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ABSTRACT
Performance of query processing functions in a DBMS can
be affected by many factors, including the hardware plat-
form, data distributions, predicate parameters, compilation
method, algorithmic variations and the interactions between
these. Given that there are often different function imple-
mentations possible, there is a latent performance diversity
which represents both a threat to performance robustness
if ignored (as is usual now) and an opportunity to increase
the performance if one would be able to use the best per-
forming implementation in each situation. Micro Adaptivity,
proposed here, is a framework that keeps many alternative
function implementations (“flavors”) in a system. It uses a
learning algorithm to choose the most promising flavor po-
tentially at each function call, guided by the actual costs
observed so far. We argue that Micro Adaptivity both in-
creases performance robustness, and saves development time
spent in finding and tuning heuristics and cost model thresh-
olds in query optimization. In this paper, we (i) character-
ize a number of factors that cause performance diversity
between primitive flavors, (ii) describe an ε-greedy learning
algorithm that casts the flavor selection into a multi-armed
bandit problem, and (iii) describe the software framework
for Micro Adaptivity that we implemented in the Vector-
wise system. We provide micro-benchmarks, and an overall
evaluation on TPC-H, showing consistent improvements.

Categories and Subject Descriptors: H.2.4 [Database
Management]: Systems - Query processing

Keywords: Adaptive; Self tuning; Query processing

1. INTRODUCTION
Adapting to unpredictable, uncertain and changing envi-

ronments is one of the major challenges in database research.
Adaptive query execution and query re-optimization have
been valuable additions to database technology that aim to
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re-arrange the shape of a query plan in reaction to its execu-
tion so far, thereby enabling the system to correct mistakes
in the cost model, or to e.g. adapt to changing selectivities,
join hit ratios or tuple arrival rates. Micro Adaptivity, intro-
duced here, is an orthogonal approach, taking adaptivity to
the micro level by making the low-level functions of a query
executor more performance-robust.

Micro Adaptivity was conceived inside the Vectorwise sys-
tem, a high performance analytical RDBMS developed by
Actian Corp. [18]. The raw execution power of Vectorwise
stems from its vectorized query executor, in which each op-
erator performs actions on vectors-at-a-time, rather than a
single tuple-at-a-time; where each vector is an array of (e.g.
1000) tuples. This approach is a form of block-oriented query
execution [11] in some existing database systems, and was
shown to strongly improve performance [3].

Primitive Functions. In vectorized execution the basic
computational actions for each relational algebra operator
are implemented in primitive functions. Each such “primi-
tive” works on input parameters that are each represented
as a vector, i.e. an array of values, and similarly produces
an array of output values. All relational operators such as
Projection, Selection, Aggregation and Join, rely on such
primitives to process data. The (non-duplicate eliminat-
ing) Projection operator is typically used to compute expres-
sions as new columns, and each possible expression predicate
combined with each possible input type typically maps to a
separate primitive function (e.g. multiplication of doubles,
addition of floats, subtraction of short integers, etc.). For
Selection, the system contains primitives that for a boolean
predicate compute a sub-vector containing the positions of
qualifying tuples from the input vectors. For Aggregation,
each aggregate function (sum, count, min, etc.) and possible
input type leads to a primitive function that performs the
work of updating an aggregate result. In addition, hash ag-
gregation employs primitives for vectorized hash value com-
putation, vectorized hash-table lookup and insertion – simi-
lar holds for the Hash-Join operator. In total, the Vectorwise
system contains some 5000 different primitive functions.

stage: preprocess execute primitives postprocess

cycles 1679694 4321561972 3983412990 807654
% 0.03% 99.92% 92.17% 0.01%

Table 1: Example of time spent in different execution stages.

Consider a simple query that involves a Selection:
SELECT l_orderkey FROM lineitem WHERE l_quantity < 40

It calls a primitive that performs smaller than comparisons
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on integer values. Table 1 shows a sample trace of this query.
Almost all time is spent in the execute stage (99.92%) and
within it, almost all time is spent in primitives (92.17%).
Similar work division occurs in more complex query plans,
including joins, aggregations etc. Thus, with primitives
dominating the execution time, their speed is critical to over-
all system performance.

Given that the implementation of a vectorized primitive
contains a loop over the input array(s), the advantage of the
vectorized execution approach is that the overhead of call-
ing the function is amortized over many tuples, thus strongly
reduced compared with the tuple-at-a-time approach. Ad-
ditionally, specific compiler techniques that revolve around
the optimization of loop code are triggered, e.g. strength re-
duction, loop unrolling, loop fission, loop fusion but also the
automatic generation of SIMD instructions. On the software
engineering level, the effect of vectorization is a separation
of control logic (the relational operators) and data process-
ing logic (the primitives). As such, vectorized processing
brings more than only performance advantages. One exam-
ple is in performance monitoring and query plan profiling:
vectorized primitives can be easily profiled, given the fact
that significant CPU time is spent inside them, providing
the ability to characterize all steps in a query plan to the
level of CPU-cycles-per-tuple. This is less obviously done in
tuple-at-a-time engines, where it would be too expensive to
trigger performance measurement code around each func-
tional call performing e.g. a single integer multiplication,
because such performance monitoring code would likely be
much more costly than the function being monitored. This
ability to cheaply keep track of the performance of each call
to a primitive function, enables our system to become adap-
tive to the observed cost of primitive calls.

Primitive performance. Primitive efficiency depends on
the algorithm chosen to implement it and the way the code
was compiled. But it is also influenced by the environ-
ment: hardware, data distributions, query parameters, con-
current query workload, and the interactions between these.
The high complexity of computer systems, with their com-
plex cache hierarchies, out-of-order execution capabilities
and constraints, SIMD instruction support etc. combined
with the dynamic aspects of the environments where the
primitives are applied, make it impossible to correctly choose
one optimal implementation even for a known workload.

Micro Adaptivity. We introduce the Micro Adaptivity
framework which addresses the above problem. In this so-
lution the query executor stores many available implemen-
tations (“flavors”) of the same primitive, and during query
execution dynamically chooses one flavor to use at any given
moment, based on historical and current performance of dif-
ferent flavors. This provides adaptation to different and
changing environments, and results in both a software per-
formance improvement over a wide number of scenarios (adapt-
ing to different and changing hardware, data sets and tasks),
but also reduces development effort in the query optimizer
(as less time is spent in finding and maintaining heuristics
and cost model thresholds).

Motivating Example: Branch vs No-Branch. A good
example of context-dependent performance are branching
and non-branching implementations of Selection primitives.
The branching primitives use the if statements to test a
predicate while the non-branching primitives use logical op-

erators and index arithmetic to completely remove any branch-
ing. The selection primitive in Listing 1 accepts as argu-
ments a vector col of ints and its size n, a constant val,
and a vector res where to store the result. It produces a
selection vector with the indices of the elements in the in-
put vector which have a value strictly less than the constant
value. The selection vector is then passed to other prim-
itives. The Branching implementation in Listing 1 uses a
branch while the primitive shown in Listing 2 is branch-
free (No-Branching). These implementations are function-
ally equivalent: they always produce the same result.

Modern CPUs attempt to predict the outcome of branches,
so each CPU cycle next instructions can be pushed into its
execution pipeline, even though the branch instruction has
not finished (left the pipeline) yet. Accurate branch pre-
diction is thus a necessary element to make pipelined CPU
designs efficient, because in case of a mispredicted branch,
the entire CPU pipeline must be flushed and delays occur.
Prediction will be accurate when the branch behavior can
be easily predicted from the previous few executions, i.e. if
the branch condition is mostly true or mostly false. Conse-
quently, the performance of the Branching selection primi-
tive depends on the input data distribution; see [13].

Listing 1: Branching less-than Selection primitive

size_t
select_less_than(size_t n,int* res ,int* col ,int* val) {

for(size_t k =0, i = 0; i < n; ++i)
if(col[i] < *val]) res[k++] = i;

return k;
}

Listing 2: No-Branching less-than Selection primitive

size_t
select_less_than(size_t n,int* res ,int* col ,int* val) {

for(size_t k = 0, i = 0; i < n; ++i){
res[k] = i; k += (col[i] < *val);

}
return k;

}

The No-Branching implementation always performs the
same number of operations, while with Branching, this de-
pends on the data. If the data is such that the branch is
almost never taken, then the Branching implementation will
do less work, as it avoids executing the code that generates
a result. What is the fastest implementation depends on the
data, as shown in Figure 1, where selectivity is the probabil-
ity that the branch condition is true. For very low and very
high selectivities Branching is faster, while No-Branching is
better otherwise. Note that the same experiment ran on dif-
ferent hardware tends to produce performance curves of sim-
ilar shape, but with different cross-over points (see e.g. [3],
Figure 2).
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Figure 1: (No-)Branching primitive cost vs. selectivity [17].

One could hope that if the query optimizer could correctly
estimate the selectivity for this query, it could pick the best
solution (note that doing so would require significant tuning
and instrumentation, because the cross-over points will vary
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Figure 2: (No-)Branching primitive cost in TPC-H Q12.

between CPUs). These hopes are dashed in Figure 2, which
plots the behavior of these primitives during the execution of
TPC-H Query 12. Here, the primitive is called 126976 times
and for most calls, the Branching primitive is faster (by
around 20%, from 5 cycles/tuple to 4 cycles/tuple), however
at the end it deteriorates to up to 16 cycles/tuple. What
happens is that during almost the entire query the selection
percentage is 100% but at the end it drops off towards 0%.
During this drop, Branching strongly degrades, while No-
Branching remains constant and thus becomes the best.

This example showed how two equivalent primitive imple-
mentations can perform differently, depending on selectiv-
ity (hence data distributions). Thus, statically determining
a single best implementation when the database system is
compiled will be sub-optimal. It also showed that even dur-
ing execution, the context may change, so different primitive
implementations may perform better during the lifetime of
a query. Thus, determining a best implementation at query
optimization time, even if we assume its cost could be pre-
dicted, will still not produce an optimal solution. Our pro-
posal, Micro Adaptivity, addresses this challenge, because at
the start of the query it will quickly determine that Branch-
ing selection performs best, but when its performance dete-
riorates, it will switch to No-Branching.

Contributions and Roadmap. Our overall contribution
is the concept of Micro Adaptivity, where a database sys-
tem comes equipped with many primitive flavors, between
which it adaptively chooses during execution. This makes a
system self-tunable, resulting in improved and more robust
performance Additionally, it simplifies product engineering
by removing the complex and error-prone decision process
of which implementation of a given functionality to ship, im-
proving performance in different scenarios and on different
platforms, including the future ones, with as-of-yet unknown
strengths and weaknesses.

Our technical contributions are enumerated as follows. In
Section 2, we (i) characterize a number of factors that cause
performance difference between primitive flavors, and thus
provide an opportunity for Micro Adaptivity to make per-
formance better and more robust. Then in Section 3 we (ii)
describe an ε-greedy learning algorithm that casts flavor se-
lection into a multi-armed bandit problem, and (iii) describe
the software framework for Micro Adaptivity that we imple-
mented in Vectorwise, which comprises the techniques used
to generate many different primitive flavors, data structures
to manage flavors inside the query executor, and changes
inside the query evaluator to perform the adaptive choos-
ing of the best flavor. Throughout the paper we provide
micro-benchmark results, and in Section 4 evaluate its over-
all effect on the TPC-H workload. In Section 5 we discuss
related work in adaptive query execution, as well as adaptive
computational libraries from outside the realm of database
system. Finally, in Section 6 we outline our conclusions and
future work.

mul1
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Figure 3: Projection expression with two “mul” instances.

1.1 Primitives in Vectorwise
To help with the understanding of Micro Adaptivity and

our performance results, we first provide additional context
on the role of vectorized primitives in Vectorwise.

Listing 3: Query with 2 multiplication primitive instances

SELECT l_quantity * l_extendedprice AS netto_value ,
netto_value * l_tax AS tax_value ,
netto_value + tax_value AS total_value

FROM lineitem

Primitive Instances. The query in Listing 3 calculates a
total_value using a relational Projection operator, involv-
ing three arithmetic functions, leading to three primitive
instances in the query plan. We use the term “primitive in-
stance” to distinguish calls to the same “primitive function”
from different places in query plans. In this example, there
are two instances of the same primitive that multiplies two
integers (see mul1 and mul2 in Figure 3). It is important to
make this distinction because different primitive instances
process different streams of data, hence their performance
behavior is different.

Listing 4: map mul primitive with selection vector

map_mul_int_col_int_col(size_t n, int* res ,
int* col1 ,int* col2 ,int* sel)

{ size_t i, j;
if (sel)

for(j = 0; j < n; ++j) {
i = sel[j]; // get position ’i’ from sel
res[i] = col1[i] * col2[i];

}
else // no selection vector

for(i = 0; i < n; ++i)
res[i] = col1[i] * col2[i];

}

Selection Vector. Listing 4 shows Vectorwise code for
the integer multiplication primitive. The name of primi-
tive functions used by the Projection operator starts with
map, Selection primitives start with sel, Aggregation with
aggr, etc. Subsequently, _mul is derived from the predicate
name (multiplication) and what follows are parameters, e.g.
_int_col denotes a non-constant parameter of type int – a
constant parameter would be _int_val. Each (non-constant)
parameter is a vector, i.e., a simple array of values.

Many primitives accept an optional selection vector (last
parameter) which defines the subset of input tuples that
needs to be processed. The else-body just computes results
for the selected tuples (“selective computation”) – see also
Figure 7 (left). Selection primitives such as those in Listing 1
and 2 generate these selection vectors, which are then passed
to other primitives. This avoids copying all column vectors
after a Selection to eliminate the tuples that did not pass.



machine: 1 2 3 4

CPU Manufacturer Intel Intel AMD Intel

CPU Architecture Nehalem Core2 Egypt Sandy Bridge

Last Level Cache 12MB 4MB 1MB 8MB

RAM Size 48GB 8GB 64GB 16GB

Table 2: Test Machines

compiler version flags

gcc 4.6.2 -O6 -fomit-frame-pointer -falign-functions=4

-falign-loops=4 -falign-jumps=4 -ftree-vectorize

-fexpensive-optimizations -frerun-cse-after-loop

-funroll-loops -frerun-loop-opt -finline-functions

icc 11.0 -O5

clang 3.1 -m64 -no-integrated-as -O3

Table 3: Compilers used in Tests

Flavors. The primitive signature string is used in the Prim-
itive Dictionary component of the query evaluator to imple-
ment function resolution; hence this dictionary maps signa-
ture strings into function pointers. As part of the Micro
Adaptivity feature, we changed the Primitive Dictionary so
as to allow it to store multiple function pointers for each
signature; this allows us to have multiple implementations
(Primitive Flavors) for the same primitive. Primitive Fla-
vors are kept using additional meta-information, that might
including: flavor source (e.g. code version, compiler used,
etc.), number of times it was used and some performance
characteristics, both delivered with primitive as well as gath-
ered during runtime. The Primitive Dictionary provides a
registration mechanism, where a software component can
register additional Primitives and Primitive Flavors dynam-
ically, allowing e.g. loading additional Primitive Flavors on
startup or even while the system is active.

Approximated Performance History (APH). For each
primitive instance in a query plan, Vectorwise keeps profil-
ing data gathered at every call to the function. This data
comprises the total amount of tuples processed, the total
amount of primitive calls and the total CPU cycles spent
in that primitive instance. As part of the Micro Adaptivity
project, we expanded the profiling to keep not only totals,
but also a performance histogram over time. Given that the
typical vector size used in Vectorwise is around 1000 tuples,
a query operator in an analytical query that processes e.g.
100M of tuples will call its primitives 100K times. Keep-
ing a histogram of 100K measurements for each primitive
instance is too heavyweight, so we create a Approximated
Performance History (APH) of just 512 buckets. Initially,
after each primitive call, Vectorwise adds one new bucket
with performance statistics, but when all 512 buckets are
used neighbors are merged such that 256 occupied buckets
remain. From then on, each bucket contains data from two
calls; when the process repeats k time, the APH still has
at most 512 buckets, each representing 2k subsequent calls.
Figure 2 showed the APH with in the X-axis the amount of
function calls made; in Figures 4 and 11 we omit this amount
of calls; the X-axis just represents the query lifetime.

2. PERFORMANCE DIVERSITY

In this section we provide examples of factors that in-
fluence primitive performance. Two factors are related to
creating different flavors for the same primitive: (i) algorith-
mic variations and (ii) using different compilers or compiler
switches. A further factor is (iii) input data distribution;
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Figure 4: Compiler differences: sample APHs from TPC-
H SF100 on machine 4 (avg. cycles/tuple during a query)

we already saw in Figure 2 that this can even cause changes
in behavior such that different phases of a query, favor a dif-
ferent flavor; this will re-occur in Figure 4 (b) and (d). The
final factor considered is (iv) different behavior on different
hardware platforms. For this purpose, we experimented on
four different machines as listed in Table 2. Finally, this
section shows that even to have a query optimizer choose
just a single flavor for each primitive instance before query
execution (which is sub-optimal anyway), the cost modeling
task for this is daunting because algorithmic variant, data
distribution, compilation method and hardware all interact
in determining primitive cost. These points together make
the case for the Micro Adaptivity framework.

Compiler Variation. One of the easiest ways to obtain
different flavors is to compile with different compilers and
switches. Vectorwise can be compiled using a variety of
C/C++ compilers, and we took those compilers and flags
normally used to produce optimized Vectorwise builds (those
supplied to customer) on Linux, as displayed in Table 3.

Figure 4 shows some selected Approximate Performance
Histories (APHs) from running the TPC-H queries with the
100GB size on machine 4. Sub-figures (a) and (b) show
that within Q1, the addition primitive compiled by gcc is
fastest (a), while the integer aggregation primitive used in-
side this same query compiled by icc consistently beats gcc
(b). Hence, there is no single best compiler for Q1. In (a)
the performance difference is 30%. Even more interestingly,
we see that the clang compiler for the aggregation primi-
tive, while initially on the gcc level, halfway crosses over
and becomes fastest, edging out icc.
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Figure 5: mergejoin: best compiler depends on machine

The third sub-figure (c), showing a mergejoin primitive in
action in Q7 has gcc being almost 90% slower than icc and
clang. The rising and falling curves in the border regions
of the mergejoin are caused by the average population of
the selection vectors on the join inputs, which result from
a prior range-selection on a date column that has data lo-
cality. This means that at first no tuples qualify, then a
rising percentage of tuples classify (the left border), until on
average all tuples classify (the plateau), followed the right
border region with a falling percentage of qualifying tuples.
The same kind of phenomenon causes performance degrada-
tion in the border regions of sub-figure (d). Selection vectors
in these borders start out really small, with only a handful
of tuples selected; in which case there is too little function
call overhead amortization (because selective computation
occurs on only on the few selected tuples). In case of (c),
the mergejoin does move faster through the inputs at the
borders because it can then skip and avoid result generation
due to tuples being not-selected.

Sub-figure (d), which depicts a “fetch” primitive that just
copies selected values from an input to an output vector,
has remarkable behavior: at exactly the same switch points,
either the gcc or clang primitive achieves “best” behavior
which seems to fall on a smooth curve; whereas the other
compiler then also achieves performance forming another
smooth curve which is 30% slower – icc being in the middle
of both flavors but never the best.

Finally, sub-figure (e) shows an Aggregation primitive that
inserts a string key in a hash-table; here performance grad-
ually deteriorates as the hash-table grows and (presumably)
cache and TLB misses increase in cost. For some reason,
though, the icc compiled primitive is twice slower than those
compiled by gcc and clang.

The unexplained behavior of the mergejoin primitive in
Figure 4 (c) triggered some micro-benchmarking on mul-
tiple machines. The micro-benchmarks on the mergejoin
primitive in Figure 5 confirm the results in Figure 4 (c): on
machine 1 icc is much faster, however we see that on machine
3 (AMD), it is actually substantially slower than clang.

Without the ambition to understand everything at the
deepest level1, we can conclude that compilers cause signif-
icant variation in primitive performance, and the code they
produce behaves differently on different machines, and even
on a single platform in a single primitive instance in a single
query there may not be a single best compiler.

We now describe a few ideas we pursued to generate dif-
ferent algorithmic primitive variations.

Branch vs. No-Branch. In the Introduction, we have
already discussed Branch vs. No-Branch implementations
of Selection primitives, so we will not repeat this here.

1Authors need to admit avoiding this temptation was an
extraordinary effort on their side.
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Figure 6: sel bloomfilter speedup with loop fission

Loop Fission. Vectorwise uses bloom filters to acceler-
ate hash-table lookups in situations where the key is often
not found. Using a bloom-filter is faster because hash-table
lookup is CPU-intensive and the hash-table may not fit in
the CPU cache – whereas a bloom filter might fit as it is
much smaller, and lookup is quick and simple. Still, the
bloom filter may not fit the CPU cache, and the lookup
primitive displayed in Listing 5 then incurs a cache miss in
the bf_get() call. Note, that this is a Selection primitive,
identifying tuples surviving the bloom-filter check, and uses
a No-Branching code style.

Listing 5: Original bloom filter primitive

size_t sel_bloomfilter_sint_col(size_t n, size_t* res ,
char* bitmap ,sint* keys)

{ size_t i, ret = 0;
for (i = 0; i < n; i++) {

slng hv = bf_hash(keys[i]);
res[ret] = i;
ret += // loop dependency

bf_get(bitmap , hv); // cache miss
}
return ret;

}

Listing 6: Bloom filter primitive with Loop Fission

size_t sel_bloomfilter_sint_col(size_t n, size_t* res ,
char* bitmap ,sint* keys)

{ size_t i, ret = 0;
for (i = 0; i < n; i++) {// independent iteration

slng hv = bf_hash(keys[i]);
tmp[i] = bf_get(bitmap , hv); // cache miss

}
for (i = 0; i < n; ++i) {

res[ret] = i;
ret += tmp[i];

}
return ret;

}

The loop-fission optimization of this bloom-filter check is
displayed in Listing 6. Rather than identifying the selected
tuples inside the same loop, it first just collects the boolean
result of bf_get() in a temporary array, and then selects
from there in a separate loop. The idea behind this loop-
fission variant is that it removes all dependencies between
iterations of the first loop.

The loop-fission variant, when it sustains a cache miss in
bf_get(), allows the CPU to continue executing the next
loop iteration(s), leveraging the large out-of-order execution
capabilities of modern CPUs (> 100 instructions). This way
the CPU will get multiple (up to 5, on Ivy Bridge) loop
iterations in execution at any time, leading to 5 concurrent
outstanding cache misses, maximizing memory bandwidth
utilization. In contrast, the non-fission variant causes the
iterations to wait on each other due to the loop-iteration



Table 4: map mul: hand vs compiler unrolling (cyc/tuple)

Hand

Compiler unroll-on unroll-off

SIMD no SIMD SIMD no SIMD

Machine 1: unroll 8 1.73 1.73 1.73 1.73

no unroll 1.03 1.74 1.18 2.59

Machine 3: unroll 8 2.02 2.02 2.02 2.02

no unroll 3.61 2.15 3.55 4.03

dependency, thus achieves less concurrent cache misses and
therefore lower memory throughput.

We performed micro-benchmarks where we varied the num-
ber of unique keys from 212 to 227, which required bloom
filters with sizes from 4KB to 131072KB. Figure 6 shows
the speedup obtained by fission, versus bloom-filter size, in-
dicating a strong relation. For large bloom filters, fission
performs better, indeed sometimes 50% faster; whereas for
small bloom-filters where there are no cache misses fission
can be slower, sometimes by 15%. The main point, though,
is that the cross-over point depends on the machine: ma-
chine 1 crosses over at 1MB, but machine 4 at 4MB. One
can conjecture that accurate CPU cache cost modeling could
allow a query optimizer to pick the best variant, but we ar-
gue that it is hard to make such decisions robustly (also
considering the program will run on future hardware) as the
observed cross-over points do not trivially follow from the
CPU cache sizes in Table 2.

Listing 7: Template-generated loop with hand-unrolling

#define BODY(i) res[i] = a[i] * b[i]
for(i = 0; i+7 < n; i+=8){

BODY(i+0); BODY(i+1); BODY(i+2); BODY(i+3);
BODY(i+4); BODY(i+5); BODY(i+6); BODY(i+7);

}
for(; i < n; i++)

BODY(i);

Hand-Unrolling. The primitives in the Vectorwise engine
are template-generated. The templates are used to provide
type-specific versions of the same function (e.g. multiplica-
tion of integers, of doubles, of short integers, etc.). Addition-
ally, these template macros instantiate all possible parame-
ter combinations of vector vs. constant (e.g multiply values
from two vectors, a vector with a constant or a constant with
a vector). Template macros insert a body action, such as the
multiplication of values, in a loop over the input vector(s).
By changing these templates, as in Listing 7, we manually
introduced a well known loop-unrolling optimization into all
Vectorwise primitives – we call this hand-unrolling. In our
experiments we consider hand unrolling by a factor of 8 (un-
roll 8) and no hand unrolling (no unroll).

We performed micro-benchmarks to study the interac-
tion between gcc compiler switches (see Table 3) for SIMD
(-ftree-vectorize) and compiler-enforced enrolling (-funroll-
loops) versus hand unrolling. The primitive being tested is
integer multiplication from Listing 4, without selection vec-
tor, in which case the task is to multiply two dense arrays.
Because of hand unrolling, gcc was unable to vectorize or
unroll the loop (verified in the assembly and also reflected
in the times measured). Table 4 shows that, surprisingly, for
machine 3 unrolling is better than SIMD, while for machine
1 SIMD is clearly faster. We conclude that hand-unrolling
does have effects, but it is hard to predict.

Full computation. Many primitives in Vectorwise accept a
selection vector argument that contains the positions of the
tuples in the current vectors that need to be processed by
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Figure 7: selective (left) vs. full computation (right)
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the primitive. Figure 7 (left) shows that such“selective com-
putation” only processes the required tuples (marked here
with white background) and the result vector will have un-
defined values in the positions not in the selection vector
(gray background). For some operations it is possible to ig-
nore the selection vector and still produce correct results.
The multiplication primitive can process all tuples, even
though some of the results are not needed. Even though
this strategy performs more work, it can be faster thanks to
SIMD, because selective computation as in Figure 7 (left)
is not being SIMD-ized by compilers, while full computation
as in Figure 7 (right) trivially maps to SIMD, such that
compilers generate it (with or without hand unrolling, as
we saw above). Figure 8 shows the improvement obtained
using this full computation policy compared with selective
computation, as a function of the selectivity, on the various
machines. It turns out that for 32-bits int multiplication full
computation is faster on machine 1 if 30% or more tuples
are in the selection vector; however this cross-over percent-
age is 80% on machine 2. We also show for machine 1 the
performance for 16-bits short and 64-bits long multiplica-
tion; where the former benefits already from 10% on (and
the benefit is much stronger), while the latter never benefits
from full computation (and SIMD). So, if this choice for the
best primitive would have to be made by an optimizer, or by
a heuristic inside the code, it would be quite difficult to pick
proper boundaries as it depends on the hardware, compiler
settings, data type and possible hand unrolling.

Conclusions. We were able to create many primitive fla-
vors with limited effort, and these show a jungle of hard-
to-predict performance variation. This provides ample op-
portunity to improve performance robustness for our Micro
Adaptivity framework – described in the rest of this paper.



3. MICRO ADAPTIVITY FRAMEWORK
The Micro Adaptivity framework modifies the architec-

ture of Vectorwise in various places, including the template-
based primitive generation in its system compilation envi-
ronment, its dynamic library loader and, most importantly,
in its query executor. Concerning the latter, the most im-
portant change is the introduction of a vw-greedy learning-
algorithm inside the expression evaluator. This learning al-
gorithm is the heart of Micro Adaptivity, which casts the
optimization problem of selecting the best flavor at runtime
into a multi-armed bandit (MAB) problem [15]. We now
discuss these changes in turn.

3.1 Flavor Libraries.
One of the most effective and easy mechanisms to obtain

different flavors is to compile the Vectorwise primitives with
different compilers and compiler switches. The process of
creating a final binary system therefore now takes object
code from multiple build environments, extracting the fla-
vor library from each. Flavor libraries are loaded with the
POSIX dlopen function during the Vectorwise kernel initial-
ization, before any query is received. On Linux, dlopen can
be called with the RTLD_DEEPBIND argument. With this, the
symbols referenced by a flavor library are resolved by first
looking inside that library, whereas without the argument,
symbols are resolved using previously loaded libraries. This
mechanism is sufficient for implementing the two functions
get_random_flavor() and get_best_flavor() needed for the
learning algorithm (see later Listing 8).

As we described in the context of Listing 7, the Vector-
wise primitive source code is generated using a template-
expansion tool that allows to specify basic code patterns.
This tool expands 340KB of template code 50x into 16MB
of primitive source code, even without Micro Adaptivity. We
modified these templates by adding the described algorith-
mic variations, activated by compilation flags. For instance,
by defining -DFULL_COMPUTATION_FLAVOR, the whole primitive
library is compiled such that all Projection primitives fol-
low the full computation strategy (selective computation is
default). For No-Branching and loop fission that affect Se-
lection primitives there are similar defines. Note that these
defines affect disjoint sets of primitives, hence only two dif-
ferent builds are needed to generate all variants. On top
of this there is a compilation flag to enable hand-unrolling
(which affects all primitives), so we need four different builds
to generate all previously described algorithmic variations.

3.2 Learning Algorithm
The key component in the Micro Adaptivity is the addi-

tion of a learning algorithm inside the expression evaluator.
The expression evaluator is the component that calls im-
plementation functions for primitives. It is activated as a
part of vectorized execution, (recursively) evaluating an ex-
pression for a vector of input values, producing a vector of
output values. Whereas in unmodified Vectorwise this used
to call the same primitive function for a particular expres-
sion for every vector, we now added a learning algorithm
that at each call chooses one of the flavors available for that
primitive.

We presented earlier how performance can be dependent
on data distributions, query parameters, hardware etc., so
supervised learning strategies (e.g. artificial neural networks)
which rely on an off-line training phase are not a good fit for

our learning algorithm, because we will not be able to build
a representative training data set for every possible work-
load. Therefore, we seek a real-time learning algorithm, i.e.
one that is able to adjust to sudden context changes.

Reward and Regret. We can say that each flavor brings
a reward proportional to its performance. These rewards
are not constant, and the reward of a flavor is unknown
until the system actually calls that flavor and records its
performance. So, the most promising flavor, chosen by the
learning algorithm, has to be the flavor that will lead to
the maximum total reward. After each choice, the system
updates its knowledge about the flavors, so it is able to make
better decisions in the future. This type of problem is called
a multi armed bandit problem [12].

Assume that the rewards of the K flavors of a primitive
follow some probability distributions R1, R2, ..., RK and let
µ1, µ2, ..., µK be the expected values of these distributions
and µ∗ = maxk{µk} the maximum expected value. Dur-
ing the execution of a query, the system will make T flavor
choices. At the end, we can compute the total expected re-
gret, as RT = T ∗ µ∗ −

∑T
t=1 µj(t), where j(t) is the index

of the flavor that was actually chosen by the system at iter-
ation t. The regret tells us how good our selection strategy
is, i.e. the smaller the regret the better.

We can also express regret asRT =T∗µ∗−
∑K

j=1 µjE[T (j)],

where T (j) is a random variable for the number of times that
flavor j was chosen and E[T (j)] is its expected value. For
certain reward distributions, it can be proved that the regret
grows at least logarithmically with the number of iterations,
i.e. RT = Ω(lnT ) [8] .

Exploitation vs. exploration After a number of itera-
tions, the system will have some knowledge about the re-
wards of each flavor. A danger is that if the system keeps
choosing the same flavor, it will build more knowledge about
it, but the knowledge about the other flavors will become
stale. In the meantime, contextual parameters that deter-
mine the primitive performance (e.g. selectivity, cache/mem-
ory traffic) may change, so another flavor could become the
best, yet our system will fail to switch to it. To overcome
this, the optimizer should sometimes choose a flavor that
is not optimal based on the knowledge so far. Of course,
this cannot be done too often, because it is likely that the
chosen flavor is indeed not optimal, so it might hurt perfor-
mance. Using the knowledge gathered so far to choose the
most promising flavor is called exploitation while choosing
a random flavor to try and find new opportunities is called
exploration. Thus, the key issue is to determining how to
balance exploration and exploitation.

Each flavor can be viewed as a random process with one
random variable which represents the call performance. A
random process is called stationary if its probability distri-
bution does not change in time. Statistical properties such
as mean or variance, if they exist, are constant in such a sys-
tem. For this case, there are known algorithms that solve
the MAB problem optimally [2], i.e. the regret increases
logarithmically with the number of games.

Unfortunately, in our case, we cannot be certain that the
flavors are stationary processes. This means that the theory
behind these algorithms no longer applies so they might per-
form poorly in practice. Because of this, we chose to base our
approach on one of the simpler algorithms, ε-greedy, which
was easier to tweak to becoming non-stationary resistant.



Figure 9: vw-greedy algorithm pattern.

ε-greedy strategy The multi-armed bandit problem has
applications in many different domains (e.g. clinical trials,
routing, online advertising) so it has been the subject of
extensive research which produced a number of solutions.
One family of simple and yet efficient solutions is called the
ε − greedy strategy [16]. With the ε-greedy approach, a
random flavor is chosen (exploration) with probability ε and
the flavor with the best estimated reward (exploitation) is
chosen with probability 1−ε. This decision is made at every
primitive call. For each flavor, the algorithm maintains the
performance mean and uses it to choose the best flavor in
the exploitation phase. The mean is updated after each call.
The efficiency of this method depends on the ε parameter. If
it is small (less exploration, more exploitation) there is less
time wasted testing sub-optimal flavors, but it also means
that it will take more time to find the optimal flavor in case
performance characteristics change.

The ε-greedy strategy is not optimal, because its regret
increases linearly with the number of iterations. With the
ε-decreasing strategy, ε is decreased after every iteration and
[2] shows that this achieves optimal regret if ε decreases at
a rate of 1/n, n being the number of calls so far.

vw-greedy We designed the vw-greedy algorithm (Listing 8),
based on ε-greedy, but with the following differences:

1. exploration and exploitation alternate in a determin-
istic pattern, instead of a random pattern.

2. to choose a flavor, we look at recent information about
performance, instead of keeping an overall average.

The goal of these changes is to improve handling of the
non-stationary case. The standard ε-greedy method com-
putes the mean performance for each flavor using all calls
since the beginning of the query. In the stationary case, this
mean value will eventually converge because the true mean
is constant. But in our case, we compute the mean of only
recent calls, making the algorithm handle sudden changes in
performance. Using a deterministic pattern of exploration/
exploitation phases makes it easier to compute the mean of
recent calls. Otherwise, the algorithm would need to keep
an array with performance for recent calls to compute an
accurate mean or use an approximating algorithm. It also
helps when analyzing the results of the algorithm.

vw-greedy performs exploration every EXPLORE_PERIOD calls.
Exploration means choosing a random flavor, ignoring any
performance information we have gathered so far. This ran-
dom flavor is then used for the next EXPLORE_LENGTH primitive
calls. The regret caused by exploration will grow linearly
with the number of calls by an amount proportional to the
ratio EXPLORE LENGTH

EXPLORE PERIOD
. Every EXPLOIT_PERIOD primitive

calls, the algorithm chooses the best flavor and uses this
for the next EXPLOIT_PERIOD calls. This pattern is shown in
Figure 9.

Listing 8: vw-greedy algorithm

function vw-greedy(prim , tuples , cycles) {
// classical primitive profiling
prim.tot_cycles += cycles;
prim.tot_tuples += tuples;
prim.calls ++;

// vw -greedy switching
if (prim.calls == prim.calc_end) {

// calc average cost in previous period
prim.flavor.avg_cost =

(prim.tot_cycles - prim.prev_cycles )/
(prim.tot_tuples - prim.prev_tuples );

if (prim.calls > prim.explore_period ){
// perform exploration
prim.explore_period += EXPLORE_PERIOD;
prim.flavor = get_random_flavor ()
prim.calc_end = EXPLORE_LENGTH;

} else {
// perform exploitation
prim.flavor = get_best_flavor ()
prim.calc_end = EXPLOIT_PERIOD;

}
// ignore first 2 calls to avoid
// measuring instruction cache misses
prim.calc_start = prim.calls + 2;
prim.calc_end += prim.calc_start;

}
if (prim.calls == prim.calc_start) {

prim.prev_tuples = prim.tot_tuples;
prim.prev_cycles = prim.tot_cycles;

}
}

The normal Vectorwise profiling already kept per primi-
tive the cumulative cycles prim.cycles, the cumulative num-
ber of tuples processed prim.tuples and the cumulative amount
of calls prim.calls. During a given phase, the chosen fla-
vor is called a number of times (either EXPLORE_LENGTH or
EXPLOIT_PERIOD). At the end of the phase, we choose a new
flavor: either a random flavor with get_random_flavor() or
the “best” one with get_best_flavor(). The best flavor is
the flavor with the lowest average cycle/tuple cost. This
average cost of a flavor is computed only for the calls in
the same phase, at the end of each phase, and ignoring the
first two calls since these tend to start off higher due to
instruction cache misses. The vw-greedy function assumes
that EXPLORE_PERIOD is larger than EXPLOIT_PERIOD and both
are multiples of EXPLORE_LENGTH, which in turn should be
> 2. In our implementation, all parameters are powers of
two, such that the if-then tests are a comparison between a
constant and a bitwise-and; i.e. low-cost operations.

Demonstration. We now demonstrate the algorithm on a
synthetic example scenario. We used EXPLORE_PERIOD=1024,
EXPLOIT_PERIOD=256 and EXPLORE_LENGTH=32 as settings.

The example query scenario has a primitive with three
flavors that are non-stationary in performance, and where
one is the best at the start and the end of the query, but
another one is better in the middle. In Figure 10, the orange
curve is the performance trace of the vw-greedy algorithm.
The small black vertical lines at the bottom of the chart
mark the start of an exploration phase. The distance be-
tween them is therefore equal to EXPLORE_PERIOD. Because of
the exploration phases, there are a lot of short spikes in the
performance. Most importantly, we see that our algorithm
consistently covers the minimum of the various performance
lines, switching in the middle segment to the primitive that
is the best there.
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Figure 10: vw-greedy in action on 3 flavors (APHs).

Simulations on traces. We studied the behavior of var-
ious MAB algorithms using profile data gathered from a
TPC-H SF-100 run on Machine 1. This workload contains
over 300 primitive instances, and the number of calls to these
primitives ranged from 16K to 32K. For this evaluation we
used only three flavors generated by using different compil-
ers (gcc, icc and clang). This profile data consists of mea-
surements of all three flavors, each taken in a run where
the systems sticks to one flavor only. To decide how good
an algorithm is, we compare its performance with OPT, i.e.
the theoretical optimal performance obtained by picking for
each call the primitive flavor that performed best.

We compute two scores: an absolute score and a rela-
tive score. The absolute score sums all flavor times selected
by the MAB algorithm being tested and then divides this
by the sum of the times that OPT selects. The Abso-
lute/OPT score for a query is the ratio between the overall
workload time obtained by the algorithm and the optimal
performance, i.e. the lower the score, the better. The Rel-
ative/OPT score looks at each primitive instance individ-
ually: it divides the performance achieved on that primi-
tive instance by the MAB algorithm and divides it by the
cost achieved by OPT for that primitive instance. Subse-
quently, the relative score is the average of all these factors.
The difference between Absolute/OPT and Relative/OPT
is that the former shows the overall impact of the MAB
algorithm on the entire workload, whereas the latter charac-
terizes the average benefit on each primitive. For instance,
if some primitives do not benefit much from Micro Adaptiv-
ity, but happen to take many cycles in this workload overall,
they may cause the Absolute/OPT score to be lower than
the Relative/OPT score.

To see how our algorithm compares with alternatives, we
evaluated many parameter settings of each algorithm on this
data set. The top-12 average scores are given in Table 5. The
parameters for vw-greedy are (EXPLORE_PERIOD,EXPLOIT_PERIOD,
EXPLORE_LENGTH). For the others, we chose parameters simi-
lar to the ones evaluated in [15]. For the ε-greedy and ε-first
algorithms we also chose one parameter that we thought is
equivalent to the vw-greedy parameters (e.g. for EXPLORE_PERIOD
of 1024 we chose ε = 0.001).

This simulation shows that the best overall performance
can be obtained by the vw-greedy algorithm, suggesting pa-
rameters (1024,8,2). We note that on this benchmark the
scores for all algorithms are quite similar because testing
only the compiler flavors does not favor vw-greedy, as com-

Algorithm Absolute/OPT Relative/OPT Average

vw-greedy(1024,8,2) 1.015 1.011 1.013

eps-first(0.001) 1.012 1.016 1.014

eps-greedy(0.001) 1.015 1.015 1.015

vw-greedy(2048,8,1) 1.015 1.015 1.015

eps-decreasing(1.0) 1.015 1.016 1.015

eps-decreasing(0.1) 1.015 1.016 1.015

vw-greedy(2048,8,2) 1.018 1.013 1.015

eps-greedy(0.05) 1.017 1.015 1.016

eps-decreasing(5.0) 1.022 1.015 1.018

eps-greedy(0.1) 1.018 1.021 1.019

eps-first(0.05) 1.020 1.019 1.019

eps-first(0.1) 1.017 1.023 1.020

Table 5: Performance of MAB algorithms with different pa-
rameters (as factor of OPT), simulated on a TPC-H trace.

piler differences less often lead to cross-over points than the
other algorithmic variants. The fact that cross-over during
a query is often not needed shows because ε-first finishes as
a runner-up, while it only tests all flavors at the beginning
and then sticks to its choice. This simulation did trigger us
to add an initial exploration phase to vw-greedy: in the first
EXPLORE_PERIOD calls, we also start by first testing all avail-
able flavors, for EXPLORE_LENGTH each. Algorithm Listing 8
can be trivially extended with this functionality.

4. EVALUATION
To evaluate Micro Adaptivity, we measured the impact

on the TPC-H benchmark2 at the 100GB scale factor on
machine 1. Vectorwise can run queries in parallel on multiple
cores, but for these experiments we configured it to run on
a single core, to get more accurate measurements.

4.1 Detailed Impact of Micro Adaptivity
We separately benchmarked the five sources of creating

different primitive flavor sets explored in this paper, i.e.
(No-)Branching Selection primitives, the use of loop fission
in hash-table lookup, different compilers, full computation
and with or without hand loop unrolling. We measured the
times and speedups for those primitives that are actually
targeted by these flavor sets. For each flavor set, we first
tested each flavor individually and then ran Micro Adaptiv-
ity with the whole set. Using the Approximate Performance
History (APH) statistics that Vectorwise gathers, we com-
puted an approximated optimal (OPT) performance for each
primitive instance, by taking the minimum time among all
flavors for each APH bucket. This time is shown in the OPT
column in the following tables.

Each table shows the number of CPU cycles spent by one
flavor, in total over all the TPC-H queries, but only for
the primitives actually affected by the flavor set. The first
column contains the default behavior and shows the total
amount of cycles spent in the affected primitives, as well
as the percentage of the overall workload – in order to give
an impression of the potential impact of accelerating these
primitives. The other columns in the table show the perfor-
mance improvement factor compared over the first column,
obtained by switching to the non-default flavor, by Micro
Adaptivity choosing between them in realtime, and by OPT.

2Note that we used TPC-H schema and queries for demon-
stration purposes only, and these results should in no way
be considered to be compliant or official TPC-H results



Always Branching Always No-Branching Micro Adaptive OPT

57 bn. (8.58%) 1.12 1.22 1.23

Table 6: Cost in cycles (and as % of workload), and im-
provement factor in primitives with (No-)Branching flavors.

only gcc only clang only icc Micro Adaptive OPT

348 bn. (51.29%) 0.99 0.99 1.11 1.11

Table 7: Cost in cycles (and as % of workload), and im-
provement factor in primitives with Compiler flavors.

Never Loop Fission Always Loop Fission Micro Adaptive OPT

71 bn. (11.30%) 1.40 1.57 1.57

Table 8: Cost in cycles (and as % of workload), and im-
provement factor in primitives with Loop Fission flavors.

Selective Computation Full Computation Micro Adaptive OPT

33 bn. (5.25%) 0.57 1.09 1.10

Table 9: Cost in cycles (and as % of workload), and improve-
ment factor in primitives with Full Computation flavors.

unroll 8 no unroll Micro Adaptive OPT

348 bn. (51.29%) 1.01 1.07 1.07

Table 10: Cost in cycles (and as % of workload), and im-
provement factor in primitives with Hand-Unrolling flavors.

Branching vs. No-Branching. In this TPC-H run, less
than 10% of CPU time was spent in Selection primitives.
Thus, speeding up selections can bring only moderate in-
crease in the overall TPC-H score. But, we can see how Mi-
cro Adaptivity takes advantage of Branching vs No-Branching
algorithmic variants in selection primitives. Table 6 shows
that using No-Branching always is faster than Branching al-
ways, making selections 12% faster. Micro Adaptivity makes
use of both implementations to obtain a 22% performance
increase, which is close to the optimal.

Compilers. Table 7 presents the speedups of all compilers
compared to gcc. Apparently, all compilers lead to similar
performance, so normally one does not gain much by chang-
ing the compiler. However, using Micro Adaptivity, we get a
noticeable speedup of 11%, which means that at the primi-
tive level there are in fact differences between the compilers.
The primitives affected by Micro Adaptivity use 51% of the
total CPU time so we expect to get 5% improvement overall.
It may be surprising that varying compilers does not affect
all primitives (which account for > 90% of all CPU cycles).
The reason is that in the Vectorwise codebase, some opera-
tors still bypass the expression evaluator for calling certain
primitives. This holds for all decompression code in Scans,
and also for (important) primitives in hash-table lookup and
insertion, affecting Hash Joins and Aggregations. This re-
quires some additional engineering to fix.

Loop fission. From Table 8 we see that loop fission is
a good optimization for bloom filter lookups, reducing the
total CPU time by a factor of 40%. But there is more to gain
here by using Micro Adaptivity, which brings the reduction
in CPU cycles spent on bloom filter lookups to 57%.

Full Computation. Full Computation is a risky optimiza-
tion as it can lead to significant performance degradation.
In Table 9 we see that if it is forced always on, there is a per-
formance degradation of 43% in the map primitives that are
affected by full computation. Individual primitive instances
can be 13 times slower! With Micro Adaptivity, we mitigate
this risk and exploit any possible speedup that this opti-
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Figure 11: Micro Adaptive execution: sample APHs
from TPC-H, machine 1 (avg. cycles/tuple during a query)

mization may bring. In this TPC-H run we get a speedup
of 9%, compared to not using full computation at all. Un-
fortunately, in TPC-H, map primitives are responsible for
only a small fraction of the query time, so the impact of this
optimization is not large.

Hand unrolling. Hand unrolling is on by default in Vector-
wise (with unroll factor 8) but it turns out that on this work-
load it would be 1% faster to leave it off always. However,
because hand unrolling is sometimes better and sometimes
worse, Micro Adaptivity can come up with 7% improvement,
the optimum.

Sample Performance Histories. Since the workload con-
tains more than 300 primitive instances, we only show a few
samples of how Micro Adaptivity behaves; one for each flavor
set. Figure 11 shows that Micro Adaptivity closely tracks
the lower bound of any of the different flavors, switching
from one flavor to the other when that is beneficial.

The astute observer can see in case (a) that Micro Adap-
tivity is more quick in detecting deterioration of the cur-
rent algorithm, than in detecting improvement of a flavor
that is not considered best at the moment: it immediately
switches from Branching to Non-Branching, but takes a little
more time to switch back. This follows from the vw-greedy

algorithm, as finding out about a better-performing alter-
native takes multiple EXPLORE_PERIOD phases, while detect-
ing deterioration of the current best flavor happens every
EXPLOIT_PERIOD calls, which is a smaller timeframe. This
is hard to avoid, because checking non-best flavors usually
causes regret and therefore should be limited.



4.2 TPC-H Overall
We now look at the overall improvement of all individual

TPC-H queries and the overall Power score (i.e. the geo-
metric mean), comparing Micro Adaptive Vectorwise with
standard Vectorwise with and without heuristics.

Heuristics. A competing approach to Micro Adaptivity
is to try to invent heuristics that hard-code the cross-over
points for various algorithmic variants. This is not really
possible for flavors stemming from different Compilers, nor
really for Hand Unrolling. However, one could for instance
hard-code to use No-Branching selection implementations
between 10% and 90% observed selectivity – note that the
selectivity is always available to the primitives from compar-
ing the selection vector length to the vector-size. Similarly,
above 30% selectivity a primitive like map_mul in Listing 4
could ignore the selection vector by setting sel = NULL, ef-
fectively following the Full Computation code path. As this
code path would often use SIMD, the cross-over selectivity
threshold could even be shifted forward or backwards de-
pending on the data size, exploiting the observation in Fig-
ure 8 that the benefits of SIMD are proportionally higher
with smaller data types. Finally, depending on the bloom
filter size, we could decide to use Fission or not. We devel-
oped such heuristics, tuning them to the characteristics of
Machine 1, making that a best-case approach.

Results. Table 11 shows see that Micro Adaptivity im-
proves the geometric mean (power score) by 9%, clearly
beating the heuristics approach. Given this, we argue that
Micro Adaptivity is more attractive than spending time in
inventing, tuning and maintaining heuristics, because Mi-
cro Adaptivity is by nature more robust, future-proof and
less labor-intensive from the development side. Note that
the overall improvement is less than what could be expected
from Tables 6-10 because different optimizations do not al-
ways add up, and because the overall results presented here
are end-to-end and also include the interpretation overhead
of the extra instrumentation to keep APHs and the extra
performance statistics in vw-greedy. A 9% improvement may
not seem that large, but we think it is very promising since
even the most generic flavor sets such as hand unrolling and
compiler variation are currently not fully rolled out to all
applicable places in the codebase (they cover only 51% of
the cycles spent in primitives; so their reach could almost
be doubled still).

Future. We think we only scratched the surface in terms
of creating algorithmic variations; specifically because be-
sides the fission optimization in bloom filter, all other hash
lookup primitives are not covered, though they dominate
TPC-H time. As an example, we are thinking about insert-
ing prefetch instructions into hash lookups. Such prefetch
instructions are sensitive to the right prefetch depth and
stride; and the optimum can only be obtained by tuning to
the hardware [4]. Thus, by encoding multiple prefetching
approaches and distances in separate primitive instances,
we could exploit Micro Adaptivity to automatically find the
best combination for the hardware the system runs on and
for the data characteristics. Further, it would be interesting
to combine Micro Adaptivity with just-in-time (JIT) query
compilation techniques [14]. Often, multiple compilation
strategies apply for a particular (sub)-query or expression,
and it is very hard to create (reliable) cost models for JIT
code on the fly (and in case of vectorized execution, some

Query No Heuristics (sec) Heuristics Micro Adaptive

Q01 29.22 1.02 1.10

Q02 1.58 1.10 1.00

Q03 1.43 1.08 1.13

Q04 1.39 1.02 1.14

Q05 5.05 1.07 1.08

Q06 2.42 1.42 1.62

Q07 7.38 1.06 1.06

Q08 7.07 1.09 1.08

Q09 48.72 1.11 1.09

Q10 8.18 1.12 1.07

Q11 2.28 1.10 1.07

Q12 5.67 0.97 1.05

Q13 41.9 1.08 1.03

Q14 3.55 1.18 1.20

Q15 1.43 0.90 1.12

Q16 9.03 0.88 1.00

Q17 9.47 1.00 0.99

Q18 20.21 0.97 1.02

Q19 18.52 0.99 1.01

Q20 5.74 1.03 1.03

Q21 29.9 1.02 1.08

Q22 8.74 1.05 1.09

Geo Avg 1.05 1.09

Table 11: VW without heuristics (base result) vs. VW with
heuristics and Micro Adaptivity (improvement factors).

JIT code may not always be superior to vectorized execu-
tion). Micro Adaptivity makes robust choices, yet does not
rely on a cost model, making it a promising direction to
address this challenge.

5. RELATED WORK
Scientific Computing. FFTW [7] is a library that com-
putes the Discrete Fourier Transform and tunes itself to
the hardware that it is running. Adaptivity in FFTW is
achieved by using a planner which, prior to computing the
actual transform, tests multiple execution plans and chooses
the fastest for that machine. An execution plan is a decom-
position of the problem into simpler sub-problems, which are
solved by specialized code fragments called codelets. For ex-
ample, there could be a codelet that is optimized for solving
real transforms, one for complex transforms, codelets that
use SIMD instructions, etc. They are generated automati-
cally based on the problem size, but one can also hand-write
them. These codelets are similar to Vectorwise primitives;
but FFTW is not adaptive during computation.

The ATLAS project [1] uses an approach similar to FFTW
for linear algebra operations. ATLAS has an install phase
where it first probes the hardware, and based on these pa-
rameters, it then generates different implementations and
benchmarks them to find the fastest. For example, it pro-
duces different matrix multiply implementations, varying
the blocking factor or the loop unroll factor.

Adaptivity can be pushed even further, to support, not
only things such as different cache sizes, but also completely
different architectures (e.g. NUMA, GPU). [5] presents a
system for computing stencil operations that is able to gen-
erate different implementations targeting various architec-
ture specific features (e.g. NUMA, DMA).

In [9], an adaptive sorting library was presented, high-
lighting unlike the previous examples that input data distri-
butions affects on performance. Therefore, based on some



statistics derived from the data, this library chooses a sort-
ing algorithm. This is similar to Micro Adaptivity, but we
note that a DBMS cannot assume to have prior statistics,
because query plans and data values vary between queries.

Database Research. Adaptivity in DBMS-es is often im-
plemented in the execution plan level, e.g. by modifying
the plan at runtime or changing the order in which data
flows between operators. Adaptive query processing (AQP)
attempts to overcome the difficulties encountered by DBMS-
es that use the traditional optimize-then-execute approach.
The optimize phase relies on having estimates about the
cardinality, selectivity, etc. and in modern workloads these
might be unreliable or even impossible to produce (e.g. stream-
ing queries, remote data sources). Additionally, when exe-
cuting long running queries, the context (data characteris-
tics, system state) may change, so a static approach leads to
poor performance. We discuss a few well-known approaches,
but point the interested reader to the excellent survey in [6].

The Eddy operator [10] achieves adaptivity by changing
the order in which tuples are processed by operators (tu-
ple routing). Every operator receives input tuples from an
Eddy and sends tuples back to the Eddy, which routes them
between operators, based on the observed tuple arrival rates.

The MJoin operator dynamically changes the join order
in a multi-way join plan during query execution, exploiting
(changing) observed differences in join hit rates.

These adaptive query processing methods are complemented
by Micro Adaptivity, as they work on different levels that
are largely independent.

Compiler technology. Some compilers (e.g. icc) allow
creation of a single binary containing multiple versions of
the same function. On runtime, the version matching a
given platform is chosen. Micro Adaptivity improves on
such static and error-prone decisions, testing multiple ver-
sions dynamically and using the one performing best.

6. CONCLUSIONS AND FUTURE WORK
We presented Micro Adaptivity, a technique that can be

employed inside query engines that use some form of block-
oriented processing to increase query performance robust-
ness. The robustness comes from the fact that the system no
longer needs to depend on cost models modeling micro fea-
tures of database operators and their interaction with hard-
ware, or magical thresholds in heuristics. Such approaches
tend to be unreliable and non-future-proof as new hardware
with new characteristics comes along. Additionally, main-
taining cost models and heuristics is also labor-intensive for
the development team of a database product. The ability
of Micro Adaptivity to mitigate these problems constitutes
its “soft” selling-point and comes in addition to its “hard”
selling point of performance gains over e.g. heuristics.

We proposed and investigated various ways to create mul-
tiple flavor sets: different equivalent implementations for the
same kind of task. We showed that these different flavor sets
cause many performance variations that are hard to capture
in a robust cost model. Given multiple flavors, the query
evaluator is faced with a real-time optimization task known
as the Multi-Armed Bandit (MAB) problem. Here we con-
tributed a new MAB algorithm called vw-greedy that specif-
ically targets non-stationary cost distributions (i.e. cost dis-
tributions that change during the query). This algorithm
was then evaluated on the TPC-workload, using simulation

on traces to tune parameters. We investigated the impact
of each individual flavor set that we proposed, as well as the
overall effect on the TPC-H workload. Here, we also com-
pared with the alternative approach of hard-coded heuris-
tics. Our conclusions are that Micro Adaptivity can sig-
nificantly reduce the computational cost of primitives with
multiple flavors, and moderately but consistently improves
overall performance; more than hand-tuned heuristics do.

In future work, we plan to roll out Micro Adaptivity in ad-
ditional parts of Vectorwise, including performance-critical
components like hash-table processing, compression, and even
DML handling code. We are also interested in adding more
code optimizations e.g. hardware prefetching and just-in-
time query compilation techniques. Further, the vw-greedy
algorithm can still be improved in various directions, in-
cluding exploring better performing flavors or flavors known
to be dynamic more often. Similarly, for initial primitive
choices as well as for the exploration phases one could ex-
ploit the history of these flavors in other queries.
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