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1 IntroductionPRISMA/DB is a parallel, main-memory DBMS that was designed and implemented during thelast �ve years in the Netherlands by several scienti�c and commercial research institutions1. In thefall of 1986, the PRISMA project was started. The goal of the entire PRISMA project [Ame91] (ofwhich PRISMA/DB is a subproject) is the design and realization of parallel hardware and softwareto implement the parallel object-orients programming language POOL, and the implementation ofa non-trivial application in POOL. A DBMS was chosen as application. Therefore, PRISMA/DBwas designed to be implemented in POOL and to run on the 100-node parallel machine on whichPOOL is implemented.In the DBMS group of the PRISMA project, we wanted to study how we could exploit theavailable resources: 1.6 GigaBytes of main-memory, 100 processing nodes and a high-level parallelprogramming language. Therefore, the goal of PRISMA/DB is:The design of a parallel, main-memory DBMS that has a 
exible architecture and thatis 
exible in its query execution, so that experiments with the functionality and theperformance of the system are possible.Both for the functionality, and for the performance, there were minimum requirements, such thatthe resulting prototype can be used for research.functionality The goal is implementing a relational database with the traditional SQL interfaceand a logical query language, called PRISMAlog, a language similar to Datalog. Further-more, the database management system should also provide concurrency control and supportrecovery from system failures. The architecture of this system was designed in a modularway to provide opportunities to experiment with the functionality of the system. This facilityis currently used for the research in the area of integrity constraint enforcement, and queryoptimization.performance Here, the goal is understanding the in
uence of parallelism and main memory onperformance. The expectation is to get a performance comparable to currently availableprototype database machines. This performance has to be obtained by both parallelism (100nodes) and mainmemory (16 Megabytes per processor). To study the in
uence of parallelismand the impact of the main-memory character of the system a 
exible query execution layeris implemented in the system. This facility is currently used for the research in the area ofparallel query execution.Obviously, experimentation is a central issue in the project. In many cases, proper designdecisions could not be made because of insu�cient insight and lack of experience. In that case, thesystem was set up in such a way that various solutions could be tried out in the �nal system. Thisis achieved by a modular architecture and a 
exible allocation mechanism of modules to processors[WGA89].At the starting point of the project in 1986, only few papers on parallel, main-memory baseddatabase systems on general purpose hardware were available. The low costs of a large main-memory system for the end of the eighties were predicted correctly in [GLH83]. Main memoryin 1992 costs about $100K per Gigabyte. The potential bene�ts and problems of a MMDBMSwere given in [DKO84] and a single prototype implementation of a shared-store MMDBMS wasdeveloped [LeR87].During the project's life cycle an increasing number of papers appeared that address technical issues1The main partners of the project were: Philips Research Laboratories in Eindhoven, the Netherlands, Universityof Twente, Center for Mathematics and Computer Science, and the University of Amsterdam2



for MMDBMS implementations. This special issue is its proof of evidence. The development ofPRISMA/DB and related studies were in
uenced by the work on recovery issues [Eic87,LeC87],parallelism in large-scale comparable (disk-based) systems, such as GAMMA [DGS90], Bubba[BAC90], and HC16-186 [BrG89]. The role of main-memory to hold the entire database is gettingmore support, as illustrated by the shared-store systems XPRS [SKP88], DBS3 [BCV91] anddistributed store system EDS [WaT91].The goals of the PRISMA project were ambitious. Hardware, system software, and the databasemanagement system were all developed from scratch. For a period of 4 years roughly 25 peopleworked on the project; not all of them were directly involved with the database machine. Half waythe project e�ciency problems were discovered with the implementation of the language POOL.After about three and a half years, the �rst prototype was running on the 100-node multiprocessorsystem. Since then, pieces of the system are being rewritten to get a better performance. Currentlya 100K � 10K join of the Wisconsin benchmark runs in 2 seconds.Research is now focused on a few topics to investigate the performance and the 
exibility of thearchitecture: performance evaluation, parallel join evaluation, and parallel constraint enforcement,each of which will be discussed in more detail.This paper is organized as follows. The next section brie
y introduces the 100-node parallelmulti-processor that is used, and the implementation language POOL-X. Section 3, �rst gives anoverview of the DBMS architecture, and than highlights the following aspects of this architecture:internal representation of queries, parallelism and data fragmentation, transaction management,query execution, and storage and recovery. After that, Section 4 illustrates the dynamic aspectsof the architecture via the description of an example query execution. Section 5 describes theperformance of PRISMA/DB, and it discusses the relationship between the in
uence of parallelismand the main-memory aspects of the system. Section 6 brie
y describes the current research inthe context of PRISMA/DB, and Section 7 summarizes and concludes the paper.2 Hardware and software supportPRISMA/DB is implemented on a parallel multi-processor, called the POOMA machine. Onthis machine, a parallel, object-oriented language, POOL-X, is implemented, and an operatingsystem that supports POOL-X. This section summarizes the hardware and the essential featuresof POOL-X2.1 The POOMA machineThe POOMA machine is a shared-nothing, parallel multi-processor, which consists of 100 nodes.[BNO87] describes its design and the rational behind it in detail. Figure 1 shows the hardwarecon�guration. Each node consists of a 68020 data processor with 16 Mbytes of memory, a disk,and a communication processor that links it to 4 other nodes using bidirectional links. Some nodeshave an ethernet card that links the system to a Unix host. The nodes are linked together usingcommunication processors that were developed by Philips. Various con�gurations can be realized;Figure 1 shows a mesh-connection; other con�gurations, such as a cordal ring connection and adouble linked ring connection are also possible. The entire system contains 1.6 Gbytes of memory.2.2 POOL: A parallel object-oriented languageThe programming language POOL-X [Ame87,Ame89,Spe91] is implemented on the POOMA ma-chine, and is used as implementation language for PRISMA/DB.As an object-oriented language, POOL-X allows the de�nition of objects, which are functionalunits of data and methods that operate on the data. In POOL-X, process objects and data objects3



Figure 1: Hardware con�guration of the POOMA machinecan be discriminated. Process objects have an individual thread of control, and data objects areused by process objects as data structures. The discrimination between process objects and dataobjects was made for e�ciency reasons.Parallelism is supplied in a very natural way: conceptually, all process objects that exist in thesystem execute concurrently. Allocation of two process objects to di�erent processors makes themreally run in parallel. Also, objects can be created and deleted dynamically. These features turn aPOOL-X program in execution into a very 
exible structure which allows run-time experimentationwith various forms of parallelism.Objects can communicate synchronously and asynchronously. A synchronous message to an-other object causes the sender to wait for the reply. An asynchronous message does not have areply. Synchronous communication between objects synchronizes their execution and may, there-fore, impede the e�ective parallelism. Asynchronous communication does not have this drawback.Communication between objects that are allocated to di�erent processors is automatically trans-lated into inter-processor message passing.POOL-X has some special facilities for the implementation of a DBMS: tuple types can becreated dynamically. Also, conditions on tuples can be compiled into routines. This feature is usedto speed up scan operations in which a condition has to be evaluated for a large number of tuples,like selections and joins.It should be noted that the language POOL-X was developed and implemented parallel tothe design and implementation of PRISMA/DB. This had consequences for the developmentof PRISMA/DB. About half-way the project, there were severe performance problems in thePOOL-X implementation. As a consequence, we could not evaluate the performance of the �rsttry-out prototype.3 ArchitectureThis section presents the software architecture of the PRISMA database management system.First, an overview is given of the global architecture. Next, the most important aspects of this4



Figure 2: Global architecture PRISMA/DBarchitecture are discussed in detail: the internal relational language XRA, query optimization andparallelism in query execution, transaction management and integrity control, query executionmechanisms, and �nally storage and recovery aspects. Note that this section focuses on the staticaspects of the architecture. The dynamic aspects are illustrated in Section 4, where examples ofquery execution are described in detail.3.1 OverviewFigure 2 presents an overview of the architecture of PRISMA/DB. The architecture consists ofa number of components that are implemented as POOL-X process objects. Some componentsare instantiated several times in the system, others are central: they have one instantiation thatserves the entire DBMS. The architecture is dynamic: components can be created and deleteddynamically, according to the use of the system. Each component has a well-de�ned functionality,and much e�ort was put in the design of the interfaces between the components. This modularitythrough function separation and high level interfaces is an important characteristic of the designof the system [WGA89]. As a result, the 
exibility in the system architecture allows experimentswith functionality.The rectangles in Figure 2 represent permanent components, i.e. components that live as longas the system. The ovals represent transient components belonging to one user session; the lifecycle of these components is related to user actions. The dotted ovals show transient componentsbelonging to a second, concurrent user session. The function of the components and the interfaceswith other components are described in short below.Two central components of the system are the data dictionary (DD) and the concurrencycontroller (CC). These components are instantiated once in the system. The choice for a centralCC and DD was made for simplicity reasons. The data dictionary is the central storage of allmeta-data of the system, like relation and constraint de�nitions, fragmentation information, andstatistics. The concurrency controller controls concurrent access to the database. It uses a standardtwo-phase locking protocol with shared and exclusive locks. Further, it is equipped with a deadlockprevention algorithm.The query preprocessing layer of the system is formed by the query language compiler (QLC)5



and query optimizer (QO) components. As shown in the �gure, these components are instantiatedonce for each user session. The query language compiler provides an interactive interface to the userand translates queries from the user language into the internal relational language of the system(XRA, see Section 3.2). This component o�ers full fragmentation and allocation transparency tothe user [CeP84]. Four di�erent QLCs are available: a standard SQL interface, a logical queryinterface called PRISMAlog, that allows recursive queries [AHB88], an XRA interface that allowsqueries in the internal language of the system, and a simple data de�nition interface via whichrelations can be created, integrity constraints can be de�ned, and the fragmentation of relations canbe changed. Translated queries are sent to the QO, which optimizes them into parallel executionplans (see section 3.3). The QLCs and the QOs contact the DD to get the schema informationand statistics needed for the tarnslation and optimization of queries.The transaction manager (TM) forms the execution control layer of the system. This componentis instantiated once for each transaction. The TM coordinates the execution of a transactionvia an interface between the TM and the query execution layer of the system. Further, theTM contacts the CC to ensure serializability of the transaction; the atomicity and recoverabilityof the transaction are enforced through a two-phase commit protocol between the TM and theexecution layer; the correctness of a transaction is guaranteed through the enforcement of integrityconstraints, which are retrieved from the DD. Transaction management is described in more detailin section 3.4.The data storage and query execution layer consists of the one fragment managers (OFMs)and the local transactions managers (LTMs). OFMs are permanent; they store and manage onefragment of a relation in the database. LTMs are transient; they are the relational engines in thesystem. The query execution layer is described in more detail in Section 3.5The design of PRISMA/DB allows parallelism between components. If, for example, the QLCand the QO of one session are allocated to di�erent processors, they can work concurrently, forminga pipeline. Also, allocation of the components of a second session to a new (set of) processors yieldsinter-query parallelism on the query preprocessing level. Finally, allocation of OFMs and LTMsto di�erent processors leads to parallel query execution in several froms. This issue is described inSection 3.3.The main interface language between the various components of PRISMA/DB is formed by anextension to the relational algebra, called XRA [GWF91]. This language provides 
exible, highlevel communication between the various query processing layers of the system. The language isdiscussed in detail below.3.2 XRAAn Extended Relational Algebra (XRA) is used as internal representation of queries in the system.A full description of its syntax and semantics can be found in [GWF91]; here the main featuresare described.XRA contains the standard relational operations (selection, projection, cartesian product, joinunion, di�erence, and intersection), update facilities (insert, delete, and update) and some ex-tensions like a grouping operation, sorting facilities, and a transitive closure to support recursivequeries from the PRISMAlog interface.Also, XRA o�ers the 
exibility to express a wide variety of parallel query execution plans: anoperand can consist of multiple tuple streams that are automatically merged to form one operand,and the result of an operation can be distributed over multiple output streams. This distributionof result tuples can be done in two ways: the result can be replicated over output streams, or ahash-based or range-based splitter is applied to split the tuples over the output streams. The useof these primitives to formulate parallel query plans is illustrated in Section 4.Finally, a simple projection that can only throw away some attributes from a tuple (as opposed6



to the facility to do e.g arithmetic operations on attributes) is added to the language. Thisoperation is used as a cheap �lter on tuples before they are sent to another processor to reducethe communication costs. Again its use is illustrated in Section 4.3.3 Parallelism and Data FragmentationPRISMA/DB supports parallel query execution. The use of parallelism is completely transparentto the user. The query preprocessing layer of PRISMA/DB, that consists of the QLCs and theQO, translates user queries on the relational level into parallel execution plans on the fragmenteddatabase, taking the fragmentation scheme of the stored database into account. This sectiondescribes the generation of parallel execution plans. To do so, �rst the terminology used withrespect to parallelism, and data fragmentation are introduced.ParallelismIn PRISMA/DB, various forms of parallelism can be used to speed up query execution. Thestandard terminology for parallelism [BoR85,WGA89] is used. To be complete, the used termi-nology is summarized here. Multiple users can use the system concurrently, yielding inter-queryparallelism between their queries. Within a query, intra-query parallelism can be subdivided intointer-operator, and intra-operator parallelism. Orthogonal to this distinction, pipelining can becontrasted to (pure) horizontal parallelism. The term parallelism is often used as a synomym ofhorizontal parallelism. This paper adopts to this habit if no confusion is possible. Horizontalintra-operator parallelism is very commonly used. The term data parallelism is often used for thisform of parallelism; the number of processors used is called the degree of parallelism.Data fragmentationRelations in PRISMA/DB are horizontally fragmented across a number of processors. Horizontalfragmentation of data enables parallel execution of operations on the data. For example, to executea selection on a fragmented relation, it su�ces to execute a selection on each of the data fragments.Because PRISMA/DB uses hash-based algorithms for many relational operations, hash-basedfragmentation is used. An arbitrary attribute can be used as fragmentation attribute. To distributethe tuples in a relation over its fragments, a hash-function with a large range is applied to thespeci�ed attribute, and the resulting value modulo the number of fragments used for the relationindicates the fragment where the tuple belongs. So, specifying the fragmentation attribute and thenumber of fragments, pins down the fragmentation. Each fragment can be assigned to an arbitraryprocessor. The number of fragments that is used for one relation is called the fragmentation degreeof that relation.This fragmentation scheme o�ers the possibility to experiment with fragmentations schemes forone relation that di�er in the their degree and fragmentation attribute. Range-based fragmentationis currently not supported. The extension can easily be added, however, as XRA has the facilityof range-based splitting a relation.The fragmentation of a relation and the allocation of the fragments can be speci�ed by theuser at creation time. Also, a relation can be refragmented run-time and the fragments canbe reallocated to other processors. This allows experimentation with di�erent allocation andfragmentation schemes in one session.Generating parallel execution plansUser queries are transformed into parallel execution plans by the query preprocessing layer. TheQLC takes a query in one of the user languages, and after syntactic and semantic checking, it is7



Figure 3: Architecture of the Transaction Managertranslated into XRA on the relational level (XRA-R).The QO transforms this XRA-R query into a parallel execution plan in XRA-F (XRA on thefragment level). To do so, it retrieves fragmentation information from the DD. Because we arestill studying the problem of optimizing complex queries for parallel execution (see Section 6.1)only simple optimizations are used: selections and projections are pushed down as far as possible,and many relational operations can be distributed over unions. This means that the QO willtransform a join over the union of the fragments that belong to one relation, into a union over thefragment-joins, thus generating a parallel execution plan for a join. The fragmentation informationis taken into account in this process: if the operands of a join are fragmented on the join attributeinto the same number of fragments, the fragments can be joined to each other directly, otherwiseone or both fragments are redistributed before the join. In the same way, many other relationaloperations are parallelized. Finally, the QO allocates the operations in the parallel schedule toprocessors, taking the allocation of the base-fragments into account: E.g. a join of two fragmentsthat reside on di�erent processors is allocated to the processor where the larger operand resides,so that the data transmission costs are minimized.For the implementation of the QO, a rule-based approach was chosen [Kui91], in which theoptimization strategies are stored in a rule-base that is attached to an optimization engine. Thisarchitecture of the QO facilitates changes in the optimization strategy that is used, so that researchresults in the area of parallel query processing can easily be implemented. The performance of theoptimization process itself is not a research issue currently.3.4 Transaction Management and Integrity ControlThe PRISMA/DB transaction manager (TM) is responsible for the management of one singletransaction. The TM has two main tasks. First, it is responsible for creation and control of thetransaction execution infrastructure consisting of One Fragment Managers and tuple transportchannels and it schedules the execution of the individual operations in a transaction. Secondly,it takes care of the transaction properties: atomicity of transaction execution, correctness withrespect to de�ned integrity constraints, serializability with respect to concurrent transactions, andrecoverability. The TM has a modular internal architecture the design of which was inspired bythe tasks mentioned above; an overview of the architecture is given in Figure 3.Transaction commands coming from the query optimizer are �rst analyzed. One of the maingoals of the analysis is to determine the necessary locks for the execution of the commands. Thislocking information is passed to the local lock manager. This module decides whether locks are8



Figure 4: Local Transaction Management and its environmentalready owned by the transaction, or have to be requested from the Concurrency Controller.Analyzed commands are scheduled for parallel execution, such that all commands are executedas early as possible. The scheduling takes both the dependencies between various commands andthe availability of locks into consideration [Gre92]. Commands that are ready for execution aresent to the execution control module. This module is responsible for the control of the actualexecution of commands at the OFM layer of the system. Where necessary, it creates transientOFMs and tuple transport channels to form the execution infrastructure for the commands inthe transaction. After having created this infrastructure, it sends the XRA commands to theappropriate OFMs. At transaction commit time, the integrity constraints to be enforced areretrieved from the Data Dictionary. Based on a syntactic analysis of the update commands inthe transaction, only those constraints are retrieved that may be violated by the transaction. Theconstraints have been translated into XRA commands at de�nition time by the Data Dictionary,and can thus simply be appended to the end of the transaction, according to the transactionmodi�cation principle2 [GrA91]. The execution of the constraints can use exactly the samemechanism as normal query execution. In this way, constraint enforcement automatically satis�esthe serializability and transaction atomicity requirements. At the very end of transaction execution,a two-phase commit protocol is executed to ensure transaction atomicity, in which the TM acts ascoordinator and all OFMs involved in the transaction act as participants.3.5 Query ProcessingThis section describes the query execution layer of PRISMA/DB. This layer consists of the OFMs,which store and manage base data, and the LTMs which are the relational engines of the systems.Figure 4 shows the organization an OFM-LTM combination in the query processing layer.An OFM manages one fragment of a relation; it is a permanent component, which is imple-mented as a POOL-X process object. As such, a fragment of a relation is the unit of data allocationin the DBMS, and the allocation facilities of POOL-X can be used to experiment with di�erent2Note the di�erence with the query modi�cation approach [Sto75], where the selection predicates of updates areextended with the negation of constraint predicates. 9



allocation schemes for the fragments of the stored database.An LTM is a transient object; it can execute relational operations. Typically, an LTM is createdfor each fragment operation in a query. Some LTMs are attached to an OFM, in which case theycan directly access the fragment that is managed by that OFM; other LTMs are independent andthey operate on the results of previous operations in the same transaction. This can be a stream oftuples that is generated by one or more other LTMs, or the stored result of a previous operation ofthe same LTM. LTMs are also implemented as POOL-X process objects, and they form the unit ofparallelism in the query execution layer of the DBMS. Again, the allocation facilities of POOL-Xcan be used to experiment with various parallel execution strategies for a query.The query execution layer of PRISMA/DB is designed to allow 
exible parallelism: one operandcan consist of multiple input streams that are merged by the LTM to form one operand (in Figure 4,three LTMs produce one operand for the destination LTM). On the other hand, the result of anoperation can be distributed over multiple output streams each with its own destination. OneOFM can concurrently be accessed by multiple transactions (only for reading, of course); in thatcase each TM attaches a private LTM to the OFM.The main-memory character of the system is exploited in the algorithms for relational operation.In general, we can state that a main-memory system allows relatively simple algorithms, thatare not bothered by bu�er and cache management problems. Obviously, such a system allowsoptimizations that only yield performance gain in a main-memory environment. For example,[BeK91,BKB90] describe a study of possible optimizations of operations that scan large numbersof tuples. It was shown that dynamic compilation of expressions that have to be evaluated fora large number of tuples yields considerable performance gain. Therefore, PRISMA/DB, heavilyuses the dynamic compilation facility of POOL-X.The architecture of the LTMs allows both pipelining and horizontal parallelism between dif-ferent LTMs. In PRISMA/DB, we want to study both forms of inter-operation parallelism in thecontext of a main-memory system. In [WiA90] it is shown how special main-memory algorithmscan be used that enhance the e�ective parallelism from pipelining. These pipelining algorithms aimat producing output as early as possible, so that a consumer of the result can start its operation. Inparticular, [WiA90] proposes a pipelining Hash-Join algorithm. This symmetric algorithm buildsa hash-table for both operands, and it can produce a result tuple as soon as two matching tupleshave reached the join-LTM.Where possible, pipelining algorithms are used for the implementationof relational operations.3.6 Storage and RecoveryPRISMA/DB is a main-memory DBMS; this means, that the entire database is stored in theprimary memory (RAM) of the system. To make this a realistic assumption, the system mustprovide a large amount of RAM memory. The POOMA prototype is equipped with a total of1.6 GB RAM. Further, the scalability of the hardware architecture allows the addition of nodesto increase this amount of memory. The POOMA hardware is not equipped with stable RAMmemory, however. As a consequence, the contents of its memory are lost after a system crash.To ensure stability of the database, a stable storage medium is required as backup storage for themain-memory database. PRISMA/DB uses the POOMA stable �le system for this purpose.StorageSince PRISMA is designed as a main memory system, the traditional DBMS storage structuresfor the relations have to be re-evaluated. The OFM is equipped with data structures for handlingtuples. These data structures are available to each LTM that is attached to an OFM (see Figure4). In particular, tuple layout, index creation, storage preservation and temporary storage are im-portant for their design. See for instance [BeK91,Ker89,LeC86] for a comparison of data structures10



for main memory database systems. The tuple layout is critical for both storage and performance.Tuple lengths for business like applications, can be assumed to be less than � 4K bytes. Mosttuples will be rather short (0.1-0.5 K). Moreover, the use of main memory relaxes the need forphysical adjacency of �elds within a tuple. However, POOL was one of the boundary conditionsof the project, which made it impossible to exploit clever memory allocation schemes and mainmemory data structures, and to experiment with the tuple representation.RecoveryThe recovery mechanism of PRISMA is based on the two-phase commit protocol together withlogging and checkpointing techniques per relation fragment (see Figure 4). Each OFM that partic-ipates in an update transaction records on its local log �le the transaction updates, the transactionprecommit decision and �nally the global abort or commit status. When a log grows too large, theOFM can decide locally to write a checkpoint �le to disk, thereby clearing the log. After a systemcrash each OFM can recover independently by reloading the most recent checkpoint from diskand replaying the update statements of committed transactions from the log �le. Note, that thePRISMA architecture is designed to make use of parallel logging [AgD85] and recovery to reducethe overhead of disk I/O.In some cases it is possible that the OFM was in a precommit state at the moment of the crash.Then the recovery mechanism of the OFM must �nd out the state of the global transaction at thetime of the crash. This information is kept up to date in a global transaction log by the TransactionManager during transaction processing. The transaction state can be active, committed, or aborted.At recovery time, the OFM retrieves the transaction state from the transaction log. If the stateis aborted or active, the OFM will not replay the update statements of the last transaction on thelog.The database is protected against media failures by the stable �le system of the POOMAsystem. This �le system employs a �le replication technique that keeps a copy of each �le on adi�erent disk. After a media failure, the POOMA system software is responsible for bringing the�le system back into a consistent state.4 Query execution: an exampleTo illustrate the dynamic aspects of the DBMS architecture, the execution of an example query isdescribed. The database in Figure 5 is used in this query (this example is borrowed from [GaV89]).The relations are fragmented on their �rst attribute. Person and Drinks are fragmented into twofragments (Person1, Person2, Drink1, Drink2), and Wine into three fragments (Wine1, Wine2,Wine3); Vineyard has one fragment (Vineyard1). The horizontal lines in Figure 5 indicate thefragment boundaries. The �rst attributes of Wine, Person, and Vineyard are unique keys. Thedomain of the age �eld of the Person relation is restricted to integers in the interval [0,120]. Fur-thermore, there are the obvious referential integrity constraints in this schema: from Drinks.persto Person.id, from Drinks.wine to Wine.id, and from Wine.name to Vineyard.name. The corre-sponding fragments of Person and Drinks reside on the same processor; all other fragments have aprivate processor. Figure 6 shows PRISMA/DB with this database stored in it, when idle. In this�gure, the OFM-components are labeled with the name of the fragment they store, instead of thelabel \OFM" as in Figure 2. The dotted boxes in Figure 6 represent processors.The physical data organization of the example database illustrates the 
exibility of the datastorage system: An arbitrary number of fragments is possible for each relation, and each fragmentcan be allocated to any processor that has enough memory space to hold the data.11



Person Drinks Wine Vineyardid name age1 \Paul" 273 \Jan" 2711 \Joost" 613 \Carel" 292 \Peter" 384 \Annita" 3610 \Martin" 376 \Anna" 1 pers wine #1 101 21 105 53 110 211 110 113 102 72 105 52 106 34 103 44 104 610 108 2 id name year100 \Chablis" 1980102 \Riessling" 1985104 \Beaujolais" 1992106 \Bordeaux" 1988101 \Chablis" 1983103 \Almaden" 1991105 \Riessling" 1990107 \Bordeaux" 1980108 \Bourgogne" 1979110 \Saumur" 1989 name country\Chablis" \France"\Riessling" \Germany"\Beaujolais" \France"\Bordeaux" \France"\Almaden" \USA"\Bourgogne" \France"\Saumur" \France"Figure 5: Example Database
Figure 6: PRISMA/DB �lled with the example database4.1 A retrieval queryWe now assume that the database from Figure 5 is stored in PRISMA/DB. As an example of aretrieval query, we will �nd the names of the persons that drink German wine. SQL is used asquery language.SELECT Person.nameFROM Person, Drinks, WineWHERE Person.id = Drinks.person ANDWine.id = Drinks.wine ANDWine.name = Vineyard.name ANDVinyard.country = "Germany"To execute this query an SQL compiler is created. This compiler checks the syntactic and semanticcorrectness of the query. To do the semantic checking, the SQL compiler contacts the DD, thatsupplies information about the schema of the relations that are used in a query. If the query isfound correct, it is translated into XRA-R:<*2*> select(11="Germany" and 1=4 and 5=7 and 8=10,cp(Person, Drinks, Wine, Vineyard))In this XRA construct, numbers refer to attributes, the keyword cp is the cartesian product (in thecartesian product, the attributes of the operands are concatenated, so the result has 11 attributes),12



Figure 7: PRISMA/DB executing the example queryand < �2� > indicates that the result of the operation is to be projected on its second attribute.This XRA-R query is handed to the QO. The QO compiles the query into XRA-F and optimizesit. Just simple optimizations are used in the current version of PRISMA/DB: selections andprojections are pushed down as far as possible and useful, and joins are distributed over unions.No proper algorithm to decide on the join-order, and on the degree of parallelism for each join isimplemented yet (see Section 6.1). The QO contacts the DD to get fragmentation information forthe relations in the query. Also, the DD can supply statistics about relations and fragments to theQO. A possible resulting XRA-F query is:c1 = Person1c2 = Person2{c3,c4,c5} =(5) <*2,5*> join(Drinks1, 1=4, c1){c6,c7,c8} =(5) <*2,5*> join(Drinks2, 1=4, c2){c9,c10} =(4) <*1,4*> join({c3,c6}, 2=3, Wine1){c11,c12} =(4) <*1,4*> join({c4,c7}, 2=3, Wine2){c13,c14} =(4) <*1,4*> join({c5,c8}, 2=3, Wine3)13



{c15,c16} =(1) <*1*> select(2 = "Germany", Vineyard1)c17 = <*1*> join({c9,c11,c13}, 1=3, c15)c18 = <*1*> join({c10,c12,c14}, 1=3, c16)?union(c17, c18)This program looks pretty complex, however, the corresponding execution infrastructure in Figure 7illustrates its meaning. The facilities of XRA that are explained in Section 3.2 are used in thisprogram:fca,cbg as operand refers to an operand that consists of multiple streams of input data.fca, cbg =(x) indicates that the result of an operation has to be split on attribute x over multipleoutput streams.< �a,b� > indicates that the result of an operation has to be projected on attributes a and b.Person can be joined to Drinks without refragmentation, because these relations are fragmentedon the join attribute. The Person fragments have to be sent to the Drink fragments, however,because they are managed by other OFMs. The results of these joins have to be redistributed tojoin them to Wine. Finally, the result of the selection from Vineyard, and the result of the join toWine are redistributed to calculate their join on two processors. The results are united and sentto the user. Before tuples are sent of-node, they are projected on the relevant attributes to reducethe communication costs.The XRA-F program is handed to the TM, which creates the execution infrastructure andcoordinates the execution. The necessary execution infrastructure is shown in Figure 7. For eachfragment that is used, the TM asks an S-lock from the CC. When the lock is acquired the fragmentcan be accessed. As explained in Section 3.5 an LTM has to be attached to an OFM to executerelational operations on base-fragments (in the �gure these LTMs are represented by half ovalson top of each OFM). Operations that do not have any base-fragment as operand are executedby independent LTMs (ovals in the �gure). The TM creates all LTMs and initializes them withthe XRA-statement they have to execute. The (half) ovals in the �gure are labeled with theXRA-statement they execute.After its setup, the infrastructure is completely self-scheduling. Each LTM connects to itsdestination(s) (references to them are incorporated in the XRA-statement that is executed); as eachLTM works independently, this coordination phase is intrinsicly parallel. As soon as an LTM hasconnected to all its destinations, it can start processing the available data. Base-data are directlyavailable, but data that is coming in via channels may have to be waited for. The infrastructurein execution works like an assembly-line, with the LTMs as workers, and the data 
owing alongthem. The LTMs are activated by the data being available. Each operation terminates as soonas all operands have terminated. An operand terminates when as many EOF tuples have beenencountered as there are channels in the operand. The entire query is ready when two EOF tupleshave reached the �nal union. When ready, an LTM sends a ready message to the coordinatingTM, which can shut down the execution when all participants are ready. After the commit of atransaction, the locks are released, and all LTMs with their data and the TM are discarded. Itappears that Peter, Paul and Carel have drunk German wine.The example query execution shows all forms of intra-query parallelism.� Each join (on the relation level) is executed in parallel (with degrees resp. 2, 3, and 2(intra-operation parallelism).� The join on Drinks and the join on Wines are executed parallel with the selection on Vineyard(inter-operation parallelism). 14



� The fact that PRISMA/DB is a main-memory DBMS allows us to use the Pipelining joinalgorithm (see Section 3.5 and section 6.1). Using this algorithm the three parallel join-operations form a pipeline, in which all levels can execute at the same time (provided enoughdata is used of course). So, there we have inter-operation pipelining. Another short pipelinestarts from Vineyard.The example query execution illustrates the 
exibility of PRISMA/DB. As the fragmentationdegree of the base relations, the degree of parallelism of each relational operation, and the allocationof OFMs and LTMs can be chosen freely, the systems allows experimentation with a very broadclass of execution strategies.4.2 Inserting a tuple

Figure 8: PRISMA/DB executing an insertAs an example of an update query, we will show how a tuple is inserted into the database. A\Saumur" 1990, with id 111 is added to the database. The �rst phase of this transaction (theactual insertion) is equivalent to the �rst phase of the retrieval query: the SQL compiler generatesan XRA-R insert statement:insert(Wine, {[111, "Saumur", 1990]})15



which is optimized into XRA-F by the QO:insert(Wine2, {[111, "Saumur", 1990]})Note, that the QO has replaced the insert into a relation by an insert into one fragment of therelation, instead of into all fragments that belong to the relation. This optimization can be donefor single-tuple inserts.The TM again generates the execution infrastructure for this query, which in this case consistsof one LTM, that is attached to Wine2.The di�erence between retrieval and update queries is apparent at commit-time: now thecorrectness of the transaction with respect to the integrity constraints is checked, and the updatemust be made permanent in the OFM.Two referential integrity constraints are de�ned on relation Wine; one from Drinks to Wine,and one from Wine to Vineyard. The �rst constraint cannot be violated by an insert into Wine,but the second one can: it has to be checked whether a \Saumur" tuple exists in Vineyard. Tocheck integrity constraints, compiled versions of these constraints are stored in the DD with thefragments. At commit time, the TM asks the DD for the constraints that have to be checked, whenan insert into Wine2 has been executed. The DD returns an XRA program to the TM, and theTM executes this program before it actually commits the transaction. In this case, the returnedXRA-program looks as follows:c1 = unique(<*2*>Wine2)c2 = <*1*>Vineyard1c3 = c1 - c2alarm(c3)The alarm statement generates an abort, when the cardinality of its operand is greater thanzero. The complete execution infrastructure that is built for the insert transaction is shown inFigure 8. Note, that the setup of the infrastructure for constraint enforcement is done parallel tothe execution of the insert query.When the execution of the insert and the constraint enforcement program is ready, the TMknows whether the transaction can commit or not. In case of an abort, an abort message is sent toall participating base-LTMs. When the transaction can commit, the TM sends a precommit mes-sage to all participating base-LTMs, that start making the insert permanent in the way describedin Section 3.6. A commit message ends the execution of the insert statement.5 PerformanceAs explained in the introduction, meaningful performance evaluation was only possible after thecompletion of the second version of PRISMA/DB. The results of the �rst performance tests in thespring of 1991 were bad due to synchronization problems in the system [Wil92]. Some parts ofthe system were redesigned to eliminate these problems. The resulting version of the system wascompleted in the late fall of 1991. The performance evaluation of this system is described here.Some queries from the Wisconsin Benchmark are used to evaluate the performance [BDT83].This paper describes the most important aspects of the performance of PRISMA/DB as a main-memory system. A full description of the performance can be found in [Wil92].5.1 Selection queriesA query that selects 1% of its input is used to evaluate the performance of selection queries. Thesource relation is fragmented over a number processors and the selection criterion is not on the16



partitioning attribute, so all fragments have to searched for qualifying tuples. The result is storedfragmented without redistribution on the processors generating result tuples (as PRISMA/DB isa main-memory system, results are not written on disk). Di�erent sizes for the source relation areused, ranging from 5 000 (5K) tuples to 400 000 (400K) tuples. For each source relation size, aspeedup experiment is done. The numbers of processors used are adjusted to the size of the sourcerelation, using larger numbers of processors for larger source relations.Figure 9 shows the response times resulting from the selection queries, and the speedup diagramsthat can be calculated from them. All response times are given in ms. The best response time foreach source relation size is printed in bold font.processors 5K 10K 50K 100K 400K1 480 9123 176 3065 188 248 775 14167 208 252 65610 162 292 524 876 279615 384 530 73520 596 760 164630 860 142640 148650 1692
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400Kresponse times in ms speedup diagramFigure 9: Performance of selection queriesThe response times are a measure for the absolute performance of the system. The absoluteperformance �gures are reasonable compared to other systems. Comparison of the absolute per-formance of systems is hard, because there are too many di�erences between systems in hardware,functionality etc. However, to give an indication, Figure 10 lists the response times of some othersystems, with the number of processors used for a 1% selection from 100K tuples. The absoluteperformance of PRISMA/DB seems reasonable from these data. However, as PRISMA/DB is amain-memory system, it should outperform all disk-based systems mentioned in Figure 10. Thisissue is discussed after the presentation of the other performance results.name processors response timeTeradata 20 28 220 [DGS87]GAMMA(VAX) 8 13 830 [DGS87]Silicon DBM 3 10 900 [LeR87]PRISMA/DB 15 735GAMMA(Intel) 30 450 [DGS90]Figure 10: Response times of some parallel DBMSs to a 1% selection from 100 tuples in msThe speedup characteristics illustrate the relative performance of the system. Linear speedupis the ultimate goal for parallel processing. However, a system that uses sequential initialization ofthe subtasks in the parallel execution of an operation can only get linear speedup for small numbers17



of processors. Our performance measurements show this phenomenon; we will now explain why.The response time to a query consists of two components:� The TM sequentially creates and initiates the participating LTMs. This yields a componentin the response time that is growing linearly with the number of processors.� Each LTM has to do a certain amount of local processing. This yields a component in theresponse time that is inversely proportional to the number of processors.This simple reasoning leads to the observation that adding more processors to a parallel taskultimately degrades the performance in any system that uses sequential initialization of these tasks.However, it is possible that the degrading performance is not measured, because it occurs only forlarger numbers of processors than available. PRISMA/DB does yield degrading performance for anumber of processors that is lower than the number of available processors and the reason for thisis twofold: �rstly, relatively small source relations are taken into account, which leads to a smallamount of local processing. The speedup diagrams show that the optimal number of processorsindeed is lower for smaller source relations. The second reason is the main-memory nature of thesystem. The sequential component in the response time consists of a lot of coordination and thusmessage passing. Therefore, this component does not bene�t from the main-memory nature of thesystem. The costs of the local processing however are lowered by the system being main-memory.Therefore, the optimal number of processors to be used for a parallel task is lower on a main-memory system than on an equivalent disk-based system. A more formal coverage of this issue canbe found in [Wil92]The observation about the behavior of a parallel main-memory system has implications forthe hardware con�guration that should be chosen for such a system. Obviously, a main-memorysystem needs a large amount of primary memory. However, as the maximal size of a subtask inparallel task is directly related to the size of the memory of one processor, the amount of memoryper processor should be fairly large to allow performance gain from parallelism.In the next section, the parallel execution of join queries is discussed. Because join queries aremore expensive than selections, their speedup characteristics are expected to be better.5.2 Join queriesThe join query used in the performance experiments is a query joining a 10K tuple relation to a100K tuple relation in which every tuple of the 10K relation matches to one tuple in the 100Krelation, so the result consists of 10K tuples. This query is called the joinABprime query in[BDT83]; A is the 100K relation and Bprime is the 10K relation. Four di�erent execution strategieswere tested, which are called join1 through join4 in the sequel:join1 The relations are initially fragmented on the join attribute into equal numbers of fragments,and the corresponding fragments reside on the same processor.join2 The relation are fragmented in the same way as for join1, but all fragments reside on di�erentprocessors. The Bprime fragments are sent to the A fragments for joining.join3 Relation A is fragmented on the join attribute and relation Bprime is fragmented on anotherattribute into equal numbers of fragments. All fragments reside on di�erent processors.Relation Bprime is redistributed and sent to relation A for joining.join4 Both relation are fragmented on another attribute than the join attribute into equal numbersof processors. All fragments reside on di�erent processors. Both relations are redistributedand sent to the join processors for joining.18
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join4response times in ms speedup characteristicsFigure 11: Performance of join queriesThese four strategies were tested using 10, 20, and 30 processors for the joins combined with afragmentation degree of 10, 20, or 30 for the initial fragmentation of the relations.Figure 11 shows the response times measured in this experiment, and the speedup with respectto the response time of the 10-processor queries. Note, that in this case linear speedup yields aspeedup factor 3 for the 30-processor queries.The achieved absolute performance for "join1" and "join2" is good compared to other systems.Figure 12 lists the response times for the same query reported by other projects. Again, it is hardto compare systems, as they di�er in many ways. Yet, we like to report that the response timemeasured on PRISMA/DB outperforms all other reported performance �gures on this query.Join1 and join2 show, apart from a good absolute performance, good speedup characteristics.The speedup is even slightly superlinear. This is caused by some synchronization problems for thequeries using 10 processors.The speedup characteristics of join3 are disappointing, and join4 is even worse. The reasonfor this is as follows. Join3 and join4 need redistribution of the operands. This redistribution isexpressed in XRA, and the expression for it is large, and grows for larger degrees of parallelism,as the number of destinations grows with the degree of parallelism. The TM sequentially sendsthe same large expression to each LTM, and because POOL-X does not support broadcasting, theoverhead for sending an XRA-expression o�-node is made for each fragment. Join3 needs to gothrough the redistribution of only one operand, but join4 has to redistribute both operands makingthings even worse.Here we are at a point where we have to pay for both forms of 
exibility o�ered by thesystem. Firstly, using POOL-X facilitated the development of a 
exible architecture, but thehigh level interface o�ered by POOL-X makes it impossible to solve the problem of sending largeXRA-expressions to many LTMs. Secondly, XRA was developed to express a wide variety ofparallel execution plans, but the expressions that are generated in plans that have a high degreeof parallelism grow larger than we want.Although there are some problems, we feel that PRISMA/DB with the performance reportedin this section, o�ers a very good platform to experiment with parallel query execution, especiallyto study the execution of complex queries, in which the degree of intra-operator parallelism doesnot need to be very large. 19



name processors response timeTeradata 20 131300 [DGS87]GAMMA(VAX) 8 45600 [DGS87]Silicon DBM 3 23900 [LeR87]HC16-186 16 10000 [BrG89]GAMMA(Intel) 30 3340 [DGS90]PRISMA/DB 30 1978Figure 12: Response times of some parallel DBMSs to a 100K � 10K join, fragmented on the joinattribute6 Current ResearchThis section describes how the 
exibility of PRISMA/DB is used in our research on parallel queryexecution and on integrity constraint enforcement.6.1 Multi-join queriesThe 
exibility of the query execution layer of PRISMA/DB is used to study the parallel executionof complex queries. A complex query is a query that consists of multiple relational operations.Multi-join queries are used as an example of complex queries in this study. Important questionsare:� What is the best join order in a parallel environment?� What degree of parallelism should be used for each join operation?� How to allocate processors to each join operation?� How does the initial data distribution in
uence the query execution?[WiA91,WiA90,WAF91] are reports on this research. In those papers, the pipelining hash-joinalgorithm (see Section 3.5) is introduced as an algorithm that has fewer constraints on the orderin which operand tuples can be processed than the known hash-join algorithms, and as such itis expected to yield signi�cant performance gain from inter-join pipelining. Its behavior in linearand bushy query plans for a restricted class of multi-join queries was studied, using simulationand analytic mathematical analysis (the distinction between left-deep and right-deep linear plans[ScD90] does not exist here, because the pipelining hash-join is a symmetric algorithm). Simulationwas used, as at the time this research was started, the �nal version of PRISMA/DB was not readyyet. The results of the study show that e�ective parallelism can be achieved in a join pipeline.Also it was shown that join queries with small operands are better of with a bushy query plan,and join queries with large operands prefer a linear schedule.Currently this research is continued as follows. Firstly, the operational PRISMA/DB prototypeis used to con�rm the results from [WiA91], secondly, we want to extend the study to a broaderclass of multi-join queries, and �nally intra-operation parallelism for the individual join operationswill be considered.6.2 Integrity ControlOne of the current research directions in the PRISMA context is integrity control in parallel main-memory database systems. The main topics in this research are software architectures for integritycontrol, the e�ects of data distribution and parallel enforcement, and ways to improve the perfor-mance of integrity constraint enforcement in parallel environments. The emphasis on parallelism20



and performance in constraint enforcement contrasts this research to that performed in the con-text of other DBMS projects like SABRINA [SiV84], POSTRGRES [SRH90], and STARBURST[HFL89].In this research, the basic software architecture for integrity control is based on the transactionmodi�cation principle as explained in short in the section on transaction management. Thisprinciple enables the use of the standard query execution machinery for constraint enforcementand deals correctly with transaction serializability and atomicity requirements. As discussed in[GrA91], the basic architecture can be extended in a number of ways to obtain a better performanceof integrity control.The e�ects of data distribution and parallel enforcement are described in detail in [GrA90].Here, attention is paid to the translation of constraints in a functional speci�cation (�rst order logic)to an operational speci�cation in extended relational algebra (XRA), the removal of fragmentationtransparency and the optimization of constraints in a parallel context, and to the mapping ofconstraints to the parallel query execution machinery of PRISMA/DB. The concepts can be usedeasily within the transaction modi�cation context.A performance evaluation of constraint enforcement on the PRISMA/DB prototype has leadto two important observations. In the �rst place, parallelism has proven to be a good way to dealwith the high processing costs associated with constraint enforcement; transaction execution timesincluding integrity control can be strongly improved by parallel execution. Secondly, the relativecosts of constraint enforcement have shown to be quite acceptable in comparison to transactionexecution without any integrity control; typical �gures are a few percents for very simple con-straints and about 100 percent for referential integrity constraints in the worst case. The fact thatPRISMA/DB uses main-memory storage has a positive in
uence on these �gures, since constraintenforcement is (mainly) a retrieval process, whereas update transactions require secondary storageoperations.Research is being performed on special-purpose communication protocols for constraint enforce-ment at the lower levels of PRISMA/DB. Main goal of these protocols is to decrease the controloverhead imposed by the transaction management process in constraint enforcement. Further gainsin performance can be expected from an optimal scheduling of constraint enforcement [Gre92].7 Conclusions and future researchIn this paper, we have discussed the design and implementation of PRISMA/DB, a parallel, main-memory RDBMS. The design of the system can be characterized by two main ideas: use of paral-lelism and main-memory data storage to provide high performance in query processing, and use ahigh-level object-oriented language to obtain a modular and 
exible system architecture that canbe used easily for experimentation with functionality and performance.Currently, the second prototype of the DBMS, called PRISMA/DB1, is running on hardwarecon�gurations up to 100 nodes. The prototype provides complete DBMS functionality amongwhich concurrency control, integrity control, and crash recovery facilities. Extensions of the func-tionality can be added easily, like automatic loading and unloading mechanisms to be able to handledatabases that do not �t into the main memory of the system. The absolute performance of theprototype has shown to be comparable to other state-of-the-art parallel database machines. Therelative performance with respect to software and hardware con�guration has led to new insightinto the behavior of parallel main-memory systems.The choice of an experimental object-oriented implementation language for PRISMA/DB hashad an important impact on the project. The language has proven to be a great advantage inobtaining a well-structured and 
exible software architecture. The mapping of DBMS componentsonto active objects in this language enables a natural modularization of the system with clearinterfaces. On the other hand, the choice of a high-level implementation language has shown to21



be a drawback in obtaining optimal performance, since no explicit control over the hardware andlow-level processes is possible.PRISMA/DB1 is used as an experimental platform for a number of research activities. In the�rst place, experiments with multi-operation queries and parallel integrity control, as describedin the previous section, will be conducted on the prototype. Further, PRISMA/DB1 is used forthe implementation of parallel algorithms for transitive closure operations [HAC90,HCC91]; thisenables the parallel computation of recursive queries on PRISMA/DB1. Also, the system will beused as an experimental implementation platform for a NF2 layer that supports complex objects[StA90]; because 
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