and the linear regression vary significantly over short
distances as shown in Fig. 3. Consequently, the uncertainty
of the location of ¢* (and thus of ¢~) directly influences the
results of the comparison between the moving boundary ap-
proximation and simulations. However, as explained in Sec.
I C, the value [¢*—¢~]™ extracted from the simulation
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FIG. 5. (Color online) Top: evolution of the absolute value of
the maximum of the electric field along the symmetry axis, y=0, as
a function of time for four values of the background electric field
E.. (B.E.F. on the figure). Middle: evolution of the curvature of the
tip of the front as a function of time for the same values of E..
Bottom: € as a function of time for the same values of E...

data using the procedure described above is an upper bound
on the actual value of the potential jump.

C. Influence of the background electric field

We expect that the simulation results are better approxi-
mated by the moving boundary approximation (12), (13),
and (20) when the background electric field, E., is large
enough. This is so since, as mentioned above, our boundary
conditions are derived in the regime ¢_x<<1. Formula (9)
and simulations indicate that the width of the front is con-
trolled by the value of the enhanced field at the tip of the
streamer. Formula (9) derived for planar fronts catches quali-
tatively the evolution of the front width for a planar inter-
face: the width decreases when the enhanced field increases.
Moreover, we notice that in the present simulations (in two
dimensions and in a homogeneous electric field) after some
initial transients, the value of the enhanced electric field, up
to the time of branching, in good approximation is given by
(see Fig. 5)

|E*|=2|E..| + small corrections. (24)

Consequently, the width of the front is controlled essentially
by the background electric field (plus some corrections) and
thus for low E.., where the front width €, diverges, one can
expect that boundary conditions (12) and (13) and Eq. (20)

066211-5
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FIG. 6. (Color online) Comparison between the simulated elec-
tric field behind negative ionization fronts, E‘(“im), and the values,
E-MBA) " computed with boundary condition (12) using curvature
and enhanced field, E*, from the simulations. The comparison is
performed for four values of the background electric field (B.E.F. in
the figure) and along the symmetry axis of the streamer.

will not approximate the simulations very well. We will
show below, however, that for |E..|=1, our analytical ap-
proximation for the value of the electric field behind the
front fits the simulations very well.

For sufficiently large |E..|, we expect that relations (12),
(13), and (20) approximate the simulations well, and we also
expect that the approximation improves with time. Indeed,
starting from the initial neutral seed, first an interfacial layer
forms and then the value of the enhanced field grows and
approaches a plateau value given by Eq. (24). From Eq. (9),
this also means that the width of the front decreases during
this time. On the other hand, during this process, the curva-
ture of the front also decreases (see Fig. 5). Consequently,
for a given E.., the product €_« decreases during the evolu-
tion of the streamer (see Fig. 5). Consequently, since our
boundary conditions are derived for €_x<<1, we expect bet-
ter agreement between the moving boundary approximation
and simulations for time and background electric fields large
enough.

This discussion is summarized in the lower panel of Fig.
5, where we show that e={_« is a decreasing function of
time and of E..

III. RESULTS OF THE COMPARISON
A. Testing the boundary condition for E~

Following the procedures described in Sec. II B, we ex-
tracted the values of E-™ from the simulations for four
background electric fields: E.=-0.5, —1.0, —1.5, and -2.0.
These values are then compared with the values, E-MBA),
predicted by Eq. (12) where the curvature, «, and the en-
hanced field, E*, are also obtained from the simulations. The
results are compared in Fig. 6 for the analysis along the
symmetry axis of the streamer (axis 1) and in the top panel
of Fig. 10 for the analysis along axis 2. The error bars of
E~¢™ are too small to be visible in the figure.

PHYSICAL REVIEW E 79, 066211 (2009)

The agreement between the simulations and the moving
boundary approximation is rather remarkable except for E,,
=-0.5. For this case, the relative errors are always larger
than 65%, while for larger background field the errors stay
always below 10-12 %. In order to understand why the
agreement is less good for E,,=—0.5, we compute € from Eq.
(8). Indeed, we recall that the moving boundary approxima-
tion was derived through first-order perturbation theory in e.
However, the theory, being linear in €, does not provide an
estimation for how small € should be. Figure 5 shows that for
E.=-0.5, the value of € stays always above 0.1. Actually
from that figure, we can infer that for €=<0.05, boundary
condition (12) is accurate within 5% or less.

However, at first sight, € seems not to be the only control
parameter. Indeed, for E,=-1.5 and t=25[In(z)=1.40], we
read from Fig. 5 that €e=0.10 and we find that the relative
error for E- is about 11% (see Fig. 6), while for E,,=-0.5
and r=490[In(r)=2.69], we find that €=0.11 and that the
relative error is about 84%. This means that for the same
value of € we get quite different relative errors for the values
of the electric field behind the negative front. However for
such a value of €, second-order terms, neglected in the deri-
vation of the moving boundary approximation (10)—(14) (see
Ref. [27]), could still play a role. For example, a coefficient
associated with €, which would decrease fast enough with
an increase in the enhanced field, may explain why second-
order terms are, in this situation, negligible for larger fields
while they still play some role for weaker ones. Second-
order terms could also depend more significantly on the ge-
ometry of the streamer by involving a tangential derivative
of the curvature. However, without deriving the second-order
theory, we cannot draw definitive conclusions on this par-
ticular issue.

B. Testing the relation for o,

Using the procedure described in Sec. II B, we estimated
the values of 0',(;;5?() from the simulations for the same four
background electric fields. These values are then compared
with the values, o{fZICEA), predicted by Eq. (20). The results
are compared in Fig. 7 when the analysis is performed along
axis 1 and in the middle panel of Fig. 10 when the analysis is
performed along axis 2.

The simulation values and those of the moving boundary
approximation agree rather well. However, the value of Uff;gf()
is slightly underestimated in larger fields. Nevertheless, for
€=0.05, the relative errors are about 10% or less. Moreover,
the curvature correction improves the approximation of the
electron density behind the front since the additional term is
positive [see Eq. (20)]. In Fig. 8, we compare the effects of
the curvature correction for E.=—1.0.

C. Testing the boundary condition for ¢*— ¢~

Following the procedures described in Sec. II B, we esti-
mated the values of [¢*—¢~]™ from the simulations for
the same four background electric fields. These values are
then compared with the values, [¢*— ¢ ]MBA)| predicted by
Eq. (13) [or equivalently Eq. (23)]. The results are compared
in Fig. 9 when the analysis is performed along axis 1 and in
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FIG. 7. (Color online) Comparison between the value of the

simulated electron densities behind the front, (rf;;;“(, and the values,

O'I(JI;/ICEA) computed with Eq. (20) using curvature and enhanced field,
E*, of the simulations. This comparison is performed for four val-
ues of the background electric field (B.E.F. in the figure) and along
the symmetry axis of the streamer. The error bars are explained in

the text.

the bottom panel of Fig. 10 when the analysis is performed
along axis 2. The lower (upper) end of the error bars for the
simulation results corresponds to the value of the potential at
the grid point just before (after) the position of the maximum
of the net charge density on our finest grid. The size of the
error bars indicates clearly that indeed the potential varies
significantly over quite short distances.

The agreement between the simulation results and the
moving boundary approximation for the potential gap [Eq.
(13)] is less satisfactory than the excellent agreement dem-
onstrated above for the electric field and charge density [Egs.
(12) and (20)]. Indeed, for €<0.03, the relative error is about
20% or less while for £~ and the same values of €, the
relative error was about 5% or less. One reason could simply

0.80
0.76 A
0.72
back
0.68
// e  Simulations
0.64 A // —— MBA with curvature
/
// ——— MBA without curvature
0.60 T T T T T T

1.75 1.80 1.85 1.90 1.95 2.00 2.05 2.10
log(?)

FIG. 8. (Color online) Comparison between the values of the
simulated electron density behind the front, o™, the values,
oMBA " computed with Eq. (20), and the values, O'EaLk , computed
with «=0. This comparison is performed for E.=-1.0 and along

the symmetry axis of the streamer.
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FIG. 9. (Color online) Comparison between the jump of the
electric potential across the interface from simulations, [¢*
—¢7]8™ and the values, [¢*— ¢ ]MBA) computed with boundary
condition (13) where the curvature and the enhanced field, E*, are
also obtained from the simulations. This comparison is performed
for four values of the background electric field (B.E.F. in the figure)
and along the symmetry axis of the streamer.

be that the moving boundary approximation works less well
for the jump of the electric potential than for £~, perhaps due
to corrections associated with higher order terms in €. How-
ever, another reason is certainly that in this analysis there is
one arbitrariness: the precise location for evaluation of ¢*.
Indeed, as already mentioned above, we choose the location
of ¢* as the location of the maximum of the negative net
charge density. Even if this is a rather natural choice, the
actual position of ¢*, assumed by the moving boundary ap-
proach, could be different. However, because the potential
varies significantly over short distances (see Fig. 3 and the
size of the error bars on Figs. 9 and 10), the arbitrariness of
the location of ¢* has certainly a direct influence on the
comparison between the moving boundary approximation
and the simulations. For example, another possible location
for ¢* could be the place, X, such that the amount of negative
charge on x<<X equals the amount of negative charge on x
> x. Since the profile of the net charge density is asymmetric
with respect to the position of the maximum (see Fig. 3), X
would be located before the position of the maximum (X
< Xmax) and the jump of the electric potential extracted from
the data would be smaller since the potential and its linear
regression are increasing functions of x. Consequently, the
quantity [¢*— ¢ ]5™ extracted from the data using our pro-
cedure is actually an upper bound on the potential jump as-
sumed in the moving boundary approach.

IV. CONCLUSIONS

In this paper, we have tested the recently derived moving
boundary approximation [27] for negative ionization fronts
on simulations of the minimal model (1)-(3).

Our analysis confirmed the validity of two out of the three
moving boundary conditions derived in [27], pertaining to
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FIG. 10. (Color online) Comparison of moving boundary
approximation and simulation along the off-center axis 2 as
indicated in Fig. 2 for two values of the background electric
field (B.E.F. in the figure). Top: comparison between the si-
mulated electric field behind negative ionization fronts, E(sim)
and the values, E-MBA) computed with boundary condition (12).
Middle: comparison between the value of the simulated electron
densities behind the front, ogjg), and the values, U&{EA), com-
puted with Eq. (20). Bottom: comparison between the jump of the
electric potential across the interface from simulations, [¢*
— @715 and the values, [¢*— ¢ ]MBA) computed with boundary
condition (13).
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the curvature dependence of the electrostatic field and the
charge density in the ionized region behind the propagating
front. We showed that these boundary conditions are satisfied
for slightly curved fronts, characterized by a small ratio be-
tween the front width €, and the radius of curvature x~! of
the front. A third boundary condition, concerning the poten-
tial jump across the curved front, has not been fully
confirmed—a problem that we attribute to the inherent arbi-
trariness in extracting the appropriate potential values (cor-
responding to their value at the discontinuity line assumed by
the moving boundary approach) from simulations. Further
study of the range of validity of this condition will require
the development of quantitative tools for such analysis.

The moving boundary approximation improves with
growing electric field that coincides with a decreasing con-
tribution of diffusive effects; here we recall from Sec. I that
the boundary approximation requires vanishing diffusion
while the PDE solution requires a small nonvanishing diffu-
sion coefficient for the analytical and numerical methods
presently available for the authors to work.

Finally, the usefulness of the moving boundary approach
for analytic and numerical studies of streamer dynamics de-
pends crucially on its capability to describe front dynamics
when the ratio € is not small, as could happen, at least in
principle, along some regimes of the propagating front. A
progress in studying this important question will require ex-
tension of the MBA derived in [27] to such regime and com-
parison with numerical simulations along the approach de-
veloped in this paper.
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