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Let S be a compact orientable surface. For any graph G embedded on Sand any 
closed curve D on S we define µG(D) as the minimum number of intersections of 
G and D', where D' ranges over all closed curves freely homotopic to D. We call 
G a kernel if µG' ¥- µ 0 for each proper minor G' of G. We prove that if G and G' 
are kernels with µ0 = µ0 . (in such a way that each face of G is an open disk), then 
G' can be obtained from G by a series of the following operations: (i) homotopic 
shifts over S; (ii) taking the surface dual graph; (iii) ,J Y-exchange (i.e., replacing a 
vertex v of degree 3 by a triangle connecting the three vertices adjacent to v, or 
conversely). © 1992 Academic Press, Inc. 

1. FORMULATION OF THEOREM 1 

Let S be a compact surface, and let G be a graph embedded on S 
(without crossing edges). For each closed curve D on S we define 

µG(D) := min cr(G, D'). ( 1 ) 
D'-D 

Here er( G, D') denotes the number of times D' intersects G (i.e., 
cr(G,D')=l{zES1 ID'(z)EG}I). The minimum ranges over all closed 
cuvers D' freely homotopic to D. [A closed curve is a continuous function 
D: S 1 --.. S (where S 1 denotes the unit circle in the complex plane). Two 
closed curves D and D' are freely homotopic, in notation: D ~ D', if there 
exists a continuous function </J: [O, l] x S 1 --.. S such that <1>(0, z) = D(z) 
and </J(l,z)=D'(z) for all zES1.] 

Observe that the function µG is invariant under the following operations 
onG: 
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(i) homotopic shifts of Gover S; 

(ii) replacing G by a surface dual G* of G; 

(iii) L1 Y-exchanges in G. 
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Here we use the following terminology. Graph G' arises by a homotopic 
shift of G over S (or is homotopic to G) if there exists a continuous function 
<P:[O,l]xG~s so that (i)<t>(O,y)=y for each yEG; (ii)for each 
x E [O, 1 ], <P(x, ·) is a one-to-one function on G; (iii) <ti( 1, ·) maps G onto 
G'. [We consider G and G' as subspaces of S.] 

We say that graph G* is a (surface) dual of G if (i) each face of G is an 
open disk; (ii) each face of G contains exactly one vertex of G*, and 
V( G *) n G = 0; (iii) each edge of G* crosses exactly one edge of G, and 
each edge of G crosses exactly one edge of G*, while there are no further 
intersections of G and G*. [By V( ·) and E( ·) we mean the vertex set and 
edge set of ·.] So G has a surface dual if and only if each face of G is an 
open disk. Moreover, G has only one surface dual up to homotopic shifts. 

If v is a vertex of G of degree 3, a L1 Y-exchange (at v) replaces v and the 
three edges incident with v by a triange connecting the three vertices 
adjacent to v (thus forming a triangular face). We also call the converse 
operation (replacing a triangular face by a "star" with three rays) a 
LI Y-exchange. 

Note moreover that if G' is a minor of G then µa·~ µa (i.e., 
µc.(D) ~ µa(D) for each closed curve D). Here a minor of G arises by a 
series of deletions of edges, and contradictions of non-loop edges. If we 
contract an edge, the graph arising is naturally embedded again on S 
(unique up to homotopic shifts). 

Now we call G a kernel (on S) if µa4 µa for each proper minor G' of G. 
[Proper means that we delete or contract at least one edge of G.] 

The main result of this paper is that, if S is orientable and each face of 
G is an open disk, then kernels are uniquely determined by the function µa, 
up to the operations (2 ): 

THEOREM 1. Let G and G' be kernels on the compact orientable surface 
S, in such a way that each face of G is an open disk. If µG =µa· then G' can 
he obtained from G by a series of operations (2). 

Note 1. The minimum of µa(D) taken over all homotopic nontrivial 
closed curves D is called the representativity or face-width of G. This 
parameter has been studied recently in relation to minimal genus embed
dings of graphs and to graph minors and disjoint paths, by, among others, 
Archdeacon [2], Fiedler, Huneke, Richter, and Robertson [8], Robertson 
and Seymour [15], Robertson and Thomas [16], Robertson and Vitray 
[ 17], and Thomassen [24]. Note that each graph of given representativity, 
such that each proper minor has a smaller representativity, is a kernel. 

Note 2. The LI Y-operation was studied (for planar graphs) by Steinitz 
[20] (cf. [21] ), who called it the 8-process. More recently, attention has 
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been given by, among others, Akers [1], Epifanov [6], Griinbaum [9], 
Lehman [ 11], and Truemper [ 25]. 

Note 3. Scott Randby [ 13] proved the theorem above in the case 
where S is the projective plane. We do not know if it holds for nonorien
table surfaces in general. 

Neither do we know if the condition that each face of G is an open disk 
is necessary. Our proof below shows that we may relax this condition to 
the weaker condition that no loop of G is (as a closed curve) freely 
homotopic to a closed curve not intersecting G. In particular, if G has no 
loops at all, the statement also holds. 

2. TIGHT GRAPHS 

We next formulate an analogous result for so-called tight graphs, a result 
that actually will be shown to imply Theorem 1. Tight graphs were 
introduced in [18]. 

Let H be a graph embedded on the compact surface S. For each closed 
curve D on S we denote 

µ~(D) := mm cr(H, D'). (3) 
D'-D 

D' c: S\ V(H) 

Here the minimum ranges over all closed curves D' freely homotopic to D 
so that D' does not intersect the vertex set V(H) of H. 

Let H be 4-regular. The function µ~1 is clearly invariant under tile 
following operations on H: 

(i) homotopic shifts of Hover S; 

(ii) LJV'-exchanges in H. 
(4) 

A L1V'-exchange replaces a triangular face, adjacent to r, s, t, u, v, w as in 

r s r s 

w t by w t 

v u v u 
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Moreover, we define an opening (at v) as replacing a neighbourhood of 
vertex v of H of degree 4: 

r s 

by 

u t 

(So at one vertex v there are two possible openings.) If this operation 
creates a loop without a vertex, we add a new vertex on the loop. 

We call a graph H' an opening of H if H' arises from H by a series of 
openings. Note that if H' is an opening of H, then µ'w:::; µ~. We call a 
4-regular graph H tight (on S) if µ~r :F µ~ for each proper opening H' of H. 
[Proper means that we open Hat least once.] (In [18] we defined "tight" 
for each eulerian graph, but in this paper we restrict ourselves to tight 
4-regular graphs.) 

The following theorem says that, if S is orientable, then 4-regular right 
graphs are uniquely determined by the function µ~, up to the opera
tions ( 4 ): 

THEOREM 2. Let H and H' be tight 4-regular graphs on the compact 
orientable surface S. {f µ~ = µ~. then H' can be obtained from H by a series 
of operations ( 4 ). 

3. REDUCTION OF THEOREM 1 TO THEOREM 2 

We show a relation between kernels and tight graphs, which allows us 
to reduce Theorem 1 to Theorem 2. It is based on constructing the medial 
graph H(G) of G, introduced by Steinitz [20] (cf. [21]), who called it the 
w-process, and in reverse form by Tait [22] (cf. [23]). 

For any graph G embedded on a surface S, H( G) is constructed as 
follows. Choose an arbitrary point w(e) "in the middle of" e, for each edge 
e of G. These points form the vertex set of H( G ). For each vertex v of G, 
there will be edges of H( G) forming a circuit connecting the points w( e) on 
edges e incident with v. That is, we consider a neighbourhood N 
( homeomorphic to an open disk) of v: 
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ek-1----->11~----e3 
; V I 

' I \ I 
\ / 

' " ', " ... ____ , 

If e1, .. ., ek denote the edges incident with v in cyclic order, H(G) has edges 
connecting the pairs { w(ei), w(e2 ) }, { w(e 2 ), w(e 3 )}, ••• , { w(ek- i), w(ek) }, 
{ w(ek), w(ei) }, drawn in N as in 

We do this for every vertex v. This makes the 4-regular graph H(G). Note 
that µ~(Gl = 2µ 0 . 

In fact, H(G) determines G up to homotopy and duality: 

PROPOSITION 1. Let G and G' be graphs embedded on the compact 
surface S so that each face of G is an open disk. Then H( G) and H( G') are 
homotopic, if and only if G' is homotopic to G or to its dual G*. 

Proof This follows directly from the fact that G can be reconstructed 
from H(G), up to homotopy and duality. I 

Moreover, we have: 

PROPOSITION 2. Let G be a graph embedded on the compact surface S so 
that each face of G is an open disk. Then G is a kernel, if and only if H( G) 
is tight. 

Proof One easily checks that deletion and contraction of an edge e of 
G corresponds to the two ways of opening H( G) at vertex w( e ). So if G' is 
a proper minor of G then H( G') is (homotopic to) a proper opening of 

--
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H( G ). This implies that if H( G) is tight, then for each proper minor G' 
ofG, 

(5) 

So G is a kernel. 
Conversely, if G is a kernel, then H(G) is tight. For suppose to the 

contrary that we can open H(G) at vertex w(e), say, obtaining a graph H' 
with µ'w = µ~<G'J· This would contradict the fact that G is a kernel, since 
the opening would correspond to a deletion or contraction of edge e in G, 
without changing µa. unless it corresponds to contracting e while e is a 
loop. Let D be the closed curve following loop e. Since G is a kernel, D is 
not nullhomotopic (otherwise we could delete e from G without modifying 
µa). Now cr(H', D) = 0. Hence µa(D) = !µ~<Gl(D) = !µ~.(D) = 0, contra
dicting the fact that each face of G is an open disk. I 

We cannot delete the condition in Proposition 2 that each face of G is 
an open disk, as on the torus S, the graph G consisting of one vertex with 
one non-nullhomotopic loop attached, is a kernel, but H(G) is not tight 
(H(G) consists of one vertex with two non-nullhomotopic loops (of the 
same homotopy) attached). 

Finally we have: 

PROPOSITION 3. Let G and G' be graphs embedded on the compact 
surface S. If H(G') arises from H(G) by one AV-exchange, then G' arises 
from G by one L1 Y-exchange, up to homotopy and duality. 

Proof This follows from Proposition 1 and by considering the 
following two figures (where the uninterrupted lines are edges of H(G) or 
H( G' ), and the interrupted lines are edges of G or G' ): 

T 

I 

Proposition 2 and 3 directly yield: 

PROPOSITION 4. Theorem 2 implies Theorem 1. 

Proof If G and G' are kernels on the compact orientable surface S, so 
that each face of G and of G' is an open disk, then by Proposition 2, H(G) 

582b/SS'l-\ \ 
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and H(G') are tight graphs. If µc=µc· then µ~1 c;l=2µu= 2µc;-=µ~(G')· So 
by Theorem 2, H(G) and H(G') arise from each other by homotopic shifts 
and LIV-exchanges. So by Proposition 3, G and G' arise from each other by 
homotopic shifts, duality, and L1 Y-exchanges. I 

4. REDUCTION OF THEOREM 2 TO A LEMMA 

We now reduce Theorem 2 to a lemma on closed curves on a compact 
orientable surface. This lemma will be proved in Section 6 (Section 5 
contains some preliminaries on hyperbolic plane geometry). 

Let H be a 4-regular graph on a compact surface S. The straight decom

position of H is the decomposition of the edges of H into closed curves 
C 1 , ••• ,Ck in such a way that each edge is traversed exactly once by these 
curves, and that in each vertex w of H, if e 1 , e 2 , e3 , e4 are the edges inc:ir 
dent with w in cyclic order, then e1, w, e3 are traversed consecutively (in 
one way or the other), and similarly, e2 , w, e4 are traversed consecutively 
(in one way or the other). 

The straight decomposition is unique up to the choice of the beginning 
vertex of the curves, up to reversing the curves, and up to permuting the 
indices of C 1 , ... , Ck. 

We call a system C1' .. ., Ck of closed curves minimally crossing if each C; 

has the minimum number of self-intersections (among all closed curves 
freely homotopic to C;), and each two C; and C1 have the minimum 
number of intersections with each other (among all closed curves freely 
homotopic to C; and C1, respectively; taking i#j). 

To be more precise, define for closed curves C, D: S1 -+ S: 

er( C) :=I { (y, z) E S1 x S 1 I C(y) = C(z ), y #- z} 1, 

min er( C) : = min {er( C') I C' ~ C}, 

er( C, D) :=I { (y, z) E S 1 x S 1 I C(y) = D(z)} J, 

miner( C, D) := min{ er( C', D') IC'~ C, D' ~ D }. 

(6} 

Then C 1 , .. ., Ck are minimally crossing if cr(C;)=mincr(C;) and 

er( Ci> C1) =miner( C;, C1) for all i, j with i of. j. 
A closed curve C: S1 -+ Sis primitive if C is not freely homotopic to Dn, 

for some closed curve D: S1 -+ S and some n ~ 2. (Here D" is the closed 
curve defined by D"(z) :=D(z") for all zES 1.) 

A key result of [18] is: 

PROPOSITION 5. Let H be a 4-regular graph on the compact orientable 



ON THE UNIQUENESS OF KERNELS 153 

surface S. Then H is tight if and only if the straight decomposition of H is 
a minimally crossing collection of primitive closed curves. 

In fact, the assertion holds for any eulerian graph on S. 
As is shown in [18], it is not difficult to derive from Proposition 5: 

PROPOSITION 6. Let H be a tight 4-regular graph on the compact orien
table surface S, with straight decomposition C 1 , .. ., Ck· Then for each closed 
curve Don S, 

k 

µ'tt(D) = L: miner( C;, D). (7) 
i=l 

Moreover, in [19] we derived from the results in [18]: 

PROPOSITION 7. Let C1' .. ., ck and C'1, .. ., ck' be primitive closed curves 
on the compact orientable surface S. Then the fallowing are equivalent: 

(i) k = k', and there exists a permutation re of { !,. . ., k} so that for 
each i= I, ... , k, C;~ C~ui or c;-i ~ C~li 1 ; 

(ii) for each closed curve D on S, 

k k' 

L mincr(C;,D)= I mincr(C;,D). (8) 
i=l i=l 

[The implication (i) =>(ii) is trivial.] 
In order to prove Theorem 2, let H and H' be tight 4-regular graphs on 

the compact orientable surface S, with µ'tt = µ'tt.. Let C 1 , .. ., Ck and 
c;, ... , Ck. be the straight decompositions of Hand H', respectively. By (7), 
we know that ( 8) holds. Therefore, we may assume that k = k', and that 
c; ~ C 1 , .. ., Ck~ Ck. In fact, C 1 , .. ., Ck can be moved to C'1 , .. ., Ck in a 
finite number of steps, each step of which is one of the following: 

( i) homotopic shifts of C 1 , .. ., Ck so that during the shifting, 
no two crossings coincide and no new crossings are 
introduced; (9) 

(ii) a "jump" of C; over a crossing of C h and Cj as in 

c. 
J 

c. 
l 

c. 
J 

c. 
l 
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(h, i, and j need not to be different). We assume that C1 , .•• ,Ck do not 
intersect the triangle enclosed by C1,, C1, and C;· 

If we transform C 1 , ••• ,Ck by applying a series of operations (9), we say 
that C1, .• ., Ck are moved by jumps. 

Since each jump corresponds to a ,JV'-exchange in the underlying graph, 
it now suffices to prove: 

LEMMA. Let cl' .. ., ck and c;' .. ., ck be minimally crossing systems of 
primitive closed curves on the compact orientable surface S, such that 
C 1 ...... C'1, •• ., Ck ...... Ck and such that no point of S is covered more than twice 
by Ci. ... ,Ck or more than twice by c;, ... , Ck. Then C1 , ••. ,Ck can be moved 
by jumps to c;, ... , Ck, possibly after permuting indices. 

Before proving this lemma in Section 6, we first give in Section 5 some 
prliminaries on hyperbolic plane geometry. 

Note 4. The "jump" defined in (9) is similar to the type III move 
studied by Reidemeister [14] (cf. [10]) for knots and links. 

5. THE HYPERBOLIC PLANE 

In proving the lemma, we make use of the representation of the universal 
covering surface of S as the hyperbolic plane (if S is not the 2-sphere and 
not the torus). This representation was introduced by Poincare [ 12] ( cf. 
[5, 7] ). Here we review some elements of this representation which we use 
in our proof. 

Let U = { z EC\ I:::\ < 1 } be the unit open disk in the complex C. A set of 
points of U is called a hyperbolic line if it is the intersection of U with C, 

where C is a circle or (straight euclidean) line in C crossing the boundary 
of U orthogonally. The set U together with the set of hyperbolic lines 
makes the hyperbolic plane. Each two distinct points in U are contained in 
a unique hyperbolic line. 

There exists a metric don U so that the topology induced by d coincides 
with the usual topology on U, and so that the hyperbolic lines in U are the 
geodesics of d. That is, for any three points x, y, z in U one has: x, y, z are, 
in this order, on a hyperbolic line, if and only if d(x, y) + d(y, z) = d(x, z). 

For any x EU and any hyperbolic. line l there is a unique point y EI so 
that d(x, Y) = d(x, I). If x if: l, then y is also the unique point on l so that the 
hyperbolic line through x and y is orthogonal to I. 

An isometry on U is a homeomorphism </>: U--+ U so that d( </>(x ), </>(y)) = 

~(x, Y) for all x, y E U. So an isometry brings hyperbolic lines to hyperbolic 
Imes. 
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We will also use the following elementary fact from hyperbolic plane 
geometry. For any e > 0 there exists a ( > 0 with the following property: 

if 1 is a hyperbolic line and x, y, z EU so that: 

(i) d(y,l)>e; 
(ii) d(x, l) ~ d(y, I) and d(z, l) ~ d(y, !); 

(iii) d(x, y) = d(y, z) = e, 

then d(x, z) < d(x, y) + d(y, z)-(. 

x z 

( 10) 

The hyperbolic plane can be considered as a universal covering surface of 
a compact orientable surface S (of genus ;;::2). It implies that there exists 
a "projection" function l/J: U __.. S with the following properties ( cf. also 
Baer [3] ): 

(i) Each u EU has a neighbourhood N homeomorphic to 
an open disk such that l/11 N is one-to-one; 

(ii) If u, u' E U and l/J( u) = l/J( u' ), then there exists an 
isometry </J: U __.. U so that </J(u) = u' and l/J a r/J = ljl. 

(iii) For each closed curve C: S 1 __.. S and each u E l/J- 1 [ C( 1 ) ], 
there exists a unique continuous function C': IR-.. U 
such that C'(O)=u and l/JoC'(x)=C(exp(2nix)) for 
each x E IR. [ C' is called a lifting of C to U.] 

(iv) For each closed curve C: S 1 __.. S there exists a closed 
curve C': S' -.. S such that C' ,.._, C and for each lifting L' 
of C', the set L' [ IR] is hyperbolic line. The closed 
curve C' is unique (up to orientation-preserving homeo
morphism on S 1, i.e., up to replacing c' by r o C', where 
r: s 1-s1 is an orientation-preserving homeomorphism.) 
[We call C' a geodesic curve.] (11) 
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( v) If C' is a geodesic curve homotopic to C: S 1 --> S, then 
for each lifting L of C there exists a lifting L' of C' so 
that L[IR] and L'[IR] have the same two intersection 
points with the boundary bd( U) of U. [We say that L' 
is parallel to L.] The functions Land L' are periodic in 
the following sense: there exists an isometry <ft: U--> U so 
that t/Ja</J=i/I and so that </J(L(x))=L(x+l) and 
</J(L'(x)) = L'(x + 1) for each x E IR. 

6. PROOF OF THE LEMMA 

I. We first prove an auxiliary proposition. Let [i be the closed unit 
disk in IC, let Li • ... , L" L'i, ... , L; be simple curves on [i with end points on 
the boundary bd( U) of U, so that L; and L; have the same pair of end 
points (i = 1, ... , t); so that L; and L1 have at most one intersection, being 
a crossing in U, and similarly L; and L; have at most one intersection, 
being a crossing in U (i, j = 1, ... , t; i f=.j); and so that no three of the L; 
pass one and the same point, and similarly, no three of the L; pass one and 
the same point. Then: 

PROPOSITION 8. L 1 , ••. , L, can be moved by jumps in U to L'i, ... , L;. 

(Moving by jumps is defined in a manner similar to that above.) 

Proof We apply induction on t. We may assume that Li, ... , L, are 
straight euclidean line segments (since if we can move L'1 , ••• , L; to straight 
line segments, then by transitivity, any two choices for L'i, ... , L; can be 
moved to each other). Moreover, we may assume that L'1 = L 1 • 

Without loss of generality, L 1 crosses L~, ... , L~, in this order (n ~ t). Let 
Li cross Lp(l)• ... , Lp(n) in this order, for some permutation p of {2, ... , n }. 
We assume we have moved L'1, ••• , L; by jumps so that 

the number of pairs (i, j) with i <j and p(j) < p(i) is as small 
as possible. (12) 

If p is the identity, we may assume that L1 n Li = Lj n L 1 for j = 2, ... , n. 
Then by the induction hypothesis applied to the two parts into which L1 

divides U, we can move L'1, ••• , L; by jumps to L 1 , •• ., L,. 
If p is not the identity, there exists an i with 2 ~ i < n so that 

p(i + 1) <p(i). We may assume that the crossing points x and y of L; and 
L~+ 1 with L 1 are very close to each other (to be specified). Now by the 
induction hypotheses applied to the two parts into which L 1 divides U, we 
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can move L;, ... , L; by jumps, without changing the crossing points with 
L 1 , in such a way that finally each of L;, ... , L; is piecewise linear, with 
only one bend in the crossing point with L 1 (if any). Choosing x and y 
close enough to each other ensures that L~, L;, L;+ 1 form a triangle not 
intersected by any of the other curves. Now we can do a jump at this 
triangle (that is, we move the crossing point of L; and L; + 1 to the other 
side of L'1 ). This however would decrease the number ( 12 ), contradicting 
our assumption. 

II. To prove the lemma, we may assume that Sis not the 2-sphere. 
We first consider the case where Sis not the torus either. Let C~, ... , CZ be 
geodesic curves on S homotopic to C 1 , ••• , Ck> respectively ( cf. (11 )(iv)). It 
might be that c;' and CJ' coincide for i # j. Let !!' denote the collection of 
liftings of c;'' ... , c;' considered as hyperbolic lines. 

Let X be the set of points of U covered by more than one l E !!'. We 
choose p > 0 small enough that if x EX and I E !!' with x ~ l, then 
d(x, 1) > 2p. (The existence of such a p > 0 follows easily from ( 11 )( i) and 
(ll)(ii), using the fact that X=i/J- 1[Y] for the finite set Y of crossing 
points of C~, .. ., c; on S.) 

It follows that the closed balls B(x, p) of radius p and center x EX are 
pairwise disjoint. Moreover, each such ball intersects U !!' in a "star." 

Next choose £ > 0 small enough that £ < p and that each two distinct 
components of U 2' \ UxE x B(x, p) have distance > £. (Again, the existence 
of such an £ follows from the symmetry of U and !!'.) 

We now move C1, .. ., ck by jumps, so as to obtain C\ ~cl> ... , C1 ~ck> 
with the property that each lifting L of C, is at a distance at most £ from 
the lifting of C;' that is parallel to L ( cf. ( 11 )( v) ). 

To describe this moving, suppose lifting L of C; is not contained in the 
£-neighborhood of lifting L' E !!' parallel to L. Choose a point u EL which 
maximizes d( u, L') (such a u exists, as L and L' are periodic-cf. ( 11 )( v) ). 
So d(u, L') > £. Consider the closed ball B(u, i:) of radius£ and with center 
u. By Proposition 8 above, we can move the intersections of the liftings of 
C 1 , •• ., Ck with B(u, i:) by jumps within B(u, i:), fixing the points on the 
boundary of B(u, i:), in such a way that after moving, these intersections 
are hyperbolic line segments. (We make "small" deviations to prevent three 
of these line segments from going through one point-"small" to be 
specified below.) 

Since ijJ restricted to B(u, e) is one-to-one, we can reproduce these moves 
on S, giving a move of C 1 , ••. , Ck by jumps. Let us call this a local move. 
We show: 

PROPOSITION 9. After a finite number of local moves, each lifting L of 
each C, is contained in the £-neighbourhood of the line in !!' parallel to L. 
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Proof Let ( > 0 satisfy (10). Then at each local move, the sum of the 
lengths of the C; is decreased by at least ( (taking the deviations small 
enough). Here, without loss of generality, we take the C; piecewise linear 
(i.e., the liftings are piecewise linear in hyperbolic geometry). The length of 
C; is the length of one period of its lifting. 

As this sum remains nonnegative, we can apply only a finite number of 
local moves. I 

So by a finite number oflocal moves we can shift C 1 , ... , Ck so that each 
lifting L of each C; is contained in the e-neighbourhood of the line in !i' 
parallel to L. We can shift C'1, .. ., Ck similarly. 

Now for each L' E £' there is a number k L' so that there are k L' curves 
among C 1 , .. ., Ck with a lifting in thee-neighbourhood of L'. These kL' lif
tings are pairwise disjoint, since C 1, ... , Ck are minimally crossing. 
Similarly, there are k L' pairwise disjoint liftings of C'1 , .. ., Ck contained in 
the e-neighbourhood of L'. By permuting indices we may assume that these 
k L' curves have indices in the same order in C 1 , .. ., Ck as in C'1 , .. ., Ck. 

Consider next a closed ball B(x, p) with x EX. We may assume that if L' 
passes through x, then the kL' liftings of c1' .. ., ck in thee-neighbourhood 
of L' intersect the boundary of B(x, p) exactly twice, and similarly for the 
kL' liftings of C'1 , ... , Ck. Moreover, we may assume that the points of 
intersection on the boundary of B(x, p) are the same for C 1 , .. ., Ck as for 
C~, ... , Ck. Hence by Proposition 8, we can move the liftings of C 1 , ... , Ck 
by jumps on B(x, p) so that they coincide on B(x, p) with the liftings of 
C'1 , ... , Ck. Reproducing these shifts on S, we finally obtain that C 1 , ... , Ck 
are moved by jumps to C'1, .. ., Ck. 

III. We finally show that the lemma is also true in the case where 
S is the torus. In fact, this can be reduced easily to the double torus case 
(genus 2). To see this, put a "small" handle somewhere on the torus S, 
where the feet of the handle are close enough to each other that both are 
contained in the same component of S\ ( C 1 u ·. · u Ck u C'1 u · · · Ck). 

Then also on the new surface S', C; and c; are freely homotopic 
(i= 1, .. ., k). This follows from the fact that on the torus S, there are two 
distinct ways of shifting C; to c;. Now we saw above that on S' we can 
move C 1 , ... , Ck to c;, ... , Ck by jumps. This implies that the same can be 
done on S. I 

Note 5. The lemma also implies the following theorem: 

THEOREM 3. Let c I> ... , ck and C'1' ... , ck be minimally crossing collec
tions of primitive closed curves on a compact orientable surface S, such that 

C; ~ c; for i = 1, ... , k. Then we can shift C 1 , ... , Ck to C'1 , ... , Ck over S 

(possibly after permuting subscripts), keeping them minimally crossing 
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throughout the shifting process. That is, there exist a permutation p of 
{ 1, ... , k} and continuous functions <1> 1 , ••• ,<Pk: [O, I] x S 1 --+ S such that: 

(i) <P;(O,z)=C;(z) and <P;(l,z)=C~u>(z) for all zES1 and all 
i E {1, ... , k }; 

(ii) for each x E [O, I], the collection of curves c;/> 1 (x, · ), ... , c;/>k(x, ·) is 
minimally crossing. 

This generalizes a theorem of Baer [ 4 ], where C 1 , ••• , Ck are simple and 
pairwise disjoint. 

Note 6. The method described in this paper yields a construction of 
kernels. Let S be a compact orientable surface, and let Cl> ... , Ck be a mini
mally crossing system of primitive closed curves on S. Assume that each 
face of the graph H := C 1 u · · · u Ck is an open disk, and that the faces of 
H can be colored black and white so that adjacent faces have different 
colors. (This last is equivalent to each curve Don Shaving an even number 
of crossings with C 1 , ••• ,Ck.) Now His equal to the medial graph H(G) of 
some graph G on S. Then G is a kernel, and each kernel arises in this way 
(provided that each face of the kernel is an open disk). 
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