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1. Introduction 

Let A be a rational m x n-matrix, and let b be a rational vector of length m. The 
system Ax~ b of linear inequalities is called totally dual integral if the minimum 
in the linear programming duality equation 

max{cxJAx,,;;;; b}=min{ybJy;;a:O, yA= c} (1) 

has an integer optimal solution for each integer vector c for which the optima exist 
(ex and yb denoting inner products). Edmonds and Giles [3] motivated this concept 
by showing that if Ax,,;;;; b is totally dual integral and b is integer, then also the 
maximum in (1) has an integer optimal solution, for each vector c for which the 
optima exist. Equivalently, then the polyhedron 

P={xJAx~b} (2) 

is the convex hull of the lattice points contained in it. 
In this note we show that, for any fixed number r, there exists an algorithm which 

tests the total dual integrality of a given system Ax..;;; b of linear inequalities, where 
A is an integer matrix. of rank r, in time bounded by a polynomial in the sizes of 
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A and b (in binary notation). The main tool here i$ Lenstra's polynomial-time 
algorithm for integer linear programming in fixed dimension [7]. 

Total dual integrality is closely connected to so-called 'Hilbert bases'. Following 
Giles and Pulleyblank [ 4], a set of integer vectors a 1, ••• , ak is called a Hilbert basis 
if each integer vector in the convex cone spanned by a 1, ••• , ak is a nonnegative 
integer combination of a 1, •.. , ak. Indeed, the system Ax~ b is totally dual integral 
if and only if for each minimal face F of P the rows of A which are active in F 
form a Hilbert basis (a row is active in F if the corresponding inequality in Ax~ b 
is satisfied with equality by each vector in F). In particular, all rows of A form a 
Hilbert basis if and only if the system Ax~ 0 is totally dual integral. 

It is easy to see that each pointed rational polyhedral cone C is spanned by a 
unique minimal Hilbert basis (minimal under inclusion)-take all nonzero integer 
vectors in C which cannot be expressed as a sum of other integer vectors in C (this 
is a finite set, as these vectors are all contained in the polytope {A. 1 b1 + · · · + A. 1b, I 0 ~ 
A;,,,.:; 1 (I~ i ~ t)}, where b1, ••• , b1 are integer vectors spanning C).This implies that 
each full-dimensional rational polyhedron is defined by a unique minimal totally 
dual integral system with integer left-hand sides ( cf. [8]). 

Since, if we fix the rank r of A, the number of minimal faces of P is polynomially 
bounded by the number of rows of A, and since they can be enumerated in polynomial 
time, testing total dual integrality for fixed rank in polynomial time can be reduced 
to the test of being a Hilbert basis for fixed rank in polynomial time. 

Chandrasekharan [I] proved that there exists an algorithm which finds for any 
totally dual integral system Ax~ b, with A integer, and for any integer vector c, an 
integer optimum solution y for the minimum in (I), in time polynomially bounded 
by the sizes of A, b and c (in binary notation). 

The property of being a totally dual integral system, and that of being a Hilbert 
basis, is in the class co-NP, if the left-hand side coefficients (i.e. the entries of A) 
are integral. That is, there exists a polynomial-length proof for not being totally 
dual integral, or for not being a Hilbert basis. Indeed, if the integer vectors ai, ... , ak 

do not form a Hilbert basis, there exists an integer vector c in the cone C spanned 
by a 1, ••• , ak such that c - a; !E C for all i for which a; does not belong to the minimal 
face F of C, and such that c does not belong to F. Note that, given a vector c, these 
conditions can be checked with Khachiyan's method. Moreover, c can be chosen 
in the polytope {A. 1 a 1 +···+A.kaklO~A.;~l(l~i,,,;k)}, so that the size of c is 
polynomially bounded by the size of a 1, ••• , ak. 

In fact it is the content of the theorem that if we fix the rank of a 1, ••• , ak, such 
a vector c can be found in polynomial time. (Parts of the proof of this theorem also 
occur in [2].) 

Theorem. For any fixed natural number r, there exists an algorithm which tests, for 
any integer matrix A of rank rand for any rational vector b, whether the system Ax~ b 
is totally dual integral, in time bounded by a polynomial in the sizes of A and b (in 
binary notation). 
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Proof. I. Let A have rows ai. . .. , am. We first argue that we may assume that b = 0, 
and that the convex cone C spanned by a,, ... , am is pointed and full-dimensional 
(equivalently, that the cone {x I Ax~ O} is pointed and full-dimensional). 

Indeed, we have to test whether in each minimal face F of P = {x I Ax~ b }, the 
active rows of A form a Hilbert basis. Now we can enumerate all minimal faces of 
P as follows. Enumerate all collections of r linearly independent rows of A. If, say, 
a 1o ••• , a, are linearly independent, we check whether F = {x I a 1 x = b1o ... , a,x = b,} 
is contained in P, which can be done by checking whether Ax0 :;;;; b holds for some 
solution x0 of a1x = b" ... , a,x = br If F <;; P, then F is a minimal face of P. Let, 
say, a,x:,,;;; b" ... , akx:,,;;; bk be those inequalities among Ax:,,;;; b which are active in 
F (i.e., which hold with equality for some vector, and hence for each vector, in F). 
We have to test whether a" ... , ak is a Hilbert basis. That is, if A' denotes the 
matrix with rows a,, ... , ak, we have to test whether A'x:;;;; 0 is totally dual integral. 
Therefore, since for fixed r the number of minimal faces is polynomially bounded 
by the size of A, we may assume that b = 0. 

Next we show that we may assume that the convex cone C spanned by a 1, ••• , am 
is pointed and full-dimensional. Let F be the unique minimal face of C, and let L 

be the linear hull of C. Let, say, a,, ... , a, be the rows of A belonging to F (they 
can be determined in polynomial time as a row a; of A belongs to F if and only if 
-a; belongs to C). Let d :=dim F (and note that r =dim L). Now there exists a 
unimodular matrix U such that FU= !Rd x on-d, and LU= IR' x on-r. Such a matrix 
U can be found as follows. Choose d linearly independent vectors v,, ... , vd from 
a i. ..• , a" and after that choose r - d vectors vd+i. ... , v, from a1+i. ... , am such 
that Vi. ... , v, are linearly independent. Let V be the matrix with rows v1, ••• , v,, 

and determine, with the algorithm of Kannan and Bachem [5], a unimodular matrix 
U such that VU is in (lower-triangular) Hermite normal form. One easily checks 
that U has the required properties. 

Now Ax~ 0 is totally dual integral if and only if A Ux ~ 0 is totally dual integral. 
So we may assume that A= AU, and that F =!Rd x on-d and L = IR' x on-r. Since 
now the last n - r columns of A are zero, we may assume that n = r. It is easy to 
see that Ax:,,;;; 0 is totally dual integral if and only if a 1, ••• , a, form a Hilbert basis 
for F, and A' x:,,;;; 0 is totally dual integral, where A' is the matrix consisting of the 
last n - d columns of A. 

Now the fact that Fis a linear space implies that ai. ... , a, is a Hilbert basis for 
F if and only if Fis the convex cone generated by ai. ... , a, (which is a given fact, 
by definition of a,, ... , a,), and Fn"ll.n is the lattice generated by a,, ... , a, (which 
can be checked again with the algorithm of Kannan and Bachem). Indeed, necessity 
of these conditions is immediate. To see sufficiency, let z be an integer vector in F. 

Then z = 11, a, + · · · + v,a, for certain integers v1, ••• , v,. Moreover, for each i == 
I, ... , t, the vector -a; belongs to F, and can hence be written as a convex combina
tion of a1, ... , a,. Therefore, 0 = µ 1 a1 + · · ·+µ,a, for positive rationals µ" · · ·, µ,. 

By choosing M appropriately, z = (v1 +Mµ 1)a 1 + · · · +(v, + Mµ,)a, is a decomposi
tion of z as a nonnegative integer combination of a,, ... , a,. 
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So it suffices to describe a test of total dual integrality for A'x ~ 0. That is, without 
loss of generality we may assume that the cone C generated by a" ... , am is 
full-dimensional and pointed. 

II. Here we describe an algorithm to test whether a 1, ... , am is a Hilbert basis 
for the cone C generated by ai, ... , a~11 where C is pointed and full-dimensional. 

We first observe that a 1, ... , a,,, is a Hilbert basis for C if and only if the only 
integer vector in the set 

C0 = {z EC I z - a; EC for i =I, ... , m} 

is the origin. 

(3) 

To prove necessity, let z be an integer vector in C0 • Then z =A 1a 1 + · · · + Amam 
for nonnegative integers A 1, ... , Am. As z - a;~ C we know that A 1 = · · · =Am= 0, 
i.e., that z = 0. 

To prove sufficiency, let z be an integer vector in C. Let A 1 be the highest rational 
number such that z - A 1a 1 belongs to C. Next, let A2 be the highest rational number 
such that z - LA 1J a 1 - A2a 2 belongs to C. If A 1, ... , A1 have been found, let A1+ 1 be 
the highest rational number such that z-LA 1ja 1 -LA 2Ja 2 -···-LAda1 -A1+1ai+I 
belongs to C. When,\ 1, ... , Am have been found, the vector z - LA 1J a 1 - · · · - lAmJ am 
is an integer vector in C 0 , and hence is the origin. This expresses z as a nonnegative 
integer combination of a 1, ... , am. 

So it suffices to check whether the only integer vector in C0 is the origin. To this 
end let bi> . .. , b, be vectors such that 

C={zlbiz~Oforj=l, ... ,t}. (4) 

Since the rank r = n of a 1, ... , am is fixed, such b1, ... , b, can be found in polynomial 
time (as each facet of C is determined by r linearly independent vectors from 

a1, ... 'am). 
Now it follows trivially from (3) and (4) that 

C0 = { z E C I for all i = I, ... , m there exists j = 1, ... , t with biz< bia; }. ( 5) 

So if rt> denotes the collection of all functions <P :{!, ... , m},{l, ... , t}, then 

C0 = U {z I b1z ~ 0 for j =I, ... , t, and bq,ri)Z < b<t>u>a; for i = 1, ... , m}. (6) 
</>Ecf> 

This expresses C0 as a union of convex sets, and we have to test whether the only 
integer vector in each of these convex sets is the origin. Below we shall see that this 
can be done in polynomial time (for fixed dimension) with Lenstra's algorithm for 
integer linear programming [7]. (Note that <P generally has exponential size, even 
for fixed rank r of a 1, ... , am.) 

Let Z be the collection of vectors z determined by n linearly independent equations 

from: 

(j = 1, ... , t), 
(7) 

bJ2 = b1a; (j = I, ... , t; i = 1, ... , m ). 
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Since n is fixed, we can enumerate and store Z in polynomial time. Next let I be 
the collection of all subsets {zi. ... , z"} of Z such that: 

(i) z1 •••• , z,, are linearly independent, 

(ii) Zi. ... , z,, belong to C, 

(iii) Vi= I, ... , m 3j = I, ... , t V k = I, ... , n: b;zk ~ bja;. 

Again, .I can be enumerated and stored in polynomial time. Define 

(8) 

O'(z 1, ••. , zn) =convex hull{O, Zi. ••• , z11 }\convex hull{zi. ... , z"}, (9) 

for {z1, ••• , z"} in .I. We finally show: 

Co= U O'(Z1, ... , z"). ( 10) 
{z,,. .. ,Z,,}E~ 

we are finished as soon as we have proved (10): with Lenstra's algorithm we can 
test, for each {z1, ••• , z"} in .I, whether O'(Zi. ... , z,,)\{O} contains integer vectors. 
Hence we can test whether C0 contains integer vectors other than the origin. 

To prove (10), first observe that C0 is bounded. Indeed, C0 ~{A 1 a 1 +···+ 
Ama.,, lo~ A;< I for i = 1, ... , m}. Now let w E C0• Then by (6) there exists a function 
<f> in cP such that w belongs to the convex set 

P={zl bjz;;:, 0 for j =I, ... , t, and b<Plilz < b<t>cna; for i = l, ... , m}. (11) 

Since P is bounded and nonempty, it remains bounded if we replace in ( 11) the 
sign < by ~. thus obtaining the closure P of P. Since we P there exists an e > 0 
such that ( 1 + e )w belongs to P. As 0 e P, ( 1 + s )w is a convex combination of some 
linearly independent vertices z1,. . ., z" of P. Then {zi. ... , z11 } e .I and w E 

O'(Zi, ... , z,,). 

To prove the reverse inclusion for ( 10), let {z i. ... , Zn} E ..l' and w E O'(z" ... , zn)· 
There exists e > 0 such that ( 1 + e )w E u(zi. ... , zn)· By (8) (ii) w belongs to C. 
Moreover, by (8) (iii), there exists a function <f> in cP such that b<P<i>zk ~ b<P<i>ai for 
i = 1, ... , m and k = 1, ... , n. Since bjzk ;;:: 0 for all j = 1, ... , t and k = I, ... , n, and 
since z i. ••. , z" are linearly independent, we know that bq,i i)a; > 0 for all i = 1, ... , rn. 

Therefore, ( 1 + e )b<Pu> w:;;;: b<P<i>a; for i = I, ... , m, implies that b<P<i> w < b<P(i>a; for 
i = 1, ... , m, and hence that w belongs to C0• D 

The problem is still open whether testing total dual integrality is co-NP complete 
or polynomially solvable (or both). 
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