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Applications of Polyhedral Combinatorics 
to Multicommodity Flows and Compact Surfaces 

A. SCHRIJVER 

ABSTRACT. We survey results on graphs and curves on compact surfaces and 
outline the proof methods, which make essential use of polyhedral combi
natorics. We derive results on planar multicommodity flows. 

1. Introduction 

In this paper we give a survey of some recent results on multicommodity 
flows and compact surfaces, derived with the help of methods from poly
hedral combinatorics. For several of the results obtained we know, at this 
moment, no other proof method than polyhedral methods. 

In fact, these polyhedral methods are none other than two well-known 
variants of Farkas' lemma. Let a 1 , ••• , ak, b1, ... , bm be vectors in Rn. 
The first variant is the "blocking polyhedron theorem" of Fulkerson [2]: 

(I) ifthepolyhedron {xERnlx2'.0;a;x;::: l (i= l, ... ,k)} 
has vertices b1 , ••• , bm, then the polyhedron {x E Rnlx 2: 
0 ; b J x 2: I (j = I , ... , m)} has all its vertices among a 1 , 

... 'ak 

(assuming a 1 , ••• , ak 2: 0). 
The second variant is the "cone-form" of Farkas' lemma: 

(2) ifthe convex cone {x E Rnlai x;::: 0 (i = 1, ... , k)} is gen

erated by b1 , ••• , bm, then the convex cone {x E RnlbJx 2: 
0 (j = 1 , ... , m)} is generated by a 1 , .•• , ak . 

The first variant is applied to graphs embedded on the Klein bottle (Sec
tion 2), and the second variant is applied to graphs embedded on compact 
orientable surfaces (Section 3). 
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2. The Klein bottle 

We first focus on the Klein bottle and its relations to planar multicom
modity flows. The Klein bottle is a compact surface usually represented as 
follows. Consider an annulus ( = cylinder) and identify the inner and outer 
boundaries, in opposite orientation. Schematically: 

(3) 

There is an alternative way of obtaining the Klein bottle from the annu
lus: identify opposite points on the outer boundary, and similarly, identify 
opposite points on the inner boundary. Schematically: 

(4) • 
This corresponds to representing the Klein bottle as a 2-dimensional sphere 
with two "cross-caps" (one made by the outer boundary in ( 4 ), the other by 
the inner boundary). 

The Klein bottle is a nonorientable surface. Hence there are two types of 
closed curves on the Klein bottle: 

(5) • orientation-preserving closed curves: those where the 
meaning of left and right is unchanged after one turn; 

• orientation-reversing closed curves: those where the 
meaning of left and right is flipped after one turn. 

It is not difficult to see that a closed curve is orientation-preserving ( orienta
tion-reversing, respectively) if it traverses the cross-caps an even (odd, re
spectively) number of times. 



APPLICATIONS OF POLYHEDRAL COMBINATORICS 121 

Now let G = ( V, E) be a graph embedded on the Klein bottle S. (By 
a graph we mean an undirected graph. Embedding assumes nonintersecting 
edges except for their end vertic~s. Cellularly embedding means that all faces 
are homeomorphic to open disks. We identify an embedded graph with its 
image.) 

We will be interested in the orientation-reversing circuits in G. (A circuit 
is a simple closed curve in G. We identify a circuit with the set of edges 
traversed by it.) 

Call a set B of edges a blocker if it intersects each orientation-reversing 
circuit. In [10] we proved the following min-max relations: 

( 6) ( i) If G is bipartite, then the minimum size of an orienta-
tion-reversing circuit is equal to the maximum of 
pairwise disjoint blockers. 

(ii) If G is Eulerian, then the minimum size of a blocker 
is equal to the maximum number of pairwise edge
disjoint orientation-reversing circuits. 

(Here a graph is Eulerian if all degrees are even.) 
We here sketch a proof of these equalities. In fact, we first show (6)(i), and 

next derive (ii) from (i) with the blocking polyhedron variant ( 1) of Farkas' 
lemma. 

The starting point in the proof method is the following result proved in 
[7]: 

THEOREM l. Let G = ( V, E) be a planar bipartite graph embedded in the 
plane. Let 11 and 12 be two of its faces. Then there exist pairwise edge-disjoint 
cuts <5(X1), ••• , <5(X1) so that for each two vertices v, w with v, w E bd(/1) 

or v, w E bd(/2) , the distance in G from v to w is equal to the number of 
cuts <5(X) separating v and w. 

Here c5(X) denotes the set of nonloop edges of G with exactly one end 
point in X. The cut t5(X) is said to separate v and w if v =I= w and 
l{v, w} n XI = I. By bd( .. ) we denote the boundary of ... Faces are 
considered as open regions. 

From Theorem 1 we derive (6)(i): 

THEOREM 2. Let G = ( V , E) be a bipartite graph embedded on the Klein 
bottle S. Then the minimum length of any orientation-reversing circuit in G 
is equal to the maximum number of pairwise disjoint blockers. 

PROOF. Clearly, the maximum is not larger than the minimum. To show 
equality, we may assume that each face of G is orientable, i.e., contains no 
cross-cap. Indeed, if a face contains a cross-cap, we can add a path to G over 
this cross-cap in such a way that the graph remains bipartite and such that 
the minimum length of any orientation-reversing circuit remains unchanged 
(by taking the path with length large enough and of appropriate parity). 
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Let C1 be a minimum-length orientation-reversing circuit in G, say with 
length t 1 • We "cut open" the Klein bottle S along C1 • In this way we 
obtain a bordered surface S', with a circle B1 as border, so that S arises 
from s' by identifying opposite points on BI . So s' is a Mobius strip. 
Let i: S' -+ S denote the identification map. The graph G' := i- 1 [ G] is a 
bipartite graph on S' , and B 1 = i- 1 [ C1] • 

Let C2 be a minimum-length orientation-reversing circuit in G' (on S'), 
say with length t2 • We may assume that C2 is edge-disjoint from B1 (by 
adding parallel edges). Next we "cut open" the Mobius strip s' along C2 • 

We now obtain an annulus S", with two circles B1 and B2 as boundaries 
(in the ideal case where C2 is vertex-disjoint from B 1-the general case is 
similar). 

The Klein bottle S arises from the annulus S" by identifying opposite 
points on B1 and by identifying opposite points on B2 • Let i': S"-+ S be 
the identification map, and let G11 := (i1 )- 1 [ G] . So G11 is a planar bipartite 
graph, embeddable in the plane R2 , in such a way that two of its faces / 1 

(= unbounded face) and / 2 have the following properties: 

(7) (i) the boundary of 11 is a circuit B 1 of length 2t 1 , and 
the boundary of /2 is a circuit B2 of length 2t2 ; 

(ii) S arises from R2 \ (/1 u / 2) by identifying pairs of 
opposite points on B1 and by identifying pairs of 
opposite points on B2 • 

In fact, we identify s" and R2 \ U1 u lz) . 
Since t 1 is the minimum length of an orientation-reversing circuit in G, 

each pair of opposite vertices on B1 has distance exactly t 1 • Similarly, since 
t2 is the minimum length of an orientation-reversing circuit i'Il G' , each pair 
of opposite vertices on B2 has distance exactly t2 • 

By Theorem 1, there exist pairwise disjoint cuts o(X1), ••• , b(X1) so that 
for each two vertices v and w of G" with v, w E bd(/1) or v, w E bd(/2) , 

the dis~ance in G11 from v to w is equal to the number of cuts o (Xj) 
separating v and w. We may assume that each o(X1) separates at least 
one such pair v, w (all other cuts can be deleted). 

Each cut o(X) intersects any subpath P of B1 of length t 1 at most once 
(as P is intersected by t 1 of the o(Xj), as P is a shortest path between its 
end points). So if o(X1) intersects B1 , it intersects B1 exactly twice, in two 
opposite edges. Similarly, if o(X) intersects B2 , it intersects B2 exactly 
twice, in two opposite edges. 
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We classify J(X1), ••• , J(X1) into three classes: 

(8) (i) those intersecting both B 1 and B2 , say J(X1), ••• , J (Xs) ; 
(ii) those intersecting B1 but not B2 , say J(Xs+l), ... , J(X1 ) ; 

(iii) those intersecting B2 but not B1 , say J(X1 +I), ... , J(X;). 
l 

Note that B2 is intersected by exactly t2 of the J(Xj), and hence t2 = 
s + (t- t 1), i.e., s = t1 + t2 - t. 

Now it is not difficult to see that the images of the J(X.), properly com
posed, give blockers in G as required. In fact, we can tak6: 

(9) 
i'[J(X1)], ••• , i'[J(X5 )], i'[J(Xs+ 1)UJ(X11 +1)], ••. , i 1[5(X1)UJ(X211 _ 5 )]. o 

A standard corollary in polyhedral combinatorics now is: 

THEOREM 3. Let G = ( V , £) be a graph embedded on the Klein bottle S. 
Then each vertex of the polytope in RE determined by 

(10) (i)x(e)~O (eEE), 

(ii) L x(e) ~ 1 (C orientation-reversing circuit) 
eEC 

is the incidence vector of some blocker. 

PROOF. Let x be a positive rational vector satisfying ( 10). We show that 
there exist blockers B1 , ••• , B1 and rationals A. 1 , ••• , A1 > 0 so that A1 + 
· · · + A1 = 1 and so that 

( 11) 

(where x8 denotes the incidence vector of B ). This suffices to prove the 
theorem. 

Let N be a natural number so that N x( e) is an even integer for each 
edge e. Replace each edge of G by a path of length Nx(e) (that is, put 
Nx(e) - 1 new vertices on e ). We obtain a bipartite graph G1 • Let C 1 

be a minimum-length orientation-reversing circuit in G1 
, of length t, say. 

As x satisfies ( 10), we know t ~ N . By Theorem 2 there exist t pairwise 
edge-disjoint blockers s; , ... , s; in G1 

• Their "projections" to G give 
t blockers B1 , ••• , B, in G with the property that each edge e of G is 
contained in at most Nx(e) of the Bj. Hence 

( 12) N > BI B, 
tx 2: x _ X + · · · + X · 

Taking Aj := 1 / t for each j gives ( 11 ). o 
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Lehman's theorem ( 1) now implies the dual statement of Theorem 3: 
THEOREM 4. Let G = ( V, E) be a graph embedded on the Klein bottle s. 

Then the vertices of the polytope in RE determined by 

(13) (i)x(e)~O (eEE), 

(ii) ,L x(e) ~ 1 (B ~ E, B blocker) 
eEB 

are exactly the characteristic vectors of orientation-reversing circuits. 

This is in fact the fractional packing version of (6)(ii). We derive the 
integer packing result (6)(ii): 

THEOREM 5. Let G = ( V , £) be an Eulerian graph embedded on the 

Klein bottle S. Then the minimum size of a blocker is equal to the maximum 
number of pairwise edge-disjoint orientation-reversing circuits. 

PROOF. Clearly, the maximum is not more than the minimum. Suppose 
equality does not hold, and let G form a counterexample with 

( 14) L 2cteg(v) 

vEV 

as small as possible (where deg(v) denotes the degree of v ). Then 

( 15) each vertex of G has degree at most 4 . 

For suppose v has degree at least 6: 

( 16) 

Replace this (on the Klein bottle) by: 

( 1 7) 

This modification does not change the minimum size, t say, of a blocker, as 
one may check. However, it reduces the sum (14), so in the new graph there 
exist t pairwise edge-disjoint orientation-reversing circuits. This gives also 
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in the original graph t pairwise edge-disjoint orientation-reversing circuits, 
contradicting our assumption. 

This shows ( 15). Let t be the minimum size of a blocker in G. Hence the 
vector x with all entries equal to 1 / t satisfies ( 13). So by Theorem 4 there 
exist orientation-reversing circuits cl ' ... ' ck (pairwise different) and reals 
A. 1 , ••• , A.k > 0 so that 

( 18) (i) A1 + · ·· +Ak = 1, 

(ii) A1Xc1 + ... + A.kxck ::::; x. 

Consider a vertex v of G of degree 4 , and the edges e 1 , e 2 , e 3 , e 4 inci
dent to v in cyclic order: 

( 19) 

Thus e1 and e3 are "opposite" in v, and similarly, e2 and e4 are opposite 
in v. We show that for each circuit Ci 

(20) (i) ci traverses el ~ ci traverses e3, 
(ii) C1 traverses e2 ~ C1 traverses e4• 

Having shown this for each vertex v and each Ci , it follows that C1 , ••• , Ck 
are pairwise edge-disjoint. Since k 2: t (since Ai :::; 1 / t for each i) , this 
proves the theorem. 

If (20) does not hold, we may assume without loss of generality that C1 

traverses e1 and e2 • Replace ( 19) by 

(21) 

Let G' be the new graph obtained. So G arises from G' by identifying v' 
and v". Graph G' is Eulerian again, with sum (14) smaller than for G. So 
by the minimality assumption, the theorem to be proved holds for G' . 

Let t' be the minimum size of a blocker in G' . If t' 2: t, there exist 
t pairwise edge-disjoint orientation-reversing circuits in G' , and hence also 
in G, contradicting our assumption. So t' < t. By the Euler condition, 
t':::; t - 2. Let B' be a blocker of size t' in G'. Then B := B' u {e1 , e2 } is 
a blocker of size at most t' + 2 in G. Since JBI 2: t, we know JBI = t. 
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Since IC; n BI ;::: 1 while IC1 n BI > 1, this gives the contradiction: 

(22) 1 = L l/t?. z=v,1xc1 (e) + · · · + AkXck (e)) 
eEB eEB 

= A11c1 n BI+ A.2IC2 n BI+···+ Aki Ck n BI 
> A1 + · · · + A.k = 1 . o 

Theorem 5 has a number of corollaries. First, a theorem of Lins [3] follows, 
which is in fact the analogue of Theorem 5 for the projective plane. Note 
that the orientation-reversing circuits in the projective plane are exactly the 
non-null-homotopic circuits, and exactly the nonseparating circuits. 

THEOREM 6 (Lins' theorem). Let G = (V, E) be an Eulerian graph em
bedded in the projective plane. Then the maximum number of pairwise edge
disjoint non-nu/l-homotopic circuits in G is equal to the minimum number of 
edges intersected by any non-null-homotopic closed curve not intersecting V . 

PROOF. This follows directly from Theorem 5 by putting a cross-cap in 
one of the faces of G, thus transforming the projective plane to a Klein 
bottle. Note that the minimal blockers in G are exactly the minimal sets of 
edges intersected by some non-null-homotopic closed curve not intersecting 
v. 0 

Theorem 5 also implies two results on planar multicommodity flows. Let 
G = ( V, E) be a graph, and let r1 , ••• , rk, s1 , ••• , sk be vertices of G 
(so that ri :f. si for all i). Clearly, the following cut condition is a necessary 
condition for the existence of pairwise edge-disjoint paths P1 , ••• , Pk where 
Pi connects ri and si (i = 1, ... , k): 

(23) (cut condition): for each X ~ V: lb (X) I ?. number of pairs 
ri, si separated by b(X). 

Simple examples show that this cut condition is not sufficient in general. 
However, an Euler condition turns out to be quite helpful: 

(24) (Eulercondition)thegraph (V,Eu{{ri's 1}, ... , {rk,sk}}) 
is Eulerian. 

First we sketch how to derive 

THEOREM 7. Let G = ( V , E) be a planar graph embedded in the plane 
R2 and let r1 , ••• , rk, s1 , ••• , sk be vertices of G so that the Euler condition 
holds. Let r1 , ••• , rk be incident to the unbounded face 11 in clockwise order. 
Let s1 , ••• , sk be. incident to some other face 12 in counterclockwise order. 
Then there exist pairwise edge-disjoint paths P1 , ••• , Pk where Pi connects 
ri and si ( i = 1 , ... , k) if and only if the cut condition is satisfied. 

PROOF. Let the cut condition be satisfied. Extend R2 \ (/1 u /2) to the 
Klein bottle, by adding a cylinder between the boundaries of / 1 and / 2 • 

Extend G to a graph G' on the Klein bottle by adding edges e1 , ••• , ek 
• T 
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over this cylinder, in such a way that ei connects ri and si (i = l, ... , k). 
Then a circuit in G' is orientation-reversing if and only if it contains an odd 
number of edges from e1 , ••• , ek. So it suffices to show that G' contains k 
pairwise edge-disjoint orientation-reversing circuits. 

Since G' is Eulerian, we can apply Theorem 5. That is, we must show 
that each blocker in G' has size at least k . It is not difficult to derive this 
from the cut condition. o 

Also a theorepi of Okamura (4] can be derived: 

THEOREM 8 (Okamura's theorem). Let G = (V, E) be a planar graph 
embedded in the plane R2 and let r1 , ••• , rk, s1 , ••• , sk be vertices of G 
so that the Euler condition holds. Let there exist two faces 11 and ! 2 of 
G so that for each i = l, ... , k, ri, si E bd(/1) or ri, si E bd(/2). Then 
there exist pairwise edge-disjoint paths P1 , ••• , Pk where Pi connects ri and 
si (i = l , ... , k) if and only if the cut condition is satisfied. 

PROOF. Without loss of generality, / 1 is the unbounded face, and r 1 , ••• , 

rt, s1 , ••• , s1 E bd(/1) and rr+I' ... , rk, st+I' . .. , sk E bd(/2). By an argu
ment due to S. Lins we may assume that r1 , ••• , rt, s1 , .•• , s1 occur in this 
order cyclically around bd(/1) • To see this, first note that we may assume 
that the vertices r1 , ••• , rt, s1 , ••• , s1 are distinct and have degree l (as we 
can add a new vertex of degree l to any ri or si and replace this ri or si by 
the new vertex). Call two pairs ri, si and r1 , s1 on bd(/1) crossing if i =/. j 
and r;, r1 , si, s1 occur in this order cyclically around bd(/1), clockwise or 
counterclockwise. Suppose not all pairs ri, si are crossing. Then there exist 
i, j so that ri, si and r1 , s1 are noncrossing and so that there is no pair 
rh, sh on the part of the boundary of / 1 that connects ri and si and that 
does not contain si or sJ (maybe after exchanging r; and si). 

Now we can add in / 1 three new vertices, w, r~, and r;, and four new 
edges as follows: 

r'· J 

(25) 

r" I 

rj 

Replacing r and r by r' and r' does not violate the cut condition. More-
' ) I ) 

over, any pair of edge-disjoint paths P;, P; in the extended graph, where 

P' connects r'. and s. and p'. connects r' and sJ. , contains edge-disjoint 
I I I ) J 

paths Pi and P1 in the original graph, where P; connects r; and si and PJ 
connects r1 and s1 . 

Repeating this construction, we end up with r1 , ••• , r1 , s1 , ••• , st occur
ring in this order cyclically around bd(/1) (possibly after reordering indices 
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and exchanging r; and s;). Similarly, we can assume that r1+1 , ••. , rk, s1+1, 
... , sk occur in this order cyclically around bd(/2) • 

Now extend R2 \ (!1 u 12 ) to the Klein bottle, by adding two cross-caps 
(in fact, two Mobius strips) along the boundaries of 11 and of 12 • Extend 
G to a graph G' on the Klein bottle by adding edges e1 , ... , ek over the 
cross-caps, in such a way that e; connects r; and si (i = 1, ... , k). The 
remainder of the proof is similar to that of Theorem 7. o 

Okamura's theorem has as special case the theorem of Okamura and Sey
mour [5], where r1 , ••• , rk, s1, ... , sk are all on the boundary of one face. 

3. Compact orientable surfaces 

We next show how some results on curves and graphs on compact ori
entable surfaces can be derived with the help of polyhedral combinatorics. 
Recall that a compact orientable surface is a 2-dimensional sphere with a finite 
number of "handles" added. 

Let S be a compact orientable surface. A closed curve on S is a continuous 
function C: S1 __.. S, where S1 is the unit circle. We call two closed curves 
c and c' homotopic, in notation: c rv c' ' if c can be shifted continuously 
to C', without fixing a base point; in other words, there exists a continuous 
function <l>: [O, 1] x S1 __.. S so that 

(26) <l>(O,z)=C(z) and <l>(l,z)=C'(z) forallzES1 • 

We call a closed curve primitive if there do not exist a closed curve D and 
an integer n :::: 2 so that C "' Dn . 

By er( C, D) we denote the number of intersections of C and D (count
ing multiplicities): 

(27) cr(C, D) := l{(y, z) E S1 x S1 IC(y) = D(z)}I. 

By miner( C, D) we denote the minimum number of intersections of c' 
and D' , ranging over all C' "' C and D' "' D : 

(28) mincr(C, D) := min{cr(C', D')IC'"' C, D 1 "'D}. 

One objective in this section is to derive the following result in combi
natorial topology [8]. It describes under which conditions two systems of 
primitive closed curves are homotopically the same: 

THEOREM 17. Let C1 , ... , Ck and c; , ... , C~, be primitive closed curves 
on S. Then the following are equivalent: 

(i) k = k' and there exists a permutation n of { 1 , ... , k} so that 
c~(i) rv ci or c~(i) rv ci- l for each i = 1 ' ... ' k ; 

(ii) for each closed curve D on S: 

k k' 

L min er( Ci , D) = L min er( c; , D) . 
i=l i=l 
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The implication (ii) * (i) is the essence of the theorem. It asserts that if 
two systems of primitive closed curves cannot be shifted to each other, then 
there exists a closed curve D distinguishing between them. Note that we 
cannot skip the primitiveness condition. 

A second objective is a result in topological graph theory [11). We need 
some further terminology and notation. If G is a graph embedded on S and 
D is a closed curve on S , we denote by er( G, D) the number of intersections 
of G and D (counting multiplicities): 

(29) cr(G, D) := i{z E S1ID(z) E G}I. 

By µG(D) we denote the minimum number of intersections of G and D', 
ranging over all D 1 

,...., D : 

(30) µG(D) := min{cr(G, D')ID' ~ D}. 

If G' arises from G by deleting edges and isolated vertices and by con
tracting nonloop edges, we say that G' is a minor of G. It is called a proper 
minor if at least one edge is deleted or contracted. Note that if G' is a minor 
of G then µG' ::::; µG . We call G a kernel (on S) if for each proper minor 
G' of G one has µG' i- µG (i.e., µG'(D) < µG(D) for at least one D ). 

The theorem states that a kernel G is in a sense determined by µG : 

THEOREM 18. Let G and G' be cellularly embedded kernels on S with 
µG = µG'. Then G' can be obtained from G by a series of the following 
operations: 

(i) shzfting the graph homotopically over S; 
(ii) taking the (surface) dual graph; 

(iii) !1 Y-exchange. 

Here we take the dual graph only if the graph is cellularly embedded on 
S (i.e., every face is a disk). tiY-exchange means replacing a triangular face 
by a new vertex of degree three, connected by edges to the three vertices of 
the triangle: 

u u 

( 31) x 

w v w v 

or conversely. 
Note that each of the operations (i), (ii), (iii) keeps the function µG in

variant. For the projective plane the analogue of Theorem 18 was proved by 
Scott Roundby [6]. 

We sketch how Theorems 1 7 and 18 are proved with the help of polyhedral 
results. The basic notion is that of a tight graph on S . For any graph 
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G = (V, E) on S and any closed curve D on S, let lla(D) denote the 
minimum number of intersections of G and D1 

, ranging over all D1 ~ D 
not intersecting V : 

(32) lla(D) := min{cr(G, D')ID' ~ D, D1 does not intersect V}. 

If G is 4-regular and v is a vertex of G, we call replacing 

(33) x by )( 
opening of G at v (there are two possible openings at v) . If G1 arises from 
G by a series of openings, we call G1 an opening of G. If there is at least 
one opening, it is called a proper opening. 

Note that if G1 is an opening of G then lla' ::; 71G. We call G tight (on S) 
if for each proper opening G1 of G one has 7la' f. lla (i.e., lla'(D) < lla(D) 
for at least one D ). 

If G is a 4-regular graph on S, the straight decomposition of G is the 
partition of the edges of G into closed curves obtained as follows. Follow 
an edge, e say, until one of its end points, v say. Next continue along the 
edge, e' say, opposite in v to e: 

e 

(34) v 

e' 

Similarly, if we arrive in the other end point of e', v' say, we continue along 
the edge opposite to e' in v' . Repeating this, we finally will return in e. 
Thus we have obtained a closed curve. 

Repeating this for the edges left, we obtain a system of closed curves 
C1 , ••• , Ck traversing each edge exactly once. Clearly, this system is unique 
up to the choice of the starting points of the curves and up to reversing any 
of the closed curves. We call C1 , ••• , Ck the straight decomposition of G. 

In [9] we proved the following theorem: 

THEOREM 9. Let G be a 4-regular graph embedded on the compact ori
entable surface S. Then G is tight if and only if the straight decomposition 
C1 , ••• , Ck forms a minimally crossing system of primitive closed curves. 

Here C1 , ••• , Ck is called minimally crossing if any Ci has a minimum 
number of self-crossings (over all c; ~ Ci) , and any two Ci and C1 have a 
minimum number of mutual crossings (over all c; ~ Ci and c; ~ C) . 

Our proof in [9] is quite hard. From Theorem 9 one can derive quite easily 
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(see [9]): 

THEOREM 10. Let G be a tight graph on the compact orientable surface 
S, with straight decomposition C1 , ••• , Ck . Then for each closed curve D 
on S: 

k 

(35) llc(D) = L miner( ci' D). 
i=l 

We show that this implies 

THEOREM 11. Let G be an Eulerian graph embedded on the compact ori
entable surface S . Then the edges of G can be partitioned into closed curves 
C1 , ••• , Ck in such a way that for each closed curve D on S 

k 

(36) llc(D) = :L:mincr(Ci' D). 
i=l 

PROOF. By applying the same modification as given by (16) and (17), we 
may assume that G is 4-regular. Moreover, we may assume that G is tight, 
as we can open G at vertices as long as we do not change the function llc . 
Hence the theorem follows from Theorem 10. o 

The analogue of Theorem 11 for the projective plane is Lins' theorem 
(Theorem 6 ot above). At the moment we do not know a similar result for 
arbitrary compact nonorientable surfaces. 

By passing to the surf ace dual graph, Theorem 11 transforms to 

THEOREM 12. Let G = ( V, E) be a cellularly embedded bipartite graph on 
the compact orientable surface S. Then there exist closed curves D1 , ••• , D1 

not intersecting V and crossing (altogether) each edge exactly once, in such 
a way that for each closed curve C on S there exists a closed curve C' ,..., C 
in G with the property 

(37) 
I 

lengthc(C') = :L:mincr(C, D). 
}=I 

[Here lengtha(C') is the number of edges of G traversed by C' (counting 
multiplicities).] 

PROOF. The theorem follows directly by applying Theorem 11 to the sur
face dual graph of G . D 

It should be noted here that the theorem is not true if we delete "cellularly 
embedded." 

Observe the analogy of Theorem 12 with Theorem 2 on the Klein bot
tle. We can now derive theorems analogous to Theorems 3 and 4, using the 
cone version (2) of Farkas' lemma. In fact, we only give the analogue of 
Theorem 4. 

Let G = ( V , E) be a graph embedded on the compact orientable surface 
and let C1 , ••• , Ck be closed curves on S. Consider the convex cone K in 
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Rk x RE generated by the vectors 

(38) (i) (ei; xc) (i = 1, ... , k; C closed curve in G with 

C,..., C1); 

(ii) (0; ee) (e EE). 

Here x c is the vector in RE defined by 

(39) xc (e) := number of times C traverses e 

for e E E. Moreover, ei and ee denote the ith and eth unit basis vectors 

in Rk and RE , respectively, while 0 is the all-zero vector in Rk . 
The cone K is a polyhedral cone, i.e., is generated by only finitely many 

vectors among (38). To see this, observe that for each fixed i = 1, ... , k, 
there exist only finitely many minimal vectors in the collection {xclC is a 
closed curve in G with C ,...., Ci} (minimal with respect to componentwise 

comparison). This follows from the fact that these are vectors in z!. We 

can restrict (38)(i) to those with xc such a minimal vector. 
Now the analogue of Theorem 4 is 

THEOREM 13. K is exactly the set of vectors (z; x) in Rk x RE satisfying 

(40) (i) x(e) ~ 0 (e EE), 
k 

(ii) '""l (e). x(e) ~""miner( C;, D) . zi (D closed curve in Snot 'fe£ f( intersecting V). 

[Here yD(e) denotes the number of times D intersects e.] 
PROOF. It is not difficult to check that each vector (38) satisfies ( 40). Sup

pose next that some vector ( z ; x) E Rk x RE satisfies ( 40) but does not belong 
to K. Then by Farkas' lemma (cone-form) there exists a vector (p; /') in 
Rk x RE so that (p; /') has nonnegative inner product with all vectors (38) 
but not with (z; x). That is, 

(41) (i)P;+Ll"(e)·xc(e)~O 
eEE 

(ii) I' (e) ~ 0 
k 

(iii) LP;Z; + Ll'(e)x(e) < 0. 
i=I eEE 

(i == 1 , ... , k ; C closed 
curve in G with C ,...., C;); 

(e E £); 

We may assume (by increasing l'(e) slightly) that/' is rational and positive. 
Hence we may assume (by blowing up (p; /')) that each /'(e) is a positive 
even integer. 

Now replace each edge e of G by a path oflength /'(e) making the graph 
G1

• So G1 arises from G by putting /'(e) - l new vertices on any edge e. 
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Moreover, we make G' cellularly embedded by adding paths over nondisk 
faces of length T, where T is even and T 2:: max{-p 1 , ••• , -pk}. 

Since C' is bipartite, by Theorem 12 there exist closed curves D 1 , ••• , D1 

not intersecting the vertex set of G' and crossing each edge of G' exactly 
once, in such a way that for each i = 1, ... , k there exists a closed curve 
c; ~ Ci in G' with the property that 

( 42) 

Note that 

I 

lengthG,(c;) = L mincr(Ci, Dj). 
j=l 

I 

(43) lengthG,(c;) = L/'(e)xc; (e) and /'(e) = L l 1 (e). 
eEE j=l 

In particular, by ( 41) ( i) 

(44) 

This implies the following contradiction to ( 41) (iii): 

k k k I 

(45) - LPiZi:::; :Z:::::lengthG'(C;)zi = 2:,:Z:::::mincr(Ci, Dj)zi 
i=l i=l i=l j=l 

I 

:::; LLYD1 (e)x(e) = 2:,l'(e)x(e). o 
j=l eEE eEE 

Theorem 13 implies the following "homotopic circulation theorem": 

THEOREM 14. Let G = ( V, E) be a graph embedded on the compact ori
entable surface S and let C1 , ••. , Ck be closed curves on S. Then there 
exist closed curves Ci 1 , ••• , Cir, ~ Ci in G and rationals Ai 1 , ••• , Air, > 0 
for i = 1 , ... , k such that 

r, 

( 46) (i) LAij = 1 (i=l, ... ,k), 
j=l 

k r, 

(ii) LLAiJXc'1 (e):::; 1 (e EE) 
i=l j=l 

if and only if for each closed curve D on S not intersecting V 

k 

( 47) er( G , D) 2:: L min er( C; , D) . 
i=l 

PROOF. Directly from Theorem 13, since ( 46) is equivalent to the all-one 
vector (I ; I) belonging to K , while ( 4 7) is equivalent to (I ; I) satisfying 
( 40). D 
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In general, we cannot require the A.ii in ( 46) to be integer, even if we 
require G to be Eulerian. That is, the analogue of the "integer-packing" 
theorem, Theorem 5, does not hold. However, if S is the torus the analogue 
does hold, as was shown in [1]: 

THEOREM 15. Let G = ( V, E) be an Eulerian graph embedded on the 
torus S and let C1 , ••• , Ck be closed curves on S. Then there exist pairwise 
edge-disjoint closed curves c; ,....., C1 , ••. , C~ ,..., Ck in G (such that no c; 
traverses any edge more than once) if and only if for each closed curve D on 
S not intersecting V condition ( 4 7) is satisfied. 

This theorem can be derived from Theorem 14, in a way similar to the 
derivation of Theorem 5 from the fractional version of Theorem 5 (i.e., 
Theorem 4). 

A consequence of Theorem 14 similar to Theorems 7 and 8 is the following 
"homotopic flow-cut theorem": 

THEOREM 16. Let G = ( V, E) be a planar graph embedded in the plane 
R2 and let 11 , ••• , IP be some of the faces of G, including the unbounded 

face. Let P1 , ••• , Pk be curves in R2 \ (/1 U · · · u /P) with end points on 
bd(I1 U· · ·UIP). Then there exist paths Pi 1 , ••• , Pir, ,...., Pi in G and rationals 
A.1 , ••• , A.. > 0 for i == 1 , ... , k such that 

I IT; 

'1 

( 48) (i) LAij = 1 (i=l, ... ,k), 
}=I 

k '; 

(ii) LLA.iJxP;1(e) 51 (eEE) 
i=l }=I 

if and only if for each curve D in R2 \ (l1 u · · · u IP) not intersecting V and 
connecting two points on bd(I1 U · · · U IP): 

k 

( 49) cr(G, D);?: I:mincr(Pi, D). 
i=l 

[Here we use similar terminology and notation as above. A curve is a 
continuous function C: [O, 1] -+ R2 , while homotopic requires fixing the 
end points.] 

PROOF (SKETCH). We can reduce this theorem to Theorem 14 by adding 
for each i = 1 , ... , k a handle connecting the end vertices of Pi , extending 
the graph by an edge over this handle (connecting the end points of Pi ) and 
by extending P; to a closed curve over the handle. o 

We now finally come to showing Theorems 17 and 18. 

THEOREM 17. Let C1 , .•. , Ck and c;, ... , C~, be primitive closed curves 
on the compact orientable surface S. Then the following are equivalent: 

(i) k = k' and there exists a permutation n of { 1 , ... , k} so that 
c~(i),...., ci or c~(i),...., ci-l for each i = 1, ... ' k; 
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(ii) for each closed curve D on S 

k k' 

L:mincr(Ci, D) = L:mincr(C:, D). 
~I ~I 

PROOF (SKETCH). The implication (i) ==> (ii) is trivial since miner( ci- l ' D) 
= miner( C, D). To see the implication (ii) ==> (i) we may assume that both 
c,' ... ' ck and c;' ... , c~, form minimally crossing collections of closed 
curves, and that the system C1 , ••• , Ck has at least as many crossings as 
c;, ... , C~, . Let G = ( V, E) be the graph made up by c;, ... , C~, . 
Without loss of generality, each vertex of G has degree 2 or 4. 

Now by (ii), for each closed curve D on S not intersecting V 

k' k' k 

(50) cr(G, D) = L cr(c;, D) 2:: L mincr(c;, D) = L mincr(Ci, D). 
i=I i=l i=l 

Hence by Theorem 14 there exist CiJ '""Ci and ;_ii > 0 satisfying (46). 
Now it can be proved that each CiJ , if it enters a vertex v over an edge 

e , continues over the edge e' opposite to e : 

e 

( 51) 

e' 

The reason is that C1 , ••• , Ck necessarily have at least as many crossings 
as c:, ... , C~,. Hence the CiJ should "use" all crossings of the c;-if 
any CiJ makes a turn in v , there is not enough room left for crossings of 
the CiJ. This intuitive argument can be made precise at the cost of several 
technicalities-see [8]. 

It follows that each c,.1 in fact is one of c;, ... , C~, and their inverses. 
As we may assume that the CiJ are different, the theorem now follows. o 

Finally 

THEOREM 18. Let G and G' be cellularly embedded kernels on S with 
µc = µc' . Then G' can be obtained from G by a series of the following 
operations: 

(i) shifting the graph homotopically over S; 
(ii) taking the (surface) dual graph; 
(iii) ~Y-exchange. 

PROOF (SKETCH). From G we make an auxiliary graph H as follows. For 
each edge e of G , put a vertex we of H on the "middle" of e . For each 
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vertex v of G , make a circuit connecting the vertices we on the edges e of 
G incident to v : 

---G 
(52) 

--------- H 

Thus we obtain a 4-regular graph H. Note that we can reconstruct G from 
H, up to shifting G and up to duality. 

Now deletion and contraction of an edge e of G corresponds to the two 
ways of opening vertex we of H. Moreover, 71H = 2µG. Therefore, as G 
is a kernel, H is tight. 

Similarly, we make a tight graph H' from G'. Then 

(53) fIH 1 = 2µG' = 2µG = 7J,H · 

Let C1 , ••• , Ck and c; , ... , C~, be the straight decompositions of H 
and H' , respectively. By Theorem 10 we have for each closed curve D 

k k 1 

(54) L mincr(Ci, D) = 71H(D) = µH,(D) = L mincr(c;, D). 
i=l i=l 

So by Theorem 17 we may assume that k = k' and that Ci ~ c; for 
i = 1, ... 'k. 

By Theorem 9, both C1 , ••• , Ck and c;, ... , C~ are minimally cross
ing collections of primitive closed curves. It can be shown (using the hy
perbolic plane representation of the universal covering surface of S ) that 
cl' ... ' ck can be shifted to c;' ... ' c~ keeping the collection minimally 
crossing throughout the shifting process. In fact C1 , ••• , Ck can be trans
formed to c;' ... ' c~ by a number of "swappings", i.e., replacing 

(55) by 

(and by shifting the whole graph C1 u · · · u Ck). 
Any such swapping corresponds to transforming H , and hence to trans

forming G. One easily checks that it corresponds to the Li Y-exchange. 
Hence G' can be obtained from G by the operations (i), (ii), and (iii). D 
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