
Approximation algorithms and hardness of
approximation for knapsack problems
Harry Buhrman1,2, Bruno Loff1, and Leen Torenvliet2

1 CWI, Amsterdam
2 University of Amsterdam

Abstract
We show various hardness of approximation algorithms for knapsack and related problems; in
particular we will show that unless the Exponential-Time Hypothesis is false, then subset-sum
cannot be approximated any better than with an FPTAS. We also give a simple new algorithm
for approximating knapsack and subset-sum, that can be adapted to work for small space, or in
small parallel time. Finally, we prove that knapsack can not be solved in Mulmuley’s parallel
PRAM model, even when the input is restricted to small bit-length.

1 Introduction

The Knapsack problem is a natural example of an NP-complete optimization problem which
nevertheless has a fully-polynomial time approximation scheme (FPTAS). However, there
is no apriori reason to think that FPTAS would be the best one could hope for. In fact,
in order to prove NP-hardness of knapsack we require the problem to be solved exactly
— up to exponential precision — so in principle there could exist polynomial-time ap-
proximation algorithms for knapsack with an approximation ratio strictly closer to 1 than
inverse-polynomial.

In this paper we give evidence that inverse-polynomial is as good an approximation we
are likely to get. For example, we obtain the following:
I Proposition. If there is a polynomial-time algorithm to approximate knapsack with inverse-
super-polynomial error ratio, then we can decide the satisfiability of n-variable NC circuits
of size ω(n) in time 2o(n).

By the sparsification lemma of [IPZ01] such a polynomial-time algorithm would give, in
particular, a 2o(n)-time algorithm for 3SAT, contradicting the Exponential-Time Hypothesis
[IP99]. The result offers a robust tradeoff, in that algorithms with a successively better
approximation ratio can be used to simulate ever larger non-deterministic NC-computations.
In a way, this is a refinement of the NP-hardness of the knapsack problem. It is also the
first hardness-of-approximation result of its kind, since hardness of approximation has been
shown for every other approximation ratio (cf. Section 4).

This investigation was sparked by a question by Ulle Endriss: Suppose we are given an
an approximate solution of a knapsack problem with approximation ratio 1 + ε; is there a
polynomial-time algorithm which makes use of such a solution to obtain a second solution
with an improved approximation ratio 1+ε′?. We were able to answer this question satisfact-
orily (the answer is essentially no, unless NP = co-NP), but which due to space constraints
we leave for the appendix.

We will also provide a simple, and to our knowledge new, algorithm for approximating
knapsack and subset-sum, based on the meet-in-the-middle algorithm [HS74]. We are able
to approximate subset-sum up to error ratio 1 + ε in space log 1

ε · logn. A linear arithmetic
PRAM [see Mul99] can compute it in time logn using ( 1

ε )logn processors. Alternatively, it
may be implemented in a O(logn) depth AC circuit of size ( 1

ε )logn.
Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301645443?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


2 Approximation algorithms and hardness of approximation for knapsack problems

We complement this by giving lower bounds for approximating knapsack in parallel,
using Mulmuley’s parametric complexity technique [Mul99]. Our reduction techniques can
be used to show that the knapsack problem has high parametric complexity. This will prove
that it is impossible to approximate knapsack within error 1 + ε in time o((log 1

ε )− 1
4 ), and

using 2o((log 1
ε )−

1
4 ) processors, in Mulmuley’s parallel PRAM model without bit operations.

After some preliminaries in Section 2, we study in Section 3 both old and new approx-
imation algorithms for knapsack and related problems. We then prove our main hardness-
of-approximation results, in Section 4, and proceed with the lower-bounds for Mulmuley’s
model in Section 5.

2 Preliminaries

For a given natural number n, [n] denotes the set {1, . . . , n}, and Sn denotes the group of
permutations of n letters. We will use Iverson’s bracket notation, where for a given predicate
P , [P?] denotes 0 if P is false, and 1 if P is true.

2.1 Circuit classes and bounded non-determinism
A width-5 permutation branching program P over k input bits y1, . . . , yk is a set (of so-called
instructions) {(j, zj , αj , βj)}Sj=1, with zj ∈ [k], αj , βj ∈ S5. For a given input ȳ ∈ {0, 1}k,
the evaluation of the program P (ȳ) ∈ S5 is equal to γ1γ2 . . . γS , where γj equals αj if yzj

= 0
and equals βj if yzj = 1. We usually write P (ȳ) = 1 when P (ȳ) = e and write P (ȳ) = 0 to
mean P (ȳ) 6= e.

We will let NC-Sat[S, k] denote the set of circuits C composed of k boolean input gates
and S-many fan-in 2 NAND gates, such that C(ȳ) = 1 for some choice of ȳ ∈ {0, 1}k. We use
∃NC1[k] to denote the class of sets accepted by log-depth fan-in 2 uniformly generated circuits
of polynomial size which make use of k non-deterministic bits — i.e., a set A is in ∃NC1[k] if
there is a family of polysize boolean formulae Fn such that x ∈ A iff F|x|(x, y) = 1 for some
y ∈ {0, 1}k. Finally, we let NC1-Sat[S, k] denote the set of satisfiable size-S formulae with
k boolean variables. Notice that NC1-Sat[S, k] denotes a set and ∃NC1[k] denotes a class of
sets for which NC1-Sat[poly(n), k] is a complete problem.

2.2 Mulmuley’s parallel model of computation
Mulmuley’s model is a semi-algebraic model of parallel computation. The inputs are usually
thought of as having a binary part, giving the combinatorial structure (for instance, the
adjacency matrix of a graph), and an integer part, giving numerical data about this structure
(such as the weights of the edges of said graph). The model treats these two types of data
differently with respect to pointer jumping, which makes its full description more involved
than it needs to be for our purpose. In fact, the knapsack problem has no combinatorial
structure, and so we can look at a simpler form of Mulmuley’s model, and leave the full
details to [Mul99].

A problem in this setting is a family An of subsets of Zn, parametrized by n. The model
of computation is the arithmetic PRAM, a device composed of a certain number of registers
and processors. At the beginning of the computation, a tuple ā = (a1, . . . , an) is given as
input by placing each ai in register i. Every processor is given a sequence of instructions,
each of which is one of the following:

w = u ◦ v, where w is a register and u and v are either registers or constants, and ◦ is
one of +,−,×;



Harry Buhrman, Bruno Loff, and Leen Torenvliet 3

If register i is greater than zero, then go to instruction `, or else go to instruction `′.
At each time-step, every processor executes its current instruction simultaneously; we assume
that concurrent reads and writes are OK, and are handled, for instance, by ordering the
processors according to some priority. There is unit cost for every instruction, which actually
means that the model can handle very large numbers. The machine eventually halts, for
instance by letting processor 1 execute a special instruction, and we say that ā was accepted
if register 1 holds a zero (meaning ā ∈ A), and was rejected otherwise.

Now we may define Ketan’s class KC(P, T ) as the class of problems A which can be
decided by such a device using P processors and T time. An algebraic algorithm will have
P and T depend only on n, whereas a semi-algebraic algorithm will have them depend on
the bit-length of the integers ai. This model is quite powerful, and in fact it is capable of
implementing every parallel algorithm that the authors know of. Nevertheless, Mulmuley
[Mul99] shows that the decision version of maximum flow is not in KC(2

√
n

a ,
√
n
a ), for some

constant a, even when the bit-lengths of the flow capacities are at most O(n2). The result
extends to any numerical problem, such as the traveling salesman problem, to which max-
flow reduces by a parallel algebraic reduction. But subset-sum is not known to be such a
problem. In the paper [Sen98], it was shown that subset-sum is not in KC(2

√
n

a ,
√
n
a ), but

using a different technique than Mulmuley’s, which gives no limit on the bit-length of the
inputs among which a hard instance will be found. In Section 5 we prove that subset-sum
is not in KC(2 1

an
1/4
, 1
an

1/4), even for bit-length of the inputs bounded by O(n2).

2.3 Knapsack and generalizations
We now define a version of knapsack with an extra restriction of a more general kind:

I Definition 1. For integers n, a, b, the 0–1 symmetric knapsack problem, denoted with
SymK(n, a, b), is defined as the following optimization problem: We are given v : [n] →
[2a], w : [n]→ [2b], σ : [n]→ S5, as well as W ∈ [2b],Σ ∈ S5, and then, going over all subsets
I ⊆ [n], we wish to

maximize
∑
i∈I v(i)

s.t.
∑
i∈I w(i) 6W⊙
i∈I σ(i) = Σ

The notation �i∈Iσ(i) means the product of the elements σ(i) for i ∈ I, in ascending
order of i, and for completion we let �i∈∅σ(i) denote e, the identity permutation. Note
that the order is important since S5 is not commutative.

Intuitively, we think of {1, . . . , n} as a set of items, the v(i) as values, w(i) as weights,
and σ(i) as patterns, and we are trying to fit a set of items of maximum total value into a
knapsack that can carry W weight, with the added restriction that the items we pick must
orderly fit together according to a certain pattern Σ.

Throughout, we will assume that every w(i) 6W , since of course larger items do not fit
into the knapsack, and can be ignored.

The symmetric subset-sum problem, SymSS(n, b), is the problem of deciding, when given
an instance X = (v, w, σ,W,Σ) of SymK(n, b, b) with v = w, if there exists a feasible solution
matching the bound W :

I Definition 2. The symmetric subset-sum problem SymSS(n, b) is defined as the following
decision problem: We are given w : [n] → [2b], σ : [n] → S5, W ∈ [2b], and Σ ∈ S5, and we
wish to decide if there exists a I ⊆ [n] such that

∑
i∈I w(i) = W and �i∈Iσ(i) = Σ.



4 Approximation algorithms and hardness of approximation for knapsack problems

Again it will be convenient to think of [n] as a set of items, w(i) as weights, and σ(i) as
patterns. Intuitively, our goal is now to find a choice of items matching a specific weight with
a specific pattern. Note that subset-sum is defined as a decision problem whereas knapsack
is defined as an optimization problem. If the we restrict σi to be the identity of S5, we have
the original knapsack and subset-sum problems:
I Definition 3. The 0–1 knapsack problem K(n, a, b) is SymK(n, a, b) restricted to the case
when σi,Σ are all e. The 0–1 subset-sum problem SS(n, b) is defined in the same way.

3 Approximation algorithms: Old and new

Given an instance X = (v, w, σ,W,Σ) of symmetric knapsack, it will have a unique optimum
value m∗, corresponding to one (among possibly many) optimal solution I∗.

The goal of an approximation algorithm is to estimate m∗. The algorithm is said to
achieve approximation ratio α if it always outputs a value m such that m∗ 6 αm.

3.1 Equivalence of approximation and exact solution for small weights
A classical observation in the study of knapsack problems is that, modulo a multiplicative
factor of n, solving an n-item knapsack approximately to ratio 1 + ε is equivalent to solving
instances of knapsack having integer values bounded by 1

ε . This holds the exact same way
for the symmetric variant.
I Theorem 1. Let ε > 0; then each problem in the following list reduces to the one below:

1. Solving SymK(n, a, b) with approximation ratio 1 + ε;
2. Solving SymK(n, logn+ log(1 + 1

ε ), b) exactly;
3. Solving SymK(n, a, b) with approximation ratio 1 + ε

n2 .

This theorem will allow us to prove both upper and lower bounds for approximation al-
gorithms by ignoring the approximation ratio altogether, and working with instances having
small values v(i). The proof is standard and left for the appendix.

3.2 Dynamic programming algorithm and a FPTAS
In the appendix we will show that the original dynamic programming algorithm for classical
0–1 knapsack [Bel53], together with its derived FPTAS, will also work for the symmetric
knapsack problem.
I Theorem 2. There is a d.p. algorithm for finding an optimum solution of SymK(n, a, b), in
time O(n22aB), where B is the time required to sum and compare (b+ logn)-bit numbers.

As in the original 0–1 knapsack problem, this algorithm can be used to obtain an FPTAS.
I Corollary 3. Solutions of SymK(n, a, b) achieving approximation ratio 1+ε can be obtained
in time O((1 + 1

ε )n3B).

3.3 A new, simple algorithm using small space or small parallel time
We present a very simple algorithm, to our knowledge new, that solves subset-sum in
O(W logn) time using O(logW · logn) space. Notice that if W is at 2Ω(n/ logn), then we
can instead run the trivial O(n)-space algorithm that tries every possible setting of the
items, for an improved 2n time bound. So this algorithm is only interesting for smaller
values of W ; this makes it particularly suitable for approximation.



Harry Buhrman, Bruno Loff, and Leen Torenvliet 5

The algorithm is a recursive variant of themeet in the middle algorithm, and can be made
to work for both the subset-sum and knapsack problems. We will present the algorithm for
the subset-sum problem first, and then explain how it generalizes to the symmetric version
and the knapsack problem.
I Theorem 4 (Recursive meet in the middle algorithm). There is an algorithm for SS[n, b]
that works in time O(W logn) and space O(logW · logn).

Proof. We show a recursive procedure for the following problem: we are given an instance
X = (w,W ) ∈ SS[n, b], and a value m ∈ [W ]; we will output whether there exists a subset
of items I ⊆ [n] such that

∑
i∈I w(i) = m. The procedure works as follows:

(1) (Base case) If n = 1, we return true iff w(1) = m, else we return false.
(2) We go through each possible value m′ 6 m;
(3) then we consider the partial problems X1 having the first half of the items, and X2,

having the second half;
(4) we recursively call our procedure on inputs X1,m

′ and X2,m −m′: if no solution was
found for either of the sub-problems, we move on to the next choice of m′;

(5) if solutions were found, return true.
(6) If we have gone through every value, we return false.

To see that we return true in case a solution exists, note that if I is a solution of X having
value m, then I1 = I ∩ {1, . . . , bn2 c} and I2 = I \ I1 will have some values, respectively m1
and m2. Since I has value m, it must be that m2 = m−m1; hence the algorithm will find
some solution for X1 and X2 when calling (4) with m′ = m1 (here we assume inductively
that solutions will be found for smaller n).

Finally, an algorithm for SS[n, b] will call this procedure with m = W . To bound the
time and space used, we notice that the recursion has depth logn, and each call in the stack
uses O(logW ) space to store m and m′. J

By analyzing the algorithm above, we can see that it is given by an alternation of ORs
and ANDs. Let SS(X,m) mean that there exists a solution for X of value m. Then it is
clear that

SS(X,m) ⇐⇒
∨

m′∈[m]

[SS(X1,m
′) ∧ SS(X2,m−m′)] .

Expanding this out in a circuit — the bottom layer will simply contain equality tests — we
conclude that:
I Corollary 5. A parallel version of the algorithm can be implemented with AC circuits of
depth O(logn) and size O(W lognb), or in a arithmetic PRAM with O(W logn) processors
running for O(logn) time.
I Observation 1. For the knapsack problem K[n, a, b], where w 6= v, each recursive call
will look for solutions whose weight is at most m, rather than exactly m, and maintain
in memory the maximum value among the admissible solutions found so far (rather than
simply whether there exists a solution or not); i.e., the recursion is now:

K(X,m) = max
m′∈[m]

K(X1,m
′) + K(X2,m−m′),

where K(X,m) is the maximum value attainable for the instance X with weight up to m.
The basic case is v(1) if w(1) 6 m, and 0 otherwise. This is computable serially in O(W logn)



6 Approximation algorithms and hardness of approximation for knapsack problems

time and (logW + a) logn space, or by means of an AC circuit of depth O(logn) and size
O(W logn(a2W 2 + b)).1

I Observation 2. It is interesting to compare our algorithm with that of [LN10]. In that
paper, the authors present a clever algorithm for subset-sum based on the use of an adequate
Fourier transform, which runs in time Õ(n2W logW ) and space Õ(n2). Our algorithm is
slower but uses less space when W is small.

4 Hardness of approximation

In the last few decades, theoretical computer science has classified most known NP-hard
optimization problems according to how close to the optimum solution a polynomial time
algorithm is likely to get. For instance, under sufficient hardness assumptions, it holds that:

For some constants c > c′, SetCover can be approximated to error ratio c logn, but
not c′ logn [RS97].
For some constants c > c′, Max2Sat can be approximated to error ratio c [LLZ02], but
not c′ [Hås01].
The problem of finding an optimal multi-processor scheduling with speed factors has a
PTAS, but no FPTAS [CK, HS88].

It is now natural to ask: how about problems that do have a FPTAS, can we prove that
this kind of approximability is optimal, under hardness of some kind? We now show that
the answer is yes, and that in this context ETH is the adequate hardness hypothesis.

4.1 Hardness of approximation for knapsack
Our strategy is the usual: we reduce a hard problem to the task of approximating subset-sum
with ratio better than 1 + 1

poly .

I Theorem 6. NC-Sat[S, k] 6AC0
m SS(O(S + k), O(S)).

Proof. We will show that there is a uniform AC0 circuit which, given as input a size S circuit
C(ȳ) over k variables ȳ = y1, . . . , yk, will output an instance X = (w,W ) of

SS[S, k] = SS(2k + 4S, 2k + 4S + 1),

that admits a subset-sum of weight W if and only if C(ȳ) = 1 for some choice of ȳ.
Suppose C is given as a sequence (G1, . . . , GS) of binary NAND gates, where each gate

Gj is defined by two indices j′, j′′ ∈ [k]t [j−1] determining its inputs. Then X will have two
items Y (0)

i and Y (1)
i for each i ∈ [k], and four items G(00)

j , G
(01)
j , G

(10)
j for each NAND gate

j ∈ [S]. We will construct our knapsack instance in such a way that any optimal solution
must choose exactly one of the Y (0)

i , Y
(1)
i items for each i ∈ [k], and exactly one of the Gabj

items for each j ∈ [S]. For any optimal solution, a choice of the Y items will force a choice
of gate items corresponding to an evaluation of the circuit.

It will aid in comprehension if we present the weights of the items in our instance both
algebraically and in table form. For i ∈ [k], j ∈ [S], let c(i, j) be 2 if input i is the first input
of gate j, 1 if it is the second input, and 0 otherwise. Similarly with gates, for j, j′ ∈ [S], let

1 To see this, notice that the maximum of W -many a-bit numbers can be computed by AC circuits of
size O(W 2a2), and the basic case can be computed by a circuit of size O(b).



Harry Buhrman, Bruno Loff, and Leen Torenvliet 7

d(j, j′) be 2 if gate j is the first input of gate j′, 1 if it is the second input, and 0 otherwise.
We will set the weights to:

w(Y (0)
i ) = 22(k−i) + 4S+1

w(Y (1)
i ) = 22(k−i) + 4S+1 +

S∑
j=1

c(i, j)24(S−j)+1

w(G(00)
j ) = (2 + 1)× 24(S−j)+1 +

S∑
j′=j+1

d(j, j′)24(S−j′)+1 + [j = S?]

w(G(01)
j ) = (2 + 0)× 24(S−j)+1 +

S∑
j′=j+1

d(j, j′)24(S−j′)+1 + [j = S?]

w(G(10)
j ) = (0 + 1)× 24(S−j)+1 +

S∑
j′=j+1

d(j, j′)24(S−j′)+1 + [j = S?]

We set the maximum weight to:

W =
k∑
i=1

22(k−i) + 4S+1 +
S∑
j=1

3× 24(S−j)+1 + 1

The DLOGTIME uniformity of the reduction follows from the simplicity of the above
expressions, which make the circuit computing the bits of the instance very easy to describe.
Some non-trivial lookup is required to compute c and d, which makes the reduction AC0,
rather than simply NC0.2

Let us see what these numbers look like when written in binary. Since each number is
less than 22k+2S+1, we will write them in a table with k + S + 1 blocks. The last block has
one bit, and the remaining blocks have two bits.

w 1 . . . i . . . k G1 . . . Gj . . . Gj′ . . . GS out

Y
(0)

i 00 . . . 01 . . . 00 0000 . . . 0000 . . . 0000 . . . 0000 0
Y

(1)
i 00 . . . 01 . . . 00 c(i, 1) . . . c(i, j) . . . c(i, j′) . . . c(i, S) 0

G
(00)
j 00 . . . 00 . . . 00 0000 0 0011 . . . d(j, j′) . . . d(j, S) [j = S?]

G
(01)
j 00 . . . 00 . . . 00 0000 0 0010 . . . d(j, j′) . . . d(j, S) [j = S?]

G
(10)
j 00 . . . 00 . . . 00 0000 0 0001 . . . d(j, j′) . . . d(j, S) [j = S?]

. . .
W 01 . . . 01 . . . 01 0011 . . . 0011 . . . 0011 . . . 0011 1

It is vital to notice that in each column Gj there will be exactly five non-zero entries:
two correspond to the inputs, having binary form 10 and 01, and three correspond to the
gate Gj , and have binary form 11, 10 and 01. These are chosen so that for any setting
ab ∈ {0, 1}2 of the items corresponding to the two inputs, then if we wish to achieve the
maximum weight W , we will be forced to pick the gate item G

(ab)
j . Formally, we wish to

prove the following claim, from which the theorem follows immediately.
I Claim 6.1. The solutions I of X having weight exactly W , are in 1–1 correspondence with
the assignments of ȳ causing C(ȳ) = 1.
Given a choice of ȳ, we can define the solution I(ȳ) inductively as follows:

2 The encoding of the circuit could be changed to make this lookup easier.



8 Approximation algorithms and hardness of approximation for knapsack problems

{Y (yi)
i } ⊆ I;

For each gate Gj , we let
aj = 1 if input i is the first input to gate j and Y (1)

i ∈ I, or if gate ` is the first input
to gate j and G(a`b`)

` ∈ I; and aj = 0 otherwise;
similarly for bj and the second input to gate j.

Then G(ajbj)
j ∈ I if aj and bj are not both 1.

This solution will have weight exactly W , if C(ȳ) = 1, and weight W − 1, if C(ȳ) = 0.
This can be seen easily by inspection of the table above: for instance, if Gj = NAND(yi, yi′),
yi = 1 and yi′ = 0, then Y (1)

i contributes (binary) weight 10 to column Gj , Y (0)
i contributes

weight 0, and G
(10)
j contributes weight 01, for a total of 11, which is exactly W for that

column. The final column will be 1 iff the output gate GS evaluates to 1.
To complete the proof of the claim, and hence of the theorem, it suffices to show that

any solution achieving weight W must be of the form I(ȳ) for some unique choice of ȳ. Let
I be any solution with total weight W . Again by inspection of the table above, we will find
that, for each i, exactly one of Y (0)

i or Y (1)
i must be in I. This follows by letting i be the

hypothetical first coordinate where this fails to hold: if both Y (0)
i and Y (1)

i are in I, then the
total weight will surpassW , and if both Y (0)

i and Y (1)
i are missed, the total weight must less

than W because of the low weight of the items which are yet to be fixed.3 So let Y (yi)
i , for

i ∈ [k], give us the set of chosen Y items. Then again in an inductive fashion we establish
that for each gate Gj we must pick at most one item among G(ab)

j , exactly as defined in
I(ȳ): again it holds that this is the unique choice which fits the weight W exactly right. J

This allows us to obtain a hardness-of-approximation result for the knapsack problem:

I Corollary 7. If subset-sum can be approximated to any ratio 1+n−ω(1) in polynomial time,
then NC-Sat[ω(n), ω(n)] ⊆ DTIME(2o(n)) and the Exponential-Time Hypothesis is false.

Notice that this result is optimal, since for any constant c it is possible to approximate
knapsack to ratio 1 + 1

nc in polynomial time. Once again the proof is in appendix.

4.2 Hardness of approximation for symmetric knapsack
It is immediate to see that SymSS(n, n) is NP-hard, since it includes the original subset-
sum problem as a special case. However, the addition of a small amount of combinatorial
structure to the problem will allow for a hardness result where the bit-length of the weights
only depends logarithmically on the formula size. Due to space constraints, the proof is left
for the appendix.

I Theorem 8. NC1-Sat[S, k] 6AC0
m SymSS(O(S2 + k), O(k logS)).

Let us instantiate k, in order to see what kind of parameters show up:

I Corollary 9. Symmetric knapsack can not be approximated to ratio 1 + 2−(logn)3 in poly-
nomial time, unless ∃NC1[(logn)2] ⊆ P.

I Corollary 10. Symmetric knapsack can not be approximated to any ratio 1 + 2−ω(k logn),
in polynomial time, unless ∃NC1[k] ⊆ P, for some super-logarithmic choice of k.

3 Here it is worth pointing out: this is the reason we need to “pad” each block of the weights with
additional bits. This bears some resemblance to the superincreasing sequences used in the Merkle-
Hellman knapsack cryptosystem.



Harry Buhrman, Bruno Loff, and Leen Torenvliet 9

5 Lower bounds for Mulmuley’s Model

We will now prove that the knapsack problem can not be efficiently parallelized in Mul-
muley’s model. The hardness of knapsack has already been proven in [Sen98] in the fully-
algebraic setting, and now we present a proof for the optimization version of subset-sum in
the semi-algebraic setting. We do this using Mulmuley’s parametric complexity technique.
We will stick to the least general definition that applies to the subset-sum case.

The optimization version of subset-sum is simply the knapsack problem restricted to the
case where the values of the items equal their weights; i.e., we are given (w̄,W ) and we wish
to compute:

S(w̄,W ) = max
ā

ā · w̄ s.t. ā ∈ {0, 1}n and ā · w̄ 6W.

We will now refer to the problem of computing S as simply the knapsack problem. A
linear parametrization for the knapsack problem is a function Pn : R → Rn+1 mapping
some interval [A,B] into instances (w̄,W ), where W is fixed and each wi is given by a
linear function of a single parameter λ. Pn is said to have bit-length β = β(n) if all the
coefficients of these linear functions are integers of bit-length β. For each λ ∈ [A,B], let
m(λ) = S(Pn(λ)).4 Then it is easy to see thatm(λ) is a piecewise-linear and convex function
of λ. The complexity ρ(n) of Pn is then the number of different slopes of m(λ) as λ goes
from A to B.

The parametric complexity of the knapsack problem for bit-length β(n), φ(n, β(n)), is
equal to the maximum complexity ρ(n), over all parametrizations Pn of bit-length β(n). Now
let us define the following decision version of the knapsack problem: An = {(w̄,W, z)|S(w̄,W ) 6
z}. Then the following is proven in [Mul99]:

I Theorem 11 (Theorem 3.3 of [Mul99]). There exists a large enough constants a, b such that
An can not be solved in KC(2

√
logφ(n,β(n))/b,

√
log φ(n, β(n))/b); this is so even if we restrict

every numeric parameter in the input to be an integer with bit-length at most aβ(n).

Below we will prove exponential lower bounds on φ(O(n2), O(n2)), which imply that
An is not in KC(2n

1
4 /b, n

1
4 /b), even for instances where each weight has at most an bits.

This is a stronger setting than the results in [Sen98], which prove that subset-sum is not in
KC(2

√
n/b,
√
n/b), but without any restriction on the bit-length at which the hard instances

will be found. Unfortunately we were unable to show a parallel algebraic reduction from
An to subset-sum, and hence our results hold only for the knapsack problem, rather than
subset-sum.

5.1 High parametric complexity for knapsack

I Theorem 12. φ(O(n2), O(n2)) > 2n. Hence An is not in KC(2n
1
4 /b, n

1
4 /b), even for bit-

lengths restricted to O(n).

The consequences for approximation algorithms will be proven in appendix.

Proof. We will construct a linear parametrization P (λ) : [0, 2k]→ SS[O(k+K), O(k+K)]
such that the weight of each item in P (λ) is a linear function of λ ∈ [0, 2k], and such that

4 Here we extend the knapsack problem to the reals. This can easily be done due to it being a homo-
geneous optimization problem, i.e. S(αw̄, αW ) = αS(w̄,W ) for any constant α. We could avoid this
entirely, except that it makes the definitions easier to visualize.



10 Approximation algorithms and hardness of approximation for knapsack problems

the graph of the optimum value m(λ) of P (λ) will be a piecewise linear convex graph with
2k-many different slopes. The hardness then follows from Theorem 11.

Let ȳ = y1, . . . , yk+K denote binary vectors of length k +K = k + k(k−1)
2 . For 1 6 i1 <

i2 6 k, we let (i1, i2) stand for some bijection with k + 1, . . . , k +K, and we make use of
the notation y(i1,i2) as convenient.

Let C(ȳ) be the formula:∧
16i1<i26k

(
y(i1,i2) = yi1 ∧ ¬yi2

)
, (1)

and let X = XC be the corresponding subset-sum instance given by Theorem 6. Since C
can be implemented by an NC circuit with 10K NAND gates, then X will have 2k + 40K
items and the weights have bit-lengths at most 2k + 20K + 1.

Our P (λ) will have the same items as X, namely two items Y (0)
j and Y

(1)
j for each

variable yi,5 plus 10K items that we will generically designate by Cj . However, the weights
of P (λ) will be different: although the most significant bits of P (λ) will be set in the same
way as in X (and thus do not depend on λ), the least significant bits will be set so that as
λ goes from 0 to 2k, the optimum value of P (λ) will have 2k-many different slopes.

Again we will present P (λ) both numerically and in table form. Let wX and WX denote
the weights of X. We will set the weights of P (λ) as follows:

w(Y (0)
i ) = 2k(k+5)wX(Y (0)

i ) + f
(0)
i (λ)

w(Y (1)
i ) = 2k(k+5)wX(Y (1)

i ) + f
(1)
i (λ)

w(Cj) = 2k(k+5)wX(Cj)
W = 2k(k+5)WX + 2k(k+5) − 1

We define f as follows:

for 1 6 i 6 k, f
(0)
i (λ) = 2(k−i)(k+5)(2k−i+1 − λ)

f
(1)
i (λ) = 2(k−i)(k+5)(2k−i)

for 1 6 i1 < i2 6 k, f (0)
(i1,i2)(λ) = 0

f
(1)
(i1,i2)(λ) = 2(k−i2)(k+5)2k−i1

Notice that the weights w are a left shift of wX by k(k + 5) bits, except for the items
Y

(0)
j and Y

(1)
j , who additionally get a least-significant value parametrized by λ. See also

that the values of f , written in binary, can be partitioned into k blocks of k + 5 bits each.
Let us illustrate this with the following table:

(2k + 10K + 1 bits) 1 . . . i . . . k
Y

(0)
i Thm. 6 0 . . . 2k−i+1 − λ . . . 0
Y

(1)
i Thm. 6 0 . . . 2k−i . . . 0

Y
(0)

(i1,i)|i1<i Thm. 6 0 . . . 0 . . . 0
Y

(1)
(i1,i)|i1<i Thm. 6 0 . . . 2k−i1 . . . 0

W Thm. 6 2k+5 − 1 . . . 2k+5 − 1 . . . 2k+5 − 1

5 We will also use the notation Y (0)
(i1,i2), Y

(1)
(i1,i2) to denote the items corresponding to the variable y(i1,i2).



Harry Buhrman, Bruno Loff, and Leen Torenvliet 11

The similarity with Theorem 6 ensures that we must pick exactly one of Y (0)
i and Y (1)

i ,
and that C(ȳ) = 1 for the vector ȳ corresponding to this choice, i.e.:
I Claim 12.1. Each optimal solution of P (λ) corresponds to a unique choice of ȳ obeying
equation (1).

The proof of this claim is exactly as before. The correspondence is no longer bijective,
since there might be values of ȳ obeying 1 which have sub-optimal value due to f . However,
any solution which is optimal up to the first 2k + 10K + 1 bits must already satisfy the
formula C, and in this case these bits must be set to WX as in the proof of Theorem 6.
We take this one step further, by noticing that (1) fully determines ȳ from the first k bits
y1, . . . , yk.

So let ŷ denote y1, . . . , yk, and I(ŷ) be the solution containing the items Y (yi)
i , Y (y1∧¬y2)

(i1,i2) ,
and the corresponding Cj ’s that simulate the circuit. Notice that I(ŷ) maximizes the first
2k + 10K + 1 bits of the value to be exactly WX : so we define gλ : {0, 1}k → [2k(k+5) − 1],
to be the optimum of I(ŷ) minus 2k(k+5)WX . Now the following claim holds:
I Claim 12.2. ŷ 7→ I(ŷ) is a bijective correspondence between {0, 1}k and solutions of P (λ)
having value at least 2k(k+5)WX . Furthermore, the optimum solutions of P (λ) are those
I(ŷ) which maximize gλ(ŷ).

From this we may define m∗(λ) = maxŷ∈{0,1}k gλ(ŷ), and this will be the value of the
optimum solution of P (λ), minus 2k(k+5)WX . The instance P (λ) was constructed so that
the optimum is given exactly by λ:
I Claim 12.3. For a given λ ∈ [0, 2k) of the form λ = bλc + ∆,∆ ∈ ( 1

4 ,
3
4 ), the maximum

value of gλ(ŷ) is attained when ŷ is the binary expansion of bλc.
We now prove this claim. Let ŷ = y1, . . . , yk be arbitrary. Then, by summing over the

columns of the above table, and by equation (1), one sees that the following formula holds:

gλ(ŷ) =
k∑
i=1

(
yi2k−i + (1− yi)

(
2k−i+1 − λ+

∑
i1<i

yi12k−i1
))

2(k−i)(k+5) (2)

Take the binary expansion of bλc = λ12k−1 + . . . + λk20. We prove that the maximum
of gλ is achieved when ŷ = λ1 . . . λk. For any ŷ 6= λ1 . . . λk, let d be the first bit for which
λd 6= yd. Then we let ỹ = λ1 . . . λdyd+1 . . . yk, and show that gλ(ỹ) > gλ(ŷ).

Let g(i)
λ (ŷ)2(k−i)(k+5) be the i-th term in the summand of equation (2), and Gi = g

(i)
λ (ỹ)−

g
(i)
λ (ŷ). Then Gi = 0 for i < d, and so

gλ(ỹ)− gλ(ŷ) = Gd2(k−d)(k+5) +
∑
i>d

Gi2(k−i)(k+5).

We may lower bound Gd as follows:

Gd = (λd − yd)2k−d + (yd − λd)
(

2k−d+1 − λ+
∑
i1<d

λi12k−i1
)

= (λd − yd)
(
λd2k−d − 2k−d + ∆ +

∑
i>d

λi2k−i
)

> min(∆, 1−∆) > 1
4

Since every |Gi| is upper bounded by 2k+3, it now follows that

gλ(ỹ)− gλ(ŷ) > Gd2(k−d)(k+5) −
∑
i>d

|Gi|2(k−i)(k+5) > 0,



12 REFERENCES

and the claim is proven.
Finally, we establish that the parametric complexity of knapsack is Ω(2k):

I Claim 12.4. The slope of m∗(λ) is unique for each interval

(bλc+ 1
4 , bλc+ 3

4) ⊂ [0, 2k].

Looking at equation 2, from the previous claim it follows that m∗(λ) = gλ(bλc), which
simplifies to the linear form:

m∗(λ) = gλ(λ1, . . . , λk) =
∑
i:λi=1

2(k−i)(k+5)λ+Abλc

for some constant Abλc. And so each binary expansion of bλc gives rise to a unique slope. J

Acknowledgements

We thank Ulle Endriss for asking the question that led to this paper, as well as Karl Bring-
mann, Radu Curticapaen, and Dominik Scheder for pointing out that the sparsification
lemma would give the full contradiction with the ETH.

References

Bar86 David Barrington. Bounded-width polynomial-size branching programs recognize
exactly those languages in NC1. In Proceedings of the 18th STOC, 1986.

Bel53 Richard Bellman. Bottleneck problems and dynamic programming. Proceedings of
the National Academy of Sciences of the USA, 39(9):947–951, 1953.

CK Pierluigi Crescenzi and Viggo Kann. A compendium of NP optimization problems.
Hås01 Johan Håstad. Some optimal inapproximability results. Journal of the A, 48(4):798–

859, 2001.
HS74 Ellis Horowitz and Sartaj Sahni. Computing partitions with an application to the

subset-sum problem. Journal of the ACM, 20(2):277–292, 1974.
HS88 Sorit S. Hochbaum and David B. Shmoys. A polynomial approximation scheme for

machine scheduling on uniform processors: using the dual approach. SIAM Journal
on Computing, 17:539–551, 1988.

IP99 Russel Impagliazzo and Ramamohan Paturi. The complexity of k-sat. In Proceedings
of the 14th CCC, pages 237–240, 1999.

IPZ01 Russel Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have
strongly exponential complexity? Journal of Computer and System Sciences,
63(4):512–530, 2001.

LLZ02 Michael Lewin, Dror Livnar, and Uri Zwick. Improved rounding techniques for the
MAX 2-SAT and MAX DI-CUT problems. In Proceedings of the 9th ICPO, 2002.

LN10 Daniel Lokshtanov and Jesper Nederlof. Saving space by algebraization. In Proceed-
ings of the 42nd STOC, pages 321–330, 2010.

Mul99 Ketan Mulmuley. Lower bounds in a parallel model without bit operations. SIAM
Journal on Computing, 28(4):1460–1509, 1999.

RS97 Ran Raz and Shmuel Safra. A sub-constant error-probability low-degree test, and
a sub-constant error-probability pcp characterization of np. In Proceedings of the
29th STOC, 1997.

Sen98 Sandeep Sen. The hardness of speeding-up knapsack. Technical report, BRICS,
1998.



REFERENCES 13

A An answer to Ulle Endriss’ question

Repeating the question:

Suppose we are given an a knapsack instance together with an approximate solu-
tion with some approximation ratio; is there a polynomial-time algorithm which
makes use of such a solution to obtain, whenever possible, a second solution with an
improved approximation ratio?

We will prove that this is not the case, unless NP ⊆ co-NP. If there was such an algorithm
A, then we could know if a given solution I to a knapsack instance X is the optimal solution
by comparing the values of I and A(X, I). Hence we could decide if a given I is optimal.
But now we can decide the complement of subset-sum in NP: given a subset-sum instance
X = (w̄,W ), we guess a solution I for X and verify that I is optimal; in that case, we accept
if and only if the weight of I is exactly W . QED.

This question naturally led to us wondering that maybe we can not improve the approx-
imation ratio in every scenario, but maybe we can do so up to 1+ε for some super-polynomial
1
ε . The same reasoning now applies together with Theorem 6 and the sparsification lemma,
to show that this can not be done unless 3SAT ∈ co-NTIME(2o(n)).

B Proofs of the unproven theorems

B.1 Proofs of Section 3
Proof of Theorem 1. (1 reduces to 2) LetX = (v, w, σ,W,Σ) be an instance of SymK(n, a, b),
and let V = maxi v(i). Set t = log( ε

1+ε ·
V
n ), and make v′(i) = bv(i)/2tc. Define X ′ to be X

with v replaced by v′. Our approximate solution I will be an optimal solution of X ′. Note
that X ′ is an instance of SymK(n, a′, b) with a′ = logn+ log(1 + 1

ε ), and that furthermore
since w, σ,W,Σ remain unchanged, then any I feasible for X ′ will be feasible for X also
(and vice-versa).

To conclude, we prove an upper bound on the approximation ratio. So let m =
∑
i∈I v(i)

be the value of I, and m∗ the value of an optimal solution I∗ of X. Since X ′ is X with the
t least significant bits truncated, it is easy to see that m∗ −m 6 n2t. Since, furthermore,
V 6 m∗, we conclude that

m∗ −m
m

6
n2t

V

which implies, by simple algebraic manipulation and our choice of t, that

m∗ 6

(
V

V − n2t

)
m 6 (1 + ε)m.

Item 2 reduces to 3 via the following more general claim:

I Claim 12.5. Solving SymK(n, a, b) exactly reduces to solving SymK(n, a, b) with approx-
imation ratio 1 + 1

n2a .

This is almost trivial to see. Note that the optimum of any instance of SymK(n, a, b) is
bounded by m∗ 6 n2a. Hence any value m such that m∗ 6 (1 + 1

n2a )m will have m∗ −m 6

m
(

1− 1
1+ 1

n2a

)
< 1, and so m∗ = m (as they are both integers). J



14 REFERENCES

Proof of Theorem 2. Let X = (v, w, σ,W,Σ) be an instance of SymK(n, a, b), and let V =
maxi v(i). Throughout the algorithm, I = I(k, ṽ, σ̃), for k ∈ [n], ṽ ∈ [nV ], σ̃ ∈ M, when
defined, will denote a solution which:

(1) is a subset of [k], meaning i 6∈ I for i > k;
(2) has value

∑
i∈I v(i) = ṽ,

(3) pattern �i∈Iσ(i) = σ̃, and
(4) is weight-optimal, in the sense that

∑
i∈I w(i) is minimum among the weights of all

solutions obeying (1-3).

Now I is computed iteratively: for k = 1, we set I(1, 0, e) = ∅ and I(1, v(1), σ(1)) = {1},
and let I(1, ṽ, σ̃) remain undefined for all other pairs of ṽ and σ̃ — i.e., with only one item
we can either put it in I with value v(1) and pattern σ(1), or not put it in I, which results
in value 0 and pattern e.

Suppose we have defined I up to k − 1. Then let I ′ = I(k − 1, ṽ, σ̃), and I ′′ = I(k −
1, ṽ − v(k), σ̃σ−1

k ) ∪ {k}. Then we define I(k, ṽ, σ̃) to be equal to the I among I ′ and I ′′

that has minimum weight.6 Again the same reasoning applies (we can either put k into I
or not), and in this way we prove that the requirement of minimum weight is inductively
maintained.

If we keep I and W as arrays in a random access memory, then each iteration can be
computed in time O(nV B) = O(n2aB).

Finally, the optimum solution for X is the highest value ṽ for which I = I(n, ṽ,Σ) is
defined, and has weight no greater than W . J

B.2 Proofs of Section 4
Proof of Corollary 7. If subset-sum can be approximated thus, then by Claim 12.5 (more
precisely, by the analogous claim for subset-sum), we can solve SS[n, f(n) logn] in time nc,
for some non-decreasing super-constant f(n). By an appropriate substitution (say n ←
2n/
√
f(n)), this implies we can solve SS[2n, ω(n)] in time 2o(n). By the previous theorem we

can now conclude that NC-Sat[ω(n), ω(n)] can be solved in time 2o(n).
In particular this implies that the satisfiability of 3CNF formulas with ω(n)-many clauses

can be decided in time 2o(n), which by the sparsification lemma of [IPZ01] implies that the
satisfiability of 3CNF formulas of any size can also be decided in time 2o(n), i.e., that the
Exponential-Time Hypothesis is false. J

Proof of Theorem 8. We will show that there is a uniform AC0 circuit which, given as input
a width-5 permutation branching program P (ȳ) over k variables ȳ = y1, . . . , yk having size
S, will output an instance X = (w, σ,W,Σ) of

SymSS[S, k] = SymSS(2(k + S), k(2 + `(S))), (`(S) = dlogS + 1e)

that admits a subset-sum of weight W if and only if P (ȳ) = e for some choice of ȳ. The
result then follows by Barrington’s theorem [Bar86].

So let P = {(j, zj , αj , βj)}Sj=1, with zj ∈ [k], αj , βj ∈ S5. We will always use i to index
the y’s, and j to index the instructions of P .

In our symmetric subset-sum problem, we will have two items for each possible y, denoted
by Y (1)

i and Y (0)
i ; these items represent the possible assignments of the respective variable.

6 And undefined if I ′ and I ′′ are both undefined.



REFERENCES 15

We will also have two items for each instruction, denoted by Aj and Bj , which represent
the choice of either αj or βj .

We will construct our knapsack instance in such a way that the optimal solution will
choose exactly one of the Y (0)

i , Y
(1)
i items for each i, and this choice will force the correct

choice of either Aj or Bj , whenever yi is the variable consulted in the j-th instruction of P
(i.e., whenever zj = i). If we choose to take item Y

(0)
i , for instance, then, in order to achieve

weight W , we will be forced to always pick every Aj whenever zj = i, and won’t be able to
pick any of the Bj .

Let N(i) 6 S denote the number of times that yi is consulted by P , i.e., the number of
j such that zj = i, and make ` = dlogS + 1e, so that each N(i) < 2` − 1.

As before, we present the weights of the items in our instance both algebraically and in
table form.

We will set the weights to:

w(Y (0)
i ) = 22(k−i) + 2k` +N(i)22(k−i)`

w(Y (1)
i ) = 22(k−i) + 2k` +N(i)2`+2(k−i)`

if zj = i, then w(Aj) = 2`+2(k−i)`

and w(Bj) = 22(k−i)`

We set the maximum weight to:

W =
k∑
i=1

22(k−i) + 2k` +N(i)
(

22(k−i)` + 2`+2(k−i)`
)
.

The DLOGTIME uniformity of the reduction follows from the simplicity of the above
expressions, which make the circuit computing the bits of the instance very easy to describe.
Sum is required to compute N(i), which makes the reduction AC0, rather than simply NC0.

Let us again see what these numbers look like in table form. Since each number is less
than 22k + 2k`, we will write them in a table with 3k blocks. The first k blocks have two bits
each, and the last 2k blocks have ` bits each:

w 1 . . . i . . . k A(1) B(1) . . . A(i) B(i) . . . A(k) B(k)

Y
(0)

i 00 . . . 01 . . . 00 0 0 . . . 0 N(i) . . . 0 0
Y

(1)
i 00 . . . 01 . . . 00 0 0 . . . N(i) 0 . . . 0 0

Aj |zj =i 00 . . . 00 . . . 00 0 0 . . . 1 0 . . . 0 0
Bj |zj =i 00 . . . 00 . . . 00 0 0 . . . 0 1 . . . 0 0

. . .
W 01 . . . 01 . . . 01 N(1) N(1) . . . N(i) N(i) . . . N(k) N(k)

Finally, we set σ(Y (0)
i ) = σ(Y (1)

i ) = e, σ(Aj) = αj and σ(Bj) = βj . Furthermore, in our
sorting of the items (which is relevant for the outcome of �iσ(i)), we ensure that the items
Aj , Bj appear in growing order of j.

Here, our result follows from the following claim by setting Σ = e:
I Claim 12.6. The solutions I of X having weight exactly W and pattern Σ, are in 1–1
correspondence with the assignments of ȳ causing P (ȳ) = Σ.

To see this, notice that given a choice of ȳ, we define the solution I(ȳ) = {Y (yi)
i } ∪

{Aj |zj = i ∧ yi = 0} ∪ {Bj |zj = i ∧ yi = 1}, and this solution will have weight exactly W ,
and pattern P (ȳ). This can be seen easily by inspection of the table above: for instance,



16 REFERENCES

if yi = 0, the choice of Y (0)
i contributes weight 1 to the i-th column of the i-th block, and

weight N(i) to the column B(i); then the choice of N(i)-many Aj variables will contribute
with a total weight of N(i) to the column A(i). Now the pattern of I(ȳ) will simply be P (ȳ),
by construction.

To complete the proof of the claim, and hence of the theorem, it suffices to show that
any solution achieving weight W must be of the form I(ȳ) for some unique choice of ȳ. Let
I be any solution with total weight W . Again by inspection of the table above, we will find
that, for each i, exactly one of Y (0)

i or Y (1)
i must be in I. This follows by letting i be the

hypothetical first coordinate where this fails to hold: if both Y (0)
i and Y (1)

i are missed, the
total weight will be less than W , and if both Y (0)

i and Y (1)
i are in I, then the total weight

will surpass W . So let Y (yi)
i , for i ∈ [k], give us the set of chosen Y items. In the same way

as before, it is easy to see that, for each i, every Aj with zj = i must be picked, if yi = 0,
or otherwise every corresponding Bj must be picked. Hence I = I(ȳ), as intended. J

B.3 Proofs of Section 5
I Theorem 13. Knapsack instances with n items can not be approximated with error ratio
1 + ε in time (log 1

ε )− 1
4 /a, and using 2(log 1

ε )−
1
4 /a processors, for some positive constant a, in

Mulmuley’s parallel PRAM model without bit operations.

Proof. By the same proof as in Claim 12.5 we can show that optimally solving a knapsack
instance (having v = w) with n items and bit-length n reduces to solving the same knapsack
instance with error ratio 1+ 1

n2n . So setting 1
ε = n2n, by Theorem 12 this can not be done in

KC(2n
1
4 /b, n

1
4 /b) for some b, and hence neither in KC(2(log 1

ε )
1
4 /a, (log 1

ε ) 1
4 /a) for some larger

a. J


	Introduction
	Preliminaries
	Circuit classes and bounded non-determinism
	Mulmuley's parallel model of computation
	Knapsack and generalizations

	Approximation algorithms: Old and new
	Equivalence of approximation and exact solution for small weights
	Dynamic programming algorithm and a FPTAS
	A new, simple algorithm using small space or small parallel time

	Hardness of approximation
	Hardness of approximation for knapsack
	Hardness of approximation for symmetric knapsack

	Lower bounds for Mulmuley's Model
	High parametric complexity for knapsack

	An answer to Ulle Endriss' question
	Proofs of the unproven theorems
	Proofs of Section 3
	Proofs of Section 4
	Proofs of Section 5


