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ABSTRACT
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wire antenna. The hp-adaptive technique is based on the representation of the discrete solution,
which is expanded in a piecewise p-hierarchical basis. The key element in the strategy is an
element-by-element criterion that controls the 4- or p-refinement. Numerical results demonstrate
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AN hp-ADAPTIVE STRATEGY FOR THE SOLUTION OF
THE EXACT KERNEL CURVED WIRE POCKLINGTON
EQUATION

D. LAHAYE* AND P. W. HEMKER*

Abstract. In this paper we introduce an adaptive method for the numerical solution of the
Pocklington integro-differential equation with exact kernel for the current induced in a smoothly
curved thin wire antenna. The hp-adaptive technique is based on the representation of the discrete
solution, which is expanded in a piecewise p-hierarchical basis. The key element in the strategy is
an element-by-element criterion that controls the h- or p-refinement. Numerical results demonstrate
both the simplicity and efficiency of the approach.

Key words. electromagnetic scattering, wire antenna, Pocklington, exact kernel, finite element
approximations, hp-adaptivity.

AMS subject classifications. 45J05, 65N30, 41A10, 78A50.

1. Introduction. In this study we treat electric field scattering from thin curved
wire antennas. The current that an incident electrical field induces in the antenna
is computed by solving the Pocklington integro-differential equation [12, 7, 15]. In
engineering literature the reduced kernel approximation is typically used. However,
if very fine meshes are used for the discretization, the ill-posedness of the resulting
problem causes spurious oscillations in the numerical solution, which prevents the
computation of highly accurate solutions [8, 2, 13, 14, 16]. We therefore treat the
computationally more challenging exact kernel model [4, 3].

The finite element (FE) technique proposed in this paper achieves high accuracy
at moderate computational cost by automatic adaption of both the mesh width (h-
adaptation) and the polynomial degree (p-adaptation) of the approximation to the
local smoothness of the solution. The discrete solution is expanded in a piecewise
hierarchical basis [18], consisting of the standard linear FE shape functions enriched
with higher order bubble functions . Apart from the treatment of a smooth arbitrarily
curved wire, a new aspect in this work is the element-by-element criterion for h- or p-
refinement. As shown below, this criterion is based on the behaviour of the coefficients
of the discrete solution in the hierarchical basis representation.

The fact that we want to solve the problem for an arbitrarily curved wire geome-
tries implies that the resulting discrete system generally will not be of Toeplitz type.
Such geometries prevent the use of the corresponding computational shortcuts that
makes the computation for linear, circular and helical antennas more efficient [9].

This paper is structured as follows: in Section 1 we introduce the Pocklington
integro-differential equation and its Bubnov-Galerkin discretization. In Section 2 we
describe our approximation of the exact kernel, the choice of the finite element basis
functions and the hp-adaptive strategy. In Section 3 we describe the construction
of the discrete operators and the hAp-adaptive algorithm. In Section 4 we provide
evidence of the effectiveness of our approach and finally we summarize the main
conclusions of this work.

* Centrum voor Wiskunde en Informatica (CWI), P.O. Box 94079, 1090 GB Amstersdam, The
Netherlands (d.lahaye@cwi.nl, p.w.hemker@cwi.nl). This research is supported by the Dutch Min-
istry of Economic Affairs through the project IOP-EMVT 04302.
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Fic. 1.1. Curved wire geometry.

1.1. Pocklington’s equation for the curved thin wire antenna. The ge-
ometry of the cylindrical smoothly curved wire is described by the location of its
axis (¢, h1(t), h2(t)) € R® and its radius a. Here, parametrized by ¢, hi(t) and
hs(t) describe the horizontal and vertical deviations from the straight antenna aligned
with the z-axis. The hull of the wire is described by r(t,6,a) = (t, h1(t), ha(t)) +
a (0,cosf,sinf) 1. On the wire axis we denote its direction by

1) = Or(t.6,0)/0t
~ |lorx(t,6,0)/0t]

As shorthand we use r = r(t,0,a), z =r(t',0',a) and s = s(t).

We consider the current on the cylindrical hull r(¢, 6, a) to be caused by either an
incoming plane wave electromagnetic field or an impressed current source over a finite
gap in case of a receiving or an emitting wire, respectively. We use the simplifying
approximation that the current only exists on the lateral surface of the wire, i.e.,
s Js(r(t,0,a)) ~ I(t,)/(2ma), where Jg is the surface current density and I(t,6)
the total current over the wire. The derivative of the current in the direction of the
wire is denoted by I'(t,0) = 21(t,0) = (s- V) I(t,6).

In case of a receiving antenna, Pocklington’s integral equation describing the
relation between the electric field E™ and the current I(¢,6) reads (cfr. [12, 7, 15])

i I ! !
fzwss-Em(r):kQ// s-s' (;’H)G(Hrfzu)dt'dH' (1.1)

! ’ s

2 1(t,6
—|—(S-Vr)/ / MG(Hrsz) dt' do’,
t! ’ 27T
where

efzkr
= . 1.2
Gr) = S (12)

This is the equation with ezact kernel. The emitting antenna is modeled by setting
E"(r) = 0 and impressing a given current I(t) = Iy on the part of the integration
domain that corresponds with the gap in the antenna.

INotice that bending a circular cylindrical antenna results in an antenna that is no longer circular
cylindrical.
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For the discretization we write this equation in its weak formulation, using a
weighting function (¢, 6) and integrating over the wire hull

—27r2w5//1/1(t,0)s-Ei”(r) dt df
tJo
= k2 LOVI(t,0))s-s' G(||r — z||) dt’ d8’ dt db
[ [ ][ utor.e)s s = ar ai
/// o0 22 e — o)) ar' dor dt o (1.3)
tl 9/ 8t/

We remember that k% = w?/c®> = w? pe and find

e — 2| = \/ t—=t)? + (hi(t) — hi(t') + 2asina sinB)?
B + — ha(t") — 2acosa sin3)?

with o = (6 +6')/2 and g = (¢ — 0)/2.

1.2. The Galerkin discretization. In the discrete approximation we neglect
the possible dependence of I(¢,6) on 6 and we set

0) = ZIj ¢;(t). (1.4)

Note that in this discrete form we do not represent the possible #-dependence of
I(t,0). This results in a formalism similar to the one analysed in [16]. Similarly to
(1.4) we take for the weighting functions ¥ (¢, 8) = ¢;(t) to obtain the Bubnov-Galerkin
discretization

2mw5//¢i(t)s-Ei"(r)dtd9 = ZI]-
tJo ;

<k2/t/e/t 9/qﬁi(t)qﬁj(t')s-s'G(||rsz)dt'd9'dtd0
+/t/9/t ; i (t) ¢5(t") G(||r — z||) dt’ de’ dtd9> : (1.5)

Thus, in order to compute the current I(t), we have to solve the symmetric linear
system

Z(Bij—k:QAij) Ij :47T21LU€ f,', (16)

J

where f; is given by

fi= 2W//gzh BN )dtd64/¢l <s-E"> (1) dt,

where < s - E" > (t) denotes

2w

s -E" > (t) = i/as-Ei"(r) e, (1.7)
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and where the impedance matrices A and B corresponding to the vector and scalar
potential are defined by

Aij://s-s'qﬁi(t) ¢, (1) Ig(t, t') dt' dt (1.8)
tJt!
and
Bij:// 81(t) ¢ (t') T (¢, t') dt’ dt, (1.9)
tJt!

respectively, where

]’E(t,t’):/g/ol G(|r —2||) 6’ d6 . (1.10)

If the wire is smoothly curved (i.e., if the radius of curvature is much larger than the
wire thickness) we see that I(t,t') is well approximated by [13, eq.(1)]

m/2 6—171/CZ+4sin2,6’ d/B
B=0 /(2 +4sin’f ’

with ¢ = 1\/At2 + AR? + AhZ = 1/(t — /)2 + (R (t) — h1(t))? + (Ra(t) — ha(t'))?
and v = ka. This means that v denotes the wave-number scaled to the wire radius
and ( a scaled distance between two points on the wire. To account for the curvature,
we later also need the notation h = a (/At. As we are interested in antennas with a
length of the order of 1m, a radius of about 0.001 m, and frequencies in the order of
1 GHz, interesting values of v range from about 0.005 to about 0.02. In principle, the
technique explained in this paper can be applied to any range of v. However, different
ranges will require other expansions of the form (2.8) and (2.9).

Ic(¢v) =2 (1.11)

1.3. Functional of the solution. We are particularly interested in the accurate
computation of the voltage V induced over a finite gap in a receiving antenna. This
voltage is computed by application of the reciprocity theorem to the antenna in an
emitting and a receiving state. Denoting by I(¢) the current induced in the emitting
antenna with constant current I, impressed over the gap, and by < s - Ei*(t) > the
quantity introduced in (1.7), the induced voltage is equal to (see e.g., [5, 10, 6])

V:/t%) <s-E™ > (t)dt, (1.12)

where the integral is computed over the antenna, excluding the gap.

2. Numerical Method. In this section we show three basic techniques that un-
derly our algorithm for the solution of Pocklington’s equation: (1) the approximation
of the exact kernel, (2) the introduction of a local p-hierarchical finite-element basis,
and, (3) the principle of the hp-adaptive strategy used to determine a sufficiently
accurate discretization.

2.1. Approximation of the kernel. An essential point in the efficient eval-
uation of the impedance matrices (1.8) and (1.9) is the evaluation of I((,v). To
understand how this function is evaluated, in the discussion below we first distinguish
between large and small values for (.



For large values of ¢ we find the approximation

e V2
S S
V2 + (2

which is much similar to the reduced kernel expression. The relative error in this
approximation satisfies, asymptotically for large ¢,

IG(C77) = + E(C,’y) ’ (21)

Te(C.7) =23+ (v()?*) 8¢+ 0™, (2.2)

where ¢ denotes the relative deviation of the antenna from the straight line, i.e.,
§ = /Ah? + Ah%/(Ca). Further, we may assume that the length of the antenna is of
the order of one wavelength, i.e., v( &~ O(1). So, (2.2) describes how the accuracy
of the approximation (2.1) depends on § and ¢. For 6 = 0, the approximation (2.1)
corresponds with the approximation in [4, eq.(3.3)] for the straight antenna. Below
we show how (2.1) is used in actual computations for general §.

o 0.025 0.02
= — E© —E QY
o 002 oMl Ey )2
O —
T 0.015/ . Rellg@yl2 f
0 n
3 0.01
N 2
= 0.005 =
g0 >
= 0 w,
D w
o
~< —0.005
w
w” o0 -0.005
0 500 1000 1500 2000 0 500 1000 1500 2000
Scaled distance & Scaled distance &
(a) Eo(¢), Re[Ig(¢,7v0)] and Im[Ig(¢,0)] (b) E1(¢,v0) and F2(¢,7v0)
Fia. 2.1.  The functions Eo(¢), E1(¢,v0) = —Im[Ig(¢,v0)]/2 and Eo(¢) — F2(¢,v0) =

Re[Ic(¢,70)]/2 for 0 < ¢ <2000 and vo = 0.01.

For small values of ¢ the vanishing denominator in the integrand of (1.11) induces
the singularity of the kernel. Therefore we split I (¢, ) in a singular and a regular
part. We introduce the real functions Fy({), F1(¢,7) and E5((,~) in order to write

, ) w/2 1 e Y (2+4sm B 1 p
667 = /Bo V(2 +4sin’ 3 /B 0 V(2 +4sin’

with for the singular part [11, 17]

[ 1 1 4\ 1 )
Fole)= 5=0 \/C? + (2sin B)2 45 = \/4+§2K<4+<2> = K=/



6

Here, K(() is the elliptic integral of the first kind [1]. The function Fy(() is simple
to compute (see Figure 2.1). For {( — 0 we have asymptotically

Eo(¢) = % <10g(2) —log(¢) — @ <%> _ 7)

~ 55 (1082 = 1og(@) = 30 () - 20 (=3) = +1) ¢ 2
+0 (¢*) .

Here (and only here) « is the Euler gamma and ¥ is the polygamma function. On
the other hand, for { — oc we find asymptotically

log(Eo(¢)) = log(m/2) —log(¢) — ¢ 2 +0(¢7) (2.5)

With such a priori knowledge it is a simple matter of elementary numerical analysis
to construct an expansion that approximates the function Fy(¢) up to a required ac-
curacy. In fact we use an expansion in terms ¢?' and ¢% log ¢ with a sufficient number
of terms to approximate Fy(¢) with required accuracy in some neighbourhood of the
origin. E.g., 0 <7 < 4 yields an accuracy of 6 digits on [0,2]. This type of expansion
will be used below with higher accuracy for the approximation of Re [fg((,'y)} for
small (.

0.02

0.01545 g

0.0

Scaled wavenumbery
=

0'0050 25 5 7.5 10

Scaled distance &

F1a. 2.2. Digits of accuracy in Eg((,'y) for 0 < €& <10 and 0.005 < v < 0.02.

In the non-singular part of I5(¢,vy) we distinguish the imaginary and the real
part

mew=1[ ad WIRICED

B=0 7v/¢% + (2sin §)?

and

B=n/2 sin® ( 21/C2 + (2sin )2
Ez(C,v)=v/ (2 ) g .

5=0 3/ ¢+ (2sin 3)?
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Studying the asymptotic behaviour of Ey((,~) for { — oo we find an approxima-

tion
_ sin 2 +2
Ei((v) = Ei(¢y) = <4 ;3 ) <7 ) (2.6)

|3

i) Vo
37 cos (’y ¢+ 2) 72 sin (’y ¢+ 2)
(¢2+2)° (¢2+2)°”

that for v in our range of interest, i.e., 0.005 < v < 0.02, is accurate to 13 digits.
This accuracy extends over all . The accuracy of this formula deteriorates for larger
values of 7, but the approximation remains useful for values v < 0.5.

For E5((,~) we find a similar approximation

<4 3 ) 2sin’ (37 +2)

(©+2)°) (¢ +2)”

Ey(C7) = Fa(C7) = (2.7)

| 3

3ysin (y4/C% +2 v2cos (y+/¢2 +2
o (ET) o T
(2+2) (2 +2)¥

However, this approximation is less accurate. In our range of interest 0.005 < v < 0.02
the accuracy is only 3.5 digits. The error becomes more significant only for the
smaller values of ¢ (see Figure 2.2). So, in order to realize an efficient and accurate
evaluation for the real part of I5((,v), we construct an approximation combined
with Eg({). Because of the singularity at ( = 0, for small values of { we use four
terms from the asymptotic expansion for { — 0 of Ey(¢), and we correct this with
a multivariate approximation of the difference between E((¢() — E2(¢,7y) and this
asymptotic expression. For the larger values of ¢ we take (2.7) and we correct it with
a series expansion in odd powers of 1/¢. Combining the expressions (2.5), (2.6) and
(2.7) it is easily verified that in the limit for large { our approximation for I yields
the modified reduced kernel expression (2.1).
Summarizing, for :fg(c, y), the approximation of I (¢,~), we find

Im[I(¢,7)] = Ei(¢7) (2.8)
Span {¢* 47 (log{)*;i=0,---,6, j=0,1,2, k=0,1}
_ N for0 < (<31,
Re[I¢(¢,7)] € { Fa(¢, ) + Span Eg‘li“w‘ ;i=0,1,---,5,j=0,1} + (2.9)
+ Span {¢ 4*3;i=0,1,--- ,4}
for ¢ > 3.1,

where the coefficients in the expansion (2.9) are determined as to obtain the best least
squares fit with Re [IG (¢, 7)] In the range of interest the accuracy of the approxima-
tion is at least 8 digits.

Splitting off the singular part for the evaluation of the integrals. In order to com-
pute the discrete operator entries (1.8)-(1.9) involving integrals of our singular kernel
function I, we split this function in a singular and a regular part. That is, we write

IG(C?V) = IS(Ca’Y) + IR(Ca’Y) ) (210)
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where both Is(¢,~) and Ig(¢,7) are smooth functions and where Ig((, ) contains the
logarithmic terms and Is(¢,v) = 0 for ¢ > (o for some (y. Integrals involving Is((, )
and Ig({,7) are computed analytically and by quadrature, respectively. In order
to assure that both Is(¢,~v) and Ig({,v) are smooth, we take I5(¢,v) = Ia(¢, ) —
Itayior (¢, ) for ¢ < (o, where Imayior (¢, ) is a Taylor expansion of I in ¢ at ¢ = (o.
The part I is the smooth remaining part, defined by (2.10). For the numerical
approximations I s and I, r we take (o = 3.1 and obtain

fS(Caf}/) € Span{CQ'LFyJ (logg)ka i :Oa 361 ]:031127 k:071}
for 0 < ¢ < 3.1, (2.11)
Span{C%'yj; 1 =20,---,6, j:0,1,2}
_ for 0 < ¢ < 3.1,
Re[Ir(¢,7)] € 8 Ex(¢,y) +Span {¢**147;i=0,1,---,5,j=0,1} + (2.12)
+Span {(7**3;i=0,1,---,4}
for { > 3.1,

2.2. Choice of the local basis. In order to form the discrete system we have
to make a choice for the basis functions {¢;} in (1.5). Because we want to construct
an hp-adaptive method to obtain optimal efficiency, we partition €2, the domain of
integration for ¢ and #', in elements of arbitary sizes. So we obtain the mesh

to <ty <ty <---<1In

or

N N

Q= U[ti,l,ti] = U A; .

i=1 i=1
On this mesh we introduce a continuous, piecewise polynomial basis of degree p with

piecewise linear functions and higher order hierarchical bubble functions (i.e., p > 1),
so that the basis for our approximation on the interval A; = [t; 1,t;] becomes

$i,0(t) = Gori—1)p(t) = (ti — )/ (t;: — ti1),

k+1
t—t;
$i(t) = Srri—1p(®) = ] CEr— t-,JT;’—“:'l fork=1,--,p—1,  (2.14)
j:1 1 11—

Gip(t) = dpt(i—1)p(t) = (t —ti 1)/ (t; — ti 1),

where t; ; = %(tl —ti—1)+ti—1 with &, 5 the j-th point in the k+1-point Lobatto
quadrature rule. In this way we form a piecewise polynomial function space of degree
p. Notice that all basis functions have support A; except the piecewise linear ¢;y,,
i =1,---,N — 1, that have support A; U A;;11. In case that p is varying across
elements, the global numbering of the degrees of freedom is modified accordingly. To
construct the matrices A and B in (1.8)-(1.9) it is convenient to introduce a local basis
for the standard interval [—1, +1] from which the functions (2.14) can be derived. For



example, for p = 7, these basis functions are given by

p0l€) = (1-9)2,

pi€) = (E+1)(E-1)/2,

p2(6) = (E+1)E(E—1)/2%,

es(@) = (+1)(6+/1) (e- /) -2,

i) = €+ (e+/2)e(e—/2) €12,

ps(€) = (E+1) (€+\/%(7+2\/7)> (€+ %(72\@) (2.15)

e /3 2vD) (6 \HT+2/D) (€ 12,
eo® = (€+1) (€4 B0+ 2v) ) (4 \/H05-2v79) )

(§+ ?}3(152\/ﬁ)> <g 313(15+2\/ﬁ))(§1)/27
ep(€) = (E+1)/2.

With the basis function introduced in (2.15), the solution on element A; is approxi-
mated by > 7 _, ¢k Gi k-

2.3. The principle of the hp-adaptive strategy. The hp-adaptive strategy
in this paper relies on the above p-hierarchical base and makes use of the fact that
for smooth functions the coefficients —on a single element in a piecewise polynomial
approximation— are supposed to decrease as a geometric sequence.

More precisely, we can say that the approximation of a CP*!-function in a neigh-
bourhood of width 2h allows a p-hierarchical polynomial representation in which the
coeflicients are bounded by a geometrically decreasing sequence, if h is small enough.
This is easily seen for a local basis with functions {ti}i=07___,p for which the terms in
the Taylor series expansion are bounded by ht||f|c»/i!, i = 0,...,p. For the basis
(2.15), we find for the coefficients

[\

cpt+col/2 < (fo+h2 (fo+h%(fa+ R f5))|

e —col/2 < ko |fi+h2(fs+h? (f5+h2f7))\
lesl < B2 o+ B2 (5 fa+ B2 3 fo)|
‘62‘ < h3 |f3+h2(170f +h’2gf7)‘ (2 16)
[ < bt [fa+ B3 Sl '
‘04‘ < ho |f5+h2 21 f |
s < hS |fel
co < A" |fq

f90)/it,i=0,...

the coefficients ¢;, i = 1,...,p

,p- This shows that, for small h, our hierarchical basis
— 1, are of order O(hi*1), and bounded by

lei| < C R HfHC'OO[fh,h] :

This not only shows that —for a fine enough mesh— we expect the coefficients for each
interval to decrease geometrically, but also that the rate of decrease doubles when
the mesh is halved. By the nature of the hierarchical representation it makes sense
to consider the last non-vanishing term in the representation as an estimate for the
local error.
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The above observations lead to the following hp-adaptive strategy. On a (non-
uniform) mesh we determine in each interval a p-hierarchical representation of the
solution with a sufficient number of terms. On each interval the convergence of the
approximation is studied. If the rate of decrease of the coefficients is fast enough, then
the series is truncated such that an a-priori given tolerance criteria is satisfied. If the
rate of decrease is not fast enough, then the interval is split into two smaller intervals
of equal size and a new approximation is computed. The process will stop after a
finite number of iterations, except in those areas where derivatives are unbounded.
At such singular locations the process can be stopped by introducing a limit for the
minimal allowed mesh-size. Details of the strategy are explained in Section 3.4.

In this way a sufficiently accurate approximation is obtained, except at well-
determined locations where the solution has a singular behaviour.

The square root singularity. From analysis [13] it is known that at the end-points
of a receiving straight-line thin-wire antenna the current shows a square-root singular-
ity. Hence, it is interesting to study the behaviour of the coefficients in the hierarchical
representation in this particular case where derivatives become unbounded.

Therefore, we consider the segment of the antenna where the singularity occurs
(i.e., near an end-point). Knowing the type of singularity, we can estimate the coef-
ficients in the hierarchical expansion. Denoting the length of the element by h, on
the elements [0, h] and [h,2h] we approximate the function f(¢) = v/t by a such a
polynomial approximation. Therefore we fix the values at the endpoints to determine
the linear approximation, whereas the higher order contributions are determined by
optimal L2-approximation. Because the functions ¢ are not L2-orthogonal, the co-
efficients (slightly) depend on the order of the approximation. A simple computation
shows that all coefficients are of order O(v/h), and that on the first interval [0, ] the
coefficients increase for the higher order terms. On the second interval [h,2h] they
decrease by several orders of magnitude. In Figure 2.3 we show these theoretical co-
efficients on a logarithmic scale for approximations upto degree 7. It is obvious that
on the interval [0, h] h-refinement rather than p-refinement is the proper strategy to
obtain better accuracy, while the contrary is true on the interval [h, 2h].

The theoretical behavior of the coefficients for the function f(t) = v/ is recov-
ered in the computation of the coefficients computed for the current on the receiving
straight-line thin-wire antenna. To illustrate this point, we consider the computation
of the current in a straight wire of length L = 3m and radius a = 0.02m, induced
by a plane wave exitation of wavenumber & = 1m~! and propagation vector per-
pendicular to the antenna axis. We employ an uniform mesh of 128 elements, all
containing a local polynomial approximation of degree seven. In Figure 2.4, we plot
the coefficients of the p-hierarchical decomposition of the current on the first and on
the fourteenth element. In the presence of discretization error, we consider the latter
to be located at a sufficiently large distance away from the boundary to be represen-
tative for the interior of the antenna. Like Figure 2.3, it shows that the coeflicients
increase for the higher order terms on the element containing the singularity, and
that they decrease by several orders of magnitude on the fourteenth element where
the solution is smooth. In Section 3.4, we explain how this smoothness indicator is
used to implement the hp-strategy.

3. Implementation. In this section we describe the construction of the discrete
operator and the implementation of the hp-adaptive strategy.

3.1. Evaluation of the off-diagonal elements. For the off-diagonal elements
in (1.8)-(1.9) with | — j| > 1, the singularity of the integrand falls outside the domain
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(a) First element.
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1 2 3 4 5 6 7
Polynomial order

(b) Second element.

FI1G. 2.3. Coefficients of the p-hierarchical decomposition of f(t) = v/t in the element [0, h] and
[, 2h]. The graphs show 1°log|cy/h®| for the coefficients in an approzimation of degree 7.

10Log correction
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(a) First element.
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(b) Fourteenth element.

Fi1G. 2.4. Coefficients of the p-hierarchical decomposition of the computed current on a straight-
line receiving thin-wire antenna in the first and fourteenth element. The graphs show °log|cy/h®|

for the coefficients in an approzimation of degree 7.

of integration, and therefore we can use straightforward Gaussian quadrature. We
take a fixed L-point Gaussian quadrature rule

=a

b L
|t -a) S w, s,
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and we obtain, with At; =t; —t;_1 and 0 < k,[ < p,

L

(A = At A D7 Wi Gik(tim) wa b3a(tin) (3-8 10) (tims tin)
m,n=1

L
= At ALY gk(tn) waeitn) (5516 (s tin)

m,n=1

L

(Bij)y, = Ati At; > Wi ¢ (tim) wa &), (t;, ) 16 (tim tjn)

m,n=1

- 4 Z wm@?c(tm)wnsoz( )IG(lm’Jn)'

m,n=1

It is clear that the constant matrices ® and @', defined by Pk, = W, @i (t,) and
D% = Wm ¢}, (tm), can be computed in advance, so that the work of the construc-
tion of the off-diagonal elementary matrices comes down to O(L?) evaluations of

the function f(;(t,t’). Introducing the matrices Z™ and Z®/ defined by Zhi =

I(C(timstjn),y) and 2,’73” = 8(tim) - 8'(tj.n) 257, respectively, we write the above
expressions as

Ai,j ~ Atl At] P gi’j ‘I)T y (31)
B~ 4% 25 ()T,

3.2. Evaluation of the diagonal elements. For the diagonal elements in
(1.8)-(1.9) with ¢ = j, we have to compute integrals of the form

/ttl l/tt h Gia(t') x(jt — t'])dt’' dt, (3.3)

where the function x(|¢t — t/|) has a singularity at ¢ = ¢’ and the distance satisfies
|t —t'| < At;. Taking into account the type of dependence of x on t and ¢, (see (1.10))
and omitting the factor s(¢) - s’(t') because of the assumption that the curvature of
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the wire can be neglected over a distance of one or two elements, we approximate

t—=t;,t' =t; ~
(Aii)y, = // bin(t) gia(t') s- s Ig(t,t") dt’ dt
’ t

=ti_1,t'=t;i_1

t=t;,t'=t; ~
~ // Gik(t) gia(t') I(t,t') dt’ dt
t

t=t; _1,t'=t; 1

t=t;,t'=t; PR )
%// Gi i (t) dig(t') = G( |h dt’ dt
t=t;_1,t'=t; 1

r=1,7"=1 _ ! A
s wmﬂwvﬂh<t—%f&2”>“A“”““")
U

a 0,7/=0

Y At;b; ) ’7=ﬁ5<n+§> (5)
a/ IG(|§\/— Y /nzé o\ "m )\ dndg§

At Atibi
= / €)1 (65221 ) ae

At? At;b;
= a 57) 3 (34)

: I_’Pkl(
a

where b; is as defined as in Section 1.2, and where the transformations 7 = (n+¢)/v/2
and 7/ = (n — £)/V/2 have been used (see Figure 3.1(a)). In (3.4) we introduced the

defintions
o[ (a5 e
() ). e

TPu(z,y) = :Pm(f) I (€2,7) de. (37)

For the polynomial base (2.15), the functions ﬁkl and P}, are also polynomials and
they can be computed once and for all. Similarly we find

1 ;A 0
(Biiy & = TP (S0 ) (38)
with the polynomials
n=v2-¢|

P (€) = P (N8N (=8

- L (= (). = (¢

Plkl(() = ﬁ <'P'kz <E> + P <—2>> , (3.10)

’ =1
IPi(z,v) = o "(§) I (Ez,7) dE. (3.11)

To compute (4; ), , and (B ;), , we use the splitting (2.10) and take into account
that Is(x,~y) vanishes for z > 3.1. This implies that we have to consider two cases:
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T T.w T
n 1 1
1 n
/ T
1 \ o
) - 0 —
T £ 1 T
o t
1 i+1
g ) A i+1
(a) Diagonal element (b) Upper codiagonal ele- (c) Upper codiagonal ele-
ment with At; > At; 44 ment with At; > At; 41

Fic. 3.1. Coordinate transformation.

the argument z being larger or smaller than 3.1. In the case x < 3.1, the expressions
(3.4) and (3.8) can be implemented directly. However, for z > 3.1 the discontinuous

behaviour ar x = 3.1 requires a more careful treatment. We get

z/z=3.1/z

:/ Pri(z/z) Is (x z/z,7) dz/x

/=0

1 Z:3.1 _
! / Pralz/2) Is (,7) dz,

T —0

and similarly

— 1 z:3.1_
IP' iz, ) = 5/ Pr(z/x)Is(2,7) dz.

=0

These functions can also be computed beforehand.

(3.12)

(3.13)

3.3. Evaluation of the co-diagonal elements. For the co-diagonal elements
in (1.8)-(1.9) we also use the splitting (2.10) of I¢({,7). Due to symmetry, it suffices



to consider upper co-diagonal elements only. We obtain

(Ai,i+1)k,1

Again we neglect the factor s - &,

t=t;,t'=t; 41 ~
= // Gik(t) pia(t) s s Ig(t,t") dt' dt
t

=t;_1,t'=t;

t'=tiy1 .
/ / Gi k(1) ia(t') Ig(t, t") dt’ dt
t=t; _1Jt'=

t'=tita 1 t—t'h;
/ / Gin(t) dia(t') - G<7' 'hn) at' dt
ti_1Jt'=t; a a

t=t; pt'=t;q 1 t—t'| b
:/ / Gik(t) ia(t) = R<7 L ,’y) dt' dt
t=t;_1Jt'=t; a

t’ =tiy1 !
/ / Gi k(1) is(t') = s<t t‘hl >dt'dt
t=t; _Jt'=

(Al z+1) (A1 z+1)

15

(3.14)

assuming that the wire is only mildly curved.

The regular part, Af‘i 41 is computed by two-dimensional Gaussian quadrature as in
Section 3.1. For computing the singular part, Afi+1, we make use of the fact that
Is(&,v) = 0 for € > 3.1 and, in order to be sure that the off-diagonal elements are
not influenced by the singularity, we take care that the discretization has no wire

segments with ratio At;/a smaller than 3.1.

In practise it appears that this is no

serious restriction as is does not impede accurate computations. In Section 4 we see
that even for the approximation of the singular part of the solution sufficient accuracy
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can be obtained. Assuming that At; > At; ;1 (see Figure 3.1(b)), we obtain

V=tita t—th; )
”+1 / / Gik(t) dii(t ) < b >dt dt
t=t; 1 Jt'=

I

&

0 147 At; At;
/ / o+ 1) () 2Bt
——1J+ a

V' =tiva 1 t—th;
/ / Bui() baa(t) L Is (Jq) it di
t=2t;—t;41 Jt'=t; a a
t=tipq—t;+t t—t'b;
/ / Gi k(1) ¢i,l(t') - Is < s ) dt’ dt
t=2t;—t; 0 JtI=t; a

— 7! 7'1/At,' Ati
IS’ (|T T ‘ h L i+1 ,’Y) dTl dT
a

= +1 LA
o Jea e VR "\

IE

Is (ﬁE it Bl w) dn de

. . 0 2 i A1A1 3
Sous 0, (“'“ Wv) Oui(-6) e

2

a

_ At; Aty /0 <§h i/ At Aty > le
e=—1

a

AL ALy 0., (bm/Ati At )
”7 k)
a

where we have introduced

VD)

V2

Qru(€) = /;_E Ok <% + 1) ©1 <%) :

Qr(8) = 1 Ok (i ;

IOk (z,7) = / Ori(&) Is(Ex, ) dE.

(3.15)

(3.16)
(3.17)

(3.18)

In case that At; < At; 11 (Figure 3.1(c)), identical results are obtained. Similarly, we

find

S|

1 hi\/Ati At;
(Biji+1)py ~ = LQ'ky (%:7) ;

(3.19)
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where we have introduced

_ 3 _
Q€)= / . Pk (n_; + 1) @1 <%) ; (3.20)
e
Tuale) = = T (% | (3.21)
1
IQ(z,7) = eo Q' (&) Is(Ex,v)dE . (3.22)

Although these are somewhat complex expressions, the functions @k,l(f), 91.1(6),
ZQy i(x,7) and their primed counterparts are easily precomputed once and for all.

3.4. The hp-adaptive strategy. Our hp-adaptive strategy is an iterative pro-
cedure that starts with a coarse uniform mesh on which a low order (p = 2) solution
is computed. In each step of the iteration it is decided, for each element, whether
it should be h-refined (i.e., the element is split into two equal smaller elements), or
p-refined (i.e., the order of the approximation in that element is enhanced by one
order). If it is decided that the approximation is locally accurate enough no further
refinement is applied in that element. The procedure ends when no element requires
any further refinement or, for the elements that still do, the element-size drops below
some given minimal value.

The decision on whether to apply p- or hA-refinement is made on basis of the local
smoothness of the computed solution. The smoothness of the solution is determined
from the behaviour of the coefficients in the hierarchical representation of the solution
in an element. As explained in Section 2.3, for a sufficiently smooth solution we may
expect the coefficients to decrease geometrically if the element-size is small enough.
Therefore, we consider in each element the sequence of coefficients as found in (2.16),
ie., |ep+col/2, |ep—col/2, |ea], |eal, - -+, |ep—1]. In particular the tail of this sequence,
(i.e., the last 3 available coefficents) is used to determine the smoothness.

Denoting the coefficients in the tail by respectively Cy, Cy and (3, and introducing
an decrement factor k > 1, we compare the values of the triple {Cy, s Ca, k% C3},
distinguishing 2 situations:

- the tail is decreasing if k2 C3 < C1, or
- the tail is increasing if k2 C3 > C}.
In case of an increasing tail, the triple can be
- monotonous, or
- of V-type, i.e., K Cy < min(CYy, k2C3), or
- of A-type, i.e., K Co > max(Cy, k2C3).
The decision on p- or h-refinement is now made as follows:

1. if the coefficient tail is decreasing we qualify the solution to be locally smooth,
and we take the last computed coefficient in the hierarchical basis, C3, as the
current local error. If this error is larger than a prescribed tolerance, we
decide for p-refinement;

2. if the coefficient tail is monotonously increasing or of increasing V-type, then
adding the last correction proved to have an adverse effect. The solution is
qualified as non-smooth, motivating to h-refine the element. C5 is taken as
the local error. In the two new elements we use the same order p as was used
in the original unsplit element.

3. if the coefficient tail is of increasing A-type, then the previous triple in the
same element can only have been of V-type. This means that the coefficient
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Cy is (possibly by coincidence) relatively small. We consider adding the
correction corresponding to C3 to be beneficial, the solution to be locally
smooth and we take C3 as the local error. If this local element is larger than
a prescribed tolerance, we decide to p-refine the element.
In this way we control the L-error on each element. We notice that a larger factor k
requires a faster decreasing sequence of hierarchical coefficients, and hence introduces
a bias towards h-refinement, whereas a smaller k > 1 leads to more p-refinement. In
this work we use kK = 4 as it gives a good balance between h-and p-adaption as shown
Section 4.

The mesh refinement iterative process requires at every iteration the element-
by-element assembly of the discrete operator. The hierarchical basis is such that
the elementary operator of a p-refined element equals the previously computed one
augmented by one row and column. We exploit this fact in our simulation code by
remembering previously computed results.

Stopping Criterium. Motivated by our arguments in Section 3.2, we tailor the
adaptive refinement process so as to ensure that the discretization error AV in the
voltage computation is smaller than a prescribed tolerance TOL. Because of (1.12),
we see that AV < C[|AI(t)| L1(q), where AI(t) denotes the error in I(£). On a mesh
consisting of N elements we allow on each element an L!-error of TOL/N, which
implies an L*-error of TOL/(N h). In this way we distribute the L!-error over the
grid, allowing for a larger L°°-error on smaller elements.

Numerical evidence given in Section 4.3 shows that starting computations with
a mild tolerance and using the final mesh obtained as point of departure for a more
accurate computation results in a slower increase of the degrees of freedom than when
requiring a stringent tolerance from the start.

4. Numerical Results. In this section we describe four examples. First we
show how the hAp-refinement strategy works for the computation of the current in a
receiving straight wire antenna. Next we do the same for an emitting antenna. In the
third example we study how the accuracy requirement for the induced voltage across
a gap in the receiving antenna influences the required number of degrees of freedom.
For comparison with results from other papers, in these first three examples we still
consider the classical straight thin-wire antenna. In the last example we perturb the
geometry of the antenna and employ the method developed to track the effect of the
curvature on the induced voltage.

4.1. Current in Receiving Antenna. In the first experiment, we consider
the computation of the current in a straight wire antenna of length L = 1m and
radius ¢ = 0.001 m, induced by a plane wave exitation of frequency f = 500 MHz and
propagation vector perpendicular to the axis of the antenna. We use the L!-error
bound introduced in Section 3.4 as the stopping criterium in the mesh refinement
process. As initial discretization we choose a uniform mesh with 16 second degree
elements having in total 33 (i.e., 17 + 16) degrees of freedom. Imposing a tolerance
TOL = 5e-8 Am, this results in eight adaptive refinement steps and a mesh of 96
elements with 422 degrees of freedom. In Figure 4.1(a) for the final mesh we plot the
number of local mesh refinements and polymomial order. In Figure 4.1(b) we show
the computed current. The mesh shows to have been h-refined near the end-point
singularities and to have been p-refined where the current is a smooth function. The
behavior of the L'-norm of the error in the computed current as a function of the
mesh refinement step in shown in Figure 4.3(a). On the final mesh the estimated
L®°-error in the current is 8.47e-7 A.
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4.2. Current in Emitting Antenna. This time we consider the computation
of the current in an emitting straight antenna. Length and radius are as in the
previous example. Now the antenna has a gap of 0.01 m in its middle where a current
source of 1 A is impressed. Starting from a piecewise second degree solution on a
uniform mesh with eight elements on either side of the gap and imposing a tolerance
TOL = 1e-3 Am, seven adaptive refinement steps result in a mesh of 45 elements
with 154 degrees of freedom. The final hAp-mesh and computed current are shown in
Figure 4.2. Both the end-point singularities and the singularities at the boundaries
of the gap are clearly resolved by low order small elements. The convergence history
of the L'-norm of the error in the current is shown in Figure 4.3(b). The estimated
L*>-error in the computed current is 1.64e-2 A.

4.3. Voltage Across a Gap in Straight Wire. Now we compute the voltage
induced over a gap in a receiving straight wire antenna excited by a plane wave at
500 MHz with propagation vector perpendicular to the antenna axis. The values for
L, a, the gap size and the initial mesh are the same as above. We investigate how
the required tolerance affects the following three quantities considered as functions
of the index of the mesh refinement step: the number of degrees of freedom, the
error in the amplitude of the voltage and the L!-norm of the error in the current.
On each mesh, the error in the voltage amplitude is computed by considering the
error in the current on an element to be given by the highest degree basis function
times the corresponding coefficient, substituting this error in (1.12) and taking the
absolute value of the result. We illustrate in particular how a stepwise reduction of
the tolerance results in a savings of the degrees of freedom. In the top row of Figure
4.4 we show the behavior of the three functions of interest for three different values of
TOL (TOL = 1e-2, 1e-3, 1e-4 Am) starting from a piecewise second degree solution on
a uniform mesh with four (as opposed to eight in the previous example) elements on
either side of the gap. In the last case, nine refinement steps result in a mesh with 608
degrees of freedom, an estimated L*-error in the computed current of 6.48¢-4 A and
an estimated error in the amplitude of the voltage of 3e-6 V. In the bottom row of
Figure 4.4 we plot the convergence history of the same three quantities starting with
TOL = le-2 Am, stepwise reducing this value to TOL = 1e-3 Am after the fourth
iteration and TOL = le-4 Am after the ninth iteration, respectively. In this way 14
iterations results in a mesh of 516 degrees on freedom. This is a significant reduction
compared with the 608 degrees of freedom generated before.

4.4. The Effect of Perturbations in the Geometry of the Wire. In this
last example we perturb the straight wire by a sinus profile, setting the functions
hi(t) and hs(t) introduced in Section 1.1 equal to hq(t) = 0 and ha(t) = w L sin(n t)
for 0 < ¢t < L, respectively (see Figure 4.5(a)): we study how the induced voltage
changes with w for w ranging between 0 and 1.5. The values for L and a, the location
and width of the gap, as well as the frequency of the excitation are chosen as in the
previous examples. The progation vector is assumed to be perpendicular to the z-
axis. In the range of w considered, the total length of the wire varies between 1 m and
approximately 3.17m and is thus equal to an integer multiple of the the wavelenght
A = 0.6m at four instances. In Figure 4.5(b) we plot the amplitude of the voltage
|V (w)| as a function of w. Four resonances can be clearly distinguished.

5. Conclusion. In this paper we solve Pocklington’s equation with exact kernel
for the voltage induced across gaps in arbitrarily curved thin wire antennas. For the
efficient discretization we introduced a new adaptive refinement strategy. The key is
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FiG. 4.1. Results for a receiving straight wire antenna. Left: the number of mesh refinement
steps and the polynomial degree yielding an L' -error smaller than TOL = 5e-8 Am. Right: the real
and imaginary part of the computed current.
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F1G. 4.2. Results for an emitting straight wire antenna. Left: the number of mesh refinement
steps and the polynomial degree yielding an L'-error smaller than TOL = 3e-3 Am. Right: the real
and imaginary part of the computed current.

that the degree of local smoothness of the solution can be derived from piecewise p-
hierarchical basis coefficients. This information is used to decide whether a particular
element has to be h- or p-refined. Numerical results for straight and curved antennas
demonstrate both the simplicity and efficiency of the approach.
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