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1. Introduction
Large service organisations like banks have a hard time
keeping grips on their software landscape. This is not only
visible while performing maintenance on existing applica-
tions but also when developing new applications.

One of the problems these organisations face is that they
often do not have a clear and uniform descriptions of their
products like savings- and current account, loans and mort-
gages. This makes it hard to reason about changes to exist-
ing products and hampers the introduction of new ones. The
specifications that are written down often contain ambigui-
ties or are out-of-date. Next to this, specification are almost
always written down using natural language which is known
to lead to numerous deficiencies [1].

To counter these problems we introduce Rebel, a DSL for
product specifications. Rebel lets users specify their product
in a high-level, unambiguous manner. These specification
can then be simulated which enables users to explore their
products before they are build.

We have created Rebel for a large Dutch bank and are
currently in the process of specifying existing banking prod-
ucts.

Since Rebel is in the early stages of development we
would like to use DSLDI to gather feedback on its current
design and proposed future directions.

2. Rebel
Rebel is a domain specific language for product specifica-
tions. It is inspired on formal methods like Z [2], B [3] and
Alloy [4]. It is aimed at helping a large Dutch bank in bridg-
ing the gap between informal specifications written down in
natural language or passed on mouth-to-mouth towards un-
ambiguous, machine interpretable specifications. The main
idea behind Rebel is to present the user with a easy to under-
stand syntax and interface while it exploits powerful tooling
like verification to check whether the specifications hold un-
der the hood.

Rebel is implemented in RASCAL [5] as a stand-alone
DSL.

2.1 Requirements
The language needed to fit the following requirements:

• Flexibility - it should be possible to tune it to the problem
of the bank we were working with.

• Integration - it should be possible to integrate existing
tools like model checkers and connect to existing systems
in the banks application landscape.

• Adaptation - it should be easy to learn and the tooling like
an IDE should be similar to the tooling currently used.

Considering these requirements we decided to create a new
language. This new language needed to be a linguistic hybrid
to be able to support both the definition of single products as
well as the overlying process.

2.2 Design
Rebel is a declarative language and centres around specifi-
cations. Figure 1 shows an example of such a specification.

A specification describes one product. Specifications con-
tain fields, events, invariants and life cycle. Fields declare
the data used in the specification. Events describe the possi-
ble mutations on the data under certain conditions. Invariants
describe global rules which should always hold and life cy-
cle constrains the order of events.

The definition of events and invariants is separated from
usage in specifications. This is to promote reuse and to
separate the responsibility of implementing an event from
using an event in a specification.

Defined fields can only be of built-in types. Events can
only reference fields declared in the specification, not fields
of other specifications. We made this choice so that the
potential state space is smaller when applying verification
techniques like model checking.

Events are described using pre- and postconditions. An
example event is shown in Figure 2. The semantics are
straightforward; if the precondition holds then the postcon-
dition will hold after the event is raised. Events contain run-
time instance variables as well as configuration variables.
Configuration variables are keyword parameters that can
have a default value and can be set when the event is ref-
erenced by a particular specification. For instance, the us-
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specification SavingsAccount {

fields {

balance: Time -> Integer

}

events {

openAccount[minimumDeposit=50]

withdraw[]

deposit[]

close[]

}

invariants {

positiveBalance

}

lifeCycle {

initial new -> opened: openAccount

opened -> opened: withdraw, deposit

-> closed: close

final closed

}

}

Figure 1. Example Rebel specification

initial event openAccount

[minimumDeposit : Integer = 0]

(accountNumber: String, initialDeposit : Integer) {

preconditions {

initialDeposit >= minimumDeposit;

}

postconditions {

new this.balance(now) == initialDeposit;

}

}

Figure 2. Example of an event definition

age declaration of openAccount (Figure 1) sets the event
configuration parameter minimumDeposit meaning that the
SavingsAccount uses 50 as a minimumDeposit when an ac-
count is opened.

Invariants are global rules. They use quantifiers over data
to express certain constrains that should always hold. Fig-
ure 3 shows an example that states that at all time, saving
accounts should have a balance equal to or above zero.

invariant positiveBalance {

all sa:SavingsAccount | all t:Time {

sa.balance(t) >= 0

}

}

Figure 3. Example of an invariant

2.3 Simulating specifications
The simulation is aimed at helping product owners and de-
velopers gain insight into their specified product. It can be
used to check if the specification meets the expectations of
the user. Figure 4 shows a screenshot of the simulation of

Figure 4. Screenshot of simulating the SavingsAccount
specification

a SavingsAccount. The simulation is implemented with the
use of the Z3 SMT solver [6].

3. Future work
The current version of Rebel supports the definition of sin-
gle products. Next to this it is also needed to define compo-
sition of these products. In other words, the process. Since
the specifications only contain fields of built-in types and
can only reference themselves it is not possible to compose
specifications. To overcome this we propose the use of pro-
cess algebra [7] for specifying how the individual specifica-
tion events should be composed. This will give us the ability
to specify choices, sequencing, concurrency and communi-
cations between specifications. The question will be if we
will still be able to reason about (certain parts of) the speci-
fications since composing the specifications will have a large
impact on the state space.

An orthogonal aspect is the tooling for Rebel specifica-
tions. Next to the simulation we will explore the possibility
of model checking. The model checker could be used to find
event traces that lead to violations of the invariants. Earlier
work has shown that it is possible to translate Rebel spec-
ification to Alloy. Alloys analyser was used to find traces
which would break the specification. The problem with this
approach was scalability. An alternative would be to exploit
an SMT solver for the same purpose [8]. One of the chal-
lenges here will be how we can bound the data in a smart
way to limit the state space.

Ultimately, running systems should be generated from
Rebel specifications. Since Rebel is a declarative language
it will not always be straightforward to generate a correct
system from this. Again SMT solvers might hold the key as
shown in other work like [9].
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