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An hp-adaptive strategy for the solution of the exact
kernel curved wire Pocklington equation

ABSTRACT
In this paper we introduce an adaptive method for the numerical solution of the Pocklington
integro-differential equation with exact kernel for the current induced in a smoothly curved thin
wire antenna. The hp-adaptive technique is based on the representation of the discrete solution,
which is expanded in a piecewise p-hierarchical basis. The key element in the strategy is an
element-by-element criterion that controls the h- or p-refinement. Numerical results demonstrate
both the simplicity and efficiency of the approach.

2000 Mathematics Subject Classification:  45J05, 65N30, 41A10, 78A50
Keywords and Phrases: electromagnetic scattering; wire antenna; Pocklington; finite element approximations; hp-
adaptivity
Note: This research is supported by the Dutch Ministry of Economic Affairs through the project IOP-EMVT 04302.





AN hp-ADAPTIVE STRATEGY FOR THE SOLUTION OFTHE EXACT KERNEL CURVED WIRE POCKLINGTONEQUATIOND. LAHAYE� AND P. W. HEMKER�Abstra
t. In this paper we introdu
e an adaptive method for the numeri
al solution of thePo
klington integro-di�erential equation with exa
t kernel for the 
urrent indu
ed in a smoothly
urved thin wire antenna. The hp-adaptive te
hnique is based on the representation of the dis
retesolution, whi
h is expanded in a pie
ewise p-hierar
hi
al basis. The key element in the strategy isan element-by-element 
riterion that 
ontrols the h- or p-re�nement. Numeri
al results demonstrateboth the simpli
ity and eÆ
ien
y of the approa
h.Key words. ele
tromagneti
 s
attering, wire antenna, Po
klington, exa
t kernel, �nite elementapproximations, hp-adaptivity.AMS subje
t 
lassi�
ations. 45J05, 65N30, 41A10, 78A50.1. Introdu
tion. In this study we treat ele
tri
 �eld s
attering from thin 
urvedwire antennas. The 
urrent that an in
ident ele
tri
al �eld indu
es in the antennais 
omputed by solving the Po
klington integro-di�erential equation [12, 7, 15℄. Inengineering literature the redu
ed kernel approximation is typi
ally used. However,if very �ne meshes are used for the dis
retization, the ill-posedness of the resultingproblem 
auses spurious os
illations in the numeri
al solution, whi
h prevents the
omputation of highly a

urate solutions [8, 2, 13, 14, 16℄. We therefore treat the
omputationally more 
hallenging exa
t kernel model [4, 3℄.The �nite element (FE) te
hnique proposed in this paper a
hieves high a

ura
yat moderate 
omputational 
ost by automati
 adaption of both the mesh width (h-adaptation) and the polynomial degree (p-adaptation) of the approximation to thelo
al smoothness of the solution. The dis
rete solution is expanded in a pie
ewisehierar
hi
al basis [18℄, 
onsisting of the standard linear FE shape fun
tions enri
hedwith higher order bubble fun
tions . Apart from the treatment of a smooth arbitrarily
urved wire, a new aspe
t in this work is the element-by-element 
riterion for h- or p-re�nement. As shown below, this 
riterion is based on the behaviour of the 
oeÆ
ientsof the dis
rete solution in the hierar
hi
al basis representation.The fa
t that we want to solve the problem for an arbitrarily 
urved wire geome-tries implies that the resulting dis
rete system generally will not be of Toeplitz type.Su
h geometries prevent the use of the 
orresponding 
omputational short
uts thatmakes the 
omputation for linear, 
ir
ular and heli
al antennas more eÆ
ient [9℄.This paper is stru
tured as follows: in Se
tion 1 we introdu
e the Po
klingtonintegro-di�erential equation and its Bubnov-Galerkin dis
retization. In Se
tion 2 wedes
ribe our approximation of the exa
t kernel, the 
hoi
e of the �nite element basisfun
tions and the hp-adaptive strategy. In Se
tion 3 we des
ribe the 
onstru
tionof the dis
rete operators and the hp-adaptive algorithm. In Se
tion 4 we provideeviden
e of the e�e
tiveness of our approa
h and �nally we summarize the main
on
lusions of this work.� Centrum voor Wiskunde en Informati
a (CWI), P.O. Box 94079, 1090 GB Amstersdam, TheNetherlands (d.lahaye�
wi.nl, p.w.hemker�
wi.nl). This resear
h is supported by the Dut
h Min-istry of E
onomi
 A�airs through the proje
t IOP-EMVT 04302.1
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Fig. 1.1. Curved wire geometry.
1.1. Po
klington's equation for the 
urved thin wire antenna. The ge-ometry of the 
ylindri
al smoothly 
urved wire is des
ribed by the lo
ation of itsaxis (t; h1(t); h2(t)) 2 R 3 and its radius a. Here, parametrized by t, h1(t) andh2(t) des
ribe the horizontal and verti
al deviations from the straight antenna alignedwith the x-axis. The hull of the wire is des
ribed by r(t; �; a) = (t; h1(t); h2(t)) +a (0; 
os �; sin �) 1. On the wire axis we denote its dire
tion bys(t) = � r(t; �; 0)=�tk� r(t; �; 0)=�tk :As shorthand we use r = r(t; �; a), z = r(t0; �0; a) and s = s(t).We 
onsider the 
urrent on the 
ylindri
al hull r(t; �; a) to be 
aused by either anin
oming plane wave ele
tromagneti
 �eld or an impressed 
urrent sour
e over a �nitegap in 
ase of a re
eiving or an emitting wire, respe
tively. We use the simplifyingapproximation that the 
urrent only exists on the lateral surfa
e of the wire, i.e.,s � JS�r(t; �; a)� � I(t; �)=(2�a), where JS is the surfa
e 
urrent density and I(t; �)the total 
urrent over the wire. The derivative of the 
urrent in the dire
tion of thewire is denoted by I 0(t; �) = ��tI(t; �) = (s � rr) I(t; �).In 
ase of a re
eiving antenna, Po
klington's integral equation des
ribing therelation between the ele
tri
 �eld Ein and the 
urrent I(t; �) reads (
fr. [12, 7, 15℄)�{ ! " s �Ein(r) = k2 Zt0 Z�0 s � s0 I(t0; �0)2� G(kr� zk) dt0 d�0 (1.1)+(s � rr) Zt0 Z�0 ��t0 I(t0; �0)2� G(kr� zk) dt0 d�0 ;where G(r) = e�{ k r4� r : (1.2)This is the equation with exa
t kernel. The emitting antenna is modeled by settingEin(r) � 0 and impressing a given 
urrent I(t) = I0 on the part of the integrationdomain that 
orresponds with the gap in the antenna.1Noti
e that bending a 
ir
ular 
ylindri
al antenna results in an antenna that is no longer 
ir
ular
ylindri
al.



3For the dis
retization we write this equation in its weak formulation, using aweighting fun
tion  (t; �) and integrating over the wire hull�2�{ ! " Zt Z�  (t; �) s �Ein(r) dt d�= k2 Zt Z� Zt0 Z�0  (t; �)I(t0; �0) s � s0G(kr� zk) dt0 d�0 dt d�� Zt Z� Zt0 Z�0  0(t; �)�I(t0; �0)�t0 G(kr� zk) dt0 d�0 dt d� : (1.3)We remember that k2 = !2=
2 = !2 � " and �nd
kr� zk =s (t� t0)2 + (h1(t)� h1(t0) + 2a sin� sin �)2+ (h2(t)� h2(t0)� 2a 
os� sin�)2 ;

with � = (� + �0)=2 and � = (�0 � �)=2.1.2. The Galerkin dis
retization. In the dis
rete approximation we negle
tthe possible dependen
e of I(t; �) on � and we setI(t; �) =Xj Ij �j(t) : (1.4)
Note that in this dis
rete form we do not represent the possible �-dependen
e ofI(t; �). This results in a formalism similar to the one analysed in [16℄. Similarly to(1.4) we take for the weighting fun
tions  (t; �) = �i(t) to obtain the Bubnov-Galerkindis
retization 2�{ ! " Zt Z� �i(t) s �Ein(r) dt d� = Xj Ij��k2 Zt Z� Zt0 Z�0 �i(t)�j(t0) s � s0G(kr� zk) dt0 d�0 dt d�+ Zt Z� Zt0 Z�0 �0i(t)�0j(t0)G(kr� zk) dt0 d�0 dt d�� : (1.5)Thus, in order to 
ompute the 
urrent I(t), we have to solve the symmetri
 linearsystem Xj �Bij � k2Aij� Ij = 4�2{ ! " fi ; (1.6)
where fi is given byfi = 12� Zt Z� �i(t) s �Ein(r) dt d� = Zt �i(t) < s �Ein > (t) dt ;where < s �Ein > (t) denotes< s �Ein > (t) = 12� Z� s �Ein(r) d� ; (1.7)



4and where the impedan
e matri
es A and B 
orresponding to the ve
tor and s
alarpotential are de�ned byAij = Zt Zt0 s � s0 �i(t)�j(t0)fIG(t; t0) dt0 dt (1.8)and Bij = Zt Zt0 �0i(t)�0j(t0)fIG(t; t0) dt0 dt ; (1.9)respe
tively, where fIG(t; t0) = Z� Z�0 G(kr� zk) d�0 d� : (1.10)If the wire is smoothly 
urved (i.e., if the radius of 
urvature is mu
h larger than thewire thi
kness) we see that fIG(t; t0) is well approximated by [13, eq.(1)℄
IG(�; 
) = 2 Z �=2�=0 e�{ 
p�2+4 sin2 �p�2 + 4 sin2 � d� ; (1.11)

with � = 1ap�t2 +�h21 +�h22 = 1ap(t� t0)2 + (h1(t)� h1(t0))2 + (h2(t)� h2(t0))2and 
 = ka. This means that 
 denotes the wave-number s
aled to the wire radiusand � a s
aled distan
e between two points on the wire. To a

ount for the 
urvature,we later also need the notation h = a �=�t. As we are interested in antennas with alength of the order of 1m, a radius of about 0:001m, and frequen
ies in the order of1GHz, interesting values of 
 range from about 0:005 to about 0:02. In prin
iple, thete
hnique explained in this paper 
an be applied to any range of 
. However, di�erentranges will require other expansions of the form (2.8) and (2.9).1.3. Fun
tional of the solution. We are parti
ularly interested in the a

urate
omputation of the voltage V indu
ed over a �nite gap in a re
eiving antenna. Thisvoltage is 
omputed by appli
ation of the re
ipro
ity theorem to the antenna in anemitting and a re
eiving state. Denoting by I(t) the 
urrent indu
ed in the emittingantenna with 
onstant 
urrent I0 impressed over the gap, and by < s � Ein(t) > thequantity introdu
ed in (1.7), the indu
ed voltage is equal to (see e.g., [5, 10, 6℄)V = Zt I(t)I0 < s �Ein > (t) dt ; (1.12)where the integral is 
omputed over the antenna, ex
luding the gap.2. Numeri
al Method. In this se
tion we show three basi
 te
hniques that un-derly our algorithm for the solution of Po
klington's equation: (1) the approximationof the exa
t kernel, (2) the introdu
tion of a lo
al p-hierar
hi
al �nite-element basis,and, (3) the prin
iple of the hp-adaptive strategy used to determine a suÆ
ientlya

urate dis
retization.2.1. Approximation of the kernel. An essential point in the eÆ
ient eval-uation of the impedan
e matri
es (1.8) and (1.9) is the evaluation of IG(�; 
). Tounderstand how this fun
tion is evaluated, in the dis
ussion below we �rst distinguishbetween large and small values for �.



5For large values of � we �nd the approximation
IG(�; 
) = � e�{ 
p2+�2p2 + �2 + e(�; 
) ; (2.1)

whi
h is mu
h similar to the redu
ed kernel expression. The relative error in thisapproximation satis�es, asymptoti
ally for large �,���� e(�; 
)IG(�; 
) ���� = 2 (3 + (
 �)2) Æ2 ��2 +O(��4) ; (2.2)where Æ denotes the relative deviation of the antenna from the straight line, i.e.,Æ =p�h21 +�h22=(�a). Further, we may assume that the length of the antenna is ofthe order of one wavelength, i.e., 
 � � O(1). So, (2.2) des
ribes how the a

ura
yof the approximation (2.1) depends on Æ and �. For Æ = 0, the approximation (2.1)
orresponds with the approximation in [4, eq.(3.3)℄ for the straight antenna. Belowwe show how (2.1) is used in a
tual 
omputations for general Æ.
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(b) E1(�; 
0) and E2(�; 
0)Fig. 2.1. The fun
tions E0(�), E1(�; 
0) = �Im�IG(�; 
0)�=2 and E0(�) � E2(�; 
0) =Re�IG(�; 
0)�=2 for 0 � � � 2000 and 
0 = 0:01.For small values of � the vanishing denominator in the integrand of (1.11) indu
esthe singularity of the kernel. Therefore we split IG(�; 
) in a singular and a regularpart. We introdu
e the real fun
tions E0(�), E1(�; 
) and E2(�; 
) in order to write
IG(�; 
) = 2 Z �=2�=0 1p�2 + 4 sin2 � d� + 2 Z �=2�=0 e�{ 
p�2+4 sin2 � � 1p�2 + 4 sin2 � d�= 2E0(�)� 2 (E2(�; 
) + { E1(�; 
)) ; (2.3)with for the singular part [11, 17℄

E0(�) = Z �=2�=0 1p�2 + (2 sin�)2 d� = 1p4 + �2 K � 44 + �2� = 1� K ��4=�2� :



6Here, K(�) is the ellipti
 integral of the �rst kind [1℄. The fun
tion E0(�) is simpleto 
ompute (see Figure 2.1). For � ! 0 we have asymptoti
allyE0(�) = 12 �log(2)� log(�)�  (0)�12�� 
�� 132 �log(2)� log(�)� 12 (0)�32�� 12 (0)��12�� 
 + 1� �2 (2.4)+O ��4� :Here (and only here) 
 is the Euler gamma and  (0) is the polygamma fun
tion. Onthe other hand, for � !1 we �nd asymptoti
allylog(E0(�)) = log(�=2)� log(�)� ��2 +O ���4� : (2.5)With su
h a priori knowledge it is a simple matter of elementary numeri
al analysisto 
onstru
t an expansion that approximates the fun
tion E0(�) up to a required a
-
ura
y. In fa
t we use an expansion in terms �2i and �2i log � with a suÆ
ient numberof terms to approximate E0(�) with required a

ura
y in some neighbourhood of theorigin. E.g., 0 � i � 4 yields an a

ura
y of 6 digits on [0; 2℄. This type of expansionwill be used below with higher a

ura
y for the approximation of Re�eIG(�; 
)� forsmall �.
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ura
y in eE2(�; 
) for 0 � � � 10 and 0:005 < 
 < 0:02.In the non-singular part of IG(�; 
) we distinguish the imaginary and the realpart
E1(�; 
) = 
 Z �=�=2�=0 sin�
p�2 + (2 sin�)2�
p�2 + (2 sin�)2 d� ;

and
E2(�; 
) = 
 Z �=�=2�=0 sin2 �
2p�2 + (2 sin�)2�
2p�2 + (2 sin�)2 d� :



7Studying the asymptoti
 behaviour of E1(�; 
) for � !1 we �nd an approxima-tion
E1(�; 
) � eE1(�; 
) = �8 24 4 + 3(�2 + 2)2! sin�
p�2 + 2�p�2 + 2 (2.6)

�3
 
os�
p�2 + 2�(�2 + 2)2 � 
2 sin�
p�2 + 2�(�2 + 2)3=2 35
that for 
 in our range of interest, i.e., 0:005 � 
 � 0:02, is a

urate to 13 digits.This a

ura
y extends over all �. The a

ura
y of this formula deteriorates for largervalues of 
, but the approximation remains useful for values 
 . 0:5.For E2(�; 
) we �nd a similar approximation
E2(�; 
) � eE2(�; 
) = �8 24 4 + 3(�2 + 2)2! 2 sin2 �
2p�2 + 2�(�2 + 2)1=2 (2.7)

�3 
 sin�
p�2 + 2�(�2 + 2)2 + 
2 
os�
p�2 + 2�(�2 + 2)3=2 35 :
However, this approximation is less a

urate. In our range of interest 0:005 � 
 � 0:02the a

ura
y is only 3.5 digits. The error be
omes more signi�
ant only for thesmaller values of � (see Figure 2.2). So, in order to realize an eÆ
ient and a

urateevaluation for the real part of IG(�; 
), we 
onstru
t an approximation 
ombinedwith E0(�). Be
ause of the singularity at � = 0, for small values of � we use fourterms from the asymptoti
 expansion for � ! 0 of E0(�), and we 
orre
t this witha multivariate approximation of the di�eren
e between E0(�) � E2(�; 
) and thisasymptoti
 expression. For the larger values of � we take (2.7) and we 
orre
t it witha series expansion in odd powers of 1=�. Combining the expressions (2.5), (2.6) and(2.7) it is easily veri�ed that in the limit for large � our approximation for IG yieldsthe modi�ed redu
ed kernel expression (2.1).Summarizing, for eIG(�; y), the approximation of IG(�; 
), we �ndIm�eIG(�; 
)� = eE1(�; 
) ; (2.8)

Re�eIG(�; 
)� 2
8>>>><>>>>:

Span��2i 
j (log �)k ; i = 0; � � � ; 6; j = 0; 1; 2; k = 0; 1	for 0 < � < 3:1 ;eE2(�; 
) + Span���4i+1 
j ; i = 0; 1; � � � ; 5; j = 0; 1	++ Span���4i+3 ; i = 0; 1; � � � ; 4	for � � 3:1 ; (2.9)
where the 
oeÆ
ients in the expansion (2.9) are determined as to obtain the best leastsquares �t with Re�IG(�; 
)�. In the range of interest the a

ura
y of the approxima-tion is at least 8 digits.Splitting o� the singular part for the evaluation of the integrals. In order to 
om-pute the dis
rete operator entries (1.8)-(1.9) involving integrals of our singular kernelfun
tion IG, we split this fun
tion in a singular and a regular part. That is, we writeIG(�; 
) = IS(�; 
) + IR(�; 
) ; (2.10)



8where both IS(�; 
) and IR(�; 
) are smooth fun
tions and where IS(�; 
) 
ontains thelogarithmi
 terms and IS(�; 
) = 0 for � > �0 for some �0. Integrals involving IS(�; 
)and IR(�; 
) are 
omputed analyti
ally and by quadrature, respe
tively. In orderto assure that both IS(�; 
) and IR(�; 
) are smooth, we take IS(�; 
) = IG(�; 
) �ITaylor(�; 
) for � � �0, where ITaylor(�; 
) is a Taylor expansion of IG in � at � = �0.The part IR is the smooth remaining part, de�ned by (2.10). For the numeri
alapproximations eIS and eIR we take �0 = 3:1 and obtaineIS(�; 
) 2 Span��2i 
j (log �)k ; i = 0; � � � ; 6; j = 0; 1; 2; k = 0; 1	for 0 < � < 3:1 ; (2.11)
Re�eIR(�; 
)� 2

8>>>><>>>>:
Span��2i 
j ; i = 0; � � � ; 6; j = 0; 1; 2	for 0 < � < 3:1 ;eE2(�; 
) + Span���4i+1 
j ; i = 0; 1; � � � ; 5; j = 0; 1	++ Span���4i+3 ; i = 0; 1; � � � ; 4	for � � 3:1 ; (2.12)

Im�eIR(�; 
)� = eE1(�; 
) : (2.13)2.2. Choi
e of the lo
al basis. In order to form the dis
rete system we haveto make a 
hoi
e for the basis fun
tions f�jg in (1.5). Be
ause we want to 
onstru
tan hp-adaptive method to obtain optimal eÆ
ien
y, we partition 
, the domain ofintegration for t and t0, in elements of arbitary sizes. So we obtain the mesht0 < t1 < t2 < � � � < tNor

� = N[i=1[ti�1; ti℄ = N[i=1�i :

On this mesh we introdu
e a 
ontinuous, pie
ewise polynomial basis of degree p withpie
ewise linear fun
tions and higher order hierar
hi
al bubble fun
tions (i.e., p � 1),so that the basis for our approximation on the interval �i = [ti�1; ti℄ be
omes�i;0(t) = �0+(i�1)p(t) = (ti � t)=(ti � ti�1);�i;k(t) = �k+(i�1)p(t) = k+1Yj=1 t� ti;j;k+1(ti � ti�1)k+1 for k = 1; � � � ; p� 1; (2.14)�i;p(t) = �p+(i�1)p(t) = (t� ti�1)=(ti � ti�1);where ti;j;k = 1+�j;k2 (ti�ti�1)+ti�1 with �j;k the j-th point in the k+1-point Lobattoquadrature rule. In this way we form a pie
ewise polynomial fun
tion spa
e of degreep. Noti
e that all basis fun
tions have support �i ex
ept the pie
ewise linear �ip,i = 1; � � � ; N � 1, that have support �i [ �i+1. In 
ase that p is varying a
rosselements, the global numbering of the degrees of freedom is modi�ed a

ordingly. To
onstru
t the matri
es A and B in (1.8)-(1.9) it is 
onvenient to introdu
e a lo
al basisfor the standard interval [�1;+1℄ from whi
h the fun
tions (2.14) 
an be derived. For



9example, for p = 7, these basis fun
tions are given by'0(�) = (1� �)=2 ;'1(�) = (� + 1)(� � 1)=22;'2(�) = (� + 1)�(� � 1)=23 ;'3(�) = (� + 1)�� +q 15��� �q 15� (� � 1)=24 ;'4(�) = (� + 1)�� +q 37� � �� �q 37� (� � 1)=25 ;'5(�) = (� + 1)�� +q 121 (7 + 2p7)��� +q 121 (7� 2p7)��� �q 121 (7� 2p7)��� �q 121 (7 + 2p7)� (� � 1)=26 ;'6(�) = (� + 1)�� +q 133 (15 + 2p15)��� +q 133 (15� 2p15)� ��� +q 133 (15� 2p15)��� �q 133 (15 + 2p15)� (� � 1)=27 ;'p(�) = (� + 1)=2 :

(2.15)

With the basis fun
tion introdu
ed in (2.15), the solution on element �i is approxi-mated by Ppk=0 
k �i;k.2.3. The prin
iple of the hp-adaptive strategy. The hp-adaptive strategyin this paper relies on the above p-hierar
hi
al base and makes use of the fa
t thatfor smooth fun
tions the 
oeÆ
ients {on a single element in a pie
ewise polynomialapproximation{ are supposed to de
rease as a geometri
 sequen
e.More pre
isely, we 
an say that the approximation of a Cp+1-fun
tion in a neigh-bourhood of width 2h allows a p-hierar
hi
al polynomial representation in whi
h the
oeÆ
ients are bounded by a geometri
ally de
reasing sequen
e, if h is small enough.This is easily seen for a lo
al basis with fun
tions ftigi=0;:::;p for whi
h the terms inthe Taylor series expansion are bounded by hikfkCp=i!, i = 0; : : : ; p. For the basis(2.15), we �nd for the 
oeÆ
ientsj
p + 
0j=2 � ��f0 + h2 �f2 + h2 �f4 + h2 f6����j
p � 
0j=2 � h ��f1 + h2 �f3 + h2 �f5 + h2 f7����j
1j � h2 ��f2 + h2 � 65 f4 + h2 97 f6���j
2j � h3 ��f3 + h2 � 107 f5 + h2 53 f7���j
3j � h4 ��f4 + h2 53 f6��j
4j � h5 ��f5 + h2 2111 f7��j
5j � h6 jf6jj
6j � h7 jf7j
(2.16)

with fi = f (i)(0)=i!, i = 0; : : : ; p. This shows that, for small h, our hierar
hi
al basisthe 
oeÆ
ients 
i, i = 1; : : : ; p� 1, are of order O(hi+1), and bounded byj
ij � C hi+1 kfkC1[�h;h℄ :This not only shows that {for a �ne enough mesh{ we expe
t the 
oeÆ
ients for ea
hinterval to de
rease geometri
ally, but also that the rate of de
rease doubles whenthe mesh is halved. By the nature of the hierar
hi
al representation it makes senseto 
onsider the last non-vanishing term in the representation as an estimate for thelo
al error.



10 The above observations lead to the following hp-adaptive strategy. On a (non-uniform) mesh we determine in ea
h interval a p-hierar
hi
al representation of thesolution with a suÆ
ient number of terms. On ea
h interval the 
onvergen
e of theapproximation is studied. If the rate of de
rease of the 
oeÆ
ients is fast enough, thenthe series is trun
ated su
h that an a-priori given toleran
e 
riteria is satis�ed. If therate of de
rease is not fast enough, then the interval is split into two smaller intervalsof equal size and a new approximation is 
omputed. The pro
ess will stop after a�nite number of iterations, ex
ept in those areas where derivatives are unbounded.At su
h singular lo
ations the pro
ess 
an be stopped by introdu
ing a limit for theminimal allowed mesh-size. Details of the strategy are explained in Se
tion 3.4.In this way a suÆ
iently a

urate approximation is obtained, ex
ept at well-determined lo
ations where the solution has a singular behaviour.The square root singularity. From analysis [13℄ it is known that at the end-pointsof a re
eiving straight-line thin-wire antenna the 
urrent shows a square-root singular-ity. Hen
e, it is interesting to study the behaviour of the 
oeÆ
ients in the hierar
hi
alrepresentation in this parti
ular 
ase where derivatives be
ome unbounded.Therefore, we 
onsider the segment of the antenna where the singularity o

urs(i.e., near an end-point). Knowing the type of singularity, we 
an estimate the 
oef-�
ients in the hierar
hi
al expansion. Denoting the length of the element by h, onthe elements [0; h℄ and [h; 2h℄ we approximate the fun
tion f(t) = pt by a su
h apolynomial approximation. Therefore we �x the values at the endpoints to determinethe linear approximation, whereas the higher order 
ontributions are determined byoptimal L2-approximation. Be
ause the fun
tions 'k are not L2-orthogonal, the 
o-eÆ
ients (slightly) depend on the order of the approximation. A simple 
omputationshows that all 
oeÆ
ients are of order O(ph), and that on the �rst interval [0; h℄ the
oeÆ
ients in
rease for the higher order terms. On the se
ond interval [h; 2h℄ theyde
rease by several orders of magnitude. In Figure 2.3 we show these theoreti
al 
o-eÆ
ients on a logarithmi
 s
ale for approximations upto degree 7. It is obvious thaton the interval [0; h℄ h-re�nement rather than p-re�nement is the proper strategy toobtain better a

ura
y, while the 
ontrary is true on the interval [h; 2h℄.The theoreti
al behavior of the 
oeÆ
ients for the fun
tion f(t) = pt is re
ov-ered in the 
omputation of the 
oeÆ
ients 
omputed for the 
urrent on the re
eivingstraight-line thin-wire antenna. To illustrate this point, we 
onsider the 
omputationof the 
urrent in a straight wire of length L = 3m and radius a = 0:02m, indu
edby a plane wave exitation of wavenumber k = 1m�1 and propagation ve
tor per-pendi
ular to the antenna axis. We employ an uniform mesh of 128 elements, all
ontaining a lo
al polynomial approximation of degree seven. In Figure 2.4, we plotthe 
oeÆ
ients of the p-hierar
hi
al de
omposition of the 
urrent on the �rst and onthe fourteenth element. In the presen
e of dis
retization error, we 
onsider the latterto be lo
ated at a suÆ
iently large distan
e away from the boundary to be represen-tative for the interior of the antenna. Like Figure 2.3, it shows that the 
oeÆ
ientsin
rease for the higher order terms on the element 
ontaining the singularity, andthat they de
rease by several orders of magnitude on the fourteenth element wherethe solution is smooth. In Se
tion 3.4, we explain how this smoothness indi
ator isused to implement the hp-strategy.3. Implementation. In this se
tion we des
ribe the 
onstru
tion of the dis
reteoperator and the implementation of the hp-adaptive strategy.3.1. Evaluation of the o�-diagonal elements. For the o�-diagonal elementsin (1.8)-(1.9) with ji� jj > 1, the singularity of the integrand falls outside the domain



11

1 2 3 4 5 6 7

−1.2

−1

−0.8

−0.6

−0.4

Polynomial order

10
Lo

g 
co

rr
ec

tio
n

(a) First element. 1 2 3 4 5 6 7

−5

−4

−3

−2

−1

0

Polynomial order

10
Lo

g 
co

rr
ec

tio
n

(b) Se
ond element.Fig. 2.3. CoeÆ
ients of the p-hierar
hi
al de
omposition of f(t) = pt in the element [0; h℄ and[h; 2h℄. The graphs show 10 log j
k=h�j for the 
oeÆ
ients in an approximation of degree 7.
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(b) Fourteenth element.Fig. 2.4. CoeÆ
ients of the p-hierar
hi
al de
omposition of the 
omputed 
urrent on a straight-line re
eiving thin-wire antenna in the �rst and fourteenth element. The graphs show 10 log j
k=h�jfor the 
oeÆ
ients in an approximation of degree 7.
of integration, and therefore we 
an use straightforward Gaussian quadrature. Wetake a �xed L-point Gaussian quadrature rule

Z bt=a f(t) dt � (b� a) LXm=1 wm f(tm) ;



12and we obtain, with �ti = ti � ti�1 and 0 � k; l � p,
(Ai;j)k;l � �ti�tj LXm;n=1 wm �i;k(ti;m) wn �j;l(tj;n) �s � s0fIG� (ti;m; tj;n)

= �ti�tj LXm;n=1 wm 'k(tm) wn 'l(tn) �s � s0fIG� (ti;m; tj;n) ;
(Bi;j)k;l � �ti�tj LXm;n=1 wm �0i;k(ti;m) wn �0j;l(tj;n)fIG(ti;m; tj;n)

= 4 LXm;n=1 wm '0k(tm) wn '0l(tn)fIG(ti;m; tj;n) :
It is 
lear that the 
onstant matri
es � and �0, de�ned by �km = wm 'k(tm) and�0km = wm '0k(tm), 
an be 
omputed in advan
e, so that the work of the 
onstru
-tion of the o�-diagonal elementary matri
es 
omes down to O(L2) evaluations ofthe fun
tion fIG(t; t0). Introdu
ing the matri
es Zi;j and bZi;j de�ned by Zi;jm;n =IG(�(ti;m; tj;n); 
) and bZi;jm;n = s(ti;m) � s0(tj;n)Zi;jm;n, respe
tively, we write the aboveexpressions as

Ai;j � �ti�tj � bZi;j �T ; (3.1)Bi;j � 4�0Zi;j (�0)T : (3.2)
3.2. Evaluation of the diagonal elements. For the diagonal elements in(1.8)-(1.9) with i = j, we have to 
ompute integrals of the form

Z t=tit=ti�1 Z t0=tit0=ti�1 �i;k(t)�i;l(t0)�(jt� t0j) dt0 dt ; (3.3)
where the fun
tion �(jt � t0j) has a singularity at t = t0 and the distan
e satis�esjt�t0j < �ti. Taking into a

ount the type of dependen
e of � on t and t0, (see (1.10))and omitting the fa
tor s(t) � s0(t0) be
ause of the assumption that the 
urvature of



13the wire 
an be negle
ted over a distan
e of one or two elements, we approximate(Ai;i)k;l = Z Z t=ti;t0=tit=ti�1;t0=ti�1 �i;k(t)�i;l(t0) s � s0fIG(t; t0) dt0 dt� Z Z t=ti;t0=tit=ti�1;t0=ti�1 �i;k(t)�i;l(t0) fIG(t; t0) dt0 dt� Z Z t=ti;t0=tit=ti�1;t0=ti�1 �i;k(t)�i;l(t0) 1a IG� jt� t0j hia ; 
� dt0 dt
= 1a Z Z �=1;� 0=1�=0;� 0=0 'k(�)'l(� 0) IG � j� � � 0j�tihia ; 
� d(�ti� 0) d(�ti�)
= �t2ia Z �= 1p2�=�1p2 IG�j�jp2 �tihia ; 
�Z �=p2�j�j�=j�j 'k �� + �p2 �'l�� � �p2 � d� d�
= �t2ia Z �=1�=0 Pkl(�) IG�� �tihia ; 
� d�= �t2ia IPkl(�tihia ; 
) ; (3.4)where hi is as de�ned as in Se
tion 1.2, and where the transformations � = (�+�)=p2and � 0 = (� � �)=p2 have been used (see Figure 3.1(a)). In (3.4) we introdu
ed thede�nitions bPkl(�) = Z �=p2�j�j�=j�j 'k �� + �p2 �'l�� � �p2 � d� ; (3.5)Pkl(�) = 1p2 �bPkl� �p2�+ bPkl ���p2�� ; (3.6)IPkl(x; 
) = Z �=1�=0 Pkl(�) IG (� x; 
) d� : (3.7)

For the polynomial base (2.15), the fun
tions bPkl and Pkl are also polynomials andthey 
an be 
omputed on
e and for all. Similarly we �nd(Bi;i)k;l � 1a IP 0kl(�tihia ; 
) ; (3.8)with the polynomials
P 0kl(�) = Z �=p2�j�j�=j�j '0k �� + �p2 �'0l�� � �p2 � d� ; (3.9)P 0kl(�) = 1p2 �
P 0kl� �p2�+
P 0kl���p2�� ; (3.10)IP 0kl(x; 
) = Z �=1�=0 P 0kl(�) IG (� x; 
) d� : (3.11)To 
ompute (Ai;j)k;l and (Bi;j)k;l we use the splitting (2.10) and take into a

ountthat IS(x; 
) vanishes for x > 3:1. This implies that we have to 
onsider two 
ases:



14 η τξ
τ '10 1(a) Diagonal element

η τξ
τ '� 1 0 1 t i + 1t it i � 1(b) Upper 
odiagonal ele-ment with �ti > �ti+1

η τξ
τ '� 1 0 1

t i + 1t it i � 1(
) Upper 
odiagonal ele-ment with �ti > �ti+1 .
Fig. 3.1. Coordinate transformation.

the argument x being larger or smaller than 3:1. In the 
ase x < 3:1, the expressions(3.4) and (3.8) 
an be implemented dire
tly. However, for x > 3:1 the dis
ontinuousbehaviour ar x = 3:1 requires a more 
areful treatment. We get
IPkl(x; 
) = Z �=1�=0 Pkl(�) IS (x �; 
) d�= Z �=3:1=x�=0 Pkl(�) IS (x �; 
) d�= Z z=x=3:1=xz=x=0 Pkl(z=x) IS (x z=x; 
) dz=x= 1x Z z=3:1z=0 Pkl(z=x) IS (z; 
) dz ; (3.12)

and similarly
IP 0kl(x; 
) = 1x Z z=3:1z=0 P 0kl(z=x) IS (z; 
) dz : (3.13)

These fun
tions 
an also be 
omputed beforehand.
3.3. Evaluation of the 
o-diagonal elements. For the 
o-diagonal elementsin (1.8)-(1.9) we also use the splitting (2.10) of IG(�; 
). Due to symmetry, it suÆ
es



15to 
onsider upper 
o-diagonal elements only. We obtain

(Ai;i+1)k;l = Z Z t=ti;t0=ti+1t=ti�1;t0=ti �i;k(t)�i;l(t0) s � s0fIG(t; t0) dt0 dt
� Z t=tit=ti�1Z t0=ti+1t0=ti �i;k(t)�i;l(t0) fIG(t; t0) dt0 dt
= Z t=tit=ti�1Z t0=ti+1t0=ti �i;k(t)�i;l(t0) 1a IG � jt� t0j hia ; 
� dt0 dt
= Z t=tit=ti�1Z t0=ti+1t0=ti �i;k(t)�i;l(t0) 1a IR � jt� t0j hia ; 
� dt0 dt
+ Z t=tit=ti�1Z t0=ti+1t0=ti �i;k(t)�i;l(t0) 1a IS � jt� t0j hia ; 
� dt0 dt= �ARi;i+1�k;l + �ASi;i+1�k;l : (3.14)

Again we negle
t the fa
tor s � s0, assuming that the wire is only mildly 
urved.The regular part, ARi;i+1 is 
omputed by two-dimensional Gaussian quadrature as inSe
tion 3.1. For 
omputing the singular part, ASi;i+1, we make use of the fa
t thatIS(�; 
) = 0 for � > 3:1 and, in order to be sure that the o�-diagonal elements arenot in
uen
ed by the singularity, we take 
are that the dis
retization has no wiresegments with ratio �ti=a smaller than 3:1. In pra
tise it appears that this is noserious restri
tion as is does not impede a

urate 
omputations. In Se
tion 4 we seethat even for the approximation of the singular part of the solution suÆ
ient a

ura
y
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an be obtained. Assuming that �ti > �ti+1 (see Figure 3.1(b)), we obtain
�ASi;i+1�k;l = Z t=tit=ti�1 Z t0=ti+1t0=ti �i;k(t)�i;l(t0) 1a IS � jt� t0j hia ; 
� dt0 dt

= Z t=tit=2ti�ti+1 Z t0=ti+1t0=ti �i;k(t)�i;l(t0) 1a IS � jt� t0j hia ; 
� dt0 dt
= Z t=tit=2ti�ti+1 Z t0=ti+1�ti+tt0=ti �i;k(t)�i;l(t0) 1a IS � jt� t0j hia ; 
� dt0 dt
� Z 0�=�1 Z 1+�� 0=0 'k(� + 1)'l(� 0) �ti�ti+1a �

IS  j� � � 0j hip�ti�ti+1a ; 
! d� 0 d�
= �ti�ti+1a Z 0�=�1p2 Z ���=� 'k �� + �p2 + 1�'l�� � �p2 ��IS  p2j�j hip�ti�ti+1a ; 
! d� d�
= �ti�ti+1a Z 0�=�1p2 IS  p2j�j hip�ti�ti+1a ; 
! bQk;l(��) d�
= �ti�ti+1a Z 0�=�1 IS  j�j hip�ti�ti+1a ; 
! bQk;l(��=p2)p2 d�
= �ti�ti+1a IQk;l hip�ti�ti+1a ; 
! ; (3.15)

where we have introdu
ed
bQk;l(�) = Z ��=�� 'k �� � �p2 + 1�'l �� + �p2 � ; (3.16)Qk;l(�) = 1p2 bQk;l� �p2� ; (3.17)IQk;l(x; 
) = Z 1�=0Qkl(�) IS(� x; 
) d� : (3.18)

In 
ase that �ti < �ti+1 (Figure 3.1(
)), identi
al results are obtained. Similarly, we�nd
(Bi;i+1)k;l � 1a IQ0k;l hip�ti�ti+1a ; 
! ; (3.19)



17where we have introdu
ed
Q0k;l(�) = Z ��=�� '0k �� � �p2 + 1�'0l�� + �p2 � ; (3.20)Q0k;l(�) = 1p2 
Q0k;l � �p2� ; (3.21)IQ0k;l(x; 
) = Z 1�=0Q0kl(�) IS(� x; 
)d� : (3.22)Although these are somewhat 
omplex expressions, the fun
tions bQk;l(�), Qk;l(�),IQk;l(x; 
) and their primed 
ounterparts are easily pre
omputed on
e and for all.3.4. The hp-adaptive strategy. Our hp-adaptive strategy is an iterative pro-
edure that starts with a 
oarse uniform mesh on whi
h a low order (p = 2) solutionis 
omputed. In ea
h step of the iteration it is de
ided, for ea
h element, whetherit should be h-re�ned (i.e., the element is split into two equal smaller elements), orp-re�ned (i.e., the order of the approximation in that element is enhan
ed by oneorder). If it is de
ided that the approximation is lo
ally a

urate enough no furtherre�nement is applied in that element. The pro
edure ends when no element requiresany further re�nement or, for the elements that still do, the element-size drops belowsome given minimal value.The de
ision on whether to apply p- or h-re�nement is made on basis of the lo
alsmoothness of the 
omputed solution. The smoothness of the solution is determinedfrom the behaviour of the 
oeÆ
ients in the hierar
hi
al representation of the solutionin an element. As explained in Se
tion 2.3, for a suÆ
iently smooth solution we mayexpe
t the 
oeÆ
ients to de
rease geometri
ally if the element-size is small enough.Therefore, we 
onsider in ea
h element the sequen
e of 
oeÆ
ients as found in (2.16),i.e., j
p+
0j=2, j
p�
0j=2, j
1j, j
2j, � � � , j
p�1j. In parti
ular the tail of this sequen
e,(i.e., the last 3 available 
oeÆ
ents) is used to determine the smoothness.Denoting the 
oeÆ
ients in the tail by respe
tively C1, C2 and C3, and introdu
ingan de
rement fa
tor � > 1, we 
ompare the values of the triple fC1; �C2; �2 C3g,distinguishing 2 situations:- the tail is de
reasing if �2 C3 < C1, or- the tail is in
reasing if �2C3 � C1.In 
ase of an in
reasing tail, the triple 
an be- monotonous, or- of V-type, i.e., �C2 < min(C1; �2C3), or- of A-type, i.e., �C2 � max(C1; �2C3).The de
ision on p- or h-re�nement is now made as follows:1. if the 
oeÆ
ient tail is de
reasing we qualify the solution to be lo
ally smooth,and we take the last 
omputed 
oeÆ
ient in the hierar
hi
al basis, C3, as the
urrent lo
al error. If this error is larger than a pres
ribed toleran
e, wede
ide for p-re�nement;2. if the 
oeÆ
ient tail is monotonously in
reasing or of in
reasing V-type, thenadding the last 
orre
tion proved to have an adverse e�e
t. The solution isquali�ed as non-smooth, motivating to h-re�ne the element. C2 is taken asthe lo
al error. In the two new elements we use the same order p as was usedin the original unsplit element.3. if the 
oeÆ
ient tail is of in
reasing A-type, then the previous triple in thesame element 
an only have been of V-type. This means that the 
oeÆ
ient



18 C1 is (possibly by 
oin
iden
e) relatively small. We 
onsider adding the
orre
tion 
orresponding to C3 to be bene�
ial, the solution to be lo
allysmooth and we take C3 as the lo
al error. If this lo
al element is larger thana pres
ribed toleran
e, we de
ide to p-re�ne the element.In this way we 
ontrol the L1-error on ea
h element. We noti
e that a larger fa
tor �requires a faster de
reasing sequen
e of hierar
hi
al 
oeÆ
ients, and hen
e introdu
esa bias towards h-re�nement, whereas a smaller � > 1 leads to more p-re�nement. Inthis work we use � = 4 as it gives a good balan
e between h-and p-adaption as shownSe
tion 4.The mesh re�nement iterative pro
ess requires at every iteration the element-by-element assembly of the dis
rete operator. The hierar
hi
al basis is su
h thatthe elementary operator of a p-re�ned element equals the previously 
omputed oneaugmented by one row and 
olumn. We exploit this fa
t in our simulation 
ode byremembering previously 
omputed results.Stopping Criterium. Motivated by our arguments in Se
tion 3.2, we tailor theadaptive re�nement pro
ess so as to ensure that the dis
retization error 4V in thevoltage 
omputation is smaller than a pres
ribed toleran
e TOL. Be
ause of (1.12),we see that 4V � C k�I(t)kL1(
), where �I(t) denotes the error in I(t). On a mesh
onsisting of N elements we allow on ea
h element an L1-error of TOL=N , whi
himplies an L1-error of TOL=(N h). In this way we distribute the L1-error over thegrid, allowing for a larger L1-error on smaller elements.Numeri
al eviden
e given in Se
tion 4.3 shows that starting 
omputations witha mild toleran
e and using the �nal mesh obtained as point of departure for a morea

urate 
omputation results in a slower in
rease of the degrees of freedom than whenrequiring a stringent toleran
e from the start.4. Numeri
al Results. In this se
tion we des
ribe four examples. First weshow how the hp-re�nement strategy works for the 
omputation of the 
urrent in are
eiving straight wire antenna. Next we do the same for an emitting antenna. In thethird example we study how the a

ura
y requirement for the indu
ed voltage a
rossa gap in the re
eiving antenna in
uen
es the required number of degrees of freedom.For 
omparison with results from other papers, in these �rst three examples we still
onsider the 
lassi
al straight thin-wire antenna. In the last example we perturb thegeometry of the antenna and employ the method developed to tra
k the e�e
t of the
urvature on the indu
ed voltage.4.1. Current in Re
eiving Antenna. In the �rst experiment, we 
onsiderthe 
omputation of the 
urrent in a straight wire antenna of length L = 1m andradius a = 0:001m, indu
ed by a plane wave exitation of frequen
y f = 500MHz andpropagation ve
tor perpendi
ular to the axis of the antenna. We use the L1-errorbound introdu
ed in Se
tion 3.4 as the stopping 
riterium in the mesh re�nementpro
ess. As initial dis
retization we 
hoose a uniform mesh with 16 se
ond degreeelements having in total 33 (i.e., 17 + 16) degrees of freedom. Imposing a toleran
eTOL = 5e-8Am, this results in eight adaptive re�nement steps and a mesh of 96elements with 422 degrees of freedom. In Figure 4.1(a) for the �nal mesh we plot thenumber of lo
al mesh re�nements and polymomial order. In Figure 4.1(b) we showthe 
omputed 
urrent. The mesh shows to have been h-re�ned near the end-pointsingularities and to have been p-re�ned where the 
urrent is a smooth fun
tion. Thebehavior of the L1-norm of the error in the 
omputed 
urrent as a fun
tion of themesh re�nement step in shown in Figure 4.3(a). On the �nal mesh the estimatedL1-error in the 
urrent is 8:47e-7A.



194.2. Current in Emitting Antenna. This time we 
onsider the 
omputationof the 
urrent in an emitting straight antenna. Length and radius are as in theprevious example. Now the antenna has a gap of 0:01m in its middle where a 
urrentsour
e of 1A is impressed. Starting from a pie
ewise se
ond degree solution on auniform mesh with eight elements on either side of the gap and imposing a toleran
eTOL = 1e-3Am, seven adaptive re�nement steps result in a mesh of 45 elementswith 154 degrees of freedom. The �nal hp-mesh and 
omputed 
urrent are shown inFigure 4.2. Both the end-point singularities and the singularities at the boundariesof the gap are 
learly resolved by low order small elements. The 
onvergen
e historyof the L1-norm of the error in the 
urrent is shown in Figure 4.3(b). The estimatedL1-error in the 
omputed 
urrent is 1:64e-2A.4.3. Voltage A
ross a Gap in Straight Wire. Now we 
ompute the voltageindu
ed over a gap in a re
eiving straight wire antenna ex
ited by a plane wave at500 MHz with propagation ve
tor perpendi
ular to the antenna axis. The values forL, a, the gap size and the initial mesh are the same as above. We investigate howthe required toleran
e a�e
ts the following three quantities 
onsidered as fun
tionsof the index of the mesh re�nement step: the number of degrees of freedom, theerror in the amplitude of the voltage and the L1-norm of the error in the 
urrent.On ea
h mesh, the error in the voltage amplitude is 
omputed by 
onsidering theerror in the 
urrent on an element to be given by the highest degree basis fun
tiontimes the 
orresponding 
oeÆ
ient, substituting this error in (1.12) and taking theabsolute value of the result. We illustrate in parti
ular how a stepwise redu
tion ofthe toleran
e results in a savings of the degrees of freedom. In the top row of Figure4.4 we show the behavior of the three fun
tions of interest for three di�erent values ofTOL (TOL = 1e-2; 1e-3; 1e-4Am) starting from a pie
ewise se
ond degree solution ona uniform mesh with four (as opposed to eight in the previous example) elements oneither side of the gap. In the last 
ase, nine re�nement steps result in a mesh with 608degrees of freedom, an estimated L1-error in the 
omputed 
urrent of 6:48e-4A andan estimated error in the amplitude of the voltage of 3e-6V. In the bottom row ofFigure 4.4 we plot the 
onvergen
e history of the same three quantities starting withTOL = 1e-2Am, stepwise redu
ing this value to TOL = 1e-3Am after the fourthiteration and TOL = 1e-4Am after the ninth iteration, respe
tively. In this way 14iterations results in a mesh of 516 degrees on freedom. This is a signi�
ant redu
tion
ompared with the 608 degrees of freedom generated before.4.4. The E�e
t of Perturbations in the Geometry of the Wire. In thislast example we perturb the straight wire by a sinus pro�le, setting the fun
tionsh1(t) and h2(t) introdu
ed in Se
tion 1.1 equal to h1(t) = 0 and h2(t) = wL sin(� t)for 0 � t � L, respe
tively (see Figure 4.5(a)): we study how the indu
ed voltage
hanges with w for w ranging between 0 and 1.5. The values for L and a, the lo
ationand width of the gap, as well as the frequen
y of the ex
itation are 
hosen as in theprevious examples. The progation ve
tor is assumed to be perpendi
ular to the x-axis. In the range of w 
onsidered, the total length of the wire varies between 1m andapproximately 3:17m and is thus equal to an integer multiple of the the wavelenght� = 0:6m at four instan
es. In Figure 4.5(b) we plot the amplitude of the voltagejV (w)j as a fun
tion of w. Four resonan
es 
an be 
learly distinguished.5. Con
lusion. In this paper we solve Po
klington's equation with exa
t kernelfor the voltage indu
ed a
ross gaps in arbitrarily 
urved thin wire antennas. For theeÆ
ient dis
retization we introdu
ed a new adaptive re�nement strategy. The key is
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(b) Computed 
urrentFig. 4.1. Results for a re
eiving straight wire antenna. Left: the number of mesh re�nementsteps and the polynomial degree yielding an L1-error smaller than TOL = 5e-8Am. Right: the realand imaginary part of the 
omputed 
urrent.

1 11 22 33 45

2

4

6

8

10

12

Element number

M
es

h 
re

fin
em

en
ts

 a
nd

 p
ol

. d
eg

re
e

 

 

mesh refinements
polynomial degree

(a) Final mesh 0 0.5 1
−1.5

−1

−0.5

0

0.5

1

1.5

Position on wire [m]

R
ea

l a
nd

 im
ag

 p
ar

t c
ur

re
nt

 [A
]

 

 

real part
imag part

(b) Computed 
urrentFig. 4.2. Results for an emitting straight wire antenna. Left: the number of mesh re�nementsteps and the polynomial degree yielding an L1-error smaller than TOL = 3e-3Am. Right: the realand imaginary part of the 
omputed 
urrent.
that the degree of lo
al smoothness of the solution 
an be derived from pie
ewise p-hierar
hi
al basis 
oeÆ
ients. This information is used to de
ide whether a parti
ularelement has to be h- or p-re�ned. Numeri
al results for straight and 
urved antennasdemonstrate both the simpli
ity and eÆ
ien
y of the approa
h.REFERENCES[1℄ M. Abramowitz and A. S. Stegun, eds., Handbook of Mathemati
al Fun
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(e) Corre
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(f) Error in 
urrentFig. 4.4. Top row: number of degrees of freedom, error in amplitude of voltage and L1-norm of the error in the 
urrent as fun
tions of the mesh re�nement step for TOL = 1e-2Am,TOL = 1e-3Am and TOL = 1e-4Am. Bottom row: adaptive strategy for TOL, de
reasing its valueduring the iteration (starting with TOL = 1e-2Am, after the fourth iteration TOL = 1e-3Am andafter the ninth iteration TOL = 1e-4Am).
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(b) Amplitude of the indu
ed voltage.Fig. 4.5. Results for a 
urved re
eiving wire antenna. Left: geometry of the wire. Right:Amplitude of the indu
ed voltage as a fun
tion of the amplitude of the perturbation.


