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An hp-adaptive strategy for the solution of the exact
kernel curved wire Pocklington equation

ABSTRACT
In this paper we introduce an adaptive method for the numerical solution of the Pocklington
integro-differential equation with exact kernel for the current induced in a smoothly curved thin
wire antenna. The hp-adaptive technique is based on the representation of the discrete solution,
which is expanded in a piecewise p-hierarchical basis. The key element in the strategy is an
element-by-element criterion that controls the h- or p-refinement. Numerical results demonstrate
both the simplicity and efficiency of the approach.
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AN hp-ADAPTIVE STRATEGY FOR THE SOLUTION OFTHE EXACT KERNEL CURVED WIRE POCKLINGTONEQUATIOND. LAHAYE� AND P. W. HEMKER�Abstrat. In this paper we introdue an adaptive method for the numerial solution of thePoklington integro-di�erential equation with exat kernel for the urrent indued in a smoothlyurved thin wire antenna. The hp-adaptive tehnique is based on the representation of the disretesolution, whih is expanded in a pieewise p-hierarhial basis. The key element in the strategy isan element-by-element riterion that ontrols the h- or p-re�nement. Numerial results demonstrateboth the simpliity and eÆieny of the approah.Key words. eletromagneti sattering, wire antenna, Poklington, exat kernel, �nite elementapproximations, hp-adaptivity.AMS subjet lassi�ations. 45J05, 65N30, 41A10, 78A50.1. Introdution. In this study we treat eletri �eld sattering from thin urvedwire antennas. The urrent that an inident eletrial �eld indues in the antennais omputed by solving the Poklington integro-di�erential equation [12, 7, 15℄. Inengineering literature the redued kernel approximation is typially used. However,if very �ne meshes are used for the disretization, the ill-posedness of the resultingproblem auses spurious osillations in the numerial solution, whih prevents theomputation of highly aurate solutions [8, 2, 13, 14, 16℄. We therefore treat theomputationally more hallenging exat kernel model [4, 3℄.The �nite element (FE) tehnique proposed in this paper ahieves high aurayat moderate omputational ost by automati adaption of both the mesh width (h-adaptation) and the polynomial degree (p-adaptation) of the approximation to theloal smoothness of the solution. The disrete solution is expanded in a pieewisehierarhial basis [18℄, onsisting of the standard linear FE shape funtions enrihedwith higher order bubble funtions . Apart from the treatment of a smooth arbitrarilyurved wire, a new aspet in this work is the element-by-element riterion for h- or p-re�nement. As shown below, this riterion is based on the behaviour of the oeÆientsof the disrete solution in the hierarhial basis representation.The fat that we want to solve the problem for an arbitrarily urved wire geome-tries implies that the resulting disrete system generally will not be of Toeplitz type.Suh geometries prevent the use of the orresponding omputational shortuts thatmakes the omputation for linear, irular and helial antennas more eÆient [9℄.This paper is strutured as follows: in Setion 1 we introdue the Poklingtonintegro-di�erential equation and its Bubnov-Galerkin disretization. In Setion 2 wedesribe our approximation of the exat kernel, the hoie of the �nite element basisfuntions and the hp-adaptive strategy. In Setion 3 we desribe the onstrutionof the disrete operators and the hp-adaptive algorithm. In Setion 4 we provideevidene of the e�etiveness of our approah and �nally we summarize the mainonlusions of this work.� Centrum voor Wiskunde en Informatia (CWI), P.O. Box 94079, 1090 GB Amstersdam, TheNetherlands (d.lahaye�wi.nl, p.w.hemker�wi.nl). This researh is supported by the Duth Min-istry of Eonomi A�airs through the projet IOP-EMVT 04302.1
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Fig. 1.1. Curved wire geometry.
1.1. Poklington's equation for the urved thin wire antenna. The ge-ometry of the ylindrial smoothly urved wire is desribed by the loation of itsaxis (t; h1(t); h2(t)) 2 R 3 and its radius a. Here, parametrized by t, h1(t) andh2(t) desribe the horizontal and vertial deviations from the straight antenna alignedwith the x-axis. The hull of the wire is desribed by r(t; �; a) = (t; h1(t); h2(t)) +a (0; os �; sin �) 1. On the wire axis we denote its diretion bys(t) = � r(t; �; 0)=�tk� r(t; �; 0)=�tk :As shorthand we use r = r(t; �; a), z = r(t0; �0; a) and s = s(t).We onsider the urrent on the ylindrial hull r(t; �; a) to be aused by either aninoming plane wave eletromagneti �eld or an impressed urrent soure over a �nitegap in ase of a reeiving or an emitting wire, respetively. We use the simplifyingapproximation that the urrent only exists on the lateral surfae of the wire, i.e.,s � JS�r(t; �; a)� � I(t; �)=(2�a), where JS is the surfae urrent density and I(t; �)the total urrent over the wire. The derivative of the urrent in the diretion of thewire is denoted by I 0(t; �) = ��tI(t; �) = (s � rr) I(t; �).In ase of a reeiving antenna, Poklington's integral equation desribing therelation between the eletri �eld Ein and the urrent I(t; �) reads (fr. [12, 7, 15℄)�{ ! " s �Ein(r) = k2 Zt0 Z�0 s � s0 I(t0; �0)2� G(kr� zk) dt0 d�0 (1.1)+(s � rr) Zt0 Z�0 ��t0 I(t0; �0)2� G(kr� zk) dt0 d�0 ;where G(r) = e�{ k r4� r : (1.2)This is the equation with exat kernel. The emitting antenna is modeled by settingEin(r) � 0 and impressing a given urrent I(t) = I0 on the part of the integrationdomain that orresponds with the gap in the antenna.1Notie that bending a irular ylindrial antenna results in an antenna that is no longer irularylindrial.



3For the disretization we write this equation in its weak formulation, using aweighting funtion  (t; �) and integrating over the wire hull�2�{ ! " Zt Z�  (t; �) s �Ein(r) dt d�= k2 Zt Z� Zt0 Z�0  (t; �)I(t0; �0) s � s0G(kr� zk) dt0 d�0 dt d�� Zt Z� Zt0 Z�0  0(t; �)�I(t0; �0)�t0 G(kr� zk) dt0 d�0 dt d� : (1.3)We remember that k2 = !2=2 = !2 � " and �nd
kr� zk =s (t� t0)2 + (h1(t)� h1(t0) + 2a sin� sin �)2+ (h2(t)� h2(t0)� 2a os� sin�)2 ;

with � = (� + �0)=2 and � = (�0 � �)=2.1.2. The Galerkin disretization. In the disrete approximation we negletthe possible dependene of I(t; �) on � and we setI(t; �) =Xj Ij �j(t) : (1.4)
Note that in this disrete form we do not represent the possible �-dependene ofI(t; �). This results in a formalism similar to the one analysed in [16℄. Similarly to(1.4) we take for the weighting funtions  (t; �) = �i(t) to obtain the Bubnov-Galerkindisretization 2�{ ! " Zt Z� �i(t) s �Ein(r) dt d� = Xj Ij��k2 Zt Z� Zt0 Z�0 �i(t)�j(t0) s � s0G(kr� zk) dt0 d�0 dt d�+ Zt Z� Zt0 Z�0 �0i(t)�0j(t0)G(kr� zk) dt0 d�0 dt d�� : (1.5)Thus, in order to ompute the urrent I(t), we have to solve the symmetri linearsystem Xj �Bij � k2Aij� Ij = 4�2{ ! " fi ; (1.6)
where fi is given byfi = 12� Zt Z� �i(t) s �Ein(r) dt d� = Zt �i(t) < s �Ein > (t) dt ;where < s �Ein > (t) denotes< s �Ein > (t) = 12� Z� s �Ein(r) d� ; (1.7)



4and where the impedane matries A and B orresponding to the vetor and salarpotential are de�ned byAij = Zt Zt0 s � s0 �i(t)�j(t0)fIG(t; t0) dt0 dt (1.8)and Bij = Zt Zt0 �0i(t)�0j(t0)fIG(t; t0) dt0 dt ; (1.9)respetively, where fIG(t; t0) = Z� Z�0 G(kr� zk) d�0 d� : (1.10)If the wire is smoothly urved (i.e., if the radius of urvature is muh larger than thewire thikness) we see that fIG(t; t0) is well approximated by [13, eq.(1)℄
IG(�; ) = 2 Z �=2�=0 e�{ p�2+4 sin2 �p�2 + 4 sin2 � d� ; (1.11)

with � = 1ap�t2 +�h21 +�h22 = 1ap(t� t0)2 + (h1(t)� h1(t0))2 + (h2(t)� h2(t0))2and  = ka. This means that  denotes the wave-number saled to the wire radiusand � a saled distane between two points on the wire. To aount for the urvature,we later also need the notation h = a �=�t. As we are interested in antennas with alength of the order of 1m, a radius of about 0:001m, and frequenies in the order of1GHz, interesting values of  range from about 0:005 to about 0:02. In priniple, thetehnique explained in this paper an be applied to any range of . However, di�erentranges will require other expansions of the form (2.8) and (2.9).1.3. Funtional of the solution. We are partiularly interested in the aurateomputation of the voltage V indued over a �nite gap in a reeiving antenna. Thisvoltage is omputed by appliation of the reiproity theorem to the antenna in anemitting and a reeiving state. Denoting by I(t) the urrent indued in the emittingantenna with onstant urrent I0 impressed over the gap, and by < s � Ein(t) > thequantity introdued in (1.7), the indued voltage is equal to (see e.g., [5, 10, 6℄)V = Zt I(t)I0 < s �Ein > (t) dt ; (1.12)where the integral is omputed over the antenna, exluding the gap.2. Numerial Method. In this setion we show three basi tehniques that un-derly our algorithm for the solution of Poklington's equation: (1) the approximationof the exat kernel, (2) the introdution of a loal p-hierarhial �nite-element basis,and, (3) the priniple of the hp-adaptive strategy used to determine a suÆientlyaurate disretization.2.1. Approximation of the kernel. An essential point in the eÆient eval-uation of the impedane matries (1.8) and (1.9) is the evaluation of IG(�; ). Tounderstand how this funtion is evaluated, in the disussion below we �rst distinguishbetween large and small values for �.



5For large values of � we �nd the approximation
IG(�; ) = � e�{ p2+�2p2 + �2 + e(�; ) ; (2.1)

whih is muh similar to the redued kernel expression. The relative error in thisapproximation satis�es, asymptotially for large �,���� e(�; )IG(�; ) ���� = 2 (3 + ( �)2) Æ2 ��2 +O(��4) ; (2.2)where Æ denotes the relative deviation of the antenna from the straight line, i.e.,Æ =p�h21 +�h22=(�a). Further, we may assume that the length of the antenna is ofthe order of one wavelength, i.e.,  � � O(1). So, (2.2) desribes how the aurayof the approximation (2.1) depends on Æ and �. For Æ = 0, the approximation (2.1)orresponds with the approximation in [4, eq.(3.3)℄ for the straight antenna. Belowwe show how (2.1) is used in atual omputations for general Æ.
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(b) E1(�; 0) and E2(�; 0)Fig. 2.1. The funtions E0(�), E1(�; 0) = �Im�IG(�; 0)�=2 and E0(�) � E2(�; 0) =Re�IG(�; 0)�=2 for 0 � � � 2000 and 0 = 0:01.For small values of � the vanishing denominator in the integrand of (1.11) induesthe singularity of the kernel. Therefore we split IG(�; ) in a singular and a regularpart. We introdue the real funtions E0(�), E1(�; ) and E2(�; ) in order to write
IG(�; ) = 2 Z �=2�=0 1p�2 + 4 sin2 � d� + 2 Z �=2�=0 e�{ p�2+4 sin2 � � 1p�2 + 4 sin2 � d�= 2E0(�)� 2 (E2(�; ) + { E1(�; )) ; (2.3)with for the singular part [11, 17℄

E0(�) = Z �=2�=0 1p�2 + (2 sin�)2 d� = 1p4 + �2 K � 44 + �2� = 1� K ��4=�2� :



6Here, K(�) is the ellipti integral of the �rst kind [1℄. The funtion E0(�) is simpleto ompute (see Figure 2.1). For � ! 0 we have asymptotiallyE0(�) = 12 �log(2)� log(�)�  (0)�12�� �� 132 �log(2)� log(�)� 12 (0)�32�� 12 (0)��12��  + 1� �2 (2.4)+O ��4� :Here (and only here)  is the Euler gamma and  (0) is the polygamma funtion. Onthe other hand, for � !1 we �nd asymptotiallylog(E0(�)) = log(�=2)� log(�)� ��2 +O ���4� : (2.5)With suh a priori knowledge it is a simple matter of elementary numerial analysisto onstrut an expansion that approximates the funtion E0(�) up to a required a-uray. In fat we use an expansion in terms �2i and �2i log � with a suÆient numberof terms to approximate E0(�) with required auray in some neighbourhood of theorigin. E.g., 0 � i � 4 yields an auray of 6 digits on [0; 2℄. This type of expansionwill be used below with higher auray for the approximation of Re�eIG(�; )� forsmall �.
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Fig. 2.2. Digits of auray in eE2(�; ) for 0 � � � 10 and 0:005 <  < 0:02.In the non-singular part of IG(�; ) we distinguish the imaginary and the realpart
E1(�; ) =  Z �=�=2�=0 sin�p�2 + (2 sin�)2�p�2 + (2 sin�)2 d� ;

and
E2(�; ) =  Z �=�=2�=0 sin2 �2p�2 + (2 sin�)2�2p�2 + (2 sin�)2 d� :



7Studying the asymptoti behaviour of E1(�; ) for � !1 we �nd an approxima-tion
E1(�; ) � eE1(�; ) = �8 24 4 + 3(�2 + 2)2! sin�p�2 + 2�p�2 + 2 (2.6)

�3 os�p�2 + 2�(�2 + 2)2 � 2 sin�p�2 + 2�(�2 + 2)3=2 35
that for  in our range of interest, i.e., 0:005 �  � 0:02, is aurate to 13 digits.This auray extends over all �. The auray of this formula deteriorates for largervalues of , but the approximation remains useful for values  . 0:5.For E2(�; ) we �nd a similar approximation
E2(�; ) � eE2(�; ) = �8 24 4 + 3(�2 + 2)2! 2 sin2 �2p�2 + 2�(�2 + 2)1=2 (2.7)

�3  sin�p�2 + 2�(�2 + 2)2 + 2 os�p�2 + 2�(�2 + 2)3=2 35 :
However, this approximation is less aurate. In our range of interest 0:005 �  � 0:02the auray is only 3.5 digits. The error beomes more signi�ant only for thesmaller values of � (see Figure 2.2). So, in order to realize an eÆient and aurateevaluation for the real part of IG(�; ), we onstrut an approximation ombinedwith E0(�). Beause of the singularity at � = 0, for small values of � we use fourterms from the asymptoti expansion for � ! 0 of E0(�), and we orret this witha multivariate approximation of the di�erene between E0(�) � E2(�; ) and thisasymptoti expression. For the larger values of � we take (2.7) and we orret it witha series expansion in odd powers of 1=�. Combining the expressions (2.5), (2.6) and(2.7) it is easily veri�ed that in the limit for large � our approximation for IG yieldsthe modi�ed redued kernel expression (2.1).Summarizing, for eIG(�; y), the approximation of IG(�; ), we �ndIm�eIG(�; )� = eE1(�; ) ; (2.8)

Re�eIG(�; )� 2
8>>>><>>>>:

Span��2i j (log �)k ; i = 0; � � � ; 6; j = 0; 1; 2; k = 0; 1	for 0 < � < 3:1 ;eE2(�; ) + Span���4i+1 j ; i = 0; 1; � � � ; 5; j = 0; 1	++ Span���4i+3 ; i = 0; 1; � � � ; 4	for � � 3:1 ; (2.9)
where the oeÆients in the expansion (2.9) are determined as to obtain the best leastsquares �t with Re�IG(�; )�. In the range of interest the auray of the approxima-tion is at least 8 digits.Splitting o� the singular part for the evaluation of the integrals. In order to om-pute the disrete operator entries (1.8)-(1.9) involving integrals of our singular kernelfuntion IG, we split this funtion in a singular and a regular part. That is, we writeIG(�; ) = IS(�; ) + IR(�; ) ; (2.10)



8where both IS(�; ) and IR(�; ) are smooth funtions and where IS(�; ) ontains thelogarithmi terms and IS(�; ) = 0 for � > �0 for some �0. Integrals involving IS(�; )and IR(�; ) are omputed analytially and by quadrature, respetively. In orderto assure that both IS(�; ) and IR(�; ) are smooth, we take IS(�; ) = IG(�; ) �ITaylor(�; ) for � � �0, where ITaylor(�; ) is a Taylor expansion of IG in � at � = �0.The part IR is the smooth remaining part, de�ned by (2.10). For the numerialapproximations eIS and eIR we take �0 = 3:1 and obtaineIS(�; ) 2 Span��2i j (log �)k ; i = 0; � � � ; 6; j = 0; 1; 2; k = 0; 1	for 0 < � < 3:1 ; (2.11)
Re�eIR(�; )� 2

8>>>><>>>>:
Span��2i j ; i = 0; � � � ; 6; j = 0; 1; 2	for 0 < � < 3:1 ;eE2(�; ) + Span���4i+1 j ; i = 0; 1; � � � ; 5; j = 0; 1	++ Span���4i+3 ; i = 0; 1; � � � ; 4	for � � 3:1 ; (2.12)

Im�eIR(�; )� = eE1(�; ) : (2.13)2.2. Choie of the loal basis. In order to form the disrete system we haveto make a hoie for the basis funtions f�jg in (1.5). Beause we want to onstrutan hp-adaptive method to obtain optimal eÆieny, we partition 
, the domain ofintegration for t and t0, in elements of arbitary sizes. So we obtain the mesht0 < t1 < t2 < � � � < tNor

� = N[i=1[ti�1; ti℄ = N[i=1�i :

On this mesh we introdue a ontinuous, pieewise polynomial basis of degree p withpieewise linear funtions and higher order hierarhial bubble funtions (i.e., p � 1),so that the basis for our approximation on the interval �i = [ti�1; ti℄ beomes�i;0(t) = �0+(i�1)p(t) = (ti � t)=(ti � ti�1);�i;k(t) = �k+(i�1)p(t) = k+1Yj=1 t� ti;j;k+1(ti � ti�1)k+1 for k = 1; � � � ; p� 1; (2.14)�i;p(t) = �p+(i�1)p(t) = (t� ti�1)=(ti � ti�1);where ti;j;k = 1+�j;k2 (ti�ti�1)+ti�1 with �j;k the j-th point in the k+1-point Lobattoquadrature rule. In this way we form a pieewise polynomial funtion spae of degreep. Notie that all basis funtions have support �i exept the pieewise linear �ip,i = 1; � � � ; N � 1, that have support �i [ �i+1. In ase that p is varying arosselements, the global numbering of the degrees of freedom is modi�ed aordingly. Toonstrut the matries A and B in (1.8)-(1.9) it is onvenient to introdue a loal basisfor the standard interval [�1;+1℄ from whih the funtions (2.14) an be derived. For



9example, for p = 7, these basis funtions are given by'0(�) = (1� �)=2 ;'1(�) = (� + 1)(� � 1)=22;'2(�) = (� + 1)�(� � 1)=23 ;'3(�) = (� + 1)�� +q 15��� �q 15� (� � 1)=24 ;'4(�) = (� + 1)�� +q 37� � �� �q 37� (� � 1)=25 ;'5(�) = (� + 1)�� +q 121 (7 + 2p7)��� +q 121 (7� 2p7)��� �q 121 (7� 2p7)��� �q 121 (7 + 2p7)� (� � 1)=26 ;'6(�) = (� + 1)�� +q 133 (15 + 2p15)��� +q 133 (15� 2p15)� ��� +q 133 (15� 2p15)��� �q 133 (15 + 2p15)� (� � 1)=27 ;'p(�) = (� + 1)=2 :

(2.15)

With the basis funtion introdued in (2.15), the solution on element �i is approxi-mated by Ppk=0 k �i;k.2.3. The priniple of the hp-adaptive strategy. The hp-adaptive strategyin this paper relies on the above p-hierarhial base and makes use of the fat thatfor smooth funtions the oeÆients {on a single element in a pieewise polynomialapproximation{ are supposed to derease as a geometri sequene.More preisely, we an say that the approximation of a Cp+1-funtion in a neigh-bourhood of width 2h allows a p-hierarhial polynomial representation in whih theoeÆients are bounded by a geometrially dereasing sequene, if h is small enough.This is easily seen for a loal basis with funtions ftigi=0;:::;p for whih the terms inthe Taylor series expansion are bounded by hikfkCp=i!, i = 0; : : : ; p. For the basis(2.15), we �nd for the oeÆientsjp + 0j=2 � ��f0 + h2 �f2 + h2 �f4 + h2 f6����jp � 0j=2 � h ��f1 + h2 �f3 + h2 �f5 + h2 f7����j1j � h2 ��f2 + h2 � 65 f4 + h2 97 f6���j2j � h3 ��f3 + h2 � 107 f5 + h2 53 f7���j3j � h4 ��f4 + h2 53 f6��j4j � h5 ��f5 + h2 2111 f7��j5j � h6 jf6jj6j � h7 jf7j
(2.16)

with fi = f (i)(0)=i!, i = 0; : : : ; p. This shows that, for small h, our hierarhial basisthe oeÆients i, i = 1; : : : ; p� 1, are of order O(hi+1), and bounded byjij � C hi+1 kfkC1[�h;h℄ :This not only shows that {for a �ne enough mesh{ we expet the oeÆients for eahinterval to derease geometrially, but also that the rate of derease doubles whenthe mesh is halved. By the nature of the hierarhial representation it makes senseto onsider the last non-vanishing term in the representation as an estimate for theloal error.



10 The above observations lead to the following hp-adaptive strategy. On a (non-uniform) mesh we determine in eah interval a p-hierarhial representation of thesolution with a suÆient number of terms. On eah interval the onvergene of theapproximation is studied. If the rate of derease of the oeÆients is fast enough, thenthe series is trunated suh that an a-priori given tolerane riteria is satis�ed. If therate of derease is not fast enough, then the interval is split into two smaller intervalsof equal size and a new approximation is omputed. The proess will stop after a�nite number of iterations, exept in those areas where derivatives are unbounded.At suh singular loations the proess an be stopped by introduing a limit for theminimal allowed mesh-size. Details of the strategy are explained in Setion 3.4.In this way a suÆiently aurate approximation is obtained, exept at well-determined loations where the solution has a singular behaviour.The square root singularity. From analysis [13℄ it is known that at the end-pointsof a reeiving straight-line thin-wire antenna the urrent shows a square-root singular-ity. Hene, it is interesting to study the behaviour of the oeÆients in the hierarhialrepresentation in this partiular ase where derivatives beome unbounded.Therefore, we onsider the segment of the antenna where the singularity ours(i.e., near an end-point). Knowing the type of singularity, we an estimate the oef-�ients in the hierarhial expansion. Denoting the length of the element by h, onthe elements [0; h℄ and [h; 2h℄ we approximate the funtion f(t) = pt by a suh apolynomial approximation. Therefore we �x the values at the endpoints to determinethe linear approximation, whereas the higher order ontributions are determined byoptimal L2-approximation. Beause the funtions 'k are not L2-orthogonal, the o-eÆients (slightly) depend on the order of the approximation. A simple omputationshows that all oeÆients are of order O(ph), and that on the �rst interval [0; h℄ theoeÆients inrease for the higher order terms. On the seond interval [h; 2h℄ theyderease by several orders of magnitude. In Figure 2.3 we show these theoretial o-eÆients on a logarithmi sale for approximations upto degree 7. It is obvious thaton the interval [0; h℄ h-re�nement rather than p-re�nement is the proper strategy toobtain better auray, while the ontrary is true on the interval [h; 2h℄.The theoretial behavior of the oeÆients for the funtion f(t) = pt is reov-ered in the omputation of the oeÆients omputed for the urrent on the reeivingstraight-line thin-wire antenna. To illustrate this point, we onsider the omputationof the urrent in a straight wire of length L = 3m and radius a = 0:02m, induedby a plane wave exitation of wavenumber k = 1m�1 and propagation vetor per-pendiular to the antenna axis. We employ an uniform mesh of 128 elements, allontaining a loal polynomial approximation of degree seven. In Figure 2.4, we plotthe oeÆients of the p-hierarhial deomposition of the urrent on the �rst and onthe fourteenth element. In the presene of disretization error, we onsider the latterto be loated at a suÆiently large distane away from the boundary to be represen-tative for the interior of the antenna. Like Figure 2.3, it shows that the oeÆientsinrease for the higher order terms on the element ontaining the singularity, andthat they derease by several orders of magnitude on the fourteenth element wherethe solution is smooth. In Setion 3.4, we explain how this smoothness indiator isused to implement the hp-strategy.3. Implementation. In this setion we desribe the onstrution of the disreteoperator and the implementation of the hp-adaptive strategy.3.1. Evaluation of the o�-diagonal elements. For the o�-diagonal elementsin (1.8)-(1.9) with ji� jj > 1, the singularity of the integrand falls outside the domain
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(b) Seond element.Fig. 2.3. CoeÆients of the p-hierarhial deomposition of f(t) = pt in the element [0; h℄ and[h; 2h℄. The graphs show 10 log jk=h�j for the oeÆients in an approximation of degree 7.
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(b) Fourteenth element.Fig. 2.4. CoeÆients of the p-hierarhial deomposition of the omputed urrent on a straight-line reeiving thin-wire antenna in the �rst and fourteenth element. The graphs show 10 log jk=h�jfor the oeÆients in an approximation of degree 7.
of integration, and therefore we an use straightforward Gaussian quadrature. Wetake a �xed L-point Gaussian quadrature rule

Z bt=a f(t) dt � (b� a) LXm=1 wm f(tm) ;



12and we obtain, with �ti = ti � ti�1 and 0 � k; l � p,
(Ai;j)k;l � �ti�tj LXm;n=1 wm �i;k(ti;m) wn �j;l(tj;n) �s � s0fIG� (ti;m; tj;n)

= �ti�tj LXm;n=1 wm 'k(tm) wn 'l(tn) �s � s0fIG� (ti;m; tj;n) ;
(Bi;j)k;l � �ti�tj LXm;n=1 wm �0i;k(ti;m) wn �0j;l(tj;n)fIG(ti;m; tj;n)

= 4 LXm;n=1 wm '0k(tm) wn '0l(tn)fIG(ti;m; tj;n) :
It is lear that the onstant matries � and �0, de�ned by �km = wm 'k(tm) and�0km = wm '0k(tm), an be omputed in advane, so that the work of the onstru-tion of the o�-diagonal elementary matries omes down to O(L2) evaluations ofthe funtion fIG(t; t0). Introduing the matries Zi;j and bZi;j de�ned by Zi;jm;n =IG(�(ti;m; tj;n); ) and bZi;jm;n = s(ti;m) � s0(tj;n)Zi;jm;n, respetively, we write the aboveexpressions as

Ai;j � �ti�tj � bZi;j �T ; (3.1)Bi;j � 4�0Zi;j (�0)T : (3.2)
3.2. Evaluation of the diagonal elements. For the diagonal elements in(1.8)-(1.9) with i = j, we have to ompute integrals of the form

Z t=tit=ti�1 Z t0=tit0=ti�1 �i;k(t)�i;l(t0)�(jt� t0j) dt0 dt ; (3.3)
where the funtion �(jt � t0j) has a singularity at t = t0 and the distane satis�esjt�t0j < �ti. Taking into aount the type of dependene of � on t and t0, (see (1.10))and omitting the fator s(t) � s0(t0) beause of the assumption that the urvature of



13the wire an be negleted over a distane of one or two elements, we approximate(Ai;i)k;l = Z Z t=ti;t0=tit=ti�1;t0=ti�1 �i;k(t)�i;l(t0) s � s0fIG(t; t0) dt0 dt� Z Z t=ti;t0=tit=ti�1;t0=ti�1 �i;k(t)�i;l(t0) fIG(t; t0) dt0 dt� Z Z t=ti;t0=tit=ti�1;t0=ti�1 �i;k(t)�i;l(t0) 1a IG� jt� t0j hia ; � dt0 dt
= 1a Z Z �=1;� 0=1�=0;� 0=0 'k(�)'l(� 0) IG � j� � � 0j�tihia ; � d(�ti� 0) d(�ti�)
= �t2ia Z �= 1p2�=�1p2 IG�j�jp2 �tihia ; �Z �=p2�j�j�=j�j 'k �� + �p2 �'l�� � �p2 � d� d�
= �t2ia Z �=1�=0 Pkl(�) IG�� �tihia ; � d�= �t2ia IPkl(�tihia ; ) ; (3.4)where hi is as de�ned as in Setion 1.2, and where the transformations � = (�+�)=p2and � 0 = (� � �)=p2 have been used (see Figure 3.1(a)). In (3.4) we introdued thede�nitions bPkl(�) = Z �=p2�j�j�=j�j 'k �� + �p2 �'l�� � �p2 � d� ; (3.5)Pkl(�) = 1p2 �bPkl� �p2�+ bPkl ���p2�� ; (3.6)IPkl(x; ) = Z �=1�=0 Pkl(�) IG (� x; ) d� : (3.7)

For the polynomial base (2.15), the funtions bPkl and Pkl are also polynomials andthey an be omputed one and for all. Similarly we �nd(Bi;i)k;l � 1a IP 0kl(�tihia ; ) ; (3.8)with the polynomialsP 0kl(�) = Z �=p2�j�j�=j�j '0k �� + �p2 �'0l�� � �p2 � d� ; (3.9)P 0kl(�) = 1p2 �P 0kl� �p2�+P 0kl���p2�� ; (3.10)IP 0kl(x; ) = Z �=1�=0 P 0kl(�) IG (� x; ) d� : (3.11)To ompute (Ai;j)k;l and (Bi;j)k;l we use the splitting (2.10) and take into aountthat IS(x; ) vanishes for x > 3:1. This implies that we have to onsider two ases:



14 η τξ
τ '10 1(a) Diagonal element

η τξ
τ '� 1 0 1 t i + 1t it i � 1(b) Upper odiagonal ele-ment with �ti > �ti+1

η τξ
τ '� 1 0 1

t i + 1t it i � 1() Upper odiagonal ele-ment with �ti > �ti+1 .
Fig. 3.1. Coordinate transformation.

the argument x being larger or smaller than 3:1. In the ase x < 3:1, the expressions(3.4) and (3.8) an be implemented diretly. However, for x > 3:1 the disontinuousbehaviour ar x = 3:1 requires a more areful treatment. We get
IPkl(x; ) = Z �=1�=0 Pkl(�) IS (x �; ) d�= Z �=3:1=x�=0 Pkl(�) IS (x �; ) d�= Z z=x=3:1=xz=x=0 Pkl(z=x) IS (x z=x; ) dz=x= 1x Z z=3:1z=0 Pkl(z=x) IS (z; ) dz ; (3.12)

and similarly
IP 0kl(x; ) = 1x Z z=3:1z=0 P 0kl(z=x) IS (z; ) dz : (3.13)

These funtions an also be omputed beforehand.
3.3. Evaluation of the o-diagonal elements. For the o-diagonal elementsin (1.8)-(1.9) we also use the splitting (2.10) of IG(�; ). Due to symmetry, it suÆes



15to onsider upper o-diagonal elements only. We obtain

(Ai;i+1)k;l = Z Z t=ti;t0=ti+1t=ti�1;t0=ti �i;k(t)�i;l(t0) s � s0fIG(t; t0) dt0 dt
� Z t=tit=ti�1Z t0=ti+1t0=ti �i;k(t)�i;l(t0) fIG(t; t0) dt0 dt
= Z t=tit=ti�1Z t0=ti+1t0=ti �i;k(t)�i;l(t0) 1a IG � jt� t0j hia ; � dt0 dt
= Z t=tit=ti�1Z t0=ti+1t0=ti �i;k(t)�i;l(t0) 1a IR � jt� t0j hia ; � dt0 dt
+ Z t=tit=ti�1Z t0=ti+1t0=ti �i;k(t)�i;l(t0) 1a IS � jt� t0j hia ; � dt0 dt= �ARi;i+1�k;l + �ASi;i+1�k;l : (3.14)

Again we neglet the fator s � s0, assuming that the wire is only mildly urved.The regular part, ARi;i+1 is omputed by two-dimensional Gaussian quadrature as inSetion 3.1. For omputing the singular part, ASi;i+1, we make use of the fat thatIS(�; ) = 0 for � > 3:1 and, in order to be sure that the o�-diagonal elements arenot inuened by the singularity, we take are that the disretization has no wiresegments with ratio �ti=a smaller than 3:1. In pratise it appears that this is noserious restrition as is does not impede aurate omputations. In Setion 4 we seethat even for the approximation of the singular part of the solution suÆient auray



16an be obtained. Assuming that �ti > �ti+1 (see Figure 3.1(b)), we obtain
�ASi;i+1�k;l = Z t=tit=ti�1 Z t0=ti+1t0=ti �i;k(t)�i;l(t0) 1a IS � jt� t0j hia ; � dt0 dt

= Z t=tit=2ti�ti+1 Z t0=ti+1t0=ti �i;k(t)�i;l(t0) 1a IS � jt� t0j hia ; � dt0 dt
= Z t=tit=2ti�ti+1 Z t0=ti+1�ti+tt0=ti �i;k(t)�i;l(t0) 1a IS � jt� t0j hia ; � dt0 dt
� Z 0�=�1 Z 1+�� 0=0 'k(� + 1)'l(� 0) �ti�ti+1a �

IS  j� � � 0j hip�ti�ti+1a ; ! d� 0 d�
= �ti�ti+1a Z 0�=�1p2 Z ���=� 'k �� + �p2 + 1�'l�� � �p2 ��IS  p2j�j hip�ti�ti+1a ; ! d� d�
= �ti�ti+1a Z 0�=�1p2 IS  p2j�j hip�ti�ti+1a ; ! bQk;l(��) d�
= �ti�ti+1a Z 0�=�1 IS  j�j hip�ti�ti+1a ; ! bQk;l(��=p2)p2 d�
= �ti�ti+1a IQk;l hip�ti�ti+1a ; ! ; (3.15)

where we have introdued
bQk;l(�) = Z ��=�� 'k �� � �p2 + 1�'l �� + �p2 � ; (3.16)Qk;l(�) = 1p2 bQk;l� �p2� ; (3.17)IQk;l(x; ) = Z 1�=0Qkl(�) IS(� x; ) d� : (3.18)

In ase that �ti < �ti+1 (Figure 3.1()), idential results are obtained. Similarly, we�nd
(Bi;i+1)k;l � 1a IQ0k;l hip�ti�ti+1a ; ! ; (3.19)



17where we have introduedQ0k;l(�) = Z ��=�� '0k �� � �p2 + 1�'0l�� + �p2 � ; (3.20)Q0k;l(�) = 1p2 Q0k;l � �p2� ; (3.21)IQ0k;l(x; ) = Z 1�=0Q0kl(�) IS(� x; )d� : (3.22)Although these are somewhat omplex expressions, the funtions bQk;l(�), Qk;l(�),IQk;l(x; ) and their primed ounterparts are easily preomputed one and for all.3.4. The hp-adaptive strategy. Our hp-adaptive strategy is an iterative pro-edure that starts with a oarse uniform mesh on whih a low order (p = 2) solutionis omputed. In eah step of the iteration it is deided, for eah element, whetherit should be h-re�ned (i.e., the element is split into two equal smaller elements), orp-re�ned (i.e., the order of the approximation in that element is enhaned by oneorder). If it is deided that the approximation is loally aurate enough no furtherre�nement is applied in that element. The proedure ends when no element requiresany further re�nement or, for the elements that still do, the element-size drops belowsome given minimal value.The deision on whether to apply p- or h-re�nement is made on basis of the loalsmoothness of the omputed solution. The smoothness of the solution is determinedfrom the behaviour of the oeÆients in the hierarhial representation of the solutionin an element. As explained in Setion 2.3, for a suÆiently smooth solution we mayexpet the oeÆients to derease geometrially if the element-size is small enough.Therefore, we onsider in eah element the sequene of oeÆients as found in (2.16),i.e., jp+0j=2, jp�0j=2, j1j, j2j, � � � , jp�1j. In partiular the tail of this sequene,(i.e., the last 3 available oeÆents) is used to determine the smoothness.Denoting the oeÆients in the tail by respetively C1, C2 and C3, and introduingan derement fator � > 1, we ompare the values of the triple fC1; �C2; �2 C3g,distinguishing 2 situations:- the tail is dereasing if �2 C3 < C1, or- the tail is inreasing if �2C3 � C1.In ase of an inreasing tail, the triple an be- monotonous, or- of V-type, i.e., �C2 < min(C1; �2C3), or- of A-type, i.e., �C2 � max(C1; �2C3).The deision on p- or h-re�nement is now made as follows:1. if the oeÆient tail is dereasing we qualify the solution to be loally smooth,and we take the last omputed oeÆient in the hierarhial basis, C3, as theurrent loal error. If this error is larger than a presribed tolerane, wedeide for p-re�nement;2. if the oeÆient tail is monotonously inreasing or of inreasing V-type, thenadding the last orretion proved to have an adverse e�et. The solution isquali�ed as non-smooth, motivating to h-re�ne the element. C2 is taken asthe loal error. In the two new elements we use the same order p as was usedin the original unsplit element.3. if the oeÆient tail is of inreasing A-type, then the previous triple in thesame element an only have been of V-type. This means that the oeÆient



18 C1 is (possibly by oinidene) relatively small. We onsider adding theorretion orresponding to C3 to be bene�ial, the solution to be loallysmooth and we take C3 as the loal error. If this loal element is larger thana presribed tolerane, we deide to p-re�ne the element.In this way we ontrol the L1-error on eah element. We notie that a larger fator �requires a faster dereasing sequene of hierarhial oeÆients, and hene introduesa bias towards h-re�nement, whereas a smaller � > 1 leads to more p-re�nement. Inthis work we use � = 4 as it gives a good balane between h-and p-adaption as shownSetion 4.The mesh re�nement iterative proess requires at every iteration the element-by-element assembly of the disrete operator. The hierarhial basis is suh thatthe elementary operator of a p-re�ned element equals the previously omputed oneaugmented by one row and olumn. We exploit this fat in our simulation ode byremembering previously omputed results.Stopping Criterium. Motivated by our arguments in Setion 3.2, we tailor theadaptive re�nement proess so as to ensure that the disretization error 4V in thevoltage omputation is smaller than a presribed tolerane TOL. Beause of (1.12),we see that 4V � C k�I(t)kL1(
), where �I(t) denotes the error in I(t). On a meshonsisting of N elements we allow on eah element an L1-error of TOL=N , whihimplies an L1-error of TOL=(N h). In this way we distribute the L1-error over thegrid, allowing for a larger L1-error on smaller elements.Numerial evidene given in Setion 4.3 shows that starting omputations witha mild tolerane and using the �nal mesh obtained as point of departure for a moreaurate omputation results in a slower inrease of the degrees of freedom than whenrequiring a stringent tolerane from the start.4. Numerial Results. In this setion we desribe four examples. First weshow how the hp-re�nement strategy works for the omputation of the urrent in areeiving straight wire antenna. Next we do the same for an emitting antenna. In thethird example we study how the auray requirement for the indued voltage arossa gap in the reeiving antenna inuenes the required number of degrees of freedom.For omparison with results from other papers, in these �rst three examples we stillonsider the lassial straight thin-wire antenna. In the last example we perturb thegeometry of the antenna and employ the method developed to trak the e�et of theurvature on the indued voltage.4.1. Current in Reeiving Antenna. In the �rst experiment, we onsiderthe omputation of the urrent in a straight wire antenna of length L = 1m andradius a = 0:001m, indued by a plane wave exitation of frequeny f = 500MHz andpropagation vetor perpendiular to the axis of the antenna. We use the L1-errorbound introdued in Setion 3.4 as the stopping riterium in the mesh re�nementproess. As initial disretization we hoose a uniform mesh with 16 seond degreeelements having in total 33 (i.e., 17 + 16) degrees of freedom. Imposing a toleraneTOL = 5e-8Am, this results in eight adaptive re�nement steps and a mesh of 96elements with 422 degrees of freedom. In Figure 4.1(a) for the �nal mesh we plot thenumber of loal mesh re�nements and polymomial order. In Figure 4.1(b) we showthe omputed urrent. The mesh shows to have been h-re�ned near the end-pointsingularities and to have been p-re�ned where the urrent is a smooth funtion. Thebehavior of the L1-norm of the error in the omputed urrent as a funtion of themesh re�nement step in shown in Figure 4.3(a). On the �nal mesh the estimatedL1-error in the urrent is 8:47e-7A.



194.2. Current in Emitting Antenna. This time we onsider the omputationof the urrent in an emitting straight antenna. Length and radius are as in theprevious example. Now the antenna has a gap of 0:01m in its middle where a urrentsoure of 1A is impressed. Starting from a pieewise seond degree solution on auniform mesh with eight elements on either side of the gap and imposing a toleraneTOL = 1e-3Am, seven adaptive re�nement steps result in a mesh of 45 elementswith 154 degrees of freedom. The �nal hp-mesh and omputed urrent are shown inFigure 4.2. Both the end-point singularities and the singularities at the boundariesof the gap are learly resolved by low order small elements. The onvergene historyof the L1-norm of the error in the urrent is shown in Figure 4.3(b). The estimatedL1-error in the omputed urrent is 1:64e-2A.4.3. Voltage Aross a Gap in Straight Wire. Now we ompute the voltageindued over a gap in a reeiving straight wire antenna exited by a plane wave at500 MHz with propagation vetor perpendiular to the antenna axis. The values forL, a, the gap size and the initial mesh are the same as above. We investigate howthe required tolerane a�ets the following three quantities onsidered as funtionsof the index of the mesh re�nement step: the number of degrees of freedom, theerror in the amplitude of the voltage and the L1-norm of the error in the urrent.On eah mesh, the error in the voltage amplitude is omputed by onsidering theerror in the urrent on an element to be given by the highest degree basis funtiontimes the orresponding oeÆient, substituting this error in (1.12) and taking theabsolute value of the result. We illustrate in partiular how a stepwise redution ofthe tolerane results in a savings of the degrees of freedom. In the top row of Figure4.4 we show the behavior of the three funtions of interest for three di�erent values ofTOL (TOL = 1e-2; 1e-3; 1e-4Am) starting from a pieewise seond degree solution ona uniform mesh with four (as opposed to eight in the previous example) elements oneither side of the gap. In the last ase, nine re�nement steps result in a mesh with 608degrees of freedom, an estimated L1-error in the omputed urrent of 6:48e-4A andan estimated error in the amplitude of the voltage of 3e-6V. In the bottom row ofFigure 4.4 we plot the onvergene history of the same three quantities starting withTOL = 1e-2Am, stepwise reduing this value to TOL = 1e-3Am after the fourthiteration and TOL = 1e-4Am after the ninth iteration, respetively. In this way 14iterations results in a mesh of 516 degrees on freedom. This is a signi�ant redutionompared with the 608 degrees of freedom generated before.4.4. The E�et of Perturbations in the Geometry of the Wire. In thislast example we perturb the straight wire by a sinus pro�le, setting the funtionsh1(t) and h2(t) introdued in Setion 1.1 equal to h1(t) = 0 and h2(t) = wL sin(� t)for 0 � t � L, respetively (see Figure 4.5(a)): we study how the indued voltagehanges with w for w ranging between 0 and 1.5. The values for L and a, the loationand width of the gap, as well as the frequeny of the exitation are hosen as in theprevious examples. The progation vetor is assumed to be perpendiular to the x-axis. In the range of w onsidered, the total length of the wire varies between 1m andapproximately 3:17m and is thus equal to an integer multiple of the the wavelenght� = 0:6m at four instanes. In Figure 4.5(b) we plot the amplitude of the voltagejV (w)j as a funtion of w. Four resonanes an be learly distinguished.5. Conlusion. In this paper we solve Poklington's equation with exat kernelfor the voltage indued aross gaps in arbitrarily urved thin wire antennas. For theeÆient disretization we introdued a new adaptive re�nement strategy. The key is
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(b) Computed urrentFig. 4.2. Results for an emitting straight wire antenna. Left: the number of mesh re�nementsteps and the polynomial degree yielding an L1-error smaller than TOL = 3e-3Am. Right: the realand imaginary part of the omputed urrent.
that the degree of loal smoothness of the solution an be derived from pieewise p-hierarhial basis oeÆients. This information is used to deide whether a partiularelement has to be h- or p-re�ned. Numerial results for straight and urved antennasdemonstrate both the simpliity and eÆieny of the approah.REFERENCES[1℄ M. Abramowitz and A. S. Stegun, eds., Handbook of Mathematial Funtions, Dover, NewYork, 1992. Reprint of the 1972 edition.[2℄ G. J. Burke, Numerial Eletromagnetis Code - NEC-4 Method of Moments, Part II, Pro-gram Desription - Theory, Teh. Report UCRL-MA-109833, Lawrene Livermore National
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(b) Emitting antennaFig. 4.3. Convergene history of the mesh adaption proess for the reeiving (left) and emitting(right) antenna. The graph show the behavior of the L1-norm of the error in the urrent as funtionof the mesh re�nement step.
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(b) Corretion in voltage 0 2 4 6 8
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(d) Degrees of freedom 0 2 4 6 8 10 12 14
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(e) Corretion in voltage 0 2 4 6 8 10 12 14
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(f) Error in urrentFig. 4.4. Top row: number of degrees of freedom, error in amplitude of voltage and L1-norm of the error in the urrent as funtions of the mesh re�nement step for TOL = 1e-2Am,TOL = 1e-3Am and TOL = 1e-4Am. Bottom row: adaptive strategy for TOL, dereasing its valueduring the iteration (starting with TOL = 1e-2Am, after the fourth iteration TOL = 1e-3Am andafter the ninth iteration TOL = 1e-4Am).
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(b) Amplitude of the indued voltage.Fig. 4.5. Results for a urved reeiving wire antenna. Left: geometry of the wire. Right:Amplitude of the indued voltage as a funtion of the amplitude of the perturbation.


