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Abstract 
This paper reports on new trends in algorithm development for the numerical 

solution of the steady, 3-D, compressible Navier-Stokes equations. The principal 
goal of this project is to cure some of the weaknesses in existing state-of-the-art 
methods. Promising research results have been obtained already during the First 
Phase of the project 1 . This was achieved by developing: 

• multi-D upwind discretization techniques for the convection terms, and 

• solution-adaptive multigrid techniques for the solution of the discretized equa-
tions. 

Research in these two areas is continued in the present Second Phase of the project. 
In the following two sections, we briefly discuss two specific techniques which are 
still in development in each of these two project areas: (i) multi-D. cell-vertex 
fluctuation-splitting techniques. and (ii) sparse-grid techniques (a new kind of multi­
grid techniques, well-suited for 3-D problems). 

M ulti-D, Cell-Vertex Fluctuation-Splitting Techniques 
In many existing, compressible flow solvers, a basic building block is some so­

lution method for the 1-D Riemann problem (the initial-boundary-value problem 
given by two constant gas states, separated by a discontinuity in one or more of the 
state variables). To solve the 1-D Riemann problem in a multi-D setting, a direc-. 
tion has to be specified along which the 1-D variations take place. (All gradients 
normal to this direction are neglected.) In standard upwind codes. in general, the 
interface-normal between two neighboring finite volumes is selected for this direction. 
Although this approach has shown to be very successful, it is not satisfactory from a 
physical point of view. Grid directions cannot determine upwinding directions in a 
physically proper manner. A consequence is that the interactions that characterize 
multi-D flows are bound to be misinterpreted, unless they are aligned with the grid. 
Features that are not grid-aligned are often poorly resolved. Therefore, main objec­
tive of this project was (and still is): to introduce multi-D physics for determining 
the upwinding directions and the corresponding propagation signals. By better mim­
icking physics. one may expect that the solution accuracy is improved. Of course. 
this should not be at the expense of computational efficiency and robustness. \\"1:: 
proceed by briefly discussing a specific multi-D upwind approach. 
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Instead of concentrating on the time evolution of discontinuous solutions sepa­
rated by finite-\'Olume interfaces (as is done in the 1-D Riemann approach). one may 

'An overview of this is given in a special journal issue: Cff! Quarterly. Volume 6, !'-umber 
1 (C\\'I. Amsterdam. 1993). 



consider the time evolution of the state in a complete cell. In the latter approach, 
,he cell-vertex values are updated by the effect of linear waves evolving from the 
piecewise-linear initial data over the cells. By using a continuous. piecewise-linear 
::-1itial-value distribution. the 1-D Riemann problem is completely avoided. There­
:·ore. it is well-suited for multi-D extensions. Two distinct elements are needed for 
:his approach: 

• a decomposition in scalar contributions, of the flux residual (also called fluc­
tuation) in each cell (each of these scalar fluctuations is associated with a 
well-defined propagation velocity), and 

• a convection scheme which properly distributes these scalar fluctuations to the 
downstream cell vertices. 

\\"e start with a short discussion of the latter element. For this purpose, consider 
the 2-D, scalar convection equation: 

Suppose we have a mesh with quadrilateral cells, where each cell is subdivided into 
two triangular cells. Assuming a continuous, piecewise-linear representation of the 
solution over the vertices of the mesh (cell-vertex method), one can easily express 
the fluctuation in each triangular element, as a function of the solution values in the 
three corresponding vertices. A specific convection scheme is defined by the set of 
distribution weights, used to split the fluctuation over the downstream cell vertices. 
Herewith, different criteria can be imposed in order to achieve monotonicity, conti­
nuity and linearity preservation. It has been shown that only nonlinear schemes can 
ensure all of these desirable properties (precisely as with classical TVD-schemes). 
During the First Phase of our project, first-order as well as second-order accurate, 
and linear as well as nonlinear fluctuation-splitting schemes have been developed 
and applied2 • 

\Ve now proceed by discussing the first element of the specific multi-D upwind 
approach under consideration: the decomposition of the system fluctuation, which 
is a vector, in scalar contributions. Consider the 3-D system of conservation laws 

where iJ, represents the vector of unknowns (mass, momentum and energy) and f(u) 
the flux of these quantities. To apply the above fluctuation-splitting schemes to 
a hyperbolic system of conservation laws, a wave modeling step has to be added, 
which decomposes the fluctuation for the system in a number of scalar contributions 
(each of which can be handled by the fluctuation-splitting schemes discussed above). 
In 1-D, where waves can travel in one direction only, this decomposition is unique 
and forms the basis of the well-known flux-difference-splitting methods. However, 
in multi-D, waves can travel in infinitely many directions. hence allowing for many 
possible wave decomposition models. The design of optimal wa\·e decompositions 

2 A second-order accurate, nonlinear, monotone scheme is applied in an industrial code of one 
of our endorsers. 

111 



(optimal in terms of both accuracy and efficiency). was and still is one the main 
tasks of our project. 

Promising multi-D upwmd results have been obtained already. not only through 
the above cell-vertex fluctuation-splitting approach [1]. but also through the ceJ;. 
centered finite-volume approach [4]. To solve the multi-D upwind discretized equa­
tions by a multigrid method. in the First Phase of the project. we also developec 
optimal multi-stage time-stepping schemes [l]. In Figure 1, we still give an example 
of the accuracy of the cell-vertex fluctuation-splitting approach, for a supersonic 
flow in a sine-shaped channel. 

a. 

b. 

c. 

FigurE- 1: Sine-shaped channel flow ( .H,nlet = 3.5). computed by a cell-\'ertex flucn:a;:on· 
splitting technique: a. 85 x 41-,·ertices grid. b. :-.Iach-nurnber distribution first-orci-2~ 
accurate solution. c. \1ach-number distribution second-order accurate solution. 
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Sparse-Grid Techniques 

. It is \\·ell-kn~wn how_ standa~d geometric multigrid me_thods_ ca~ be applied to 
· <=\·srerns or algebraic equations. resulting from the discret1zat10n of 2-0 par­
di-ffere:1tial equations. For 3-0 partial differential equations. this is much less 
known. Cause is the greater difficulty in developing good 3-D smoothers. (:\ 
ther :s a numerical recipe to effectively reduce high-frequency components in 

solutio:: t?rror during the iteration process.) An additional drawback of standard 
•grid methods applied to 3-D problems is that they are hard to vectorize and 
elize. A remedy to all these problems of standard 3-0 multigrid seems to be 

· reach now. For 2-D problems, it has appeared that it is not always necessary 
te a finer grid by halving all cells in both coordinate directions ( the standard 

of refining). For some 2-D problems, it appears favorable to refine in one direc-
... onlv: the sparse-grid way of refining [5]. Sparse-grid refinement can be applied 
D as well. In 3-0, with some care, it may completely remove aforementioned 
backs of standard multigrid: 

.• For a 3-D sequence of sparse-grids, effective, and yet simple smoothers can be 
: constructed quite easily. 

'• Thanks to this simplicity of smoothers, the vectorization properties may be 
better as well. (E.g., a non-recursive relaxation procedure as Jacobi's, can be 
applied as smoother.) 

• The parallelization properties of sparse-grid methods are also better. 

• Last but not least, to obtain the same solution accuracy as in a standard-grid 
computation, a sparse-grid computation needs less cells/points . 

"ln fact. sparse-grid techniques can be interpreted as generalizations of standard ge­
. etric multigrid techniques. A crucial step in implementing sparse-grid techniques 

p the choice and _construction of the data struct_ure. \\ie proceed by briefly ?escrib­
iing the sparse-gnd data structure, constructed Just after the Second Phases start. 
(A detailed description is given in [2]. For a review of our standard (i.e. non-sparse) 
F:multigrid work, done during the project's First Phase. we refer to [3]. 
;· For the construction of discretization schemes for systems of partial differential 
ftquations, both physical and computational coordinates may be used. In the formal 
[description of the data structure. only computational coordinates are used. \\-·e 
:-assume a Cartesian coordinate system and distinguish the x-, y- and z-coordinate 
idirections. Further, we identify in this coordinate system an origin and a unit 
.· length. In a sparse-grid technique we need the simultaneous use of many different 
grids. cells, nodal points. and so on. However, there is only one basic grid, Ro,0,0 . 

This is the regular, rectangular grid consisting of all nodal points in ~3 that are 
located at points with integer coordinates in the computational space. Hence 

(1) 

:~milar!y. we introduce many (infinite) grids with nodal points at dyadic points in 
-"t · For any(/, m. n)EZ:3 we introduce a grid 'R1.m.n C ~ 3 as 

(2) 
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We call (l, m, n) the level of the grid. \Ve also say that n1,m,n is a grid on the 
(l + m + n)-level. The Rz.m,n in (2) are all possible grids. For an impression of 
the relation between these grids for l + m + n ~ 0, we refer to Figure 2. On these 
grids we may wish to handle all kinds of vertex- or box-centered methods, such as 
finite-element, mixed finite-element or finite-volume methods. I.e., v,:e may wish to 
associate numerical values with any kind of cell, cell center, cell vertex, cell face or 
cell edge. Of course, in practice only finite parts, and a selection of all possibilities 
is used. 

Let the discrete equations, that model the system of partial differential equations, 
be defined on a computational domain n. We assume that the computational domain 
n, an open set in iR3 , is not infinite, but that it consists of only a finite number of 
cells in the basic grid 'R.o,0.0 . Without loss of generality we may assume that the 
coordinates of all points in the closure n of n are non-negative. 

\Ve pursue the construction of a data structure for solution-adaptive compu­
tations. This implies that we are interested in all the possible grids R 1,m,n, with 
l, m, n ~ 0, as far as they cover the domain n. However, a priori we do not know 
what grids and what parts (what cell elements) of these grids will be needed in a 
computation. Therefore, we realize a data structure in which all cell elements that 
cover n on the basic grid Ro,o.o, will be represented. Further, all cells on the grid 
n1.m,n, l, m, n ~ 0, may exist in the data structure, provided that there exist also 
cells that cover the same space in the coarser grids R1-i,m,n, n1,m-l,n and Rz,m.n-J· 

?\ote that, for each of these three grids, these mother cells are uniquely determined. 
However, if any of the indices l - L m - 1 or n - 1, is negative, we do not require 
corresponding mother cells to exist in the coarser grid. \Ve notice that in all aspects 
the data structure is (and remains) symmetric with respect to the three coordinate 
directions. 

The data structure has been implemented in FORTRA\'. At present, pilot com­
putations for a 3-D Poisson equation are being carried out. An extension to the 
steady, 3-D, compressible );'avier-Stokes equations will be made later in the Second 
Phase. 

Concluding Remarks 
In our opinion. a major requirement to be fulfilled by tomorrow's numerical meth­

ods for computational aerodynamics is increased robustness, particularly in complex 
computations which are beyond the capabilities of users 'baby-sitting' computations 
with tuning parameters. It is mainly for their robustness that during the past decade 
upwind discretization methods have gained such a popularity. However, many flow 
problems exist for which today's upwind methods are not yet satisfactory. Essen­
tially. these are problems characterized by genuinely multi-D flow features such as 
turbulence, separation. and so on. The upwind methods considered in this project 
try to respect as many multi-D flow features as possible. by extracting a maximun: 
amount of physical information from a minimum amount of numerical data. ThE 
second important goal in de\·eloping tomorrow's numerical methods is the furthe: 
imprO\·ement of computational efficiency per grid point. For this purpose. we thin~: 
that solution-adaptive sparse-grid methods are best suited. 
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Figure 2: An impression of the grids 'R1.m,n with l. m, n ~ 0. In this figure a cell 
Jn the basic grid 'R.o.o.o is shown. t0gether with its refinements on the grids 'R1.m.n• 

l - m + n = t. on all the £-lewis. t = 1. 2. 3. 
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