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Period doubling in glow discharges: local versus
global differential conductivity

ABSTRACT
Short planar glow discharges coupled to a resistive layer exhibit a wealth of spontaneous
spatio-temporal patterns. Several authors have suggested effective reaction-diffusion-models to
explore similarities with other pattern forming systems. To test these effective models, we here
investigate the temporal oscillations of a glow discharge layer coupled to a linear resistor. We
find an unexpected cascade of period doubling events. This shows that the inner structure of
the discharge is more complex than can be described by a reaction-diffusion-model with
negative differential conductivity.

2000 Mathematics Subject Classification:  82D10
Keywords and Phrases: reaction-diffusion-model; pattern formation; negative differential conductivity; period doubling



Period doubling in glow discharges: local versus global differential conductivity
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Short planar glow discharges coupled to a resistive layer exhibit a wealth of spontaneous spatio-
temporal patterns. Several authors have suggested effective reaction-diffusion-models to explore
similarities with other pattern forming systems. To test these effective models, we here investigate
the temporal oscillations of a glow discharge layer coupled to a linear resistor. We find an unexpected
cascade of period doubling events. This shows that the inner structure of the discharge is more
complex than can be described by a reaction-diffusion-model with negative differential conductivity.

Glow discharges are part of our daily environment in
conventional and energy saving lamps, beamers, flat TV
screens, car and street lamps as well as in various in-
dustrial applications. While applications typically try
to avoid any instabilities, experiments actually exhibit a
realm of spontaneous pattern formation, see, e.g., [1].

An interesting series of experiments has been per-
formed on short planar dc driven glow discharges with
wide lateral extension [2–13] where the formed patterns
were explored very systematically. The observed struc-
tures resemble those observed in Rayleigh-Benard con-
vection in flat cells, in electroconvection in nematic liq-
uid crystals, or in various chemical or biological pattern
forming systems. All these systems show the formation
of stripes, spots, spirals etc. In comparison to the other
systems, the glow discharge system has the advantage
of particular convenient experimental handling and time
scales [14]. Besides structures known from other physi-
cal systems, it continues to exhibit new structures that
might be specific for this system [2–13]. We will focus
on the experiment in [9], where a complete phase dia-
gram of different patterns was identified: homogeneous
stationary and homogeneous oscillating modes, patterns
with spatial and spatio-temporal structures etc.

The theory for these systems has largely focussed on
effective reaction-diffusion models in the two transver-
sal directions, and on the negative differential conduc-
tivity of the glow discharge as the driving force of pat-
tern formation. Such models actually have been devel-
oped independently by a number of authors [15–21,4].
On the other hand, the observation of unconventional
patterns like zigzag-destabilized spirals raises doubts
whether reaction-diffusion patterns are sufficient to un-
derstand the observed patterns.

In the present paper, we examine the concepts of
reaction-diffusion models and negative differential con-
ductivity on the particular case of a short DC driven
glow discharge in a parameter range that exhibits spon-
taneous temporal oscillations but no spatial structures
transverse to the current [9]. In short, we find (i) that
a discharge on the transition from Townsend to glow dis-
charge can combine a positive local differential conduc-

tivity with a negative global differential conductivity;
(ii) that a glow discharge in a simple electric circuit shows
more complex behavior than can be expected from the
proposed reaction-diffusion models [15–21,4] for voltage
U and current J with (global) negative differential con-
ductivity dU/dJ < 0; (iii) in particular, that the system
can show period doubling bifurcations. Period doubling
actually has been observed experimentally in glow dis-
charges, but in more complex geometries and in longer
systems [22,23]. (iv) Finally, we derive a new effective
dynamical model in terms of a parameter and a func-
tion by adiabatic elimination of the electrons. There is
no systematic way to reduce this model to a simpler one
[15–21,4] with two scalar parameters like voltage U and
current J . We draw this conclusion both from direct
analysis and from the occurence of period doubling in
the numerical solutions.

To be precise, in the experiments of [2–13], a planar
glow discharge layer with short length in the forward
direction and wide lateral dimensions is coupled to a
semiconductor layer with low conductivity. The whole
structure is sandwiched between two planar electrodes
to which a DC voltage Ut is applied. Theoretical predic-
tions on how the different spatio-temporal patterns de-
pend on the parameters of the gas discharge, hardly exist.
In [16–18,4], an effective reaction-diffusion model in the
two dimensions transversal to the current is proposed.
Roughly, it consists of two nonlinear partial differential
equations for the current J and the voltage U of the form

∂tU(x, y, t) = F(U, J) , ∂tJ(x, y, t) = G(U, J) , (1)

where the nonlinear operators F and G contain spatial
derivatives ∂x, ∂y and possibly also integral kernels. The
model is of reactor-inhibitor form as studied extensively
in the context of chemical and biological systems in the
past decades. If applicable to gas discharges, this iden-
tification lays a connection to a realm of analytical and
numerical results on reaction-diffusion systems.

To test whether a model like (1) is applicable to the
gas discharge system, we will focus on its temporal oscil-
lations that can occur in a spatially completely homoge-
neous mode [9]; hence a one-dimensional approximation
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is appropriate. Similar oscillations have been observed in
[19,20,24,25], and similar effective models for current J
and voltage U of the general form (1) have been proposed
in [15,19–21].

Why have different authors come up with the same
type of model? The equation for U directly results from
the simplest form of an external electric circuit: a semi-
conductor layer of thickness ds, linear conductivity σs

and dielectricity constant εs will evolve as

∂tU =
Ut − U − RsJ

Ts
(2)

where Ut is the voltage on the total system, J is the to-
tal current, and U =

∫ dg

0
E dz is the voltage over the gas

discharge which is the electric field E integrated in the
z direction over the height dg of the discharge. For the
experiments in [9], Rs = ds/σs is the resistance of the
whole semiconductor layer, and Ts = εsε0/σs = CsRs

is the Maxwell relaxation time of the semiconductor. In
other experimental systems, the quantities Rs and Ts can
have different realizations. Hence the form of the equa-
tion for U in a reaction-diffusion model (1) is clear.

However, the equation for J in a reaction-diffusion
model as (1) is based on guesses and plausibility. Dif-
ferent choices have been suggested by different authors,
but one thing is clear: to be physically meaningful, the
current-voltage characteristics of the glow discharge has
to be a stationary solution, so G(U, J) = 0 on the char-
acteristics. Beyond that, there are different suggestions
for the functional form of G and the intrinsic time scale.

If a model like (1) is applicable to oscillations in glow
discharge systems, then the following predictions apply:
1) an oscillation can only occur in a region of negative

differential conductivity of the glow discharge character-
istics, 2) only a single period can be formed, period
doubling is not possible, since this requires at least three
independent parameters, 3) in a phase space plot in U
and J , the trajectory of an oscillation can intersect the
load line U = Ut −RsJ only parallel to the J-axis (since
∂tU = 0 and ∂tJ �= 0), and it can intersect the charac-
teristics of the glow discharge U = U(J) only parallel to
the U -axis (since ∂tU �= 0 and ∂tJ = 0).

We now introduce the simplest classical model for a
glow discharge [26–28], solve it numerically and confront
its results with the predictions above.

A discharge between Townsend and glow regime con-
sists of a gas with Ohmic conductivity for the rare
charged particles, electrostatic space charge effects and
two ionization mechanisms, namely impact ionization by
accelerated electrons in the bulk of the discharge (the so-
called α-process) and secondary emission from the cath-
ode (the γ-process). In its simplest form, it can be mod-
elled by continuity equations for electron particle density
ne and ion particle density n+

∂t ne + ∇ · Je = S , ∂t n+ + ∇ · J+ = S , (3)

and the Poisson equation for the electric field E in elec-
trostatic approximation,

∇ · E =
e
ε0

(n+ − ne) , E = −∇Φ . (4)

The particle currents are approximated as purely Ohmic

Je = −µe ne E , J+ = µ+ n+ E . (5)

The source of particles in the continuity equation (3) is
written as a sum of generation by impact ionization in
Townsend approximation and recombination

S = |neµeE| α0 e−E0/|E| − βnen+ . (6)

Finally, the secondary emission from the cathode enters
as a boundary condition at the position dg of the cathode

µene(dg, t) = γµ+n+(dg, t) . (7)

This is the classical glow discharge model [26–28].
We reduce the problem to one spatial dimension z

transverse to the layers which is an excellent approxima-
tion for the experiment [9]. Furthermore, we introduce
dimensionless quantities as in [28] by rescaling all pa-
rameters and fields as z = rz/X0, τ = t/t0, L = dg/X0,
σ(z, τ ) = ne(rz, t)/n0, ρ = n+/n0, E = Ez/E0 with the
scales X0 = α−1

0 , t0 = (α0µeE0)−1 and n0 = ε0α0E0/e.
A key role is played by the small parameter µ = µ+/µe,
which is the mobility ratio of ions and electrons.

The gas discharge layer is now modelled by

∂τσ = ∂z(Eσ) + σEα(E) , α(E) = e−1/|E| , (8)
∂τρ = −µ∂z(Eρ) + σEα(E) , (9)

σ(L, τ) = γµρ(L, τ) , (10)
ρ − σ = ∂zE , (11)

where recombination was neglected [β = 0 in (6), a dis-
cussion of this approximation follows below], while the
external circuit is described by

∂τU =
Ut − U −Rsj

τs
, U(τ ) =

∫ L

0

E(z, τ ) dz (12)

with the dimensionless voltage U = U/(E0X0), time
scale τs = Ts/t0 and resistance Rs = Rs/R0, R0 =
X0/(eµen0) and with a spatially conserved total current

j(τ ) = ∂τE + µρE + σE , ∂zj(τ ) = 0 , (13)

where ∂zj = 0 follows from (8), (9) and (11) as usual.
As a result, the gas discharge is parametrized by the

three dimensionless parameters of system length over ion-
ization length L, secondary emission coefficient γ and
mobility ratio µ (as discussed in [28]), and the external
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circuit is parametrized by relative resistance Rs, ratio of
time scales τs and dimensionless applied voltage Ut.

For calculational purposes, the ion density ρ can be
completely eliminated from the one-dimensional gas dis-
charge equations (8)–(11) with the help of the Poisson
equation (11) and the total current j, see [28]. The result
are two equations of motion for ∂τσ and ∂τE . In our nu-
merical calculations, the system was implemented in this
form. Our choice of parameters was guided by the exper-
iments in [9]: we chose the secondary emission coefficient
γ = 0.08, the mobility ratio µ = 0.0035 for nitrogen and
the dimensionless system size L = 50 which amounts to
1.4 mm at a pressure of 40 mbar. The external circuit
has Rs = 30597, τs = 7435 and a dimensionless total
voltage Ut in the range between 18 and 20. This cor-
responds to a GaAs layer with εs = 13.1, conductivity
σs = (2.6 · 105Ωcm)−1 and thickness ds = 1.5mm, and a
voltage range between 513 and 570 V.

   
0

0.5

1
x 10

−3

j

4.75 4.8 4.85 4.9 4.95 5

x 10
6

8 

12

16
U 

t
FIG. 1. Spontaneous oscillations of current j and voltage

U as a function of time τ for γ = 0.08, µ = 0.0035, L = 50,
Rs = 30597, τs = 7435, and applied total voltage Ut = 19.

Fig. 1 shows electric current j and voltage on the gas
discharge U as a function of time for a total stationary
voltage Ut = 19 applied to the complete system of gas
discharge and semiconductor layer. The system exhibits
spontaneous oscillations with sharp current peaks: when
the voltage U on the gas layer becomes high enough, the
discharge ignites. The conductivity of the gas increases
rapidly and produces a current pulse that deposits a sur-
face charge on the gas-semiconductor interface. There-
fore the voltage U over the gas layer breaks down. Due to
the low conductivity of the semiconductor, the voltage U
recovers only slowly. Eventually the gas dicharge ignites
again, and the cycle is repeated.

Note that the oscillations in Fig. 1 are not quite peri-
odic. This is not due initial transients since the system
is observed after the long relaxation time τ = 4.745 · 106.
The nature of this temporal structure becomes clear
when the trajectory is plotted in the plane spanned by
current j and voltage U in Fig. 2(b). The figure contains
the data of the time span from τ = 3 · 106 to 6 · 106

which amounts to approximately 90 current pulses. The
phase space plot shows that the system is actually pe-
riodic, with a period of 8 current pulses. Fig. 1 shows
precisely one period.

This discovery raises the question whether our system
actually follows the well-known scenario of period dou-
bling. Indeed, it does. Fig. 2(a) for Ut = 18 shows an os-
cillation where one current pulse is repeated periodically
as observed experimentally in [9]. For Ut = 18.5, a period
consists of two current pulses (not shown). For Ut = 19,
the period is 8 pulses as in Fig. 1 and Fig. 2(b). For
Ut = 20, the systems seems to have reached the chaotic
state as can be seen in Fig. 2(c).

A detailed comparison of the experiments in [9] with
simple oscillations as in Fig. 2(a) will be given elsewhere,
and we only state here that there is semi-quantitative
agreement of several features. Here we emphasize that
period doubling events in glow discharges have been ob-
served experimentally in other systems [22,23]. However,
this was always in systems with more complicated ge-
ometries like long narrow tubes, and the authors allude
to general knowledge on nonlinear dynamics rather than
to solutions of explicit models. We state that period dou-
bling can be a generic feature of a simple, strictly one-
dimensional glow discharge when coupled to the simple
circuit (2). We propose to search experimentally for a pe-
riod doubling route to chaos in such simple systems which
would then allow quantitative comparison with theory.

Let us return to the initial question: is a 2-component
reaction diffusion model like (1) with negative differential
conductivity appropriate for the present system? Above
Eq. (3), we gave a list of predictions for the reaction diffu-
sion model (1) to be applicable. Prediction 2 is falsified
by the observation of period doubling. Prediction 3 is
also falsified by a simple check of either of the three fig-
ures in Fig. 2: the trajectories definitely do not intersect
with the characteristics or the load line with the angle
prescribed by (1), in particular not in the upper part of
the figures that represent the rapid current pulses.

There rests prediction 1: is negative differential con-
ductivity required for the oscillations to occur? We have
not found a numerical counterexample where oscillations
would occur while the current voltage characteristics of
the gas discharge shows a positive differential conductiv-
ity, but we have found no reason to exclude its existence.
Furthermore we note that the characteristics is a global
property of the whole discharge layer with its boundary
conditions [28] while the local differential conductivity in
our model is always positive: the field dependent station-
ary ionization is n+ = |µeE|α0e

−E0/|E|/β according to
(6); hence the local conductivity increases monotonically
with the applied field |E|. The global negative differen-
tial conductivity is due to electrode effects being much
stronger than bulk recombination β.

Last but not least, we have derived an analytical ap-
proximation of the model (8)–(13) that can be confronted
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with the suggested form (1). Electron and ion current in
the gas are of the same order of magnitude. Since the
electrons are much more mobile, their density is appropri-
ately lower. Rescaling this density like s = σ/µ and time
like τ̄ = µτ , the electrons can be eliminated adiabatically
in the limit of µ → 0. Space charges in the gas discharge
are then due to the ions only ρ = ∂zE , and ρ can be ex-
pressed by E . Splitting the field E(z, t) = EL(t) + ε(z, t)
into the field on the cathode EL and a correction ε with
ε(L, t) = 0, the complete system for µ → 0 can be ex-
pressed by two dynamic equations

∂τ̄EL(t) = F (EL, ε) , ∂τ̄ ε(z, t) = G(EL, ε) , (14)

details will be given elsewhere. While the equation for the
time dependent parameter EL corresponds to the equa-
tion for U in (1), the space dependent field correction ε
within the gas layer cannot be reduced to a single com-
ponent like the current J in (1). E.g., for the ion density
on the cathode ρL = ∂zε|L, we can derive the equation
of motion

∂τ̄ρL = −ρ2
L − EL(∂zρ)|L + γρLELα(EL) (15)

A two component reaction-diffusion equation for ρL and
EL could result from the completely unsystematic ap-
proximation (∂zρ)|L = 0. Rather the transport of ions ρ
from the bulk of the gas towards the cathode is a central
feature of the system. The field ε(z, t) in (14) indeed ac-
counts for the ion distribution within the gas gap with
its intricate dynamics.

We acknowledge support of D.S. by the Dutch physics
funding agency FOM and of I.R. by ERCIM.
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FIG. 2. Phase space plots of the trajectories of the oscillations in the plane of current j and voltage U . The time range is

3 · 106 ≤ τ ≤ 6 · 106 in all figures. Shown are the orbits, the straight load line U = Ut − Rsj and the curved current voltage
characteristics U = U(j) of the gas discharge [28]. The intersection of load line and characteristics marks the stationary solution
of the system. (b) represents the data of Fig. 1 with total voltage Ut = 19, (a) is for Ut = 18, (c) for Ut = 20.
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