
Annals of Discrete Mathematics 21 (1984) 325-356
© Elsevier Science Publishers B.V.

POLYNOMIAL ALGORITHMS FOR PERFECT GRAPHS

M. GROTSCHEL
lnstitut fur Mathematik, Universitiit Augsburg, Augsburg, W. Germany

L. LOVASZ
Institute of Mathematics, Eotvos Lorand University, H-1088 Budapest, Hungary

A. SCHRIJVER
Department of Econometrics, Ti/burg University, Ti/burg, The Netherlands

We show that the weighted versions of the stable set problem, the clique problem, the
coloring problem and the clique covering problem are solvable in polynomial time for perfect
graphs. Our algorithms are based on the ellipsoid method and a polynomial time separation
algorithm for a certain class of positive semidefinite matrices related to Lovasz's bound fr(G)
on the Shannon capacity of a graph. We show that ~(G) can be computed in polynomial time
for all graphs G and also give a new characterization of perfect graphs in terms of this number
fr (G). In addition we prove that the problem of verifying that a graph is imperfect is in NP.
Moreover, we show that the computation of the stability number and the fractional stability
number of a graph are unrelated with respect to hardness (if P'I NP).

1. Introduction and notation

It is well known that the stable set problem, the clique problem, the chromatic
number problem and the clique cover problem are NP-complete problems for
general graphs, cf. [3]. The purpose of this paper is to show that these problems,
and even their weighted versions, are solvable in polynomial time for perfect
graphs. The algorithms presented here are based on the ellipsoid method (cf. [8],
[2], [4]) and on a computationally tractable characterization of the number il(G)
introduced by Lovasz [10] in connection with the Shannon capacity of a graph.

In the remaining part of this section we shall introduce our notation and state
the problems we shall investigate. The second section gives a brief review of the
ellipsoid method and some properties of this method which are important for
our purposes. In Section 3 we show that the stable set problem is unrelated to the
fractional stable set problem with respect to hardness for general graphs. The
Shannon capacity and the numbers t1 (G), ifw (G), which are important for the
design of our algorithms, are treated in Section 4, and a polynomial separation
algorithm for a certain class of positive semidefinite matrices related to il(G) is
presented in Section 5. This algorithm is utilized together with the ellipsoid

325

326 M. Griitschel et al.

method in Sections 6 and 7 to obtain polynomial time algorithms for the
weighted versions of the stable set problem, clique problem, coloring problem
and clique cover problem on perfect graphs.

All graphs in this paper are finite and undirected. Since loops and multiple
edges do not play a role for the concepts we consider, we assume that all graphs
are without such edges, i.e., are simple. A graph is denoted by G =
(V(G), E(G)) where V(G) (or just V) is the vertex set and E (G) (or just E) is
the edge set of G. An edge connecting two vertices i and j is denoted by ij, and
we say that two vertices are adjacent if they are equal or connected by an edge.
The complementary graph of a graph G is defined as the graph G with
V(G) = V(G) and in which two different vertices are adjacent if and only if they
are nonadjacent in G.

A stable set of a graph G is a set of vertices W C V(G) such that any two
vertices of W are nonadjacent in G, and a clique of G is a set of vertices
CC V(G) such that any two vertices of C are adjacent in G. The maximum
cardinality of a stable set in G is called the stability number of G and is denoted
by a (G). The maximum cardinality of a clique in G is called the clique number
of G and is denoted by w (G). Clearly, a stable set of G is a clique of G, and vice
versa, thus a(G) = w(G) and w(G) = a(G) hold.

A k-coloration of G is a partition of V (G) into k stable sets of G, and the
least integer k for which G admits a k-coloration is called the chromatic number
of G, denoted by x(G). A k-clique cover of G is a partition of V(G) into k
cliques of G, and the least k for which G admits a k-clique cover is called the
clique cover number of G which is denoted by p (G). By definition, every
k-coloration of G is a k-clique cover of G, and vice versa, which implies
x(G) = p(G) and p(G) = x(G).

The problem of finding the stability number (clique number, chromatic
number, clique cover number) of a graph is called the stable set (clique, coloring,
clique cover) problem. These four problems have natural weighted versions.

Given a graph G = (V, E) and a 'weight' wv E Z+ for all v E V (Z+ is the set of
positive integers), then the weighted stable set problem (weighted clique problem)
is to find a stable set W (a clique C) of G such that the sum of the weights of the
vertices in W (in C) is as large as possible. The weighted coloring problem
(weighted clique problem) is the following: find stable sets W1, W2, ... , W,
(cliques Ci, C2, ... , C,) and positive integers yi, y2 , ••• , y, such that for all v E V,
Lw,=iv y; ~ Wv (Lc,=iv y; ~ Wv) holds, and such that z:; ~1 y; is as small as possible.

The optimum values of these four problems are denoted by a::w (G), Ww (G),
Xw (G), Pw (G) and are called the weighted stability, weighted clique, weighted
chromatic, weighted clique cover number.

It is obvious that for any graph G, a:(G):s;;p(G) and w(G):s;;x(G) hold. A
graph G is called perfect if

Polynomial algorithms for perfect graphs 327

a(G[W]) = p(G[W]) for all W k V(G)

where G [W] denotes the subgraph of G induced by the vertex set W k \/(G).
Lovasz [9] has shown the so-called perfect graph theorem, namely, that a graph G
is perfect if and only if its complement G is perfect. So the perfect graph
theorem is equivalent to the following: a graph G is perfect if and only if

w(G[W]) = x(G[W]) for all W ~ V(G).

Due to the perfect graph theorem it suffices to design polynomial time
algorithms only for the weighted stable set and the weighted clique cover
problem in order to obtain polynomial time algorithms for all the four problems
described above on perfect graphs. Namely, suppose we have a polynomial time
algorithm for the weighted stable set problem on perfect graphs and we want to
find the maximum weighted clique in a perfect graph G. Then, obviously, the set
of maximum weighted cliques of G equals the set of maximum weighted stable
sets of G. Since by the perfect graph theorem G is perfect, we can apply our
polynomial time algorithm to calculate a maximum weighted stable set in G and
thereby obtain a maximum weighted clique in G. Similarly, if we have a
polynomial time algorithm for the weighted clique cover problem in perfect
graphs we can obtain a minimum weighted coloring of a perfect graph G by
applying our polynomial time algorithm to the (perfect) complementary graph
a.

Therefore, we shall concentrate in the sequel on designing polynomial time
algorithms for the weighted stable set and clique cover problem on perfect
graphs, keeping in mind that these also yield polynomial time algorithms for the
weighted clique and coloring problem on perfect graphs.

There are various classes of graphs known for which the weighted versions of
the stable set, the clique, the coloring or the clique cover problem can be solved
in polynomial time. For a survey of such results see [3]. These classes of graphs
include several classes of perfect graphs, e.g., bipartite, triangulated and
comparability graphs as well as line graphs of bipartite graphs. Recently, Hsu [6]
has shown that the coloring problem, and Hsu and Nemhauser [7] have shown
that the clique and clique cover problem, are solvable in polynomial time for
claw-free perfect graphs.

2. The ellipsoid method

Based on an algorithm due to Shor [13], Khachiyan [8] recently devised a
method which solves linear programming problems in polynomial time; for
nroofs. see f2l. This so-called ellipsoid method can be used to derive the

328 M. Grotschel et al.

polynomial solvability of a more general class of problems, in particular to
obtain a powerful tool for solving combinatorial optimization problems as was
described by Gri:itschel et al. [4]. In this section we give a brief survey of this
method and state those theorems of Grotschel et al. (4] which are of interest for
the design of polynomial time algorithms on perfect graphs.

A convex body is a closed, bounded, fully dimensional, and convex subset of
~", n ""'2. More precisely, if we speak of a convex body K we always assume that
the following information is known: the integer n ""'2 with KC Iii", two rational
numbers 0 < r .;;;; R, and a vector ao E K such that

S(ao, r) CK C S(ao, R),

where S (ao, s) = {x E Iii" I 11 x - ao II :%; s} (II · II is the euclidean norm), denotes the
ball with center ao and radius s. Therefore, we also denote a convex body by the
quintuple (K; n, a0, r, R) where we assume that n ""'2, ao E Q", 0 < r :%; R are
given explicitly.

The following two problems are of particular interest and - as we shall see
later - polynomially related.

Assume that a convex body (K; n, ao, r, R) is given.

(2.1) Optimization Problem. Given a vector c E Q" and a rational number t: > 0,
find a vector y E Q" such that d(y, K) <::.:; t: and c T x <::.:; c Ty+ t: for all x EK (i.e.
y is almost in K and almost maximizes c T x on K).

(2.2) Separation Problem. Given a vector y E O" and a rational number 8 > 0,
conclude with one of the following:

(i) asserting that d (y, K) :%; 8 (i.e., y is almost in K); or
(ii) finding a vector c E IQ" such that 11 c II ""' 1 and for every x E K, c T x .;;;;

c Ty + 8 (i.e. finding an almost separating hyperplane).

(Here d (. , .) denotes the distance function, i.e., d (x, y) = II x - y II and d (y, K) =
inf{d(x, y) Ix EK}.)

The method of Yudin and Nemirovskii [14], section 4.5, would enable us to
show that the following third problem is also polynomially related to problems
(2.1) and (2.2) above:

(2.2') Feasibility Problem. Given a vector y E On and a rational number 8 > 0.
conclude with one of the following:

(i) asserting that d (y, K) <::.:; 8, or
(ii) asserting that d (y, llin \ K).;;;; o.

Clearly this problem is easier than the separation problem. However, in the

Polynomial algorithms for perfect graphs 329

applications in this paper, we shall obtain almost separating hyperplanes
automatically.

To speak of a polynomial time algorithm for a convex body K we have to
specify how we measure the input length of K. Whenever something is encoded
we assume that the (usual) binary encoding is used. A rational number is
encoded by encoding the numerator and the denominator.

ff x E O" (O is the set of rational numbers) then II x llx denotes the maximum of
the absolute values of the integers appearing as numerator or denominator in the
coefficients of x. In other words, to encode x at least log II x llx + n places are
necessary. (In this paper all logarithms have base two.)

For a convex body (K; n, ao, r, R) we assume that the parameters n, ao E Q",

r E 0 and R E O are coded. If 'J{ is a class of convex bodies then the input of the
optimization (or separation) problem for 'J{ is the code of some member
(K; n, ao, r, R) E 'J{, of a vector c E Q" and of a rational number e > 0 (of a
vector y E q" and a rational number o > 0). The length or size of the input is the
length of this (binary) encoding. Thus, the length of the input is at least

n + log II r llx + log II R IJx + log II Y llx
where y = e or y = 8. An algorithm to solve the opt1m1zation (separation)
problem for the class 'J{ is called polynomial if its running time is bounded by
some polynomial of the size of the input.

(2.3) The ellipsoid method. Given a convex body (K; n, ao, r, R), a linear
objective function c Tx with II c II"" 1 and a number e > 0 (the required accuracy).
We assume that there is a subroutine SEP(K, y, o) which for the given convex
body K, a vector y E 1!Y and a rational o > 0 either concludes that y E S(K, 8) =
{x E ~" I d (x, K) ~ 8} or yields a vector d E Q" such that dT x ~ dT y + 8 for all
x EK, i.e. SEP solves the separation problem for K. We first define the
following numbers:

r 12v7il (2.3.3) p:= SN I log R°2 ,

and then proceed as follows:

(2.3.4) Set x0 = a 0 (center of the first ellipsoid),
A 0 :=R 2 l" (I" is the (n,n)-identity matrix);

330 M. Grotschel et al.

(2.3.5) for k = 0 to N - 1 do;

(2.3.6) Run the subroutine SEP(K, xk, S).

(2.3.7) If SEP(K, xk, S) concludes that Xk E S(K, S),
we say that k is a feasible index and set a:= c.

(2.3.8) If SEP(K, xk, S) yields a vector d E IRI" such that
11dII;;;:1 and sup{dT x Ix EK}~ dT xk + 8, we call k

an infeasible index and set a:= - d.

(2.3.9) bk:=Aka/v'aTAka,

l
(2.3.10) xt:=xk + n + 1 bk,

L_2n 2 + 3 (_2_ bT) (2.3.11) Ak.- 2n2 Ak-n+l bk k ,

(2.3.12) xk+1 := xk, and Ak+1 :=AL

end;

Above, the sign = means that the left-hand side is obtained by rounding the
binary expansion of the right-hand side after p places behind the point.

Since by construction x0 EK, the set of feasible indices is nonempty;
moreover, we can show the following theorem, cf. [4].

(2.4) Theorem. Let j be a feasible index for which

c T x; = max{ c T xk I 0 ~ k < N, k feasible}.

Then

Clearly, the number N of iterations of the ellipsoid method is polynomial in
the size of the input. One can also show that the entries of the intermediate
vectors xk and matrices Ak, 0 ~ k ~ N, are polynomially bounded. Furthermore,
the number 8 used to run the separation subroutine is polynomial in the input
length. Thus, the ellipsoid method is a polynomial algorithm for the optimization
problem for K if and only if the subroutine SEP is a polynomial algorithm for
the separation problem for K. This implies, in particular, that whenever there is
a polynomial separation algorithm for a class of convex bodies 'JC there is also a
polynomial optimization algorithm for 'J{ (via the ellipsoid method). It is of
particular importance that this implication also holds the other way round,
namely:

Polynomial algorithms for perfect graphs 331

(2.5) Theorem. Let J{ be a class of convex bodies. There is a polynomial algorithm
to solve the separation problem for the members of :/{, if and only if there is a
polynomial algorithm to solve the optimization problem for the members of'){. 0

Note that according to our definition neither the optimization nor the
separation problem are solved exactly; in both cases we allow for a small error.
This is necessary because the problem classes that are covered by Theorem (2.5)
may also contain instances with a unique optimal solution which has irrational
coefficients. But irrational numbers cannot be represented exactly.

In case our class of convex bodies ."/{ is a class of polytopes, then the
optimization problem for 'J{ is nothing but a linear programming problem. lf in
addition all members of 'J{ have a rational defining inequality system, then both
the separation and the optimization problem can be solved precisely, we shall
say in the strong sense. Moreover, it is also possible to construct a dual optimal
solution in polynomial time.

If Pi;:;; iffi" is a polytope with rational vertices, define T(P) to be the maximum
of the absolute values of numerators and denominators occurring in the entries
of vertices of P. The pair (P, T) is called a rational polytope if T(P) < T. The
input size of a rational polytope is at least n + flog Tl.

It is not difficult to prove that if (P, T) is a rational polytope, then Pi;:;;
S(O, nT) and if P is fully dimensional then S(a0, (n T)-2"') i;:;; P for some point ao.

(2.6) Theorem. Let J{ be a class of fully dimensional rational polytopes such that
the optimization (or equivalently the separation) problem for J{ can be solved in
polynomial time. Then the following holds:

(a) There is a polynomial optimization algorithm for J{ in the strong sense, i.e.,
which for every member P E J{ and every rational vector c .nnds a vector y E P
such that c 1 y = max{cTx / x E P}.

(b) There is a polynomial separation algorithm for 'J{ in the strong sense, i.e.,
which for every member P E 'J{, P i;:;; IRI", and every rational vector y either asserts
that y E P or .nnds a rational vector c with II c II""' 1 such that c 1 x < c Ty for all
x E P. In case y E P the algorithm also yields vertices Xo, Xi, ... , x .. of P and

"" "-'" rational numbers Ao, A 1, ••• , A,, :3' 0 such that ,;;.,;~o A; = 1 and ,;;.,; =o A;X; = y.
(c) There exists a polynomial algorithm which for every PE J{, Pi;:;; lffi" and

c E Z" provides facets a Tx ~ b; (i = 1, ... , n) of P and rational numbers A; ~ 0
. ",, "" { ., I t o (1=1, ... , n) such that ,;;.,;=i A;a; = c and ,;;.,;=1 A;b; = max c x x E P.

Case (c) of Theorem 2.6 will play an important role in the sequel, since it will
provide us with a method to construct a minimum weighted clique cover from a
maximum weighted stable set.

A further class of convex bodies will be of interest for our purposes. Let lffi: be

332 M. Grotschel et al.

the nonnegative orthant and K ~ IR?" be a convex body such that there are reals r

and R, 0< r ~ R, witr

IR: n s (0, r) (;;; K (;;; lffi: n s (O, R),

O~x~yEK ::?xEK.

The anti-blocker A (K) of K is defined by

A(K):={y E lffi: I yr x ~ 1 for every x EK}.

(2.7)

(2.8)

(2.9)

It is easy to see that A (A (K)) = K for a K satisfying (2.7) and (2.8), and that in
case K is a polytope with vertices X1, X2, •.. , xk then A (K) = {y E IR: I y1 x1 ~ l,
i = l, ... , k }. Moreover, if :J{ is a class of convex bodies satisfying (2.7) and (2.8)
we set A (:J{) ={A (K) IKE :J{}.

(2.10) Theorem. Let :J{ be a class of convex bodies satisfying (2.7) and (2.8).
Then the optimization problem for :J{ can be solved in polynomial time if and only
if the optimization problem for A (:J{) can be solved in polynomial time. 0

3. The fractional stable set problem

To be able to utilize the ellipsoid method for combinatorial opt1m1zation
problems one has to associate a class of convex bodies with the problem class
under consideration. Natural candidates are usually the convex hulls of the
incidence vectors of feasible solutions. In case of the stable set problem this is
done as follows. Let G = (V, E) be a graph with n vertices. For every
W (;;; V(G) denote by x w the (node-) incidence vector of W, i.e. x :-," = I if v E W
and x ;:' = 0 if v ~ W. Then

P(G):=conv{xw EIRI" I w~ V(G)isastablesetof G} (3.1)

is called the stable set polytope of G. Clearly, every weighted stable set problem
on G can be solved as a linear programming problem over P(G). The polytope
P(G) is fully dimensional, has Oil-vertices, and is contained in the unit
hypercube, thus P(G) is a rational polytope. If we were able to design a
polynomial separation algorithm for P(G), then by Theorem (2.5) the weighted
stable set problem would be solvable in polynomial time. Since this problem is
NP-complete, we cannot expect to find a polynomial separation algorithm for
P (G) in general.

A usual approach to solve difficult optimization problems is to consider tight
relaxations of the problem in question which are polynomially solvable, and then
proceed by branch-and-bound methods. A natural relaxation of the stable set

Polynomial algorithms for perfect graphs 333

problem is the so-called fractional stable set problem. By definition, no two

vertices of a stable set are adjacent. Thus, given any clique C of a graph G, at

most one vertex of a stable set can belong to C. This implies that for every clique

C ~ V(G) and every incidence vector x w of a stable set W ~ V(G) the
so-called clique inequality

is satisfied. For any graph G with n vertices we call

p * (G) : = { x E ~n I Xv ~ 0 for all v E v (G) and

2: Xv:,;;; 1 for all cliques CC V(G)} (3.2)
vEC

the fractional stable set polytope of G. P*(G) is clearly a rational polytope. Since

obviouly P(G) C P*(G), the LP-solution over P*(G) provides an upper bound

for the weight of the optimal stable set in G. For a given graph G and an

objective function w : V - Z+ let us define the following parameters:

aw (G):= max{w T x Ix E P(G)},

a!(G):=max{wTx Ix EP*(G)},

a*(G):=max { 2: Xv Ix EP*(G)}.
vEV

The number a*(G) is called the fractional stability number of G, a!(G) is called

the fractional weighted stability number of G, and as mentioned earlier aw (G) is

called the weighted stability number of G. By definition we have a (G):,;;; a*(G)
and a,. (G),,;.:;; a !(G).

At first sight the polytope P*(G) looks rather innocent. It is easy to see that its

facets are the trivial inequalities Xv~ 0 for all v E V(G) and the clique

inequalities LvecXv :,;;; 1 for all maximal cliques C ~ V(G) (maximal with respect

to set inclusion). However, it is not known how to find all maximal cliques

efficiently, even worse, there are classes of graphs (even perfect ones) such that

the number of maximal cliques grows exponentially in I V(G)J. So there is no

way to represent the constraint system of P*(G) efficiently. By Theorem (2.5)

this is not necessarily crucial, since it is not the number of inequalities which

matters; what matters is whether one can find a violated hyperplane in

polynomial time. Since the constraint system of P*(G) looks quite simple one

might hope to find a polynomial time separation algorithm for P*(G). But this is

very unlikely as the complexity of the separation problem for P*(G) is closely

related to the complexity of the weighted clique problem. More precisely:

334 M. Grotschel et al.

(3.3) Proposition. Let<(} be a class of graphs. Then there is a polynomial algorithm
to solve the weighted fractional stable set problem for every member of C§ if and only
if there is a polynomial algorithm to solve the weighted clique problem for every
member of <§.

Proof. For every member G of <:&,the weighted clique problem can be solved in
polynomial time if and only if the linear program max wrx, x E Q(G) can be
solved in polynomial time, where Q(G):=conv{xc E IRt /CC V(G) is a
clique}. By definition, the anti-blocker of Q(G) is A (Q(G)) = {y E fRI~ / y 1 x< ~ 1
for all cliques CC V(G)}, i.e. A (Q(G)) equals P"(G). Thus by Theorem (2.10)
the linear program max wr x, x E Q(G) can be solved in polynomial time for
every GE<:§ if and only if the linear program max w'x, x E P*(G) can be
polynomially solved for every G E <fJ. D

It follows from the examples in [3] that there are various classes of graphs for
which the weighted clique, and hence the fractional stable set problem, are
solvable in polynomial time. However, since the weighted clique problem is
NP-complete for the class of all graphs, Proposition (3.3) implies that the
weighted fractional stable set problem is NP-equivalent. Proposition (3.3)
therefore states that considering the fractional stable set problem instead of the
stable set problem does not offer considerable advantages. Moreover, the
problems of computing aw(G) and a!(G) seem to be unrelated with respect to
difficulty. For planar graphs ww (G) (the weighted clique number) and hence
a!(G) can be computed easily in polynomial time, while the determination of
aw(G) for planar (even cubic planar) graphs is NP-complete; cf. [3]. So for the
complementary graphs of planar graphs the determination of ww (G) and hence
a!(G) is NP-equivalent, while aw(G) can be computed in polynomial time.

Although for general graphs the fractional stable set problem does not seem to
be useful for computing aw (G), the situation for perfect graphs is quite
particular. Namely, Fulkerson has shown the following (see also [I]):

(3.4) Theorem. Let G be a graph. Then P(G) = P*(G) holds if and only if G is
perfect. D

In other words, Theorem (3.4) implies that for every perfect graph G and
every objective function w, aw (G) = a!(G) holds. Therefore a computationally
efficient procedure determining a!(G) would yield the desired weighted stabil­
ity number. As we shall see later aw (G) and a!(G) can be computed in
polynomial time for perfect graphs, however, we do not make direct use of P(G)
resp. P*(G), but rather obtain this result via a detour which will be described in
the next section.

Polynomial algorithms for perfect graphs 335

4. The Shannon capacity, i'J(G) and Ow (G)

The stable set problem has found some nontrivial applications in coding
theory, in particular in finding the zero error capacity of a discrete memoryless
channel; cf. [12]. Let us denote by G · H the cartesian product of the graphs G
and H, i.e. V(G·H)= V(G)x V(H) and two vertices (u,v), (u',v')E
V(G · H) are adjacent if and only if u is adjacent to u' in G and vis adjacent to
v' in H. Gk denotes the cartesian product of k copies of G. As an interpretation,
consider a graph G whose vertices are letters in an alphabet and in which two
vertices are adjacent if and only if they are 'confoundable'. Then the maximum
number of one-letter messages which can be sent without danger of confusion is
clearly a(G), moreover, a(Gk) is the maximum number of k-letter messages
such that any two of them are inconfoundable in at least one coordinate place. It
is easy to see that there are at least a (G t inconfoundable k-letter words, but in
general there may be many more such words. To measure the largest rate at
which one can transmit information with an error probability exactly equal to
zero, Shannon [12] introduced the following number:

E>(G) :=sup'{'./ a(Gk),
k

(4.1)

which is now called the Shannon capacity of graph G.
From the fact that a(Gk+e)~a(Gk)a(Ge) it directly follows that

E>(G)=lim '{'./a(Gk)
k----+-'X.

(4.2)

and, since a(Gl ~ a(Gk), that

a(G)::=;E>(G). (4.3)

Shannon [12] obtained an upper bound for 0(G) by showing

E>(G) ::=; a*(G). (4.4)

However, both inequalities a(G)::=;E>(G)::=;a*(G) may be strict; e.g., for the
pentagon C5 we have a(C) = 2 and a*(C) = 5/2, while 0(Cs) = \/S; cf. Lovasz
[10]. For a perfect graph G, Theorem (3.4) implies that a (G) = E>(G) =a* (G)
holds. Thus for calculating the stability number of a perfect graph, it would
suffice to compute its Shannon capacity. Unfortunately, also the determination
of E>(G) seems to be a difficult problem, and its value is unknown for large
classes of rather simple graphs. Since a (G) and a *(G) are not very tight bounds
for 0(G) in general, moreover, they are difficult to compute, as we have seen in
the previous section, several authors have introduced parameters which give

336 M. Grotschel et al.

better bounds for the Shannon capacity. One such parameter, called -&(G),
introduced by Lovasz [10], will play a key role in our further development.

Let G be a graph and assume that its vertices are labeled 1, 2, ... , n. We say
that a system (ui, u2 , ••• , u") of vectors in an Euclidean vector space is an
orthonormal representation of G if each vector U; has length one and if, for every
pair i, j of nonadjacent vertices of G, the vectors u; and ui are orthogonal. It is
obvious that every graph has an orthonormal representation, e.g., take a set of n
orthonormal vectors. Let 0U (G) be the set of all orthonormal representations of
G, and U be the set of vectors of unit length, then set

il(G):= min min max ~.
(u1, .. .,u,.)E'-'i.l(G) cEll l"""1:Sri (C Ui)

(4.5)

Lovasz [HJ] has given various characterizations of this number which we shall list
in the sequel. Using the complementary graph G, tt(G) can be defined
alternatively as follows:

"
il(G) = max . ma~ 2: (d 1 v;)2 •

(t.1 1 ... ,ti,1JE'U(G) dEL, i=l
(4.6)

This formula can be used to show that -{} (G) is not greater than the fractional
stability number. Let (v 1, ••• , v,,) be an orthonormal representation of G and d
be a vector of unit length such that these vectors maximize (4.6), i.e., &(G) =
I'.'~1 (d 1 v;f Let C be any clique of G. Then, by definition, the vectors V;, i EC,
are pairwise orthogonal, and so L;EC (dTvJ ~ d'1 d = 1. Defining the vector
x =(x1, ... ,x.,f by X;:=(d 1 v;)2 ~0 we obtain L;EcX;,;;:;} for all cliques c~
V(G), and thus x E P*(G). This implies

'1 rt

{} G '"' r , '-"' ()= 2._, (d v,t=,:... X; ~a*(G). (4.7)
i=l i=l

The formulas (4.5) and (4.6) do not seem to be very handy computationally, but
there are other characterizations of -fJ(G) which use representations of G by
means of symmetric matrices. For any graph G with n vertices we set

d(G):={A =(a;i)IA is a symmetric (n,n)-matrix such that aii = 1
if i = j or if i and j are nonadjacent}; (4.8)

then it (G) can be described as the following minimum:

i't(G)=min{.1(A)!A Ed(G)} (4.9)

where A (A) denotes the largest eigenvalue of A. Equation (4.9) implies that
-{} (G) is an upper bound on the stability number and on the Shannon capacity of
G. Namely, suppose a(G) = k, then by definition (4.8) every matrix A E d(G)
has a principal (k, k)-submatrix, say Ak. all of whose entries are one. Since

Polynomial algorithms for perfect graphs 337

,1 (A)~ A (Ak) and k is an eigenvalue of Ak, we have 11 (A)~ k for all
A E d(G), i.e., i7(G) ~ a(G). Now Lovasz proved

i7(G · H) = i7(G)i7(H)

for all graphs G and H, which implies that

a(Gk)~ i7(Gk)= i7(Gt

and hence

0(G) ~ {J(G).

(4.10)

(4.11)

The number {}(G) can also be characterized as a maximum of the sum of the
entries of certain matrices representing G. Denoting the trace 2:~~ 1 b;; of a matrix
B by tr(B), we define

0J(G):={B = (b;i)I Bis a symmetric positive semidefinite
(n, n)-matrix with tr(B) = 1 such that
b;i = 0 whenever i,j E E(G)}; (4.12)

then Lovasz [HJ] showed that

i7(G) = max {i.~, b;, I BE g;J(G)}. (4.13)

Thus, i7(G) can be considered as a maximum (cf. (4.6) and (4.13)), and as a
minimum (cf. (4.5) and (4.9)). Among these characterizations of {J(G), (4.13) will
be the most important one in our subsequent investigations.

As a side remark we want to mention that a complementary slackness relation
links the two characterizations (4.9) and (4.13) of i7(G). Namely, suppose
B E 03 (G), A Ed (G) and A (A) is the largest eigenvalue of A, then

B(A(A)In -A)=O ~Bis optimal for (4.13)
and A is optimal for (4.9).

The inequalities (4.3), (4.7) and (4.11) imply that

a(G) ~ 0(G) ~ {}(G) ~a *(G)

(4.14)

(4.15)

holds for all graphs G. We remarked earlier that for the pentagon Cs,
a(C5)=2<0(C5)=YS<a*(Cs)=~- Since for the pentagon 0(Cs) equals
{](Cs), the last inequality in (4.15) may also be strict. Haemers [5] showed the
existence of graphs G with 0(G)< {}(G). Therefore all these four numbers,
a(G), {J(G), 0(G) and a*(G), are different in general. However, for a perfect
graph G, Theorem (3.4) implies that equality holds in all inequalities (4.15).

A graph G = (V, E) is called critically imperfect if G is not perfect but if the
vertex deleted subgraph G - v is perfect for all v E V. There are only two

338 M. Grotschel et al.

classes of critically imperfect graphs known, namely, the cycles of odd length and
their complementary graphs. We shall now prove that for critically imperfect
graphs, a(G) < l7(G)< a*(G).

Padberg [11] showed that if G is a critically imperfect graph with n vertices
then n =a (G)w(G) + 1, and that every critically imperfect graph has exactly n
stable sets of cardinality a (G) and n cliques of cardinality w (G). He also proved
that every vertex of G is contained in exactly a (G) maximum stable sets and in
exactly w (G) maximum cliques.

Moreover, Padberg [11] showed that the so-called stable set-vertex incidence
matrix of a critically imperfect graph is nonsingular, i.e., S = (s;i) is an (n, n)­
matrix whose rows correspond to the n maximum stable sets of size a (G),
whose columns correspond to the n vertices of G, and where sii = 1 (sii = 0) if
vertex j belongs (does not belong) to the maximum stable set i. By the properties
of critically imperfect graphs mentioned above, S is an (n, n)-matrix such that
every row and every column contains exactly a (G) ones.

Now consider for a critically imperfect graph the matrix B': =ST S. The
properties of S imply that B' is positive define. An entry bfi of B' counts the
number of maximum stable sets to which both i and j belong. Hence bfi = a (G),
and b{j = 0 if ij EE. Moreover, the sum of the entries of each row (or column) of
B' equals a (G)2. Let ,\; ~ ,\ ~ ~ · · · ~ ,\ ~ be the eigenvalues of B '. Since B' is
positive definite we have ,\ ~ > O; moreover, since B' is integral, det(B') ~ 1. It
follows that

n n

°2:A.:=tr(B')=na(G) and n A'.= det(B') ~ l.
l=l i=l

Using a rough estimate we obtain ,\~~(ff~,' A. :r' ~ (na (G))- 11 + 1• These obser­
vations imply that the matrix

B"·=--1-B' . na(G)

is a positive definite matrix contained in iY3 (G) whose smallest eigenvalue ,\ ~ is
not smaller than (na (G)rn and for which 2:~i=' b:/ =a (G).Hence, if we subtract
(na(G)f" from every element of the main diagonal of B" and then multiply the
resulting matrix by (na(G))"/((na(G))" - n) we obtain a matrix B which has
trace one, is positive semidefinite, and satisfies b;i = 0 if i, j EE (G). Thus
B E$(G), and since a(G)~2

~ b·· = (na(G)t - n/a(G) (G) (G)
L,,, 11 ((G))n a > a , i.i=I na - n

and it follows from (4.13) that for a critically imperfect graph G

_Q(G)>-(na(G))"-~n (G)
u ~(na(G))"-n a · (4.16)

Polynomial algorithms for perfect graphs 339

We now prove that 1J(G)< a*(G). Padberg [11] has shown that for a
critically imperfect graph G, a* (G) = a (G) + 1/ w (G), and that there is a unique
point y E P*(G), namely,

y = w(1a) (1, • •.' l)T,

which satisfies 2:7~1 y; = a*(G). By (4.6) there exists an orthonormal representa-
- "" T 2 tion V1, •.. , Vn of G and a vector d of unit length such that 1J(G) = ..::..;~1 (d V;).

As shown in the section following formula (4.6), the vector x E IR" with
X; = (dT v;)2, i = 1, ... , n is contained in the fractional stable set polyhedron
P*(G). Now suppose that 1J(G)=a*(G), then

n n

L X; = 1J(G) = a*(G) =Ly;,
i=l i=l

hence by the uniqueness of y we have

J (dT)2 . J w (G) = y; = x, = V; , 1 = , ... , n.

Thus for the orthogonal representation Vi, •.. , Vn of G and the vector d E U we
have

1
max (dT)z = w(G)
1::s;;1::s;;n Vi

and therefore formula (4.5) implies that 1J(G),;;; w(G) =a (G). However, the
complementary graph of a critically imperfect graph is critically imperfect too, so
1J(G),;;; a(G) contradicts (4.16). This implies that 1J(G) cannot equal a *(G).
Summing up we have shown that for any critically imperfect graph G

1
a(G) < 1J(G) < a*(G) = a(G)+ w(G). (4.17)

Every imperfect graph contains an induced subgraph which is critically
imperfect, i.e., a subgraph for which (4.17) holds, while for every induced
subgraph G' of a perfect graph G, a (G ') = 1J(G') = a*(G ') is satisfied. This
implies the following characterization of perfect graphs.

(4.18) Theorem. A graph G is perfect if and only if the following holds:

a(G[W])= 1J(G(W]) for all W~ V(G). D

Our discussion above yields a further characterization, namely, a graph G is
perfect if and only if a*(G[W]) = 1J(G(W]) for all W ~ V(G).

The number 11 (G) is not necessarily equal to a (G), even worse, Konjagin
(unpublished) has constructed a sequence of graphs G" with n vertices such that

340 M. Grotschel et al.

a (Gn) = 2 and ,'} (Gn)_,,. x. This implies that there is no function f at all such that
it (G) ~ f (a (G)) holds for all graphs G. It seems to be an interesting problem if
there exists a polynomially computable function <p (G) and a function f such that
a (G) ~ <p(G) ~ f(a (G)).

An efficient way to calculate it (G) provides us only with a good algorithm for
the unweighted stable set problem in perfect graphs. In order to cover the
weighted case too we now generalize it (G) to a weighted version {}w (G).

Assume that a graph G = (V, E) and a weight function w : V ~ lt.+ are given.
Define the graph Gw to be the graph arising from G by replacing each vertex v
of G by w" pairwise nonadjacent new vertices and where two vertices of Gw are
adjacent if and only if their originals in G are different adjacent vertices. This
construction implies that aw (G) = a (Gw) holds. Moreover, Lovasz [9] has
shown that if G is perfect, then Gw is also perfect (in fact, this is the key lemma
for the perfect graph theorem). Hence for perfect graphs we have aw (G) =
{} (Gw) = a~(G). Therefore we define

ilw (G):= iJ(Gw)• (4.19)

Note, however, that the existence of a polynomial algorithm for calculating
iJ(G) does not give a polynomial algorithm for {}w(G) by applying this
algorithm to Gw, since no algorithm making up Gw from G and w is polynomial
in the input length 0 (I EI+ log ff w ff~). A characterization of {}w (G) using the set
iYJ (G) defined in (4.12) and avoiding this construction is given in the following
theorem.

(4.20) Theorem. Let G = (V, E) be a graph and w : V _,,. lt.+ a weight function,
then

(4.21)

Proof. Let M be the maximum in (4.21). We first prove M ~ {}w (G) using
formula (4.13) for i7 (G). Suppose B = (b,i) E iYJ (G). Replace every entry b,i by a
(w;, w;)-matr~.x all of whose entries are (w1w;f1'2b1; to obtain an (r, r)-matrix B',
where r = L;-1 w,. B' is clearly symmetric and satisfies

' n

tr(B') = _L bf,= _Lb,,= 1;
i=l i=l

moreover, the definition implies that b!; = 0 if i, j EE (G). It is also easy to see
that B' is positive semidefinite. Furthermore, simple calculation shows

Polynomial algorithms for perfect graphs 341

which implies M ~ -/}"" (G).
Conversely, with each matrix B' E 03(Gw) we can associate a matrix BE

03(G) such that 2;,j~1b;i~2;:i~ 1 Vwiw;b;; holds, which proves &w(G)~M.
Namely, take B' E 03 (Gw). Replace the (wi, w;)-sub matrix induced by the copies
of i and j, by the sum of its entries divided by \/ wiwh and eventually add a
nonnegative number to any diagonal entry to make the trace equal to one. D

5. A separation algorithm for a class of positive semidefinite matrices with trace
one

In this section we shall describe a polynomial time separation algorithm for
the class of positive semidefinite matrices 03(G) defined in (4.12). Every set
03(G) is clearly convex and bounded, but not fully dimensional. Since the
ellipsoid method, as described in Section 2, can only be applied to convex bodies,
we have to replace the sets 03 (G) for technical reasons by fully dimensional
ones.

For every (n, n)-matrix B = (bi1), i.e., BE ~"x", and every graph G we define
the following projection operation IRI" x,, --? IJ\!1" where ii.:= n + {;)-1 E (G) I - 1.
Discard from B all elements below the main diagonal; all I E(G)i elements bii>
i < j, corresponding to different adjacent vertices i,j E V(G); and the element
b,,". Denote the vector of lffi" obtained from B in this way by B, i.e., B is an
ii -vector whose components are indexed by F = {ii / i = 1, ... , n - 1} U { ij / i < j
and ij'i. E(G)}.

Conversely, for every vector B E Ull'' we define an extension operation
n nX» b , b b- , } 1 b } "n-I b- b b 0 f lffi --?IJ\!1 ysettmg ;;:= ;;,!= ,. .. ,n-; nn:= -L.,;~1 ii; ij= ;;= or

i, j E E (G); bii = bii = b;i for i, j 'i. E (G), i < j. By definition the (n, n)-matrix B
obtained by extending B E IJ\!1'1 is a symmetric matrix with trace one. Now set

03 (G) : = { B E IR1" I B E 03 (G)}; (5.1)

03(G) is convex, since it is the projection of a convex set. We now prove that
03(G) is fully dimensional and bounded, i.e. that 03(G) is a convex body.
Denote by. B,, the projection of the matrix

1
B.,:=- In E :?JJ(G)

n

(!., is the (n, n)-identity matrix); then the following holds:

s(Bn, n 1~) ~ 03(G)~S(B .. ,l). (5.2)

Set r = (n 2Vnr 1• To prove that S(Bn, r) E 03(G) we show that for any
B E S (B .. , r) the extension B E IR1"x" is in 03 (G). First observe the following. If

342 M. Griitschel et al.

B E IR'' and B E IR"x" is the extension of B then II B - B,. II~ r implies
II B - Bn II~ v-;,,. Now take any B E s (B,,, r) and let B be its extension. If b,j,
i ,P j, is any nonzero entry of B, then because of symmetry b;i = bi, I 0. Now
llB - Bn II~ v-;,, implies v'2b,i ~ v'~r, i.e., I b,j I~ (n 2V2r 1 • If b,, is a diagonal
element of B, then llB - B,. II~ v'~r implies

It follows that

n -1
bii~-2-.

n

~I I z-r-1 n-1
. b,i ~ (n - l)(n v 2) < -;:;r ~ b,,.
I

Now by Gershgorin's theorem, all eigenvalues of the extension B of B are
positive, hence B E 973 (G), which proves that B E ~ (G). Using the fact that for
positive semidefinite matrices bubii """'b7i holds and that the trace of BE 97J(G) is
one, it easily follows that @(G)C S(Bn, 1).

Expression (5.2) shows that the logarithms of the radii r = l/n 2Vn and R = 1
as well as the numerators and denominators of the interior point B,., are
bounded in absolute value by a polynomial in n which is fixed over all graphs G,
i.e., given a graph G with n vertices, these numbers can be computed in
polynomial time. So we may apply Theorem (2.5) to compute i}w (G) via
Theorem (4.20) by using the projection ~(G) of 97J(G). More precisely, define
the following class of convex bodies:

@:={@(G) I G is a graph with I V(G)I ""'2}. (5.3)

In order to solve the optimization problem for @ it is sufficient to find a
polynomial separation algorithm for @. We shall now show that the separation
problem for @ is solvable in polynomial time, even in the strong sense. Given a
graph G, then this problem is the following:

(5.4) Problem. Given a vector B E ~", conclude with one of the following:
(i) asserting that B E @ (G), or

(ii) finding a vector I5 E ~" such that II D 11""' 1 and for every X E @(G),
DTX ~ IY.B.

In principle, this separation problem reduces to checking the positive
semidefiniteness of a symmetric (n, n)-matrix. Thus, given f3 E IR" we extend ii
to a symmetric (n, n)-matrix B = (b,i) with trace one and b,i =bi, = 0 if
i,j E E(G). To assert that BE @(G) we have to prove that B is positive
semidefinite. There are various characterizations of positive semidefiniteness
which can be used for the design of an efficient proof of this property. For

Polynomial algorithms for perfect graphs 343

instance, polynomial time algorithms can be obtained from Gaussian elimination
and Cholesky decomposition. In Gaussian elimination we allow pivots on the
main diagonal only; if the rank of the matrix is found and only positive pivots
have been carried out, then the matrix is positive semidefinite. Cholesky
decomposition can be used in a similar way. A further method is to compute the
smallest eigenvalue .An ; if An is nonnegative then the matrix is positive
semidefinite. This algorithm may be fast in practice but is not necessarily
polynomially bounded. The method we shall describe now is based on Gaussian
elimination and certain determinant calculations. In the following we assume
that a graph G with n vertices is given. gJ3 (G) and 00 (G) are the sets defined in
(4.12) resp. (5.1)

(5.5) Separation algorithm for OO(G), SEP(G, B). Given a vector BE o•, where
n = n + (;) - I E (G) I - 1.

(5.5.1) Extend B to a symmetric (n, n)-matrix B with trace 1.

(5.5.2) Use Gaussian elimination to compute the rank, say k, of B
and a principal (k, k)-submatrix of B having full rank.

(Note that Gaussian elimination automatically gives a nonsingular (k, k)­
submatrix, say Bu (where I is a row- and J a column-index set with I J J = I JI =
k), of B. Since tr(B) = 1, k is nonzero. It is well-known that if Buis nonsingular
and has the same rank as B, then both principal (k, k)-submatrices Bu and BJJ
are nonsingular, in fact

det(Bu)det(BJJ) = det(Bu)2.

Let us denote the principal (i, i)-submatrix of B consisting of the first i rows and
columns of B by Bj. For ease of exposition we assume that the principal
(k, k)-submatrix Bk of B has rank k and is the one obtained in step (5.5.2). One
can easily show that B is positive semidefinite if and only if Bk is positive
definite. Moreover, positive definiteness is easy to check, namely, Bk is positive
definite if and only if det(Bi) > 0 for i = 1, ... , k. Therefore our algorithm
continues as follows.)

(5.5.3) Compute det(Bi) for i = 1, ... , k.

(5.5.4) If det(Bi) > 0 for i = 1, .. . , k, then B is positive
semi definite and hence B E 00 (G) is proved. stop!

(If the test in (5.5.4) is failed, then B is not positive semidefinite and we have to
calculate a separating hyperplane.)

M. Grotschel et al.

(5.5.5) Let 1 be the smallest index such that det(B,) ~ 0
and define a vector d =(di. ... , dn? as follows:

d,:=0 for all i>t,

d, := -1 if t = 1,

d;:=(-lYdet(B,,), i=l, ... ,t, ift>l,

where Bit denotes the (t -1, t -1)-submatrix of B, obtained by
removing the i-th row and t-th column from B,.

(5.5.6) Define the following vector D E o":
d;,: = d~ - d7, i = 1, ... , n - 1,

d,(= -2d,d1, for i,j~ E(G) and i < j,

and return J5 (if II D II< 1 we have to scale such that II D II~ 1). D

The vector J5 E IR" gives the desired separating hyperplane in case B does not
belong to ai (G). More exactly

DX~ d~ ~DB for all X E ai(G). (5.6)

To prove (5.6) define the (n, n)-matrix D = (d,i) by setting d,i = dA, i.e.,
D = ddT. It is obvious from the definitions of D and J5 that for every vector
X E IR" and its extension X E !R"x" we have

n
-T- 'V 2 T D X = dnn - .::.., d,xA = d n - d Xd.

i,j=t

Now if X E @(G), then the extension X is positive semidefinite, i.e., dTXd ~ 0,
which implies D'X ~ d~. If X = B and B is the extension of B then the
following holds:

n

dT Bd = 2: d,djbij = det(B,)det(B1-1) ~ 0, (5.7)
i,j=l

where in case t =I, det(Bo) is assumed to be one. (5.7) can be obtained by
exploiting the definition of d, cf. (5.5.5), and using determinant expansions.
Thus, (5.7) shows that DB~ d~ and (5.6) is proved.

Altogether we have used Gaussian elimination once in (5.5.2) and we have
performed at most 2n determinant calculations in (5.5.3) and (5.5.5). Since
Gaussian elimination and determinant calculation can be done in O(n 3) time the
overall running time of our separation algorithm is at most O(n 4) (not
considering the length of numbers). Summarizing the discussion above we get
the following theorem.

Polynomial algorithms for perfect graphs 345

(5.8) Theorem. There exists an algorithm SEP(. , .) such that for any graph G
with n vertices and any vector BE Q", ii= n + G)- IE(G)j-1, SEP(G, B)
asserts whether BE gj(G) or produces a vector DE Q'' such that DX~ DB for
all XEgj(G).

The running time of SEP(G, B) is bounded by a polynomial in n and in
flog II B 11 00 l ·

To give an example for the sets tYJ (G), gj (G) and the separation algorithm for
gj (G) we consider the graph K2 which has two vertices and no edges. Then

:1J(K2)={(: nla:>-O,c:>-0,a+c==l,det(: n;;;:o},
gj(K2)=={(a,bflo~a ~ 1, (a -~)2+b 2 ~l},

i.e., gJ (K2) is the ball in ~1 around the point et oyr with radius t
Consider the point B = (t I yr E lffi2 • The extension of B is the matrix

(~ 1) B = j 1 .

B has rank 2 and det(B1) = ~' det(B2) = det(B) = - ~. So B is not positive
semidefinite and the smallest index t with det(B,) < 0 is t = 2. Using (5.5.5) and
(5.5.6) we obtain di= -1, det(B12) = -1, dz = det(B22) == t and hence d11 ==
d~-d~ = -i, d12=1, i.e., D = (-i, lf. Thus, by (5.6) we have

DX= -~a+b,,;:;;d~=i,,;:;;J5B=(-~,1)(D=~

for all X E gj (K2). The set gj (K2), the hyperplane DX = l and the point B are
shown in Fig. 5.1.

b §

a

Fig. 5.1.

346 M. Grotschel et al.

6. Polynomial algorithms to compute &w (G) for all graphs and to solve the
weighted stable set and clique problem in perfect graphs

We shall now use the separation algorithm SEP(. , .) for gj (G) described in
the foregoing section as a subroutine of the ellipsoid method to compute -&w (G)
for every graph G and to find a maximum weighted stable set (or clique) of a
perfect graph. Recall that for any graph G with a weight function w : V ~ "11.+

Theorem (4.20) implies

-&w (G) = max Lt
1 ~b;i I B = (b;i) E@(G)},

i.e. rJw (G) is the maximum value of a programming problem with a convex
feasible region and with a linear objective function (having a particular form).
We saw that it is necessary to replace @(G) by the convex body gJ(G) (cf. (4.12)
and (5.1)) for technical reasons. We therefore have to replace the optimization
problem over 2lJ (G) by a corresponding optimization problem over gj (G).

So, given an objective function L;.i C;ibu such that cu = ci; for 2lJ (G) as above,
we then define the following objective function c for gj (G) by setting

C;;:=cu-Cnn-, i=l, ... ,n-1,

c;i: = 2c;i if i, j fi5. E (G), i < j.

Defining

Jc(G):=max { .2: c;i;j I BE gJ(G)}
1,jEF

it is then easy to see that

(6.1)

Therefore, in order to approximate rJw (G) it is sufficient to approximate Jc (G)
for C;j = v W;Wj.

Since the numbers ~occurring in the objective function are not necessar­
ily rational, we have to approximate these numbers in such a way that the
optimum of the problem with the perturbed objective function does not differ
too much from the true optimum.

Suppose we want to calculate -&w (G) up to an error t: > 0, then we claim that
the following approximation of the V w;wi is sufficient. Using, e.g., the method of
continued fractions, determine rational numbers u;i with

(6.2)

Polynomial algorithms for perfect graphs 347

where, in addition, the denominators of the u;i are at most 2n(n + 1)/e. Then we
solve the program

J" (G) = max { ;,~F u,J);i I B E gj (G)} .

Assume that B E gj (G) is the true optimum solution of this program, then since
II B II:;:;; 1, no component B;i of B is larger than one in absolute value. This implies
that the error we make with respect to the original objective function is
componentwise

l(u;i -2 Vw;wi)B;i I< n(nt:+ l),

As the number of components ii of B is at most n (n + 1)/2 -1 and the error in
u,." is also at most E:/2n(n + 1) we have from (6.1) that

I Ju (G) + Unn - {}w (G) I< E:/2.

In other words, if the u;i are chosen according to (6.2) then the desired number
ifw (G) is contained in the interval (Ju (G) + u"" - E: /2, Ju (G) + Unn + e /2). This
implies that if we compute J" (G) + u"" up to an error E: /2 we obtain ifw (G)
within an accuracy of e. Such an approximation can be achieved with the
ellipsoid method.

So suppose a graph G, I V(G)I = n, with weight function w: V(G)~:l:+ and a
required accuracy t: > 0 for l'tw (G) are given, then the following algorithm
THETA (G,w,t:,r) finds a number T with lr-1'.}w(G)J<e.

(6.3) Algorithm. THETA(G, w, e, T). The graph G = (V(G), E(G)), J V(G)J =
n ~ 2, the natural numbers W;, i E V(G), and the rational number e > 0 are the
input of the algorithm, while the number r is the output of the algorithm.

(6.3.1) Approximate the numbers Vw;wi, 1:;:;; i :;;;;j:;:;; n, by rationals U;i satis­
fying (6.2) and whose denominators are at most 2n(n + 1)/e. Set

U;;:=u;;-u""' i=l, ... ,n-1 and U;i:=2u,i fori<j,i,j~E(G).

(We now approximate the optimum value of the program
max{uTB /BE gj(G)}+ u"" up to an error e/2 using the ellipsoid
method.)

(6.3.2) Set r = 1/ n 2Vn, R = 1, t:: = e/2 - e/2n (n + 1) and define the param­
ters N, o, p as in the ellipsoid method (2.3). (For the choice of the radii,
cf. (5.2), the accuracy E is chosen according to the previous discussion.)

(6.3.3) Set Ao:= R 2 I,, and choose as center Xo of the first ellipsoid the
projection ii,. E gj(G) of (l/n)I".

348 M. Grotschel et al.

(Recall that ii = n + G)-1 E(G) I - 1, and that by (5.2) Bn is an interior
point of ~(G).)

(6.3.4) for k = 0 to N -1 do;

1. Run the separation algorithm SEP(G, xk) defined in (5 .5).
2. If xk E ~(G) then set a:= a.
3. If xk ~ ~ (G) and if J5 is the vector returned by SEP(G, xk),

cf. (5.5.6), then set a:=-D.
4. Make the updates of the ellipsoid method as described in
(2.3.9)-(2.3.11).
End;

(6.3.5) Let a be the value of the best feasible solution of
max{e.B I BE ~(G)} found in (6.3.4).
Set T:= a+ u •• and return T. 0

Algorithm (6.3) describes how we can approximte i}.., (G) in polynomial time.
Letting w be the vector all of whose components are one, we can use algorithm
THETA to compute i1 (G) up to any given accuracy in polynomial time for every
graph G. So il(G) is not only well-characterized by the formulas (4.5), (4.6), (4.9)
and (4.13), it is also well-behaved computationally.

Theorem (3.2) and Theorem (4.20) imply that for perfect graphs the numbers
a..,(G) and -&..,(G) coincide. Moreover, since our weight function w is integer
valued, we know that the value a.., (G) of the optimum weighted stable set is an
integer. Therefore, in order to find the optimum value of a weighted stable set
problem on a perfect graph we only need to approximate it.., (G) up to an error
£ ~ 4 with the algorithm THETA(G, w, £, r) and round r to the next integer to
obtain a.., (G).

We can also use the algorithm THETA to find a maximum weighted stable set
explicitly. This goes as follows.

Let a graph G = (V, E) with n;;;:. 2 vertices, weights wi El+ for all i E V and
an accuracy 0 < e ~ ~ be given.

(6.4) Algorithm. STABLESET(G, w, e).

(6.4.1) Initialization and fi.rst guess for a(G):
1. Run THETA(G, w, £, r) and round T to the next integer, say t.

(Clearly, t;;;:. a(G) and if G is perfect then t = a(G).)
2. If It - TI "" e, then stop and conclude that G is not perfect.
3. Call all vertices of G unlabeled.

(6.4.2) Termination check
If all vertices of the present graph G are labeled, then do:

Polynomial algorithms for perfect graphs 349

1. If V(G) is not stable then stop and conclude that G is not perfect.
2. If V(G) is stable then V(G) constitutes a maximum weighted stable
set of the original graph. stop!

(6.4.3) Choose an unlabeled vertex v E V and tentatively remove v from G,
i.e., set G' = G - v and set w~ =Wu for all u E V\{v}.

(6.4.4) Run THETA(G', w', t:, T) and round T to the next integer, say s.
If J s - T J;,,, E, then stop and conclude that G is not perfect.

(6.4.5) If s = t, then remove v definitely, i.e., set G = G' and w = w'.

(6.4.6) If I V(G)i = 1, then label the remaining node.

(6.4. 7) If s < t, then label v.

(6.4.8) Go to (6.4.2). 0

To prove the correctness of the algorithm suppose first that G is a perfect
graph. Then for every induced subgraph G' of G, i!.,.(G') = aw.(G'). In step
(6.4.1) we approximate it .. (G) by t: ~ t and, therefore, rounding T to the next
integer gives the true value t for a (G). Now we remove a vertex v from G. If the
number s calculated in (6.4.4) satisfies s = t then we know that G - v contains a
stable set which is a maximum weighted stable set of G, so we can remove v
without distroying all optjmum solutions of the stable set problem for G, and we
can continue with this procedure. If however s I t, then all optimum stable sets
of G necessarily contain vertex v. Thus we label v, keep v in our vertex set and
continue. This way we will finally end up with a graph G' whose set of vertices is
labeled, i.e., none of the vertices can be removed without reducing s = a..,·(G') =
aw (G) = t. This means that every vertex of G 1 is contained in all optimum stable
sets of G'. In other words, the vertex set of G' is itself a stable set, and since
a.,·(G') = aw (G), this vertex set is a maximum weighted stable set of G. Thus if
G is perfect, then ST ABLESET will produce an optimum weighted stable set of
G.

If however G is not perfect, then ST ABLESET may detect the imperfectness
of G but may also deliver a maximum weighted stable set (without recognizing
the imperfectness of G).If in step (6.4.1) or (6.4.4) we find that It - TI~ E resp.
Is - TI~ E then the interval ('T - E, 'T + E) contains no integer. Since aw.(G ')is an
integer for all induced subgraphs G' of G and THETA guarantees 1'1w-(G') E
(T - t:, T + E) this implies aw-(G') /; {!..,-(G'), i.e., by Theorem (4.18) we can
conclude that G is not perfect. It may however happen that in every step (6.4.1)
and (6.4.4) the approximation T of 1'1w-(G') is in the t:-neighborhood of an integer
and we will end up in step (6.4.2) with an induced subgraph G' of G whose
vertex set V' is labeled. If V' is not a stable set, then V' is not a solution of our

350 M. Grotschel et al.

stable set problem. Since the algorithm works for perfect graphs, we can
conclude that G is not perfect. If V' is a stable set we have to show that V' is in
fact a maximum weighted stable set of G. This can be seen as follows. Suppose
G" is the last subgraph of G created during the algorithm such that a vertex, say
v, was definitely removed from G". Then we know that all other vertices of G"
will finally be labeled, so V(G") = V' U {v }. Moreover, v was removed because
the number s obtained in (6.4.4) by running THETA(G" - v, w ', c, T) satisfies
s = t. Since V' is stable, G' = G" - v is a perfect graph, so we haves= aw.(G'),
and since t is an upper bound for aw (G), s is the weighted stability number of G.
This proves our claim.

The following (imprecise) argument shows that in case of imperfect graphs all
outcomes described above are possible. Consider the pentagon Cs, then
rt(Cs) = \/S = 2.236 Suppose we run STABLESET with c = t then the T we
get in step (6.4.1) may equal 2.1 or 2.6. If T = 2.1 then t = 2 and the algorithm
will continue finding a maximum stable set of Cs. If T = 2.6 then t = 3, and since
the removal of every vertex from C5 results in a perfect graph we shall get s = 2
every time we execute step (6.4.4). This means that finally all vertices of C, will
be labeled, but these of course do not solve our problem. If however we had
chosen £ = 0.1, then T E (YS - 0.1, v':S + 0.1) and we obtain t = 2 and It - £ I""
0.13 >c. This implies that the algorithm would stop in step (6.4.l) concluding
that Cs is not perfect.

Thus algorithm ST ABLES ET has two possible outcomes. Either a maximum
weighted stable set of G is found or imperfectness of G is proved. Note that in
the former case it does not prove perfectness.

STABLESET can also be used to find a maximum weighted clique of a perfect
graph G. We simply run ST ABLESET on the complementary graph G which by
the perfect graph theorem is perfect again.

Summarizing the observations of this section we obtain the following theorem.

(6.5) Theorem. (a) There exists an algorithm which for any graph G = (V, E).
I VI;:;,,, 2, any weight function w : V---?- ?l+ and any rational £ > 0 finds a number T

such that I T - 1fw (G) I < £ holds.
The running time of this algorithm is polynomial in I VI, flog II w llx l and

flog II£ llx 1-
(b) There exists an algorithm which for any perfect graph G = (V, E), I VI"" 2

and any weight function w : V---?- ?l+ finds a maximum stable set (resp. maximum
weighted clique) and the running time of which is polynomial in I VI and
flog II w 11~1- D

Algorithm THETA and inequality (4.16) can be combined to design a
polynomial time nondeterministic algorithm which cheeks the imperfectness of a

Polynomial algorithms for perfect graphs 351

given graph. Namely, suppose G' is a critically imperfect graph with n vertices,
then choosing a suitable E, e.g., c: = 1n 2", we run THETA(G', e, c:, T) where e is
the vector all of whose components are one. By Theorem (2.4), the choice of c:,
and inequality (4.16) the number T we obtain satisfies

TE (1'7(G')- E, li(G') + F),
1

T<a(G)+ w(G)+c:

and therefore T - c: >a (G'), T + E <a (G) + 1. Since log II E II~ is polynomial in
n, THETA runs in time polynomial in n. In other words, given a critically
imperfect graph, we can verify its imperfectness in polynomial time. As every
imperfect graph contains a critically imperfect graph, say G', we can guess this
graph G' and then apply the algorithm described above. This shows that
verification of imperfectness is an NP-problem, hence verification of perfectness
is a co-NP problem. Note that if the strong perfect graph conjecture is true, then
this fact is trivial, since checking imperfectness would then be possible by
guessing an odd hole or antiholc.

7. A polynomial algorithm for the weighted clique cover and coloring problem for
perfect graphs

The separation algorithm for 03 (G) presented in Section 5 provides us - as
shown in Section 6 - via the ellipsoid method with a polynomial time algorithm
for solving the weighted stable set problem for perfect graphs. Seen from a
different point of view this means that the class of linear programming problems
maxc 1 x, xEP(G)=conv{xwlw stable set in G}, Ga perfect graph, is
solvable in polynomial time. Since P(G) is a fully dimensional rational polytope,
Theorem (2.6) implies that the optimization problem as well as the separation
problem for P(G), G perfect, are solvable in polynomial time, even in the strong
sense. By Theorem (3.2), for a perfect graph G the stable set polytope P(G)
equals the fractional stable set polytope P * (G), thus for this class of graphs we
can decide in polynomial time whether a given vector y belongs to

P(G) = P*(G) = { x I Xu ;?!o 0 for all v E V,

,?c Xv~ I for all cliques C ~ V(G)) .

A different approach to solving the separation problem for P(G) not using
Theorems (2.5) and (2.6) is of course to apply the algorithm which finds a
maximum weighted clique, where the given vector y ;?!o 0 is used as the vector
defining the objective function. If the maximum clique, say C satisfies y 1 xc =

352 M. Grotschel et al.

2:,.Ec Yv ~ I then y E P(G), otherwise this clique inequality provides a separat­
ing hyperplane. Since the optimum clique algorithm is nothing but the optimum
stable set algorithm applied to the complementary graph G (which is also
perfect), we can use the algorithm ST ABLESET directly to solve the separation
problem for P(G), G perfect.

Theorem (2.6) has a further important consequence. Since the optimization
problem for the class of rational polytopes P(G), G perfect, is solvable in
polynomial time we can find facets of P(G) and rationals A, ~ 0 satisfying the
conditions of statement (c) of (2.6). Since the facets of P(G) are of the form
- Xv~ 0, v E V(G), and LvEcXv ~ 1, C ~ V(G) a maximal clique, Theorem
(2.6) (c) implies that for any objective function w: V(G)~l'+ we can find in
polynomial time (maximal) cliques C ~ V(G) and positive rational numbers A;,
i = l, ... ,r~I V(G)! such that

' '
~A,= aw(G) and
i""I

~ ,\; ~ Wv
i=l.uEC1

for all v E V(G).

Suppose for a node v E V(G) strict inequality holds in the above inequality, say
u":=I:~1.uEc,A; -w" >0, then pick a clique, say C1, which contains v. If Ai~ u"
then replace ci by the clique ci \ { v }, otherwise add the new clique q \ { v} as
clique C+1 to our list of cliques and define new parameters as follows:
Ai:= Ai - Uu, A,+1: = Uu. Then the sum of the ,\, 's still equals aw (G) and the gap u"
of the inequality corresponding to v is either zero or is strictly reduced. By
continuing this process we end up with a list of cliques Ci, ... , C and positive
rationals ,\ 1, ••• , A, such that

t

L ,\; = CXw { G),
i=I

(7 .1)
for all v E V(G).

Note that in the algorithm described above only those vertices v E V(G) were
considered for which the inequality - Xu ~ 0 had a positive multiplier A". Since
for every such vertex at most one additional clique was added, we still have
t~JV(G)J.

By definition, for a perfect graph G the stability number a (G) equals the
clique cover number p(G). Moreover, since for a perfect graph G the graph G,..
(cf. Section 4) is also perfect and as cxw(G)=a(Gw), Pw(G)=p(Gw), the
weighted clique cover number Pw(G) equals the weighted stability number
a"' (G). This implies that for a perfect graph G, algorithm THETA (or
ST ABLES ET) also calculates p,.. (G), thus, by definition, there exist integers
A; > 0 which satisfy (7.1). Note that the numbers constructed by the algorithm of
Theorem (2.6) (c) (plus scaling afterwards) need not be integral in general.

Polynomial algorithms for perfect graphs 353

However, we can find such integers for perfect graphs. We first show how this
can be done in the cardinality case, i.e., w = (1, ... , l)T.

Assume that G = (V, E), I V I ;;;: 2, is a perfect graph and we want to find a
clique cover of G.

(7 .2) Algorithm. Cardinality clique cover.

(7.2.1) Apply the algorithm of Theorem (2.6) (c) to find cliques C: ~ V and
(possibly nonintegral) rationals Ai >0, i = l, ... ,t satisfying (7.1).
(We claim that every clique C: with Ai> 0 intersects every stable set of
G of cardinality a(G). Suppose C; is such a clique and W~ Vis a
maximum stable set with W n C; = 0. Then (7.1) implies

t I t

a(G) =I WI=.~ Wu= .~w i=t~ec, A;~~ A;<~ A;= a(G),
i,.j

a contradiction. Therefore we continue as follows.)

(7.2.2) Remove clique C1 from G, i.e., set G:= G - c .. If V(G) = 0. stop.
Otherwise go to (7 .2.1).

(Note that the graph G' obtained from G by removing clique C1 satisfies
a(G') = a(G)-1 since every maximum stable set of G will lose one vertex. So
after exactly a (G) executions of (7 .2.1) and (7 .2.2) we have found a (G) cliques
which cover G. These cliques are those which have been removed in (7.2.2).
Note also that every vertex of Vis contained in exactly one such clique and that
these cliques are not necessarily maximal cliques of G.) 0

Since the algorithm of Theorem (2.6) (c) can be shown to be polynomial in I VI
the overall running time of algorithm (7 .2) is also polynomial in I VI· We shall
now extend this algorithm to the weighted case.

Assume that a perfect graph G = (V, E) and a weight function w : V - Z+ are
given.

(7.3) Algorithm. Weighted clique cover.

(7.3.1) Apply the algorithm of Theorem (2.6) (c) to find cliques C: ~ V and
(possibly nonintegral) rationals A; > 0, i = 1, ... , t, satisfying (7.1).

(7.3.2) Set A.::= LA.;j, i = l, .. .,t,
I

w~:=w.- LA.~ forallvEV,
i .. l.uec,

and construct the graph Gw·.
(Since A.; - A.:< 1 we obtain from (7 .1)

354 M. Grotschel et al.

t

w~ == L (A; - ,q < t ~IV/
i=l, vEC;

(7.4)

so the graph Gw· obtained by replacing every node of v by w ~
nonadjacent copies and linking two nodes in Gw· by an edge if their
originals in G are adjacent has less than I V /2 vertices. This implies that
Gw· can be constructed from G in time polynomial in I VI and
flog 11 w II= l ·)

(7.3.3) Apply algorithm (7.2) to Gw· to obtain cliques D;, i == 1, ... , a(Gw·)
covering each vertex of Gw· exactly once.
(Since every clique D \of Gw· contains at most one copy of every vertex
v E V(G), every D; corresponds to a clique, say D;, of G. Note that
for D\ rf Dj the corresponding cliques Di, Di of G may be identical.)

(7.3.4) Construct the cliques Di, ... , Da<Gw·> of G corresponding to the cliques
D ;, ... , D~<Gw·l of Gw·. Let B,, ... , B, be the different cliques occurring
in the sequence D;, i=l, ... ,a(Gw.) and let f.Lh j=l, ... ,r, be the
number of times clique Bi occurs in the sequence D;, i = 1, ... , a (Gw}
Then proceed as follows: Set k = t and for j = 1 to r do; If Bi is equal
to one of the cliques C;, i E {1, ... , t}, then set A;:= A;+ f.Li· Otherwise
set k:=k+l, A":=µi and G:=Bi. 0

We claim that the cliques C and integers A;, i = 1, ... , s, defined in step
(7.3.4) solve the clique cover problem considered. Obviously, in the above
algorithm every vertex v E V is covered Wu - w ~ times after the execution of
step (7.3.2). By applying algorithm (7.2) to the graph Gw· and making the
construction described in (7.3.4) every vertex will be covered a further w~ times.
So the cliques Ci, ... , C. and integers A;, ... , A.; satisfy

s

L A; = Wu for all v E V.
i=l,vEq

Similarly, note that Gw• is designed in such a way that a(Gw) =
aw(G)-:L;=1(A; - LAd) holds. Since G is perfect Gw' is also perfect, so
p(Gw·) = :L;-1 µ,i =a (Gw) which implies that the A; defined in (7.3.4) satisfy

s

2: A; = CXw (G) = Pw (G).
i=l

Thus algorithm (7.3) produces the desired solution of the clique cover problem
for a perfect graph.

Since the algorithm STABLESET, the algorithm of Theorem (2.6) (c) and the
algorithm (7 .2) run in time polynomial in I V(G) I and flog II w II~ l the overall

Polynomial algorithms for perfect graphs 355

running time of algorithm (7.3) is polynomial in I V(G)I and pog II w 11.,1 for every
perfect graph G and every objective function w: V(G)~:Z+.

As before it is now easy to obtain a polynomial time algorithm for the
weighted coloring problem for perfect graphs. Since the weighted chromatic
number x .. (G) equals the weighted clique cover number p .. (G) of the com­
plementary graph G we simply apply algorithm (7.3) to the perfect graph G
which will yield the desired optimum weighted coloring of G.

8. Conclusions

In the previous section we have described polynomial time algorithms for
various linear programming problems on perfect graphs. All these algorithms
are based on the ellipsoid method and use a polynomial time separation
algorithm for a convex, nonpolyhedral set. Although these algorithms are
polynomial (and thus are theoretically good) we do not recommend them for
practical use.

Just for curiosity we have done some computational experiments with the
separation algorithm for 00 (G) described in Section 5. As expected, the
numerical problems were such that even for small problem sizes, say I V(G)J
equal to 10 or 20, it was almost impossible to obtain a correct answer. An
alternative approach is to use (4.9) for the design of a polynomial algorithm to
compute ~(G). This amounts to minimizing a convex function on an affine
space. In principle, this can be done by the ellipsoid method in polynomial time.
In practice, it is probably better to use some simpler descent method. The first
experiments with this dual approach seem to be more promising.

Our analysis of these problems should be viewed as a theoretical contribution
showing that certain programming problems for perfect graphs are indeed
polynomially solvable. Future research should be directed toward finding
practically good algorithms for these problems. These algorithms should have a
more combinatorial nature and should not suffer from the numerical instability
(due to our present-day computer technology of fixed precision arithmetic) of
the ellipsoid method and the separation problem for gJ (G).

References

(1] V. Chvatal, On certain polytopes associated with graphs, J. Comb. Theory, Ser. B 18 (1975)
138-154.

(2) P. Gacs and L. Lovasz, Khachian's algorithm for linear programming, Math. Program. Studies
14 (1981) 61-68.

356 M. Grotschel et al.

[3] M.R. Garey and D.S. Johnson, Computers and Intractability, A Guide to th<
NP-Completeness (Freeman, San Francisco, 1979).

[4] M. Grotschel, L. Lovasz and A. Schrijver, The ellipsoid method and its cons
combinatorial optimization, Combinatorica 1 (1981) 169-197.

[5] W. Haemers, On some problems of Lovasz concerning the Shannon capacity of a~
Trans Inform. Theory IT-25 (1979) 231-232.

(6) W.-L. Hsu, How to color claw-free perfect graphs, Ann. Discrete Math. 11 (198
[7] W.-L. Hsu and G.L. Nemhauser, Algorithms for minimum coverings by cliques an

cliques in claw-free perfect graphs, Discrete Math. 37 (1981) 181-191 (this volume, p
[8] L.G. Khachiyan, A polynomial algorithm in linear programming, Dok!. Akad. Nat

(1979) 1093-1096 (English transl. Soviet Math. Dok!. 20 (1979) 191-194).
[9] L. Lovasz, Normal hypergraphs and the perfect graph conjecture, Discrete Ma

253--267 (this volume, pp. 29-42).
[10] L. Lovasz, On the Shannon capacity of a graph, IEEE Trans. Inform. Theory IT-25
[11] M.W. Padberg, Almost integral polyhedra related to certain combinatorial ,

problems, Linear Algebra & Appl. 15 (1976) 69-88.
[12] C. Shannon, The zero error capacity of a noisy channel, IRE Trans. Inform. Theor;

8-19.
[13] N.Z. Shor, Convergence rate of the gradient descent method with dilatation o

Kibernetika 2 (1970) 80-85 (English transl. Cybernetics 6 (1970) 102-108).
[14] D.B. Yudin and A. S. Nemirovskii, Informational complexity and effective method

for convex extremal problems, Ekonomika i Mat. Metody 12 (1976) 357-369 (En
Matekon: Trans!. of Russian and East European Math. Economics 13 (1976) 24

