
Turing in Quantumland

Harry Buhrman∗

Centrum Wiskunde & Informatica
University of Amsterdam

buhrman@cwi.nl

Abstract

We revisit the notion of a quantum Turing-machine, whose design is based on the laws
of quantum mechanics. It turns out that such a machine is not more powerful, in the sense
of computability, than the machine originally constructed by Turing. Quantum Turing-
machines do not violate the Church-Turing thesis. The benefit of quantum computing
lies in efficiency. Quantum computers appear to be more efficient, in time, than classical
Turing-machines, however its exact additional computational power is unclear, as this
question ties in with deep open problems in complexity theory. We will sketch where
BQP, the quantum analogue of the complexity class P, resides in the realm of complexity
classes.

1 Introduction

A decade before Turing developed his theory of computing, physicist struggled with the advent
of quantum mechanics. During the famous 5th Solvay Conference in 1927 it was clear that a new
era of physics had surfaced. Its strange features like superposition and entanglement still lead to
heated discussions and much confusion. However strange and counter-intuitive, the theory has
never been refuted by experiments that are performed daily and in great numbers throughout
laboratories around the world. Time after time the predictions of quantum mechanics are in
full agreement with experiment.

Shortly after the advent of quantum mechanics, Church, Turing and Post developed the
notion of computability [Chu36, Tur36, Pos36]. Less than 10 years later these formal ideas would
be put to practice resulting in the ENIAC, the first general purpose machine. During that time
Turing also specified an electromechanical machine that helped break Enigma-ciphers during
the Second World War. It was not the first time that mechanical computing and cryptanalysis
were developed side by side. Around 1820 Babbage worked on the blueprints of a mechanical

∗Science Park 123, 1098 XG, Amsterdam The Netherlands. Partially supported by the EU 7th framework
project QCS.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301645384?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

computing device, which he called Difference Engine #1 and #2. The first prototype was never
finished and funding was cut for the second prototype. Babbage was also a gifted cryptanalyst,
in 1854 he broke the, until then unbreakable, Vigenère cypher [Sin00].

Today Computers occupy an indispensable place in our every day life, leading to an ever-
lasting demand on faster and bigger computing power. The mathematical notions developed
in the the 1930’s are now firmly rooted in our physical world. As Landauer [Lan61] put it:
“computing is physical”. Indeed, trying to satisfy Moores law [Moo65], which states that the
number of transistors on integrated circuits doubles approximately every two years, the physi-
cal limitations of computing have become apparent. In particular quantum mechanical effects
are starting to pop up. Incorporating quantum mechanics into our computational paradigm is
therefore the next logical step.

In this chapter we will review quantum mechanics and show how this lead Deutsch [Deu85] to
the Definition of a quantum Turing-Machine. The new field of quantum information processing
gained a lot of momentum after Shor [Sho94] constructed an efficient quantum algorithm for the
factorization problem. Since the security of most of modern public-key cryptography is based
on our inability to factorize numbers efficiently, a quantum computer, once built, will severely
compromise the security of these protocols. It is interesting to see that again a new computing
paradigm is developed alongside advances in cryptanalysis. Quantum cryptography is the
subfield that studies cryptography in a quantum world, with as cornerstone the quantum key
distribution protocol by Bennet and Brassard [BB84]. The field has also developed new areas
like quantum communication complexity [BCMdW10], quantum information theory [BS98],
and quantum inspired proofs [DdW11]. We won’t discuss these developments here, but work
out the basic definitions and show how this new paradigm fits into the classical framework of
complexity theory.

2 Quantum Mechanics

Quantum mechanics is the most complete description of nature to date, that governs the atomic
and subatomic world. Some of its features are very counter intuitive, but have been corroborated
by experiments time after time. The best way to highlight some of the properties of quantum
mechanics is by means of an experiment, which we will discuss next.

2.1 An experiment with photons

In the first part of the experiment we have a light source that emits light that is polarized at
an angle of 45◦. It is not necessary to understand in detail what polarized light exactly is.
The only important issue at this point is that polarization is a property of light, which has a
direction, that can be measured. The outcome of such a measurement can be expressed by an
angle. In our experiment we shine light with a certain polarization through a calcite crystal. A
calcite crystal is transparent and has the property of birefringence, a light beam polarized in a
certain direction gets split into two beams (see Figure 1). The birefringence of calcite crystals
is known for a long time and a recent article [RGF+12] argues that the Vikings used the calcite

2

crystal, the mysterious “sunstone” according to the Norse sagas, to determine the position of
the sun on cloudy days. Perhaps the first quantum computer avant la lettre!

(a) two beams interfere (b) no interference

Figure 1: Polarized light going through two calcite crystals

The 45◦ polarized light is sent through the first calcite crystal and is split into two beams
(Figure 1a). When measured right after exiting the first crystal, the light in the upper beam
turns out to have horizontal polarization whereas the lower beam is vertical. The light in these
two beams has only half the intensity of the original light coming directly out of the source. If
we don’t measure the polarization but let the two beams enter a second crystal, they merge and
exit the second crystal as one beam, which has full intensity. The polarization after the second
crystal is again 45◦. This can be explained classically as an interference effect. By blocking the
upper beam with a piece of black material (Figure 1b), interference is no longer possible and
the light emitted by the second crystal is vertically polarized.

(a) single photons (b) path A or B

Figure 2: Single photon experiment

Lets now do the same experiment with a very very dim light source. We dim the light
so much so that only single photons are produced each time we do the experiment. This
second experiment is much harder than the first, but very good single photon sources have
been accomplished [EFMP11]. Single photons still have a polarization and the photons that
we use are again polarized at an angle of 45◦.

The first observation (Figure 2a) to make is that in every run of the experiment the photons
end up at two different spots, precisely where in the first experiment the two light beams were.
Moreover, after doing the experiment many times, 50% of the time we find a photon at the
top position and 50% of the time at the bottom. This, in itself is already a bit strange. What
determines which path a photon takes? The ones coming from the source are all created in the
same way, as much as possible.

When we measure the polarization of the photons that have gone through the calcite crystal
it turns out that the top ones are always horizontally polarized and the bottom ones vertically.
This is all in perfect agreement with the first experiment using a bright light source.

3

Next we place another calcite crystal and measure the photon when it exits the second one
(Figure 2b). The photons always come out in the same place and when their polarization is
measured it is again 45◦. From all we observed so far it seams reasonable to assert that each
photon either took the path labelled A in Figure 2b or path B. Lets examine this assertion by

(a) blocked photon (b) along path B

(c) along path B with path A blocked

Figure 3: examining the paths

blocking path A (Figure 3a) and measuring the photons that end up there. We find that half
of the time the photons travel along path A and their polarization is always horizontal, as it
should be in order to be consistent with Figure 2a. Moreover whenever the photons don’t end
up at the blockage along path A, they end up behind the second crystal and have polarization
vertical.

Our assertion says that the photons took either path A or path B. We see that half of
the time the photons go along path A. Lets focus on the ones that take path B (Figure 3b).
These photons exit the second crystal and have a polarization of 45◦ in total agreement with
the situation in Figure 2b. But now we have a very strange situation when we consider these
photons, going along path B, when we also block path A as in Figure 3c. In these cases the
photon exits the second crystal with vertical polarization. It appears as if the photon that takes
path B knows whether path A is blocked or not and changes polarization accordingly. The way
out of this conundrum is given by quantum mechanics. The photon in Figure 2b does not travel
along path A or B, it is in a superposition of going along A and B at the same time. Moreover
it interferes with itself at the second calcite crystal. In the next Section we will formalize this
behavior.

2.2 Qubits, superposition and measurement

Superposition is one of the main and counter intuitive ingredients of quantum mechanics. As
we saw in the experiment above, a photon can be in a superposition of being in two different
locations at the same time. But the a superposition principle also applies to larger systems.
Famous is the example of Schroedinger’s cat [Sch35] who is in a superposition of being dead

4

and alive. In what follows we will apply these ideas to more familiar objects: bits. Classically
a bit can be in any of two states: 0 or 1. Quantum mechanically a quantum bit or qubit may
be in a superposition of both 0 and 1. It is useful to describe such systems as vectors in a finite
dimensional Hilbert space, in this case a two dimensional one. We will identify the (basis)

vector

(
1
0

)
with |0〉 to denote the classical bit 0 and (basis) vector

(
0
1

)
with |1〉 denoting the

classical bit 1. This notation is called Dirac or bra-ket notation. Define for any vector |a〉 the
complex conjugate transpose 〈a|, the expression 〈a| · |b〉 = 〈a|b〉 then boils down to the inner
product between |a〉 and |b〉. Superposition of two classical (basis) states/vectors, in this case
the |0〉 and |1〉, is modelled as follows:

α|0〉+ β|1〉 (1)

Where α and β, called amplitudes, are complex numbers with the property that:

|α|2 + |β|2 = 1 (2)

When one observes or measures a qubit α|0〉+ β|1〉 the outcome 0 is obtained with probability
|α|2 and 1 with probability |β|2. After the measurement has been performed and one of the
outcomes has been observed, the state collapses to the outcome that has been observed. For
example if outcome 0 was observered, the state has collapsed to the state |0〉. Note that
Equation 2 guarantees that measurement of a qubit induces a probability distribution over the
outcomes 0 and 1.

Let’s try to plug in some values for α and β:

1√
2
|0〉+

1√
2
|1〉 (3)

Measuring this qubit will yield with probability ½ in observing a 0 and with probability ½ a
1.

In general our system will consist of more than just one qubit. If we have two qubits |x〉
and |y〉 then |x〉 ⊗ |y〉 describes the two qubits together in a 4 dimensional Hilbert space.
This construction is called the tensor or Kronecker product. If |x〉 = α0|0〉 + α1|1〉 and |y〉 =
β0|0〉+ β1|1〉 then

|x〉 ⊗ |y〉 = (α0|0〉+ α1|1〉)⊗ (β0|0〉+ β1|1〉)
= α0β0|00〉+ α0β1|01〉+ α1β0|10〉+ α1β1|11〉.

By convention |0〉⊗|0〉, |0〉|0〉, and |00〉 will denote the same state. The 4 dimensional Hilbert
space obtained in this way has a natural basis, called the computational basis: |00〉, |01〉, |10〉,
and |11〉, and any two qubit state can be expressed as a linear combination/superposition of
these basis states. Any state on n qubits becomes:∑

i∈{0,1}n
αi|i〉 (4)

5

with the additional requirement that: ∑
i∈{0,1}n

|αi|2 = 1 (5)

When measuring these n qubits we will observe i with probability |αi|2.
In general not all the 2 qubit states that satisfy Equations 2 and 4 are obtained as the tensor

of two single qubits. Such states are called entangled. For example the well known EPR-pair
1√
2
(|00〉+ |11〉) is entangled.

2.3 Partial measurement

In the previous Section we saw how to measure a quantum system∑
x∈{0,1}n

αx|x〉 (6)

in the computational basis. Such a measurement induces a probability distribution over the
outcomes x.

Pr[outcome = x] = |αx|2 (7)

The state after measuring outcome x will collapse to |x〉
For the Definition of the quantum Turing machine it will be important to also be able to

partially measure a system. This is a measurement that only “looks” at part of the state. For
example take the following two register state:∑

x,y∈{0,1}n
αx,y|x〉 ⊗ |y〉 (8)

on which we measure the first register in the computational basis. This will result in a proba-
bility distribution over outcomes of the first register:

Px = Pr[outcome = x] =
∑
y

|αx,y|2 (9)

Again the state will collapse to x in the first register, but the second register stays in a super-
position that is consistent with outcome x:

1√
Px

∑
y

αx,y|x〉 ⊗ |y〉 (10)

The 1/
√
Px factor renormalizes the partially collapsed state, so that it has norm 1.

6

2.4 Unitary Operations

Next we need to model operations on qubits, such evolution of the system, according to quantum
mechanics, is a linear map with the additional constraint that it preserves the probability
interpretation, that is the squares of the amplitudes sum up to 1 (see Equations 2 and 5). Such
norm-preserving linear transformations are called unitary and can be defined in mathematical
terms:

UU∗ = I (11)

Where U∗ is the complex conjugate transpose of U and I is the identity matrix. In terms of
computation the unitary constraint implies that the computation is reversible.

The following transformation on a single qubit is important and very useful. It is called the
Hadamard transform.

H =
1√
2

(
1 1
1 −1

)
(12)

It is a unitary operation since:

1√
2

(
1 1
1 −1

)
× 1√

2

(
1 1
1 −1

)
=

(
1 0
0 1

)
Let’s do a Hadamard operation on a qubit that is in the classical state |0〉:

1√
2

(
1 1
1 −1

)
×
(

1
0

)
=

1√
2

(
1
1

)
(13)

This state in ket notation, 1√
2
|0〉 + 1√

2
|1〉, is the random qubit from Equation 3. Also the

Hadamard transform models the behavior of the calcite crystal from Section 2.1, it puts the
photon in an equal superposition of the two paths, and the probabilistic nature of where we
found the photon (figure 2a) is now explained by the measurement axiom!

When we apply the Hadamard transform again on this qubit:

1√
2

(
1 1
1 −1

)
× 1√

2

(
1
1

)
=

(
1
2

+ 1
2

1
2
− 1

2

)
=

(
1
0

)
(14)

We get the |0〉 again. Note the minus sign in the Hadamard transform. Its effect is illustrated
in Equation 14. The minus sign caused the 1

2
− 1

2
in the lower half of the vector to cancel out,

or destructively interfere, while both terms in the upper half constructively interfered. It is
both the superposition principle together with this interference behavior that gives quantum
computing its power.

The tensor product is also defined on linear operations. In general if we have an m × n
matrix A and an n′ ×m′ matrix B then A⊗B is a (m ·m′)× (n · n′) matrix defined as:

a1,1 ·B a1,2 ·B . . . a1,n ·B
a2,1 ·B a2,2 ·B . . . a2,n ·B

...
...

. . .
...

am,1 ·B am,2 ·B . . . am,n ·B

7

For example applying the Hadamard transform to n qubits (H⊗n) in the state |0〉 will
generate a uniform superposition of all the basis states.

n︷ ︸︸ ︷
H|0〉 ⊗ . . .⊗H|0〉 = H⊗n|0n〉 =

1√
2n

∑
y∈{0,1}n

|y〉 (15)

3 Quantum Turing Machines

In order to appreciate the Definition of a quantum Turing-machine we will first remind the
reader of the Definition of a classical Turing Machine, see for example [AB09]. This is a device
that has a two-way infinite tape of cells, which are ordered and labelled by an integer, and a
read/write head that can move left and right ({L,R} = D) on the tape and write a symbol
from a fixed finite alphabet Σ in the cell that it is currently reading. There is also a finite
control that governs the behavior of the Turing Machine. This is modelled by a finite set of
states Q, a dedicated starting state q0, and a final halting state qf . The transition function δ
describes a single computation step.

δ : Q× Σ→ Q× Σ×D (16)

When the TM is in state q ∈ Q and reading symbol σ ∈ Σ at the current location of the
head, δ(q, σ) = (σ′, q′, d) indicates to write σ′ in the current tape cell, move the tape-head one
cell in direction d ∈ D, and go to state q′. The computation starts with the input x ∈ Σn

written in the first n cells, the tape-head is at the cell with label 0 and the TM is in state q0.
All the cells, except for the first n have a special symbol1 # written in them indicating that this
cell has no content. During each step of the computation, the transition function δ is applied as
described above. The computation halts when it enters the final state qf , and the non-empty
contents of the tape indicate the result of the computation.

A quantum Turing Machine [Deu85] is a generalization of the classical one, extended with
quantum mechanical properties. As before we describe a QTM by means of its transition
function.

δ : Q× Σ→ CQ×Σ×D (17)

The way to interpret this is as follows. In the classical case δ changed the configuration (a, q,m)
of a TM, where a is a description of the tape contents, q is the state of the TM, and m
is the place where the head is located, to an new configuration (a′, q′,m′). In the quantum
case δ defines a similar operation, but it now maps a state |a, q,m〉 to a superposition of
states

∑
a′,q′,m′ αa′,q′,m′|a′, q′,m′〉, where the a′ are the tape contents that differ in at most

one location from a, and m′ = m ± 1. Moreover the resulting state has to be norm one:∑
a′,q′,m′ |αa′,q′,m′ |2 = 1, which implies that δ is restricted to implement a unitary transformation

on the configuration space of the QTM. Since δ specifies the behavior on basis states |a, q,m〉,
1We assume that # is an element of Σ.

8

by linearity it is also defined on super positions of basis states. One step of the QTM maps a
superposition of basis configurations to a new superposition:∑

a,q,m

αa,q,m|a, q,m〉
δ−→
∑
a,q,m

α′a,q,m|a, q,m〉 (18)

Observe that at any point in time the sums in Equation 18 contain a finite number of terms
with non-zero amplitude. The measurement axioms of quantum mechanics tell us what happens
when we measure the QTM in configuration:

∑
a,q,m αa,q,m|a, q,m〉. We will observe the classical

configuration |a, q,m〉 with probability |αa,q,m|2. However after making this measurement, and
observing, for example configuration |a, q,m〉, the original superposition has collapsed to the
state |a, q,m〉.

As with classical TM’s a QTM starts in the starting state q0, the input x ∈ Σn is written
in the first n cells, and the head is at the cell with label 0, reading the first symbol of x. Each
computation step is now applied according to Equation 17. With a classical Turing Machine it
is clear when the computation is over, namely when the machine is in the final configuration
qf . How to define this with a QTM? Since the configuration of a QTM can be a superposition
of states that are the final sate qf and other states, this may not be well defined. Moreover
how can one determine when a QTM has halted, since observing a machine that has not yet
halted may collapse its superposition and thus disturb the computation. One way out is to
add an additional register to the quantum state, that indicates whether the QTM has halted:
|a, q, f,m〉, where f = 1 indicates that the QTM has halted and f = 0 means that it is still
running. The transition function from Equation 17 needs to be extended to deal with this extra
register:

δ : Q× F × Σ→ CQ×F×Σ×D (19)

where F = {0, 1}. In terms of configuration space, an application of δ translates to:∑
a,q,f,m

αa,q,f,m|a, q, f,m〉
δ−→

∑
a,q,f,m

α′a,q,f,m|a, q, f,m〉 (20)

The computation starts in state q0 and f = 0. After each computation step only register f
is measured, leaving the remaining registers unmeasured. Such a partial measurement (see
Section 2.3 can affect the total state, but when this flag register is not entangled with the other
registers, such a measurement will not effect the remaining state. If this partial measurement
yields f = 0 then δ is applied again to the state, over and over again, until f = 1 is measured
in which case the computation has ended, and the remaining register is measured2 in the
computational basis and the output of the computation can be read off. Note that halting of
such a computation is a probabilistic event. Just like for a classical TM it has to halt after
a finite amount of steps, we require that the expected number of steps that the QTM takes is

2It is not necessary to measure the remaining register. The output of a QTM could also be a quantum state,
something that a classical TM simply can not output. Here we will only be concerned however with classical
outputs.

9

finite. Since the computation is probabilistic in nature we only demand that with probability
½+ε the function value is computed, for ε > 0.

A few more words about the description of the transition function δ are in place. In order
to yield a finite description of δ it is necessary that the complex numbers in 19 come from a
finite subset and have an efficient description. It turns out that this is not a problem since
it can be proven that just a finite number of transformations are sufficient to approximate
any unitary function arbitrary well by composing them using tensor products and products.
This also forms the main ingredient for proving that there exists a universal quantum Turing
machine [Deu85, BV97]. For example the Hadamard transform (H) and the rotation over π/4
(R), and the phase flip (S) form a universal set of operations:

H =
1√
2

(
1 1
1 −1

)
R =

(
1 0
0 eiπ/4

)
S =

(
1 0
0 i

)
(21)

As mentioned before the transition function δ corresponds to a unitary matrix. We can also see
how for example the Hadamard matrix H corresponds to some transition function. For example
it could be implemented as follows:

(q, 0, 0)→ 1√
2

(|q, 0, 0, L〉+ |q, 0, 1, L〉) (22)

(q, 0, 1)→ 1√
2

(|q, 0, 0, L〉 − |q, 0, 1, L〉) (23)

The right-hand side of Equations 22 and 23 are a vector of complex numbers, in this example
with entries 1√

2
,− 1√

2
, and 0, as is the right-hand side of Equation 19.

Another important point is that, due to the unitarity of the transition function, the com-
putation of any QTM is reversible. Since the transition function δ is a unitary transformation
Uδ, it follows that U∗δ , its complex conjugate transpose, also models a transition function. Since
UδU

∗
δ = I, it follows that U∗δ reverses a computation step. This seems to be a severe restriction

since classical computations do not have to be reversible. However it possible to transform
any non-reversible computation into a reversible one with only a little overhead in time and
space [Ben89].

Summarizing, we have the following Definition.

Definition 1. A QTM is specified by its transition function

δ : Q× F × Σ→ CQ×F×Σ×D

which represents a unitary transformation on the configuration space. One step of the machine
is the application of δ to each of the basis states, followed by a partial measurement of the F
register. A QTM computes a function f if the expected number of computation steps is finite
for every input x and it outputs f(x) with probability greather than ½+ε, for some ε > 0

10

4 The Church-Turing thesis

We will now examine the computational power of a QTM and prove that it does not exceed
that of ordinary TM’s.

Theorem 2. [Deu85] The class of languages accepted by QTM’s is equal to the computable
sets.

Proof. Since every TM can be transformed in one that is reversible it is clear that the class of
languages accepted by QTM’s contains the computable sets. We only need to show that it is
not larger. We do this by simulating a QTM by means of a classical algorithm. Given a QTM
M and its δ function, we need to establish what it outputs with probability ½+ε conditioned
on halting. We have already remarked that after t steps the number of terms with non-zero
amplitude in 20 is finite. This is because in each step the number of non-zero configurations,
can go in a super-position of at most a finite number of new ones, specified by δ. The idea now
is for t to compute the configuration vector |vt〉 after t steps.

|vt〉 =
∑
a,q,f,m

αa,q,f,m|a, q, f,m〉 (24)

This involves doing the partial measurements also t − 1 times, and collapsing |vt′〉 (t′ < t)
to the state corresponding to f = 0 as outcome of the partial. This way we can compute
the probability of halting after exactly t steps, which we call pt. We know that the expected
running time of M is finite: ∑

t

pt · t ≤ c (25)

There could be runs of the machine that never halt, but they occur with vanishing proba-
bility. In particular, using Markov’s inequality, there is time t0 ≤ c/ε such that the probability
that the machine runs for more than t0 steps is bounded by ε, which implies that∑

t≤t0

pt ≥ 1− ε (26)

Since we can compute pt we can find t0. Next we compute the probability of accepting condi-
tioned on halting within t0 steps. We accept the input if and only if this conditional accepting
probability is > ½.

It is easy to see that the above argument also works for functions instead of languages.
Theorem 2 shows that the Church-Turing thesis, which states that effective computability is
captured by Turing machines, is not violated when we introduce quantum mechanical Turing-
machines.

11

4.1 Efficient Church-Turing thesis

Although one can not compute more functions on a quantum computer, the proof sketched
above shows that an exponential overhead in time is used in order to simulate a QTM by a
classical one. Therefore Deutsch [Deu85] asked the question of whether it is possible that a
quantum computer is more efficient than its classical counterpart. This question was related
to Feynman [Fey82], who asked whether physics could be efficiently simulated on a Turing-
machine. This touches upon an extension of the Church-Turing thesis that does not only ask
about simulation of an algorithmic process by a Turing machine but also requires that the
simulation is efficient, with only polynomial overhead in time and space [vEB90].

Deutsch gave some indication that indeed QMT’s can be more efficient, by exhibiting a
quantum algorithm that determines for any f : {0, 1}n → {0, 1}, what the value of f(x)⊕ f(y)
is, querying f only one time. In particular Deutsch argues, if f(x) and f(y) are computed
on a classical TM and each computation costs a day, then it would cost two days to compute
f(x) ⊕ f(y), but on a quantum computer it would only cost one day. Deutsch’s Definition of
a quantum Turing machine and his quantum algorithm mark the start of the field of quantum
information processing. See also the excellent book [NC00]. These algorithms are best described
in the black-box setting. See [BBC+01, BdW02] for precise Definitions.

The mother of all quantum algorithms was generalized by Deutsch and Jozsa [DJ92] showing
that there exists a problem that can be computed with a single query, but classically requires n
queries when the solution has to be computed exactly. The drawback of this (super)exponential
separation is that there does exist an efficient randomized algorithm that solves this problem
also in a constant number of queries. Building upon this, Simon [Sim97] managed to construct
a quantum algorithm, that truly establishes an exponential separation between quantum and
randomized computations. All these separations are proven in the black-box or oracle setting,
which essentially only counts queries to the input f .

A major advance was made by Shor [Sho94] who constructed, extending Simon’s ideas, an
efficient quantum algorithm to factorize numbers in their prime factors in time O(n3). Shor’s
quantum algorithm is special in that it is not a black-box algorithm, although at the heart
of it resides a black-box procedure, called period-finding. The problem of factorization is well
studied and it is believed that no fast (randomized) classical algorithms exists. The best known

classical algorithm has expected running time O(2n
1/3 log(n)2/3).

The relevance of an efficient quantum algorithm for factorization is not just academic. The
security of most public-key cryptography techniques, like RSA [RSA78], that are used frequently
by numerous applications, rely on the absence of fast factorization algorithms. These crypto-
graphic protocols become insecure when an efficient factorization method can be implemented.
In particular they will be rendered useless when Shor’s algorithm can be executed on a quantum
computer that operates on a few thousand qubits.

After Shor’s algorithm the field of quantum information processing got a tremendous boost
and evolved into a flourishing community with active researchers from experimental and theo-
retical physics, computer science, and mathematics.

We need to mention one more important algorithm, which is due to Grover [Gro96]. This
algorithm is able to search a marked item in an unordered list with n items, using only O(

√
n)

12

look-ups or queries. Classically Ω(n) queries are necessary. Though not as impressive as Shor’s
speed-up, Grover’s is only a quadratic, search is a prominent primitive in many algorithms,
and it is not surprising that variants of Grover’s algorithm yield a quantum advantage in many
computational settings.

Where does this leave us with respect to the extended Church-Turing thesis? In order to
answer that question we need to have a better understanding of efficient (classical) computation,
which is the realm of complexity theory.

4.2 Complexity theory

Complexity theory is the area of mathematics and theoretical computer science, that studies
the question of the efficiency of optimal algorithms for a broad class of computational problems.
Central is the class of problems that admit an efficient algorithm. An algorithm is efficient if
its running time is upper-bounded by a polynomial in the size of the input.

Definition 3. A language or set A ⊆ Σ∗ is in the complexity class P if there is a polynomial
p(n) and a Turing machine M , such that M(x) = A(x) for all x and the running time of M(x)
is bounded by p(|x|)-many steps.

Many problems that arise in practice are not known to be in P nor do we have a proof that
no efficient algorithm exists. In order to study the complexity of these problems the complexity
class NP was introduced by Cook and Levin [Coo71, Lev73].

Definition 4. A is in NP if there exists a TM M and a polynomial p such that:

x ∈ A⇔ ∃y : M(x, y) = 1

with |y| ≤ p(|x|) and M runs in time p(|x|+ |y|).

The name NP is somewhat esoteric, it is an abbreviation for Non-deterministic Polynomial-
time. NP is the class of problems for which there is an efficient procedure to verify that a given
solution to a problem instance is correct. Such correct solutions are also called witnesses. An
example of an NP problem is the satisfiability problem SAT. Given a formula φ in conjunctive
normal-form on n variables, φ ∈ SAT iff there exists an assignment α = α1 . . . αn to the n
variables such that φ(α) evaluates to true. It is easy to see that SAT is in NP, since it is easy
to check whether an assignment α satisfies φ, but the best known algorithm requires 2n time
steps, which tries all 2n possible assignments.

Cook and Levin showed that SAT and a handful of other computational problems are in NP
and in fact characterize NP in the sense that each of them is in P if and only if all of NP is in
P. Such problems are called NP-complete. The handful of problems has grown to a long list of
problems that come from many areas of science and operations research [GJ79], with new ones
being added every year. The question of whether P=NP is one of the central open problems in
mathematics and computer science. It is also one of the seven millennium prize problems.3

In order to study the power of efficient QTM’s we need the quantum analogue of P, but
before we do that we first define randomized polynomial-time.

3See: http://www.claymath.org/millennium/

13

http://www.claymath.org/millennium/

Definition 5. A is in BPP if there exists a TM M, ε > 0, and polynomial p such that

• x ∈ A⇒ Pr[M(x, y) = 1] > 1
2

+ ε

• x 6∈ A⇒ Pr[M(x, y) = 0] > 1
2

+ ε

where the probability is taken uniformly over the y ∈ {0, 1}p(|x|) and the running time of M is
bounded by p(|x|+ |y|).

The complexity class BPP could be a first contender for violating the extend Church-Turing
thesis. The best known deterministic simulation of a BPP computation is to loop over all the
y ∈ {0, 1}p(|x|), simulate M(x, y) and accept iff the majority of these y lead to an accepting com-
putation.4 There is evidence, starting from the beautiful work of Nisan and Wigderson [NW94]
that efficient simulations exist, that only need to examine a polynomial number of pseudo
random strings y. Under a fairly natural complexity-theoretical assumptions about the com-
putational hardness of functions in exponential time, BPP can be simulated in polynomial
time [AB09]. Indeed computational problems for which initially an efficient randomized algo-
rithm was discovered get later on derandomized. The polynomial-time algorithm for primality
testing [AKS04] being a prime example of this.

We next define, the quantum variant of BPP.

Definition 6. A is in BQP if there exists a QTM M, ε > 0, and a polynomial p(n) such that:

• x ∈ A⇒ Pr[M(x) = 1] > 1
2

+ ε

• x 6∈ A⇒ Pr[M(x) = 0] > 1
2

+ ε

and the running time of M(x) is bounded by p(|x|).

Using the same idea as in the proof of Theorem 2 one can show that if the expected running
time of M(x) is bounded by p(|x|) then there exists another machine whose total running time
is bounded by p′(|x|) for some other polynomial p′. That is why we dropped the expectation
in the running time in Definitions 5 and 6.

It is not hard to see that BPP ⊆ BQP. Applying the Hadamard operation, like in Equa-
tion 2.4, to each of the qubits of the state |0p(|x|)〉 gives a uniform superposition over all the
strings y ∈ {0, 1}p(|x|), next running M(x, y) in superposition and measuring the state:

1√
2p(|x|)

∑
y∈{0,1}p(|x|)

|y〉 ⊗ |M(x, y)〉 (27)

will give the same probability distribution of accepting and rejecting computations as the orig-
inal BPP-machine.

Unlike for BPP, there is no evidence that BQP can be efficiently simulated. If this is not
the case (BQP 6⊆ P) then the extended Church-Turing thesis is false. It turns out that it is
quite hard to establish this because of the following Theorem.

4In fact a 1
2 + ε fraction of the y will give the correct answer.

14

Theorem 7. [ADH97] BQP ⊆ PP

PP is defined as follows.

Definition 8. A is in PP if there exists a TM M, polynomial p, such that:

x ∈ A⇔ Pr[M(x, y) = 1] >
1

2

where the probability is taken uniformly over the y ∈ {0, 1}p(|x|) and M runs in time p(|x|).

PP is the class sets recognized by probabilistic Turing machines with success probability
larger than ½. Compare this to BPP which has correctness probability ½+ε. The derandomiza-
tion techniques that are amenable for BPP do not work for PP, and in fact it is believed that
PP is a much more powerful class that contains NP. The complexity class PP itself is included
in PSPACE, the class of languages accepted by Turing machines that use at most a polynomial
amount of space.

Definition 9. A is in PSPACE if there exists a TM M and polynomial p such that M accepts
A and for every input x,M(x) writes in at most p(|x|) many different tape cells.

We now have the following inclusions:

P ⊆ BPP ⊆ BQP ⊆ PP ⊆ PSPACE (28)

and
P ⊆ NP ⊆ PP (29)

From Equation 28 we see that if P=PSPACE it follows that BQP = P. Hence showing that
P 6= BQP entails separating P from PP and PSPACE, which would be a major advance in
complexity theory.

4.3 NP and BQP

What is the precise power of BQP in this landscape of complexity classes? In particular does
BQP contain NP? The answer to this question is one of the main open problems in quantum
complexity theory.

First we need some more notation. The polynomial-time hierarchy is defined as the com-
plexity classes one gets by giving NP access to an oracle in NP. A Turing machine equipped
with an extra oracle tape, is called an oracle Turing-machine. It can write a string q, called the
query, on this extra tape and enter the special query state. Then in one step it enters the YES
or NO state, depending on whether q was in the oracle set O. It is as if it had a subroutine
that computes membership in O for free.

Definition 10. Σp
1 = NP and Σp

k = NPΣp
k−1. PH =

⋃
k Σp

k

15

It is not hard to prove that P=NP iff P=PH, and if Σp
k = Σp

k−1 then PH =Σp
k−1. It is

believed that the PH is infinite.
The most compelling evidence for P6= BQP is the fact that factoring5 is in BQP. But

factoring is in NP ∩ co-NP. It is therefore unlikely to be NP-complete since this would imply
a collapse of the PH to NP ∩ co-NP ⊆ NP.

Before we go on lets investigate this question for BPP, because here the situation is much
clearer. Not only is there reasonable evidence that P=BPP, it can also be proven that if
NP=BPP then the polynomial-time hierarchy collapses to its second level. This follows from
results of Adleman [Adl78] (BPP in P/poly) and Karp and Lipton [KL80]. We give a different
proof below.

The following Theorem, lists a few facts about BPP and its relation to PH and NP.

Theorem 11. The following are a few results about BPP.

1. BPP ⊆ Σp
2 [Sip83]

2. BPPBPP = BPP

3. NPBPP ⊆ BPPNP[Zac86]

The following is a well known fact about BPP.

Theorem 12. if NP ⊆ BPP then PH=Σp
2

Proof. Assume that NP ⊆ BPP. This implies that NPNP ⊆ NPBPP ⊆ BPPNP. The first
inclusion follows from the assumption and the second from Theorem 11 item 3. Using the

assumption again we have that BPPNP ⊆ BPPBPP = BPP. The equality is due to item 2.

This way we have shown that ΣP
2 = NPNP ⊆ BPP. Employing the same chain of idea’s again

we get, using item 1 that Σp
3 ⊆ BPP ⊆ Σp

2 which implies PH = Σp
2.

It is an interesting open problem to prove a similar consequence from the assumption NP
⊆ BQP. This would follow if one could show the same properties for BQP as in Theorem 11.

Unfortunately only item 2 is known to hold: BQPBQP ⊆ BQP. With respect to item 1, the
question of whether this is false with repect to an oracle is even a challenging open question.
See the papers [Aar10, Aar11, FU10] for a possible approach to showing that relative to an
oracle BQP 6⊆ PH.

5 Conclusions and open problems

We have shown how the laws of quantum mechanics can be incorporated in the computing
paradigm of Turing. We have seen how the resulting quantum Turing-machine makes use of

5Strictly speaking factoring is a function and not a set. One can however define the set factoring ={〈x, i, b〉 |
ith bit of the prime factoriszation of x is b}, which has the same complexity as factoring and is in BQP,

16

superposition and interference. These quantum mechanical add-ons do not enrich the computing
power, quantum Turing-machines do not go beyond the computable sets, and the Church-Turing
thesis is not violated.

The quantum model does appear to be more efficient for certain computational problems,
and a general simulation by classical means seems to require exponentially more time. Notably
there is an efficient quantum algorithm for the factorization of numbers into their prime factors.
No such efficient algorithms are known to exist for the classical setting. This fundamental result
is the driving force behind the field of quantum information processing.

In order to understand the actual power of quantum computers we defined the class BQP
and studied its relation to classical complexity classes like P, BPP, NP, PH, PP, and PSPACE.
If P 6= BQP then the extended Church-Turing thesis, which asks for an efficient simulation on
classical Turing-machines, is violated. However establishing such a feat will imply the separation
of P from PP and PSPACE, which would be a major breakthrough.

Last we have tried to establish the relationship between BQP and NP. In particular we would
like to see evidence that BQP can not efficiently simulate NP, showing the computational limits
of quantum Turing-machines. Such evidence is currently missing. We showed how for BPP the
picture is much clearer, NP ⊆ BPP impplies PH collapses, and tried to adapt this reasoning to
BQP. Specific open problems are the following:

• Is P 6= BQP?

• Show that BQP ⊆ PH or construct an oracle for which this is false.

• Show that NPBQP ⊆ BQPNP or construct an oracle for which this is false.

• Does NP ⊆BQP imply that PH collapses?

References

[Aar10] Scott Aaronson. BQP and the polynomial hierarchy. In STOC, pages 141–150,
2010.

[Aar11] Scott Aaronson. A counterexample to the generalized linial-nisan conjecture.
CoRR, abs/1110.6126, 2011.

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern Approach.
Cambridge University Press, 2009.

[ADH97] Leonard M. Adleman, Jonathan DeMarrais, and Ming-Deh A. Huang. Quantum
computability. SIAM J. Comput., 26(5):1524–1540, 1997.

[Adl78] Leonard M. Adleman. Two theorems on random polynomial time. In FOCS,
pages 75–83, 1978.

17

[AKS04] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. Primes is in p. Annals of
Mathematics, 160(2):pp. 781–793, 2004.

[BB84] C. H. Bennett and G. Brassard. Quantum cryptography: Public key distribution
and coin tossing. In Proceedings of IEEE International Conference on Computers,
Systems, and Signal Processing, pages 175–179. IEEE, 1984.

[BBC+01] Robert Beals, Harry Buhrman, Richard Cleve, Michele Mosca, and Ronald
de Wolf. Quantum lower bounds by polynomials. J. ACM, 48(4):778–797, 2001.

[BCMdW10] Harry Buhrman, Richard Cleve, Serge Massar, and Ronald de Wolf. Nonlocality
and communication complexity. Rev. Mod. Phys., 82:665–698, Mar 2010.

[BdW02] Harry Buhrman and Ronald de Wolf. Complexity measures and decision tree
complexity: a survey. Theor. Comput. Sci., 288(1):21–43, 2002.

[Ben89] Charles H. Bennett. Time/space trade-offs for reversible computation. SIAM J.
Comput., 18(4):766–776, 1989.

[BS98] Charles H. Bennett and Peter W. Shor. Quantum information theory. IEEE
Transactions on Information Theory, 44(6):2724–2742, 1998.

[BV97] Ethan Bernstein and Umesh V. Vazirani. Quantum complexity theory. SIAM J.
Comput., 26(5):1411–1473, 1997.

[Chu36] Alonzo Church. An unsolvable problem of elementary number theory. American
Journal of Mathematics, 1936.

[Coo71] Stephen A. Cook. The complexity of theorem-proving procedures. In STOC,
pages 151–158, 1971.

[DdW11] Andrew Drucker and Ronald de Wolf. Quantum proofs for classical theorems.
Theory of Computing, Graduate Surveys, 2:1–54, 2011.

[Deu85] David Deutsch. Quantum theory, the church-turing principle and the universal
quantum computer. Proc. Roy. Soc. London Ser. A, 1985.

[DJ92] David Deutsch and Richard Jozsa. Rapid solution of problems by quantum com-
putation. Proc. Roy. Soc. London Ser. A, 493(1907):553–558, December 1992.

[EFMP11] M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov. Invited review article:
Single-photon sources and detectors. Review of Scientific Instruments, 82(7):25,
2011.

[Fey82] Richard Feynman. Simulating physics with computers. International Journal of
Theoretical Physics, 21(6-7):467–488, 1982.

18

[FU10] Bill Fefferman and Chris Umans. Pseudorandom generators and the BQP vs. PH
problem. Manuscript, 2010.

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability : A Guide to the
Theory of NP-Completeness. W. H. Freeman, New York, 1979.

[Gro96] L. K. Grover. A fast quantum mechanical algorithm for database search. In
Proceedings of 28th ACM STOC, pages 212–219, 1996. quant-ph/9605043.

[KL80] Richard M. Karp and Richard J. Lipton. Some connections between nonuniform
and uniform complexity classes. In STOC, pages 302–309, 1980.

[Lan61] Rolf Landauer. Irreversibility and heat generation in the computing process. IBM
Journal of Research and Development, 5:183–191, 1961.

[Lev73] Leonid Levin. Universal search problems. Problems of Information Transmission,
9(3):265–266, 1973.

[Moo65] Gordon Moore. Cramming more components onto integrated circuits. Electronics,
38(8), 1965.

[NC00] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum
Information, volume 70. Cambridge University Press, 2000.

[NW94] Noam Nisan and Avi Wigderson. Hardness vs randomness. J. Comput. Syst. Sci.,
49(2):149–167, 1994.

[Pos36] Emil Post. Finite combinatory processes-formulation 1. The Journal of Symbolic
Logic, 1(3):103–105, September 1936.

[RGF+12] Guy Ropars, Gabriel Gorre, Albert Le Floch, Jay Enoch, and Vasudevan Laksh-
minarayanan. A depolarizer as a possible precise sunstone for viking navigation
by polarized skylight. Proc. R. Soc. A, 468(2139):671–684, 2012.

[RSA78] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital sig-
natures and public-key cryptosystems. Commun. ACM, 21(2):120–126, February
1978.

[Sch35] E. Schrödinger. Die gegenwärtige situation in der quantenmechanik. Naturwis-
senschaften, 23(48):807–812, 1935.

[Sho94] P. W. Shor. Algorithms for quantum computation: discrete logarithms and fac-
toring. In Proceedings of the 35th Annual Symposium on the Foundations of
Computer Science, pages 124–134, Los Alamitos, CA, 1994. IEEE.

[Sim97] Daniel R. Simon. On the power of quantum computation. SIAM J. Comput.,
26(5):1474–1483, 1997.

19

[Sin00] Simon Singh. The Code Book. The Science of Secrecy from Ancient Egypt to
Quantum Cryptography. HarperCollins Publishers, 2000.

[Sip83] Michael Sipser. A complexity theoretic approach to randomness. In STOC, pages
330–335, 1983.

[Tur36] Alan Turing. On computable numbers, with an application to the entschei-
dungsproblem. Proceedings of the London Mathematical Society, 2(42):230–265,
1936. Adendum 1937.

[vEB90] Peter van Emde Boas. Machine models and simulation. In Handbook of Theoretical
Computer Science, Volume A: Algorithms and Complexity (A), pages 1–66. 1990.

[Zac86] Stathis Zachos. Probabilistic quantifiers, adversaries, and complexity classes: An
overview. In Structure in Complexity Theory Conference, pages 383–400, 1986.

20

	Introduction
	Quantum Mechanics
	An experiment with photons
	Qubits, superposition and measurement
	Partial measurement
	Unitary Operations

	Quantum Turing Machines
	The Church-Turing thesis
	Efficient Church-Turing thesis
	Complexity theory
	NP and BQP

	Conclusions and open problems

