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Let 'I' be a crossing family of subsets of the finite set V (i.e., if T, U E '? and 
TllU'f-0, TUU'f- V, then TllUE'? and TUUE'?). If D=(V,A) is a 

directed graph on V, then a cut induced by 'iP is the set of arcs entering some set in 
'rf'. A covering for 'I' is a set of arcs entering each set in '!?, i.e .. intersecting all cuts 
induced by '?. It is shown that the following three conditions are equivalent for any 

given crossing family 'ii"': 

(P 1) For every directed graph D = (V, A), the minimum cardinality of a cut 
induced by 'I' is equal to the maximum number of pairwise disjoint coverings 
for 'ilf. 

(P2) For every directed graph D = (V, A), and for every length function 
/:A -+ J + , the minimum length of a covering for 9? is equal to the maximum 

number t of cuts C 1 , ••• , C, induced by '#' (repetition allowed) such that no arc a is 
in more than /(a) of these cuts. 

(P3) 0 E 'f', or VE 'IP, or there are no V1 , V2 , V3 • V,, V, in '? such that 
V1 s;V2 11V3 , V2 UV3 =V, V3 UV,s;V5 , V3 11V4 =0. 

Directed graphs are allowed to have parallel arcs, so that (P 1) is equivalent to its 

capacity version. (P 1) and (P2} assert that certain hypergraphs, as well as their 

blockers, have the "Z t-max-flow min-cut property." The equivalence of (Pl}. (P2), 
and (P3) implies Menger's theorem, the Konig-Egervary theorem, the Kiinig­
Gupta edge-colouring theorem for bipartite graphs, Fulkerson's optimum branching 

theorem, Edmonds' disjoint branching theorem, and theorems of Frank, Feofiloff 
and Younger, and the present author. 

1. INTRODUCTION 

Throughout this paper, let V be a finite set. A collection </if' of subsets of V 
is called a crossing family if: 

if T, U E '?? and T n U * 0 and TU U * V, then 

Tn UE'~ and TU UE '?f. (I) 
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CROSSING FAMILIES OF CUTS 105 

For any directed graph D = (V, A), a collection A' of arcs of D is called a 
cut induced by Yr? if A'= 6A (V') for some V' in W. (6,.;-(V') and c5.i(V') 
denote the sets of arcs of D entering V' and leaving V', respectively.) A 
subset A ' of A is called a covering for 'IP if each set in 'ff is entered by at 
least one arc in A', i.e., if A' intersects each cut induced by W. 

Several min-max relations in combinatorics amount to the fact that 
certain crossing families Yr? have one of the following properties (P 1) and 
(P2): 

(P 1) For every directed graph D = (V, A), the minimum cardinality of 
a cut induced by W is equal to the maximum number of pairwise disjoint 
coverings for <67. 

(P2) For every directed graph D = (V, A), and for every "length" 
function /:A--+ Z +, the minimum length of a covering for <??, is equal to the 
maximum number t of cuts C p···· C1 induced by 'if? (repetition allowed) such 
that no arc a of D is in more than l(a) of these cuts. 

(Here the length of a set of arcs is by definition the sum of the lengths of the 
arcs in this set. In hypergraph terminology (P2) says: for every directed 
graph on V, the hypergraph of cuts induced by Yr? has the Z + -max-flow min­
cut property ( cf. Seymour [ 20, 21 ] ). We allow directed graphs to have 
parallel arcs, so that (PI) is equivalent to its "capacitated" version: for every 
directed graph D = ( V, A) and for every "capacity" function c: A --+ Z +, the 
minimum capacity of a cut induced by Yr? is equal to the maximum number t 

of coverings A 1 , ••• ,A 1 for Yr? (repetition allowed) such that no arc a of D is in 
more than c(a) of these coverings. In hypergraph language, (P 1) is 
equivalent to: for every directed graph on V, the hypergraph of coverings for 
Yr? has the Z + -max-flow min-cut property. Here and below we assume that 
min-max relations like (P2) include the case that if the minimum is 
infeasible (so if in (P2) no coverings exist), then the maximum is unbounded 
(which means in case of (P2): there exists an empty cut induced by@").) 

In this paper we characterize the crossing families which enjoy properties 
(PI) and (P2 ). We shall show that, for any crossing family Yr?, (PI) and (P2) 
are equivalent, and moreover, that Yr? satisfies (PI) and (P2) if and only if 
~ E Yr? or VE Yr? (two trivial cases), or 

(P3) there are no V 1 , V2 , V 3 , V4 , V5 (=1=0, V) in Yr? such that 
v1 i:;; v2 n V3 , v2 u V 3 = v, V3 u V4 i:;; V5 , V3 n V4 = 0. 

The forbidden subcollection described in (P3) is illustrated by the Venn 
diagram of Fig. I, where a square is meant to represent the complement of 
its interior. 

Applications of the equivalence of (P 1 ), (P2 ), and (P3) are contained in 
the following examples. 



EXAMPLE 1 (r - s-paths and r - s-cuts ). Let r and s be two fixed 
elements of V, and let <?? be the collection of all subsets of V\ { r} containing 
s. Then <?? is a crossing family satisfying (P3 ). For any directed graph 
D = (V,A), cuts induced by <?? are exactly the r - s-cuts. Coverings for <?? 
are exactly the sets of arcs containing an r - s-path. So (P 1) is equivalent to 
Menger's theorem (16] (and to the max-flow min-cut theorem): the minimum 
size of an r - s-cut is equal to the maximum number of pairwise disjoint 
r- s-paths. (P2) is equivalent to an easy theorem on shortest paths: for any 
length function /: A -+ Z + , the minimum length of an r - s-path is equal to 
the maximum number t of r - s-cuts C 1 , ... , C1 such that no arc a is in more 
than l(a) of these cuts (cf. Fulkerson [7]). 

EXAMPLE 2 (Coverings and edge-colourings in bipartite graphs). Let <?? 
be a subcollection of { { v} Iv E V} U { V\ { v} Iv E Vf. Then <?? is a crossing 
family satisfying (P3). Then property (Pl) can easily be seen to be 
equivalent to a theorem of Konig [ 12] and Gupta [ 10]: let G = ( V, E) be a 
bipartite graph; then the minimum degree of G is equal to the maximum 
number of coiours with which we can colour the edges of G such that in 
each vertex of G all colours occur at least once. (P2) is equivalent to a 
theorem of Konig [ 13] and Egervary [ 4]: let G = ( V, E) be a bipartite graph, 
and let w: E-+ 7L + be a weight function; then the minimum weight of an edge 
set covering all vertices of G is equal to the maximum number t of vertices 
v1 , ... , v1 of G (repetition allowed) such that each edge e contains at most 
w(e) of the V;. If we take all weights equal to 1, we obtain the well-known 
Konig-Egervary theorem. 

EXAMPLE 3 (Branchings ). Let r be a fixed element of V, and let <?? be 
the collection of all nonempty subsets of V\{r}. Then<?? is a crossing family 
satisfying (P3 ). For any directed graph D = ( V, A), cuts induced by <?? are 
exactly the r-cuts (which are by definition the sets o,:;-(V') for 
0 * V' ~ V\{r}). Coverings for <?? are exactly the sets of arcs containing an 
r-branching (which are rooted spanning trees with root r). Now (P 1) is 
equivalent to Edmonds' disjoint branching theorem [2]: the minimum size of 
an r-cut is equal to the maximum number of pairwise disjoint r-branchings. 
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Property (P2) is equivalent to Fulkerson's optimum branching theorem [ 8]: 
given a length function /: A--+ 2 +, the minimum length of an r-branching is 
equal to the maximum number t of r-cuts C 1 , ••• , C1 such that no arc a of Dis 
in more than /(a) of these r-cuts. 

EXAMPLE 4 (Directed cuts and their coverings). Let D = ( V, A) be an 
acyclic directed graph, in which each pair of source and sink is connected by 
a directed path. Let C c:; A be such that each directed cut of D contains at 
least k arcs in C. (A directed cut is a set b_;-( V') of arcs of D, with 
0 * V' * V and 6 J ( V') = 0.) Then C can be partitioned into sets C 1 , ••• , Ck 
each intersecting all directed cuts. This result (Feofiloff and Younger [5], 
Schrijver [ 18]) follows from the equivalence of (P 1) and (P3) by taking ~ to 
be the collection of all nonempty proper subsets V' of V with b; ( V') = 0 
(which collection can be easily seen to be a crossing family satisfying (P3 )). 
In this case, (P2) gives a weaker version of the Lucchesi-Younger theorem 
[ 15]: the minimum cardinality of a set of arcs intersecting all directed cuts is 
equal to the maximum number of pairwise disjoint directed cuts (in this case, 
the "length" version can be easily derived from the cardinality version). This 
is weaker than the Lucchesi-Younger theorem, as this theorem is not 
restricted to acyclic directed graphs in which each pair of source and sink is 
connected by a directed path-see Remark 1. 

EXAMPLE 5 (Strong connectors). Let D 0 = (V, A 0 ) be an acyclic directed 
graph, in which each pair of source and sink is connected by a directed path. 
Let D = ( V, A) be a second directed graph on V. Call a set A' c:; A a strong 
connector for D 0 if the directed graph ( V, A 0 U A') is strongly connected. A 
set A' c:; A is a cut induced by D 0 if A'= 6,4(V') for some V' <::; V with 
0 * V' * V and 6 . .;-0 ( V') = 0. Then the maximum number of pairwise 
disjoint strong connectors for D 0 is equal to the minimum size of a strong 
cut induced by D 0 • Moreover, for any length function /:A_, l + the 
minimum length of a strong connector is equal to the maximum number t of 
cuts C p···· C1 induced by D 0 such that no arc a of D is in more than !(a) of 
these cuts (Schrijver [ 18] ). These results can be seen to contain the min-max 
relations discussed in Examples 1-4. They follow from the equivalence of 
(Pl), (P2), and (P3) by taking Y!? to be the collection of all nonempty proper 
subsets V' of V with 6 ,40 ( V') = 0, which is a crossing family satisfying (P3 ). 

EXAMPLE 6 (Strong connectors again). The equivalence of (P 1 ), (P2), 
and (P3) gives the following characterization. Let D 0 = ( V, A 0 ) be an acyclic 
directed graph. Then the following are equivalent: 

(i) for each directed graph D = (V,A), the minimum size of a cut 
induced by D 0 is equal to the maximum number of pairwise disjoint strong 
connectors for D 0 ; 
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(ii) for each directed graph D = ( V, A) and for each length function 
I: A-) l +, the minimum length of a strong connector for D 0 is equal to the 
maximum number t of cuts C 1 ,. • ., C 1 induced by D 0 such that no arc a of D 
is contained in more than !(a) of these cuts; 

(iii) each pair of source and sink of D 0 is connected by a directed path 
in D0 , or l{s E V\s is a source or a sink of D 0 }\ < 3. 

This follows by considering <&' := {V' 5;; V \ 0 * V' =F V, 6 A") V') = 0 ~, which 
is a crossing family. We leave it to the reader to check that (P 3) is 
equivalent to condition (iii). Note that a similar characterization for 
arbitrary (not necessarily acyclic) directed graphs D0 follows easily by 
contracting the strong components of D0 : the properties (i) and (ii) are 
invariant under such contractions, while (iii) yields a condition on the 
original D 0 • 

EXAMPLE 7 (Intersecting families). A collection '?! of subsets of V is 
called an intersecting family if for all T, U in <&' with T n U * 0, also T n U 
and TU U belong to '?f. So ea.::h intersecting family is a crossing family. 
Moreover, it is easy to see that any intersecting family ~ either contains 0 
or V, or satisfies (P3 ). So each intersecting family satisfies (P 1) and (P2 ), 
which is the content of a theorem of Frank [ 6 ]. 

In Section 5 we give a proof of the equivalence of (P 1 ), (P2 ), and (P3 ). 
The implications (Pl)=> (P3) and (P2)=> (P3) will follow easily by 
constructing a counterexample for (P 1) and (P2) if the five-set configuration 
described in (P3) occurs. The implication (P3) => (P2) will be shown with a 
proof technique set up by Hoffman, Edmonds and Giles, Lovasz and 
Robertson. This consists of showing that there are optimal cut packings 
which are "cross-free," and that hence by total unimodularity certain LP­
problems have integral optimal solutions, which yield the desired result. Here 
we use an auxiliary theorem characterizing total unimodularity for such 
cross-free families-see Section 2. 

The proof of the implication (P 3) => (P 1) turns out to be rather 
complicated. Here we need two other auxiliary theorems, which may be 
interesting in their own right, and which we give in the Sections 3 and 4. 

Remark 1. In (P l) and (P2) we required the min-max relations for cuts 
and coverings to hold for all directed graphs on V. It is a more general 
problem to characterize pairs ('?!, D) of a crossing family <? on V and a 
directed graph D on V having the properties described in (Pl) and (P2), 
respectively. For example, the Lucchesi-Younger theorem [15], and its 
extension by Edmonds and Giles [3 ], assert that if'?! is a crossing family on 
V and no arc of D leaves any set V' E <?,then ('?!, D) satisfies the properties 
described in (P2). However, this class of pairs (<?, D) in general does not 
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have the properties described in (PI) (see Schrijver [ I 7 J). So for fixed 
graphs D, (PI) and (P2) are not equivalent. 

In Schrijver [ 19] it is shown that (*7, D) has the property described in 
(P2), if *1 is a crossing family on V, and D = ( V, A) is a directed graph such 
that: if V1 , V2 , V3 E <p, and V 1 ~ V\V2 ~ V3 , then no arc of D enters both 
V 1 and V3 • This generalizes the Lucchesi-Younger theorem. 

The more general problem of characterizing pairs (<p, D) of an arbitrary, 
not necessarily crossing, family *1 of subsets of V, together with a directed 
graph D = ( V, A), having the properties described in (P 1) or (P2 ), can easily 
be seen to be equivalent to the problem of characterizing "hypergraphs with 
the l + -max-flow min-cut property." This is a notoriously difficult problem 
-see Seymour [20, 21 ]. 

Some notation and terminology. Two subsets T and U of V are said to 
cross if T n U =!= 0, TU U =!= V, T r,t. U, and U r,t. T. 6.4 ( U) and <5.; ( U) denote 
the sets of arcs in A entering U and leaving U, respectively. d."4 ( U) and 
d 1 ( U) denote the number of arcs in A entering U and leaving U, respectively. 
Other concepts frequently used are crossing family (see ( 1 )), cut, covering 
(see above), cross-free family (see (2)), intersecting family (see (7)), and 
super- and submodular functions (see (8)). 

2. FIRST AUXILIARY THEOREM 

The first auxiliary theorem, necessary for the implication (P3) => (P2), 
characterizes "cross-free" families which generate totally unimodular 
matrices in a certain way. 

Two subsets T and U of V are said to cross if T n U =!= 0, TU U =!= V, 
T r,t. U, and U r,t. T. A collection *1 of subsets of V is called cross-free if no 
two sets in cp cross, i.e., if 

forallT,Uin<p:TnU=0, or TUU=V, or T~U, or U~T. (2) 

In particular, each cross-free family is a crossing family. 
Let D = (V, A) be the "complete digraph" on V, i.e., A consists of all pairs 

(u, v) with u, v E V and u =!= v. Let M<7 be the matrix with rows and columns 
indexed by <p and A, respectively, and with 

if a enters V', 
(3) 

= 0, otherwise, 

for V' E *1 and a E A. 



110 A.SCHRIJVER 

FIRST AUXILIARY THEOREM. For any cross-free family 'it', the matrix M"" 
is totally unimodular if and only if 'it' satisfies (P3 ). 

Proof (I) First suppose M"" is totally unimodular, and 'it' contains a 
subcollection {Vp V2 , V3 , V4 , V5 } as described in (P3). Choose elements 
v1 E Vp v2 E V\V2 , V 4 E V4 , V 5 E V\V5 • Consider the submatrix of M""with 
rows indexed by Vp V2 , V3 , V4 , V5 , and with columns indexed by the arcs 
(v4,v1), (v2,v1), (v2,v4), (v 5,v4), (vs,V2) (cf. Fig. 3 in Section 5). One 
easily checks that this 5 X 5 submatrix has determinant ± 2, and hence M"" is 
not totally unimodular. 

(II) Conversely, let the cross-free family 'it' satisfy (P3 ). To prove that 
M"" is totally unimodular, we use the following characterization of Ghouila­
Houri [ 9]: a matrix M is totally unimodular if and only if each collection R 
of rows of M can be split into classes R 1 and R 2 such that the sum of the 
rows in R 1' minus the sum of the rows in R 2 , is a vector with entries 0, ± 1 
only. 

To show that M"" fulfills Ghouila-Houri's criterion, choose 'it'' s; 'it' (being 
the index set of the collection R of rows). Without loss of generality we may 
assume that 'it'' does not contain 0 or V (as they represent all-zero rows). 

Now make the directed graph D' =('it'', A'), with vertex set 'it'', where A' 
consists of all pairs (T, U) such that 

T,UE'it'', TcU, and there is no WE'it'' with TcWcU. (4) 

We show that the undirected graph underlying D' is bipartite, which will 
verify Ghouila-Houri's criterion: if 'it'; and 'it'~ are the two colour classes, 
then any arc a= (u, v) of D will enter a chain of subsets in 'it'' (as ~' is 
cross-free), which subsets are alternatingly in 'it'; and <&' ~. Hence the sum of 
the rows of M"" with index in 'it'; , minus the sum of the rows with index in 
'it'~, has an entry 0 or ± 1 in position a. 

To show that D' is bipartite, suppose it has an (undirected) circuit of odd 
length. Since this cycle is odd, and D' has no directed cycles, it follows that 
there are distinct U0 , Up ... , Uk, Uk+ 1 in 'it'' with k > 3, such that 

are in A'. So U 0 and U 2 are distinct minimal sets in 'it'' containing U 1 as a 
subset. As ~' is cross-free, U0 U U2 = V. Similarly, Uk- I and Uk+ 1 are 
distinct maximal subsets of Uk, and hence Uk-In Uk+ I= 0. As U2 s; uk-1' 
it follows that ul s; Uo n U2, Uo u U2 = v, U2 u Uk+ Is; Uk and 
U2 n Uk+ 1 = 0. However, this configuration is excluded by (P3 ). I 

Remark 2. It is not difficult to derive from this theorem the equivalence 
of (P 1 ), (P2 ), and (P3) for cross-free families, using the results of Hoffman 
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and Kruskal [ 11 J and Berge and Las Vergnas [ l ] and assuming the 
implications (Pl)~ (P3) and (P2)~ (P3) (which are not difficult-see 
Section 5 ). Indeed, by the theorem, if 'ef? is cross-free and (P3) holds, then 
M 'II is totally unimodular. The matrix M 'II has as rows the incidence vectors 
of the cuts induced by 'ef?. By Hoffman and Kruskal's theorem, both sides of 
the LP-duality equation 

min Y' l(a) x(a) 
QEA 

subject to 

\' x(a) ~ 1 ( V' E 'if'), 
aE8-(V') 

x(a) ~ 0 (a EA), 

=max \' y(V') 
~ 

V'EW 

subject to 

\' 
V'e'?",aeO-(V') 

y(V') ~ 0 

y(V') ~ l(a) (a EA), 

(V' E W), 

(6) 

are attained by integral optimal solutions, for all l: A --+ Z +. This follows as 
the constraint matrix in ( 6) is the totally uni modular M 'II· The fact that ( 6) 
has integral optimal solutions is equivalent to (P2 ). 

Berge and Las Vergnas showed that if M is a nonnegative totally 
unimodular matrix (more generally, if M is a "balanced" matrix), and each 
row of M sums up to at least k, then the columns of M can be split into k 
classes such that the sum of the columns in any of these classes has all 
entries at least 1. Since M 'II keeps totally unimodular if we repeat or remove 
columns, (P 1) follows from the result of Berge and Las Vergnas. 

Remark 3. Using the "tree-representation" of cross-free families, 
introduced by Edmonds and Giles [ 3 ], the first auxiliary theorem is 
equivalent to the following: 

Let T = ( V, A) be a directed tree. For each two vertices u and v of T, let 
A u,v be the set of arcs of T which are directed forwards in the unique path in 
T from u to v. Let Mr be the { 0, 1 }-matrix with rows the incidence vectors of 
the Au,v (u, v E V). Then Mr is totally unimodular if and only if T is not 
contractible to the tree given in Fig. 2. 

To derive this from the first auxiliary theorem, let <'&' = { V' ~ VI there is 
an arc (u, v) of T such that V' is the component of T\(u, v) containing v }. 

FIGURE 2 
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Then <if? is a cross-free family, and M'i'= Mr. Moreover, <if? contains the five­
set configuration described in (P3) if and only if T is contractible to the tree 
of Fig. 2. This shows that the first auxiliary theorem implies the above 
characterization. The converse implication is shown similarly. 

3. SECOND AUXILIARY THEOREM 

Our second auxiliary theorem concerns colourings and supermodular 
functions. A collection <iff of subsets of a finite set S is called an intersecting 
family if 

for all T, Uin <if? with Tn U* 0 we have Tn UE <if? and TU UE <if?. (7) 

If <if? is an intersecting family on S, a function g: <if?--> 1R is called super­
modular (on intersecting pairs) if 

for all T, U in <if? with Tn U =/:- 0: g(Tn U) + g(TU U) ~ g(T) + g(U). 

(8) 

Similarly, g is called sub modular (on intersecting pairs) if in (8) the reversed 
inequality holds. 

Clearly, if f and g are supermodular (resp. submodular), then also the 
function f + g is supermodular (resp. submodular). Moreover, f is super­
modular if and only if -f is submodular. 

The following observation follows eas~ly with the "sandwich principle": 

if <if? is an intersecting family, and g: <if?--> IR is supermodular and 
/: <if?-+ IR is submodular, such that g(T) <,_ f(T) for all T in <if?, 
then the collection of sets T in <if? with g(T) = f(T) is again an 
intersecting family. (9) 

We shall frequently use the following two submodular functions. If (V,A) 
is a directed graph, then the set-function d;(U), for U £ V, is submodular. If 
X 1 , ... , X n are sets, define for T £ S, 

hxi. ... ,x.(T) :=the number ofj = 1, ... , n with TnXi * 0. (10) 

Then for fixed x 1 , ••• , x n' the function h x I ' ..• ,x n is a submodular set-function 
on S. 

The following theorem will be applied in proving (P3) ~ (P 1 ). It contains 
as direct applications theorems of Konig, Gupta, and De Werra on edge­
colourings of bipartite graphs (see below, after the proof). 
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SECOND AUXILIARY THEOREM. Let ~ and '6'2 be intersecting families on 
the finite set S, and let g 1 : '6'1--> l and g 2: 'G';-> l be supermodular on inter­
secting pairs. Suppose that g;(T) ~I TI for i = 1, 2 and TE 'it';. Then the 
minimum number of colours needed to colour S such that each set T 
intersects at least g;(T) colours (for i = 1, 2; TE '!fr';), is equal to the 
maximum of g;(T) (i = I, 2; TE 'it';) (provided that this maximum is 
positive). 

(Mathematically, "colouring" is the same as "partitioning," and a "colour" 
is a class of the partition.) 

Proof Clearly, the maximum does not exceed the minimum. To prove 
the converse, we use the submodular function defined in ( 10). Let k := 
max{ g;(T) I i = 1, 2; TE 'it';}. Let S 1 , ••• , S k be pairwise disjoint subsets of S 
such that 

( 11) 

for i = 1, 2, and TE 'it';, and such that 

IS 1 U · · · U S k I is as large as possible. ( 12) 

Such S 1 , ••• , S k exist, as S 1 = · · · = S k = 0 satisfies ( 11 ). We are finished 
when we have shown that S 1 U · · · US k = S. Suppose to the contrary there 
is an s in S\(S 1 U · · · US k). Then there will exist a j 1 such that if we replace 
Sj, by Sh U { s }, then ( 11) is still satisfied for i = 1. Otherwise, for all j = 
1, ... , k, there would exist a set Tj in '6'1 such that 

gi(TJ > hs,, ... ,SH,SjUS,Sj+l•····sk(T) + ITNS1 u ... uskus)I- (13) 

Combined with ( 11) for the original S 1 , ••• , S k, this implies that Tj contains s 
and Tj n Sj 1= 0, and that ( 11) holds with equality for i = 1 and T = Tj. 
Now the collection of sets T satisfying ( 11) with equality is an intersecting 
family (as the left-hand side is supermodular and the right-hand side is 
submodular; cf. (9) ). Hence the union T 0 := T1 U · · · U Tk satisfies ( 11) 
with equality. But then 

(as T0 contains s and intersects all S). Assertion (14) contradicts the 
definition of k. Similarly, there exists a j 2 such that if we replace Sh by 
S h U { s}, then ( 11) is still satisfied for i = 2. Now j 1 1= j 2 , since otherwise we 
could replace Sh by Sh Us, without violating ( 11) for i = 1, 2, contradicting 
(12). We may assume thatj1 =1andj2 =2. Now for i= 1, 2 and TE 'it'; one 
has 

582b/35/2·3 
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For i = 1 this follows from the fact that we could augment SI with s: 

gI(T) :!( h51 us.s 2 ..... sk(T) + 17\(S 1 Us U S 2 U · · · U Sk)I 

= h53 , •.•• s/T) + 17\(S 1 U ···US k U s)I + h81 us.s2(T) 

:!( h53 , .... s/T) + 17\(S 1 U .. ·US k U s)I + 2. ( 16) 

Similarly, (15) is shown for i = 2. Let UI , ... ,Um be the minimal sets Tin 
~satisfying (15) for i= 1 with equality (minimal with respect to inclusion). 
As the collection of sets Tin '&"1 satisfying ( 15) with equality (for i = 1) is an 
intersecting family (using (9)), the sets UI , ... , um are pairwise disjoint. 
Moreover, as equality in (15) implies equality throughout in (16), we know 
that h81 us.s/Uj) = 2, and hence that I Uj (I (SIU S 1 U s)I ~ 2 for j = 1, .. ., m. 

Similarly, let Wp ... , Wn be the minimal sets in 'ifr; which satisfy (15) with 
equality for i = 2. Again, WI, ... , wn are pairwise disjoint, and 
IWjn(Sius1 us)l~2 for}= l, ... ,n. 

Now S 1 US2 Us can be split into classes s; and S~ such that both s; 
and S~ intersect each of the sets Up ... , Um, Wl' ... , Wn. To see this, choose 
pairs e1 , ... ,em, II, ... ,fn as subsets of SI US 2 Us such that eI s;: UI, ... , 
ems;: um Ji s;: WI, ... , fn s;: wn. Since eI ,. .. , em are pairwise disjoint, and since 
JI, ... , In are pairwise disjoint, it follows that the "edges" e 1 , ... , em, JI, ... , In 
make up a bipartite graph, with vertex set S 1 US 2 Us. Then any two­
colouring of this bipartite graph gives a splitting into S; and S ~ as required. 

We finally show that replacing S 1 and S 2 by S; and S ~ does not violate 
( 11) for i = 1, 2, which, however, contradicts the maximality of 
IS1 u ... USkl· 

So we have to prove 

for i = 1, 2 and TE 'eff;. First let i = 1, and choose TE WI. If T includes one 
of the Uj as a subset, then T intersects both S; and S ~ (as U1 intersects both 
of these sets). In this case, by ( 15 ), 

g 1(T) :!( h53 , .... s/T) + 17\(S 1 U .. · u Sk u s)I + 2 

= hs;.s;.s 3 ,. .. ,sk(T) + 17\(S; us; u S 3 u ... u Sk)I. (18) 

If T includes none of the UJ, then inequality (15) for i = 1 is strict (by 
definition of U1 , ... ,Um)· So if T intersects s; US~, then 

gI(T) :!( hs 3 ..... sk(T) +I 7\(S 1 u ··· u Sk U s)I + 1 

:!( hs;.s;.s 1 ... .,sJT) + 17\(S; us; u S 3 u ... u Sk)I. (19) 
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If T does not intersect S; U S ~, then 

g1(T) ~ hs,, .... sk(T) + 17\(S, U ... u S,J 

= hs;.s;.s,. .... s.(T) +I T\(S; us; u S, u ... u Sdl- (20) 

The inequality ( 17) for i = 2 is shown similarly. I 

The theorems of Konig [ 12 j, Gupta I 10 I. and De Werra I 221 are essen­
tially equivalent to the case of this Second Auxiliary Theorem where both 'i/1 

and 'if'~ are partitions of S. Then the theorem is equivalent to: let G = ( V, E) 
be a bipartite graph, and let for each v in V, a,. be an integer with 
a,.~deg(v) (:=the degree of v). Then the edges of G can be coloured with 
max,.E ,. a,. colours in such a way that each vertex of G is touched by at least 
a,. colours. By taking a,.= deg(v), Konig's edge-colouring theorem follows. 
By taking all a,. equal to the minimum degree of G, Gupta's theorem follows. 
By taking a,.= minjk, deg(i·)f (where k is a fixed integer), De Werra's result 
follows. 

4. THIRD AUXILIARY THEOREM 

Also the Third Auxiliary Theorem will be used in proving the implication 
(P3) => (P 1 ). Again, a collection <p:J of subsets of the finite set V is called an 
intersecting family if T !I U E <if! and TU U E <:,? whenever T, U E W and 
T n U =I= 0. Moreover, we use again the notation 

hx,,. .... dX) =the number of j = L..., n with X n X; :;t= 0. (21) 

Recall that for fixed X 1' ... , X n, this gives a submodular function, and that 
also the set-function d,-; ( U) is submodular, for any arc set A (cf. Section 3 ). 

The theorem below extends a result of Edmonds [ 2 I (Edmonds' disjoint 
branching theorem). It is proved by generalizing a method of Lovasz [ 14 I 
and Frank I 6 I. Frank showed that each intersecting family has property 
(P 1 ). which is equivalent to the case R 1 = · · · = R k = 0 in the following 
theorem. 

THIRD AUXILIARY THEOREM. Let <,{' be an intersecting family of subsets 
of V, let D = ( V, A) be a directed graph, and let R 1 , ... , R k be subsets of V. 
Suppose that 

d-;_(T) + hR,, ... ,R,(T);;;;, k (22) 

for each T in 'if'. Then A can be split into classes A 1 , .... A k such that 

d_-;_/T);;;;, 1 or (23) 

for each j = !, ... , k and each Tin 'if'. 

(Here d.~ (T) denotes the number of arcs in A entering T.) 
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Proof The theorem is proved by induction on 2..:J= 1 I V\Rjl· If each RJ 
intersects each TE crt?, the theorem is trivial. So we may assume that R 1 does 

not intersect some set in qr, Let W be a maximal set in qr not intersecting R 1 

(maximal with respect to inclusion). Note that (22) implies that for each T 

in 'If'. 

(24) 

Consider the collection Y of all sets T in qr which have equality in (24 ). As 

the left-hand side of (24) is submodular, the collection Y is an intersecting 

family. Moreover, as (22) holds, each T in .YT intersects R 1 • 

Now select an arc a = (u, v) as follows. If each set in Y is disjoint from 

W, let a be an arbitrary arc entering W (which exists by (22), as 

W n R 1 = 0). If there are sets in Y which intersect W, let U be a minimal 

set in .T intersecting W (minimal with respect to inclusion). Since 

d.4(Un W) + hR,, ... ,RJU n W) 

? k > d_4(U) + hR,,. . .,RJ U) ~ d;; ( U) + hR, ..... Rk( u n W), (25) 

we know that d;;(Un W) > d;;(U), and so we can choose an arc a= (u, v) 
entering Un W but not entering U, i.e., u E U\W, v E Un W. 

Now replace R 1 by R 1 U v, and A by A \a. Then 

d;J1p(T) + hR,ur,R 2 ,. • .,R/T) ~ k 

for all T in qr, For suppose (26) does not hold. Then 

(26) 

d;;(T) + hR,, .. .,RJT) ~ k > d;;1p(T) + hR,Ut>,R,, ... ,RJT). (27) 

Hence a enters T, v ET, and d;;(T) + hR, , .. .,Rk(T) = k - 1. So T is in JT. In 

particular, there is a set in J~ intersecting W. As v E T n U, and T and U 
are in J-, also T n U is in .T. However, u E U\T, contradicting the 

minimality of U. 
So (26) holds for all Tin qr, By induction we know that A \a can be split 

into classes A 1 , ... ,A k such that 

d_-_;,(T) + hR,uv(T) ~ 1, 

for all Tin <eff. Hence 

for j = 2, .. ., k, (28) 

(29) 

for all T in crt?. Indeed, suppose (29) does not hold. Then hR,(T) = 
d.4,ua(T) = 0. This implies d;;,(T) = 0, and hence by (28) hR,uJT) = 1, i.e., 

v E T and T n R, = 0. But then T ~ W (otherwise TU W would be a larger 
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set in 'ff' disjoint from R I• contradicting our choice of W). However. this 
implies that a enters T, and (29) follows. 

Combining (28) and (29) gives that A I U a, A 2 , •••• A k is a splitting of A as 
required. I 

5. MAIN THEOREM 

MAIN THEOREM. Let~ be a crossing family of subsets of the finite set V, 
not containing 0 or V. Then conditions (PI), (P2 ), and (P3) are equivalent. 

Proof (I) (Pl) => (P3) and (P2) => (P3). Suppose~ contains five sets 
VP V2 , V3 , V4 , V 5 as described in (P3). Let ~o := j VI, V2 • V 3 , V4 , V5 f, and 
let 'iJ'I := ~\~. Choose elements vI E VI, v 2 E V\V2, v 4 E V4 , V 5 E V\V5. 
Let D = ( V, A) be a directed graph, with A =A 0 U A I, where 

(30) 

A I := l (u, v) I u, v E V such that (u, v) does not enter any V; (i = !,. .. , 5) f. 

The sets VI, ... , V5 and the arcs in A 0 are given in Fig. 3. Now observe the 
following: 

every set in ~ is entered by exactly two arcs from A 0 , and every 
arc from A 0 enters exactly two sets in v;1• (31) 

This is an easy checking. Moreover: 

every set in WI is either entered by at least one arc in A 1 , or by at 
least two arcs in A 0 • (32) 

This can be seen as follows. It follows from the definition (30) of A I that a 
subset U of V is not entered by any arc in A 1 if and only if U belongs to the 

FIGURE 3 
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lattice generated by ~1 (with respect to i;; , n, and U). This lattice consists 
of the sets 

0. v. VI. Vz, V3, V4, v,, Vi u V4. V2 n V3, 

(V2 n V3) u V4, V3 u v., V2 n v,, 
(33) 

as (3 3) is closed under taking intersections and unions, and as each set in 
(33) is generated by~· Since each of the sets in (33), except for 0 and V, is 
entered by at least two arcs from A 0 , (32) follows. 

From (31) and (32) it directly follows that: 

any covering for qf contains at least three arcs from A 0 , and any 
cut induced by qf contains at least one arc from A 1 or at least 
two arcs from A 0 • (34) 

Now define a length function l on A by 

/(a)=l ifaEA 0 , l(a)=O ifaEA 1 • (35) 

Then by (34) the minimum length of a covering for qf is at least three. 
However, if U1 , U2 , U3 are sets in qf such that any arc a enters at most l(a) 
of U1 , U 2 , U3 , then by (35) each U; is entered by no arc from A 1 , and hence, 
by (32), by at least two arcs from A 0 • This is not possible, as fA 0 f = 5. 

So negating (P3) implies negating (P2). Similarly, negating (P3) implies 
negating (P 1 ). To see this, define a capacity function c on A by 

c(a)=l ifaEA 0 , c(a)=2 ifaEA 1 (36) 

(or replace any arc in A 1 by two parallel arcs, if one wishes to stick to the 
cardinality formulation). Then by (34) the minimum capacity of a cut 
induced by W is at least 2. However, if C 1 and C2 are coverings for qr such 
that no arc a is in more than c(a) of C 1 and C 2 , then by (34) both C 1 and C 2 

intersect A 0 in at least 3 arcs, contradicting (36 ). 

(II) (P3)=>(P2). To show the implication (P3)=>(P2) we use the 
theory of total dual integrality. Let qf be a crossing family on V satisfying 
(P3), not containing 0 or V. Let D = (V,A) be a directed graph, and let 
I: A-> Z +. Then condition (P2) can be equivalently formulated as: both 
optima in the linear programming duality equation 

min \' l(a) x(a) = max \' y(T) 
a EA TE'iR 

subject to subject to 

\' x(a) ~ 1 (TE qf), '\.' y(T) ~!(a) (a EA), .__ 
aeo.:;< T) TeW,ae8.~(T) 

x(a) ~ 0 (a EA), y(T) ~ 0 (TEqf'), (37) 
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have integer optimal solutions. By a theorem of Edmonds and Giles [ 3 ], to 
show that both optima in (3 7) have integer optimal solutions, it suffices to 
show that the maximization problem in (37) has an integer optimal solution 
y, for each length function /: A ~ 1.. + . 

To show that the maximum in (37) has an integer optimal solution, let y 
be a, not necessarily integer, optimal solution for the maximum in (37), such 
that 

~ y(T) . I TI . I V\TI (38) 
Te'7 

is as small as possible (such a y exists by simple compactness and continuity 
arguments). Now consider the collection 

]~:={TE w I y(T) > O}. (39) 

We show that ,:T is cross-free (cf. Section 2). 
Indeed, suppose to the contrary there are T, U in '&' with y(T) > 0, 

y( U) > 0, and T n U * 0, TU U * V, T cl: U, U cl: T. Let e = min 
{y(T), y(U)} > 0. Reset y as follows: 

y(T) := y(T) - t:, 

y(U) := y(U) - t:, 

y(Tn U) := y(Tn U) + t:, 
y(TU U) := y(TU U) + t:, 

(40) 

letting y unchanged in the remaining components. One easily checks that the 
new y again is a feasible solution for the maximum in (37), with the same 
objective value as the old y. Soy is again an optimal solution. However, the 
sum (38) is decreased, contradicting our choice of y. 

So Y is cross-free. Therefore by the First Auxiliary Theorem (Section 2), 
the (primal) constraints in (37) with positive dual variable y(T) form a 
totally unimodular matrix (as it comes from the matrix My by duplicating 
and deleting columns). Hence, by Hoffman and Kruskal's theorem I 11 I, the 
maximum in (37) has an integer optimal solution. 

(III) (P3)~ (Pl). The remainder of this paper is devoted to proving the 
implication (P3) ~ (P 1 ). Let W be a crossing family of subsets of V 
satisfying (P 3 ), not containing 0 or V. Let D = (V, A) be a directed graph. 
Suppose the minimum size of a cut induced by<'&' is more than the maximum 
number of pairwise disjoint coverings for W, and suppose furthermore that 
we have chosen this counterexample so that I WI + IA I is as small as possible. 

Let k be the minimum size of a cut induced by W, i.e., 

k := min{d,4(U)I U E '&'}. (41) 
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Moreover, define: 

'6'min :=the collection of minimal sets in 'if', 

'6'max := the collection of maximal sets in 'if' 

(minimal and maximal with respect to inclusion), and 

(42) 

Y' := jUE '6'Jthere are no S, TE Yf such that Sc:; U, UU T= V, S <:; T}, 

f/ := 1U E Yf'Jthere are no S, TE Yf such that Uc:; T, Un S = 0, Sc:; T}. 

(43) 

Since (P3) holds, we know that Yf =.YU!/. 

CLAIM 1. Y and Sf7 are crossing families. 

Proof of Claim 1. To show that .Y is a crossing family, let U, WEY 
cross (i.e., U 11 W i= 0, U U W i= V, U rt;_ W, W rt_ U). Then Un W and 
U U W belong to 'if'. It is immediate from the definition ( 43) of .Y that 

Un W belongs to Y. To show that UU W belongs to .Y, suppose to the 

contrary that there exist S, Tin 'if' such that Sc:; UU W, TU UU W = V 
and Sc:; T. Without loss of generality, S E 'i&"min and TE Yfm•x. As T is a 

maximal set, T crosses neither U nor W (as otherwise TU U or TU W 

would be a larger set), which implies: 

either 

or 

or 

(i) TU (U\W) = V, 

(ii) TU(UnW)=V, 

(iii) TU CW\U) = v. 

(44) 

If (i) holds, then Un Wand T contradict the fact that U belongs to Y. If 
(iii) holds, then Un W and T contradict the fact that W belongs to .Y. So 
(ii) holds, i.e., TU (W n U) = V. Since S is a minimal set, it crosses neither 

U nor W (as otherwise S n U or S n W would be a smaller set). Hence 

Sc:; U or Sc:; W. However, TU U = V and TU W = V, contradicting the 

fact that both U and W are in Y. 
Similarly, Sf7 is a crossing family. I 

CLAIM 2. IjWE'if' and WE'if'minu'if'm•x, then d;(W)~k+ 1. 

Proof of Claim 2. 
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Case 1. WEY. Suppose d,i(W) = k. Let: 

<if'':= ll/EYf'I Uc;; W}, 

<if'" := { U E <if' I Un W = 0, or W c;; U, or U u W = V}, 

A' :={a EA I a enters a set U in <if''}, 

A" :={a EA I a enters a set U in <if'"}. 

So <if'' Ur&'" consists of all sets U in <if' which do not cross W. 
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(45) 

we first show that A I n A II = 0; ( W). As w E <if' I n <if' II, we know that 
o;(W) c;;A I nA ". To see the opposite inclusion, suppose arc a enters both 
U' in <if'' and U" in r&' ". Then U' n U" =I= 0, and hence U" n W =I= 0. So 
W <;; U" or U" U W = V. If U" U W = V, then U' n U" and U' U U" 
contradict the fact that W belongs to Y. So We;; U", and hence 
U' <;; W <;; U", which implies that a is in o; ( W). 

By definition of k and A' and A", we know 

d;,(U) ~ k for all U in r&'', and d,-;,,(U) ~ k for all U in<&'". (46) 

As W is not a minimal or a maximal set in <&' we also know 

l<&''I + IA'I < l<&'I + IAI and IYf'"l+IA"l<IYf'l+IAI. (47) 

Moreover, <if'' and<&'" are again crossing families satisfying (P3). As <&',A 
form a smallest counterexample, we know from (46) and (47) that A' can be 
split into classes A; , ... ,A k, and A" can be split into classes A ;1 , ••• ,A;:, such 
that 

d,i'.(U) ~ 1 for j= l, ... ,k and UE<&'', 
J (48) 

d,i,,(U) ~ 1 for j= 1, ... , k and U E '&"". 
j 

As the arcs in o; ( W) =A' n A" will be, in each of these partitions, in 
different classes (as d,i(W) = k and WE~' n<&'"), we may assume that, 
for j = 1, ... , k, A J and A J' intersect in an arc of o; ( W). Hence A; U A ;1 , ••• , 

Ak U Af partition A' U A". 
Moreover, 

for j = 1, ... , k and U E ~- (49) 

Indeed, if U does not cross W, then U E <&'' U <if'", and ( 49) follows from 
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( 48 ). If U crosses W, then Un W belongs to ~' and U U W belongs to ~ 11 • 

Then we have 

di'uA'..(U) ~ di'.udU n W) + di'.UA:{UU W) - di'.uA'..(W) 
J J ) ·; J J J j 

~di:(Un W) +di'.·(UU W)-1~I+1- 1=1 (50) 
J J 

(using (48), the submodularity of di:uA'.' and the fact that di'.uA'.'(W) = 1). 
So A contains pairwise disjoint s~ts A 1"''' A k such that d 1;;/iJ) ~ 1 for j = 

1, ... , k and U E ~. This contradicts the fact that~. A form a counterexample 

to (Pl). 

Case 2. WE .5!. This case follows similarly to Case 1, now using 

~, := {UE~i Ur;;. W, or Un W=0, or UU W= V}, 

%'" := {UE ~I Wt;;_ U}, 

A ' := {a E A I a enters a set U in ~' } , 

A 11 := {a E A I a enters a set U in ~ 11 } • I 

Claim 2 immediately implies 

(51) 

CLAIM 3. Each arc of D enters a minimal or a maximal set of C. 

Proof of Claim 3. Otherwise we could delete this arc, without violating 
the condition d;(U) ~ k for all U in ~ (by Claim 2), thus obtaining a 
smaller counterexample. I 

Define 

A 0 := {a EA I a enters both a set in ~min and a set in '6'max }, 

A' := {a EA I a enters no set in '6'max f, (52) 

A 11 := {a EA I a enters no set in '6'min }. 

Claim 3 is equivalent to 

A 0 , A', A" partition A. (53) 

Note that any arc of D enters at most one set in ~min, and at most one set 
in ~max (since if it enters both T and U, it also enters T n U E ~ and 
TU U E <&'). 

Our next claim is 

CLAIM 4. Let a'=(u',v')EA' and a"=(u",v")EA 11 , such that a' 

enters a set SE~ and a" enters a set TE~. with S r;;_ T. Then there exists 

a set UE <&'such that u', v' EU and u", v" E. U. 
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Proof of Claim 4. Let a', a", S, Tbe as above, and suppose such a set U 
does not exist. Let a := (u", v') be a new arc. Then 

d(A\(a',a"))U{a)(U) = d;;(U) - d;;',a"(U) + d;;(U);;;:, k (54) 

for all U in ~. Indeed, if U E ~min U ~max, then (54) follows from the facts 
that d;;(U);;;:, k + 1 (by Claim 2) and d;;(U) + 1;;;:, d;;',a"(U) (trivially). If 
UE~minu~max, then d;;',a"(U)~l, as a' is in A' and a" is in A". 
Negating (54) will give that d;;',a"(U) = 1 and d;;(U) = 0. However, if U is a 
minimal set, then, as a" E A ", a' enters U. Hence Uc:; S (as otherwise 
U ::i S n U E ~, contradicting the minimality of U). Therefore, Uc:; T, and 
hence u" EU and v' EU, contradicting that d;;(U) = 0. Similarly, if U is a 
maximal set, then, as a' EA', a" enters U. Hence Tc:; U. Therefore S c:; U, 
and again u 11 rt. U and v' EU, contradicting that d;;(U) = 0. 

Therefore, as l~l+l(A\{a',a"})U{a}l<l~l+IAI, we know that 
(A\ j a', a 11 }) U {a} can be split into classes A 1"''' A k such that 

for j= 1, ... , k and U E ~- (55) 

Without loss of generality, a belongs to A 1 • Then (A 1\{a})U {a',a 11 }, 

A 2 , ... ,A k is a splitting of A as required, which would contradict our 
assumption that ~,A form a counterexample. To see that this is indeed a 
splitting of A as required, it suffices to show that 

d(A,\(aj)U(a',a")(U);;;:, I for UE ~. (56) 

Suppose the left-hand side here is 0. As d;,(U);;;:, 1, it follows that the arc a 
enters U, but neither a' nor a 11 enters U. This however contradicts our 
assumption that there is no U in~ with u', v' EU and u 11 , v" EU. I 

Define 

«J- ' := { U E .Y I no arc in A" enters U}, 

ff' := { U E Y' I no arc in A' enters U}. 

It follows directly from this definition and from Claim 1 that 

5,,., and !:f' are crossing families. 

Next we make 

(57) 

(58) 

CLAIM 5. (i) For all Tin Y there exists a T' in , Y ' such that T' <:; T 
and OA (T') c:; o;(T). 

(ii) For all T in !/) there exists a T' in ::£'' such that T <:; T' and 
15,;(T') i:; OA (T). 
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Proof of Claim 5. We first prove (i), by induction on IT\. If d;;,,(T) = 0, 
we know that TE!/', and (i) is trivial. Suppose d;;,,(T) i= 0, and take 
a" EA" entering T. Let S be a set with 

SE~, SST, a" does not enter S, and !SI is as large as 
possible. ( 5 9) 

Such a set S exists, as T includes a minimal set of<?!, which is not entered 
by a" (as a" EA"). As SST and TE!/, we know SE!/'. 

Now o;;(S) s o;;(T). For suppose to the contrary that arc a' enters S but 
not T. Then a' E A '. [Otherwise there is a maximal set W of <?! entered by 
a'. Then SS W (as otherwise W c SU WE<?!, contradicting the 
maximality of W). As T belongs to!/', we know that TU W * V. Moreover, 
T n W * 0 (as the head of arc a' belongs to T and W). Hence T n W and 
TU W belong to <?f. As W is maximal, it follows that Ts W. So 
SS Ts W, which contradicts the fact that a' enters both S and W but not 
T.] Now the premise of Claim 4 is satisfied. Therefore, there exists a set U in 
~ such that a' is contained in U and a" is disjoint from U. But now 
(SuU)nT belongs to<?! (as SnU'/=0, SUUi=V, and 
(Sn U) n Ti= 0, (Su U) U Ti= V), and is not entered by a". However, 
l(S U U) n TI> IS I (as the tail of a' belongs to (Su U) n T but not to S), 
contradicting that we have chosen IS I as large as possible. 

Since IS I < I TI (as a" does not enter S), we know by induction that there 
exists a set T' in Y'' with T's S s T and o;;(T') s o;;(S) S o;;(T). This 
proves (i). 

Assertion (ii) of Claim 5 is shown similarly. I 

In order to apply the Second Auxiliary Theorem, we next introduce two 
intersecting families and two supermodular functions: 

di := {OA"o(U) I U E !/'' }, 

~ := {OA"o(U) I UE lf"'}, 

g1(B) := max{k - d;;,(U) I U E !/'', OA"o(U) = B} 

g1(B) := max{k - d;;,,(U) I u E Y', o;;o(U) = B} 

(60) 
for B Ed1, 

for BE d 2 • 

CLAIM 6. sit; and .w; are intersecting families on A 0 , and g 1 and g2 are 
supermodular on intersecting pairs. 

Proof of Claim 6. To show that di is intersecting, suppose 
OA"a(U)no;;o(W)i=0 for U, WEY'. This means that there is an arc inA 0 

entering both U and W. Hence Un W * 0 and U U W * V, and therefore 
Un Wand UU W belong to Y' (cf. (58)). We next show 

OA"o(U) n c5;;o(W) = o_4o(U n W), OA"a(U) U o;;o(W) = c5;;o(UU W). (61) 
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Showing s; in the first equality is easy: if an arc enters both U and Wit 
enters Un W. Similarly, showing 2 in the second equality is easy: if an arc 
enter U U W it enters at least one of U and W. The reverse inclusions 
directly follow from the fact that no arc in A 0 has its tail in U\ W and its 
head in W, or its tail in W\U and its head in U. For suppose that a E A 0 has 
its tail in, say, U\W and its head in W. Let T be the set in ~max entered by 
a. Then T does not cross U nor W (as otherwise TU U or TU W would be 
larger than T). Hence TU (U\W) = V. But then Un W s; T, which 
contradicts the fact that U belongs to Y. This shows ( 61 ). The super­
modularity of g 1 follows from the submodularity of the function d-;;,. It 
similarly follows that ~Wz is an intersecting family, and that g 2 is super­
modular on intersecting pairs. I 

Now we use the Second Auxiliary Theorem. Note that, if B E .sot;, and 
UE !/''attains the maximum for gi(B) in (60), then 

(62) 

using the fact that no arc in A 11 enters U, and that hence dio(U) + d;;,(U) = 
d.4(U) > k. Similarly, for BE .W'2 , 

(63) 

Since moreover the values of gi and g 2 do not exceed k, by the Second 
Auxiliary Theorem (Section 3 ), there exists a partition of A0 into classes 
A~, ... , A~ such that 

for each B E .w;, the number of j = 1, ... , k with B n A./* 0 is at 
least gi(B); 

(64) 
for each BE.W'2 , the number of)= l, ... ,k with BnA'ji=-0 is at 
least g 2(B). 

By definition (60) of .efP .Wz, gp g 2 this is equivalent to 

for each UEY': the number ofj= l, ... ,k with d;f?(U)> 1 is at 
leastk-d-;;,(U); 1 

(65) 
for each U E !/'': the number of j = I, ... , k with d;f?(U) > 1 is at 
least k - d-;;,,(U). .1 

CLAIM 7. (i) The arc set A' can be split into classes A; , ... ,Ak such that 
dA?uA '.(U) > l,for j = 1, ... , k and U E !/''. 

J J 

(ii) The arc set A 11 can be split into classes A ;1 , ••• ,A f such that 
dA?uA'.'(U)> 1,for j= l, ... ,k and VE!/''. 

J J 
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Proof of Claim 7. To prove (i), let V1 , ... , V 1 be the maximal sets of .Y' 
(maximal with respect to inclusion-they are not necessarily in 'lf"max ). For 
i = 1, ... , t, let 

Yi:= {U E !/''I Vi;; V;}. B; := ja EA'\ a enters some set in Yi}. (66) 

Then the collections Y{ are pairwise disjoint, and the sets B; are pairwise 
disjoint. For suppose, say, VEY;nY;. Then Vi;;V1 nv2 , and hence 
U1nU2 *0. Therefore U1 U U2 = V (as otherwise U1 and U2 would cross, 
which implies that U1 U U2 is in.!/', contradicting the maximality of U1 and 
U2). But now U £ Up U1 U U2 = V, U £ U2 , contradicting the fact that U1 

belongs to .Y. 
Suppose, say, a E B 1 n B2 • Then there are sets T1 E Y; and T2 E Y; 

entered by a. Hence T1 and T2 cross, and hence T 1 n T2 E Yin Y;, 
contradicting that Y; and Y; are disjoint. 

Moreover, each collection . Y; is an intersecting family. Indeed, if two 
members of .<r; intersect, then they cross, as both are contained in U; * V. 

Let, for j = 1,. .. , k, 

Ru := l v E V \ v is the head of some arc in A'} entering 

some set U in Yf}. 

Now for fixed i = 1, ... , t, (65) implies 

di;(U) + hR1, .... ,R1k(U) ~ k, 

(67) 

(68) 

for each U E Y;. Hence, by the Third Auxiliary Theorem (Section 4 ), B; can 
be split into classes B ;1 , ••• , B ik so that 

for j = 1, ... , k and U E .Y;. (69) 

Now 

for j= 1,. . ., k and VEY;. (70) 

Indeed, if the right-hand side in (70) is 0 it is trivial. If the right-hand side is 
1, then Un Ru * 0. Hence there is an arc a in A'} entering some set S in .Y~ 
and whose head is in U (by Definition (67) of R;J We may assume Si;;U 
(since otherwise we could replace S by Sn U, as .'/; is an intersecting 
family), and even that Sis in ~min (as a is in A 0 ). We prove that a enters U 
(implying that the left-hand side in (70) is at least 1). For suppose to the 
contrary that the tail of a also belongs to U. As a belongs to A 0 , there exists 
TE ~ max such that a enters T. Then S i;; U, TU U = V, S i;; T (as follows 
directly from the minimality of S and the maximality of T). But this 
contradicts the fact that U belongs to Y. 
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Combining (69) and (70) gives 

for j = 1, ... , k and U E Y''. 

This shows (i). One similarly shows (ii). I 

Using the splittings of Claim 7, we show 

for j = 1, ... , k and U E rt'. 
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(71) 

(72) 

Since A0 , A', A" partition A, since A~, ... ,A~ partition A 0 , since A;, ... ,Ak 
partition A', and since A ;1 , ••• ,A;: partition A", this will show that A can be 
split as required by (P 1 }, contradicting our assumption that rt', A form a 
counterexample, and thus proving the implication (P3) => (P 1 ). 

To show (72), let UE'if'. If UEY''UY', then (72) follows from 
Claim 7. If UEY'\Y', then c5;(U)2c5;(U') for some U'EY' (by 
Claim 5), and hence (72) follows from the fact that (72) holds for U'. 
Similarly, the case that U E Y\51}( follows from Claim 5. I 
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