
A Hierarchy of Polynomial Kernels

Jouke Witteveen1(B) , Ralph Bottesch2, and Leen Torenvliet1

1 Institute for Logic, Language, and Computation, Universiteit van Amsterdam,
Amsterdam, The Netherlands

j.e.witteveen@uva.nl
2 Department of Computer Science, Universität Innsbruck, Innsbruck, Austria

Abstract. In parameterized algorithmics the process of kernelization is
defined as a polynomial time algorithm that transforms the instance of
a given problem to an equivalent instance of a size that is limited by
a function of the parameter. As, afterwards, this smaller instance can
then be solved to find an answer to the original question, kernelization
is often presented as a form of preprocessing. A natural generalization of
kernelization is the process that allows for a number of smaller instances
to be produced to provide an answer to the original problem, possibly
also using negation. This generalization is called Turing kernelization.
Immediately, questions of equivalence occur or, when is one form possible
and not the other. These have been long standing open problems in
parameterized complexity. In the present paper, we answer many of these.
In particular we show that Turing kernelizations differ not only from
regular kernelization, but also from intermediate forms as truth-table
kernelizations. We achieve absolute results by diagonalizations and also
results on natural problems depending on widely accepted complexity
theoretic assumptions. In particular, we improve on known lower bounds
for the kernel size of compositional problems using these assumptions.

Keywords: Kernelization · Parameterized complexity
Turing reductions · Truth-table reductions · Kernel lower bounds

1 Introduction

Fixed-Parameter Tractability. For many important computational problems, the
best known algorithms have a worst-case running time that scales exponentially
or worse with the size of the input. Generally however, the size of an input
instance is a poor indicator of whether the instance is indeed difficult to solve.
This is because for most natural problems, a good fraction of all instances of a
given size can be solved much more efficiently than the worst-case instance of that
size. To gain a better understanding of the complexity of individual instances,
we might define a function κ : {0, 1}∗ → N that assigns to each instance x
a numeric parameter κ(x). This parameter then indicates the extent to which
certain features that we have identified as a potential cause of computational

c© Springer Nature Switzerland AG 2019
B. Catania et al. (Eds.): SOFSEM 2019, LNCS 11376, pp. 504–518, 2019.
https://doi.org/10.1007/978-3-030-10801-4_39

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301645368?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10801-4_39&domain=pdf
http://orcid.org/0000-0002-1661-6382
https://doi.org/10.1007/978-3-030-10801-4_39

A Hierarchy of Polynomial Kernels 505

hardness are present in the given instance. If the function κ is itself polynomial-
time computable, we call it a parameterization. We shall assume that κ(x) ≤ |x|
holds for all x ∈ {0, 1}∗.

Consider a problem for which the fastest known algorithm has a worst-case
running time in 2O(|x|). If, for some parameterization κ, we can give an algorithm
of which the worst-case running time on any instance x is in 2O(κ(x))poly(|x|)
and, furthermore, we have that κ(x) � |x| holds for at least some arbitrarily
large instances, then we can argue that κ is a more accurate measure of the
complexity of instances than is their size, since the running time of the second
algorithm is exponential only in the parameter value. Note that this implies that
interesting parameterizations cannot be monotonic functions. More generally, for
X ⊆ {0, 1}∗ and a parameterization κ, a parameterized problem (X,κ) is said to
be fixed-parameter tractable (fpt) if, for some computable function f and constant
c ≥ 0, there is an algorithm solving any instance x of X in time f(κ(x))|x|c.1 The
essential feature of such running times is that the parameter value and instance
size appear only in separate factors.

Kernelization. An important notion in the study of fixed-parameter tractability
is that of kernelization. Informally, a kernelization (or kernel) for a parameterized
problem is a polynomial-time algorithm that, for any input instance, outputs an
equivalent instance of which the size is upper-bounded by a function of the
parameter. This type of algorithm is usually presented as a formalization of
preprocessing in the parameterized setting. It reduces any instance with large
size but small parameter value to an equivalent smaller instance, after which
some other algorithm (possibly one with large complexity) is used to solve the
reduced instance. Another explanation, which fits well with the idea of studying
the complexity of individual instances, is that a kernelization extracts the hard
core of an instance.

Of particular interest is the case where the upper bound on the size of the
output instance of a kernelization is itself a polynomial function in the parame-
ter. Such polynomial kernelizations are important because they offer a quick way
to obtain efficient fpt-algorithms for a problem. If X is solvable in exponential-
time, then the existence of a polynomial kernelization for (X,κ) means that
the problem can be solved in time 2poly(k)poly(n), which roughly corresponds
to what we might reasonably consider to be useful in practice. Conversely, for
many parameterized problems that can be solved by algorithms with such run-
ning times (for example, k-Vertex-Cover), it is also possible to show the
existence of polynomial kernelizations. However, there are also exceptions, such
as the k-Path problem, where an algorithm with time complexity 2O(k)poly(n),
but no polynomial kernelization, is known. It was a long-standing open ques-
tion whether the existence of polynomial kernelizations is equivalent to having
fpt-algorithms with a particular kind of running time. Eventually, Bodlaender
et al. [2] showed that for many fixed-parameter tractable problems (including

1 From here onward, we may write k for κ(x) when there is no risk of confusion. Also,
n stands for |x| when specifying the complexity of an algorithm.

506 J. Witteveen et al.

k-Path), the existence of polynomial kernels would imply the unlikely
complexity-theoretic inclusion NP ⊆ coNP/poly. This framework for proving
conditional lower bounds against polynomial kernels was subsequently consid-
erably extended and strengthened [3,6] (see also the survey of Kratsch [12]). In
the same paper, Bodlaender et al. also unconditionally prove the existence of a
parameterized problem that is solvable in time O(2kn), but has no polynomial
kernels, thus ruling out the possibility of an equivalence between polynomial
kernels and fpt-algorithms with running times of the form 2poly(k)poly(n).

Generalized Kernelization. A Turing kernelization is an algorithm that can solve
any instance of a parameterized problem in polynomial-time, provided it can
query an oracle for the same problem with instances of which the size is upper-
bounded by a function of the parameter value of the input. The idea here is that
if we are willing to run an inefficient algorithm on an instance of size bounded
in terms of the parameter alone (as was the case with regular kernelizations),
then we might as well run this algorithm on more than one such instance. A
regular kernelization can be regarded as a particular, restricted type of Turing
kernelization that (a) runs the polynomial kernelization algorithm on the input,
(b) queries the oracle for the resulting output instance, and (c) outputs the
oracle’s answer. As in the case of regular kernelizations, a polynomial Turing
kernelization is such that the bound on the size of the query instances is itself a
polynomial function.

Polynomial Turing kernelizations are not as well-understood as regular ker-
nels. The methods for proving lower bounds against the size of regular kernels
do not seem to apply to them. Indeed, there are problems that most likely have
no polynomial kernels, but which do admit a polynomial Turing kernelization.
An example being k-Leaf-Subtree (called Max-Leaf-Subtree in [4]). Fur-
thermore, there are only a few examples of non-trivial polynomial Turing ker-
nelizations for problems that are not believed to admit polynomial regular ker-
nelizations, such as restricted versions of k-Path [9,10] and of k-Independent
Set [15]. Whether the general versions of these problems also have polynomial
Turing kernels are major open questions in this field.

Compared to the regular kind, polynomial Turing kernelizations have a num-
ber of computational advantages, such as the ability to output the opposite of the
oracle’s answer to a query (non-monotonicity), the ability to make polynomially
(in the size of the input) many queries, and the ability to adapt query instances
based on answers to previous queries (adaptiveness). Rather than focus on spe-
cific computational problems to determine the difference in strength between
Turing and regular kernelizations, we instead look into the possibility of uncon-
ditionally separating the computational strengths of these two types of algo-
rithms in general. We investigate and answer a number of questions that, to our
knowledge, were all open until now:
– Without relying on any complexity-theoretic assumptions, can we prove the

existence of parameterized problems that admit polynomial Turing but not
polynomial regular kernelizations? If so, which of the computational advan-
tages of Turing kernelizations are sufficient for an unconditional separation?

A Hierarchy of Polynomial Kernels 507

Note that for k-Leaf-Subtree, only a larger number of queries is used, the
known polynomial Turing kernel being both monotone and non-adaptive (see
[4], Sect. 9.4). On the other hand, the kernels in [9] and [15] are adaptive.

– Does every parameterized problem that is decidable in time 2poly(k)poly(n),
also admit a polynomial Turing kernelization?

– To what extent can we relax the restrictions on regular kernelizations (viewed
as Turing kernelizations), while still being able to apply known lower bound
techniques? For example, can we rule out, for some natural problems, the
existence of non-monotone kernels that make a few adaptive oracle queries?

1.1 Overview of Our Results

polynomial kernels

polynomial Turing kernels with
a constant number of queries

psize kernels

polynomial
truth-table kernels

polynomial
Turing kernels

fixed-parameter tractable

Fig. 1. A hierarchy of polynomial
kernels. Arrows signify a strict
increase in computational power.

We show that each of the advantages of poly-
nomial Turing kernelizations over polynomial
regular kernelizations is, by itself, enough
to unconditionally separate the two notions.
This produces a hierarchy of kernelizability
within the class of problems that admit poly-
nomial Turing kernelizations, Fig. 1. Specifi-
cally, we show that:

– there are problems that are not poly-
nomially kernelizable, but do admit
a polynomial Turing kernelization
that makes a single oracle query (Theo-
rem 1);

– there are problems that admit non-
adaptive polynomial Turing kernelizations
(also known as polynomial truth-table ker-
nelizations), but cannot be solved by poly-
nomial Turing kernelizations making a
constant number of queries, even adap-
tively (Theorems 2 and 3);

– there are problems that admit adap-
tive polynomial Turing kernelizations but
not polynomial truth-table kernelizations
(Theorem 4).

Next, we show (Theorem 5) that it is not enough for a problem to be decidable
in time 2poly(k)poly(n) in order for it to have a polynomial Turing kernelization.
In fact, the problem we construct can be solved in time O(2kn). Our theorem
is stronger than a comparable result of Bodlaender et al., who only exclude
regular kernelizations. We obtain a considerably simpler proof, harnessing the
Time Hierarchy Theorem in favor of a direct diagonalization.

Finally, we ask how far up the hierarchy the known methods for proving
lower bounds against polynomial kernelization can be applied. The example of

508 J. Witteveen et al.

k-Leaf-Subtree shows that they should already fail somewhere below poly-
nomial truth-table kernelizations. Indeed, we identify what we call psize kernel-
izations as the apparently strongest type of polynomial Turing kernel that can
be ruled out by current lower bound techniques (Sect. 4). A psize kernelization
makes poly(k) non-adaptive oracle queries (of size poly(k)), and then feeds the
oracle’s answers into a poly-sized circuit to compute its own final answer. In
terms of computational power, this type of kernelization stands between poly-
nomial Turing kernelizations that make only a constant number of queries and
polynomial truth-table kernelizations (Sect. 3, Theorems 2 and 3).

1.2 Proof Techniques

The price we pay for being able to prove unconditional separations is that the
problems we construct in the proofs are artificial rather than natural. This is
unavoidable, however, because computational problems that arise naturally will
typically belong to classes that are hard to separate from P (such as NP, PH,
PP, etc.). Thus, any claim that some parameterized version of a natural prob-
lem admits no polynomial kernelization, would currently have to rely on some
complexity-theoretic assumptions.

In the construction of every problem witnessing a separation, diagonalization
will be involved, in one way or another. However, the application of diagonaliza-
tion arguments in this context has some subtle issues. An intuitive reason for this
is the fact that it is very difficult to control the complexity of a problem that
is constructed via an argument using diagonalization against polynomial-time
machines. Without additional complexity-theoretic assumptions, such problems
can be forced to reside in powerful classes such as EXP. Positioning them in
any interesting smaller classes is not straightforward. By contrast, the difference
between P and the class of problems that can be decided in polynomial-time
with a very restricted form of access to an oracle, seems rather thin, and it is by
no means clear whether a problem that is constructed via diagonalization can
be placed between these two classes. In Sect. 3 we discuss these issues, as well as
how to overcome them, in detail. Here, let us mention that the overall structure
of our artificial problems resembles that of examples of natural problems which,
subject to complexity-theoretic assumptions, admit polynomial Turing but not
regular kernelizations. Because of this, even the artificial examples we construct
provide new insights into the power of Turing kernelization.

2 Preliminaries

We assume familiarity with standard notations and the basics of parameterized
complexity theory, and refer the reader to [7] for the necessary background. Here
we review only the definitions of the notions most important for our work.

Definition 1. A kernelization (or kernel) for a parameterized problem (X,κ),
where X ⊆ {0, 1}∗ and κ is a parameterization, is a polynomial-time algorithm

A Hierarchy of Polynomial Kernels 509

that, on a given input x ∈ {0, 1}∗, outputs an instance x′ ∈ {0, 1}∗ such that
x ∈ X ⇔ x′ ∈ X holds, and, for some fixed computable function f , we have
|x′| ≤ f(κ(x)). The function f is referred to as the size of the kernel. The kernel
is said to be polynomial if f is a polynomial.

Definition 2. A Turing kernelization for a parameterized problem (X,κ) is a
polynomial-time algorithm that decides any instance x of X using oracle queries
to X of restricted size. For some fixed computable function f that is independent
of the input, the size of the queries must be upper bounded by f(κ(x)). A Turing
kernelization is polynomial if f is a polynomial.

A Turing kernelization is a truth-table kernelization if, on every input, all
of its oracle queries are independent of the oracle’s answers. Thus, as an oracle
machine, a truth-table kernelization is non-adaptive.

A parameterized problem that exemplifies the relevance of our results is
k-Leaf-Subtree, where a graph G and integer k are given, and the ques-
tion is whether G has a subtree with at least k leaves. This problem admits a
polynomial Turing kernelization but no polynomial regular kernelization, unless
NP ⊆ coNP/poly. See Sect. 9.4 of [4] for a proof of the former, and Chap. 15 of
the same reference for a proof of the latter fact.

3 Separations

To prove an unconditional separation between polynomial Turing kernelizability
and polynomial regular kernelizability (or between two intermediate kinds of
kernelizability), we construct a problem of which the instances can be solved in
polynomial-time with oracle queries for small instances of the same problem. We
shall make sure that the instances cannot be solved in polynomial-time without
such queries (remember, polynomial kernelizations are also poly-time decision
procedures). These requirements prevent us from constructing the classical part
of our parameterized problem via simple diagonalization against polynomial-
time machines. The instances of the resulting language would not depend on
each other in a way that would allow oracle queries to be useful, nor would
all instances be solvable in time p(n) for some fixed polynomial p. Solving an
instance of such a language requires simulating Turing machines (TM s) for a
polynomial number of steps, but the degree of these polynomials increases with
n. Thus, a hypothetical polynomial Turing kernelization would neither be able
to solve the instances of such a language directly within the allowed time, nor
use its oracle access to speed up the computation. An additional difficulty arises
due to the bound on the size of the oracle queries (polynomial in k). If the
parameter value of an instance x is too small relative to |x|, then the restricted
oracle access of a polynomial Turing kernelization may offer no computational
advantage, since the instances for which the oracle can be queried will be small
enough to be solved directly within the required time bound.

These issues can be overcome by designing a problem that shares what seems
to be the essential feature of natural problems that, under complexity-theoretic

510 J. Witteveen et al.

assumptions, admit polynomial Turing but not polynomial (regular) kerneliza-
tions, such as the k-Leaf-Subtree problem. Recall that for this problem, a
quadratic kernelization exists for the case when the input graph is connected,
but that a polynomial kernelization for general graphs is unlikely to exist. The
known polynomial Turing kernelization for this problem works on general graphs
by computing the kernel for each connected component of the input graph, and
then querying the oracle for each of the O(n) resulting instances of size O(k2)
(see [4], Sect. 9.4). The crucial aspect here is that although the general prob-
lem may not admit polynomial kernelizations, it has a subproblem that does.
Furthermore, the polynomial Turing kernelization only queries instances of this
subproblem.

The problems we construct will also have a polynomially kernelizable “core,”
as well as a “shell” of instances that can be solved efficiently with small queries
to the core. Taking V to be some decidable language, we can define

X(V) = {0x | x ∈ V } ∪ {1x | . . .} ,

where the ellipsis stands for a suitable condition that can be verified with small
queries to V . With the parameterization κ such that κ(0x) = |x| and κ(1x) =
log |x| for all x ∈ {0, 1}∗, the first set in the above disjoint union plays the role of
the polynomially kernelizable core (it admits the trivial kernelization), while the
second set plays the role of the shell. The crucial observation now is that we can
choose the condition that determines membership of an element of the form 1x
in X(V) in such a way that a polynomial-time algorithm can decide the instance
using small queries of the form 0w, regardless of the choice of V . Having thus
secured the existence of a polynomial Turing kernelization (perhaps one that is
further restricted), we are now free to construct V via diagonalization against
some weaker type of kernelization, so as to get the desired separation.

Using this approach, we prove that each of the computational advantages
a polynomial Turing kernelization has over polynomial (regular) kernelizations,
results in a strictly stronger type of kernelization, as shown in Fig. 1.

Theorem 1. There is a parameterized problem that has a polynomial Tur-
ing kernelization using only a single oracle query, but admits no polynomial
kernelizations.

Proof. Given any decidable set V , we can define

X(V) = {0x | x ∈ V } ∪
{
1x

∣∣∣ log |x| ∈ N and 0log |x| /∈ V
}

,

parameterized so that for all x ∈ {0, 1}∗, κ(0x) = |x| and κ(1x) = log |x|.
Clearly, the problem (X(V), κ) has a polynomial Turing kernelization making

a single query, regardless of the decidable set V . For instances of the form 0x,
the answer can be obtained by querying the oracle directly for the input, and if
the input is 1x, one can query 0log |x|+1 and output the opposite answer.

We shall construct the set V by diagonalization, ensuring that X(V) does
not admit a polynomial (regular) kernelization. Note that the kernelization pro-
cedures we diagonalize against can query X(V), whereas we only decide the

A Hierarchy of Polynomial Kernels 511

elements of V . Because every problem that admits a polynomial kernelization
can also be decided by a polynomial-time TM that makes a single query of
size poly(k) and then outputs the oracle’s answer, we only need to diagonalize
against this type of TM. As in a standard diagonalization argument, we run
every such machine for an increasing number of steps, using as input the string
102

n

(the parameter value of which is n), where n is chosen large enough for
decisions made at previous stages to not interfere with the current simulation.
Each machine is simulated until it runs out of time or makes an oracle query.
Whenever the machine makes an oracle query different from 102

n

, we answer it
according to the current state of the set V . To complete the diagonalization, we
either add 0n to V or not, so as to ensure the machine’s answer is incorrect.

Note that for sufficiently large values of n, the string 102
n

cannot be queried,
because 2n outgrows any fixed polynomial in n (∈ poly(k)). Additionally, a query
to 00n is of no concern as the machine is incapable of negating the answer of the
oracle.
�

Next, we show that polynomial truth-table kernelizations, which can make
poly(n) oracle queries of size poly(k) but cannot change their queries based on
the oracle’s previous answers, are more powerful than a restricted version of the
same type of kernelization that makes at most poly(k) queries. This restricted
form of polynomial truth-table kernelization is of further interest because it can
be ruled out by the current lower bounds techniques (see Sect. 4). We give the
definition here.

Definition 3. A polynomial truth-table kernelization is a psize kernelization if,
on any input instance with parameter value k, it makes at most poly(k) oracle
queries and its output can be expressed as the output of a poly(k)-sized circuit
that takes the answers of the oracle queries as input.

The proof of the next theorem follows the same pattern as that of Theorem1,
except that in the diagonalization part of the proof we now use the restriction
on the number of queries the machines can make. Recall that in Theorem 1 we
made use of the machine’s monotonicity, that is, the fact that its output must
be equivalent to the outcome of its single oracle query.

Theorem 2. There is a parameterized problem that has a polynomial truth-table
kernelization but no psize kernelization.

A proof is available in the appendix. The condition used for the shell is that
V contains a string of length log |x|. The conclusion of the proof is actually that
there exists a parameterized problem with a polynomial truth-table kernelization
making n − 1 oracle queries, that admits no polynomial (possibly adaptive!)
Turing kernelization making fewer than n−2 queries on certain inputs of length
n. A psize kernel fits this condition, but is much more restricted (in particular,
the number of allowed queries is polynomial in the parameter value).

Via a very similar proof, with a diagonalization argument relying on the
number of oracle queries a machine can make, we can show that psize kerneliza-
tions are stronger than polynomial Turing kernelizations making any fixed finite
number of queries, even adaptively.

512 J. Witteveen et al.

Theorem 3. There is a parameterized problem that has a psize kernelization but
no polynomial Turing kernelization making only a constant number of (possibly
adaptive) queries.

We can also show that adaptive queries provide a concrete computational
advantage. The proof of the separation between general polynomial Turing and
truth-table kernelizations also follows the pattern of the previous three theo-
rems, but with a more involved diagonalization argument, due to the need to
distinguish between adaptive and non-adaptive oracle TMs.

Theorem 4. There is a parameterized problem that has a polynomial Turing
kernelization but no polynomial truth-table kernelization.

A proof is included in the appendix and hinges on a series of (log |x|)2 queries
to V , each query depending on the outcome of the one before it.

Finally, we show that decidability in time 2poly(k)poly(n) does not guaran-
tee the existence polynomial Turing kernelizations for the same problem. This
strengthens a theorem of Bodlaender et al. [2], who construct a problem with
the above complexity but rule out only polynomial regular kernelizations.

Theorem 5. For every time-constructible function g(k) ∈ 2o(k), there is a prob-
lem that is solvable in time O(2kn) but admits no Turing kernelization of size
g(k). In particular, there is a problem that is solvable in time O(2kn) but admits
no polynomial Turing kernelization.

Proof. Let g(k) be a time-constructible function in 2o(k). Without loss of gen-
erality, we may assume that g(k) is also in Ω

(
2(log k)2

)
. Let κ : N → N be a

time-constructible function such that we have κ(n) ∈ ω(log n) ∩ o(n) as well as
κ(g(k)) ∈ o(k) (for example, κ(n) = log n log

(
g−1(n)
log n

)
is suitable). Let t(n) =

2κ(n)n and let L be a language in DTIME(t(n)) \ DTIME(o(t(n)/ log(t(n))).
Such a language exists by the Time Hierarchy Theorem. Assigning each instance
x of L the parameter value k = κ(|x|), we find that L can be solved in time
O(2kn).

Furthermore, we have

t(n)
log t(n)

=
2κ(n)n

κ(n) + log n
∈ Ω

(
2κ(n)

)
,

so we may conclude 2o(κ(n)) ⊆ o(t(n)/ log(t(n)).
Assume now that for some polynomial p, there exists a Turing kernelization

for L that runs in time p(n) and queries the oracle with instances of size bounded
by g(k), where we set k = κ(n). We show that such a Turing kernelization can be
used to solve L in time o(t(n)/ log(t(n)), contradicting the choice of the language.
Our new algorithm will solve any instance x with parameter value k = κ(|x|)
by running the Turing kernelization on it, except that the instances for which
the oracle is supposed to be queried are solved directly using the O(2κ(n)n)-time

A Hierarchy of Polynomial Kernels 513

algorithm whose existence is guaranteed by the choice of L. The total running
time of this new algorithm is then upper-bounded by:

p(n) + p(n)2κ(g(k))g(k) = 2o(k) = 2o(κ(n)),

which contradicts the lower bound on the deterministic time complexity of L.
�

4 Lower Bounds

An immediate consequence of the separations arrived at in the previous section is
that not all fixed-parameter tractable problems have polynomial kernelizations.
However, for any particular parameterized problem the (non-)existence of a poly-
nomial kernelization may not be easy to establish. The most fruitful program
for deriving superpolynomial lower bounds on the size of regular kernelizations
was started by Bodlaender et al. [2]. While a straightforward application of their
technique to Turing kernelizations is not possible, an extension to the psize level
in our hierarchy, Fig. 1, is feasible.

In order to keep our presentation focussed, we shall include only a limited
exposition of the lower bound technique. For a more complete overview, refer
to [5,12], or turn to [3] for an in-depth treatment. Central to the lower bounds
engine are two similar looking classifications of instance aggregation. The first
of these does not involve a parameterization.

Definition 4. A weak and-distillation (weak or-distillation) of a set X into a
set Y is an algorithm that

• receives as input a finite sequence of strings x1, x2, . . . , xt,
• uses time polynomial in

∑t
i=1 |xi|,

• outputs a string y such that
– we have y ∈ Y if and only if for all (any) i we have xi ∈ X,
– |y| is bounded by a polynomial in max1≤i≤t |xi|.

Note how the size of the output of a distillation is bounded by a polynomial in
the maximum size of its inputs and not by the sum of the input sizes. Originally,
distillations where considered where the target set Y was equal to X, hence the
weak designator in this more general definition. The parameterized counterpart
to distillations is, as we shall soon see, more lenient than the non-parameterized
one.

Definition 5. An and-compositional (or-compositional) parameterized prob-
lem (X,κ) is on for which there is an algorithm that

• receives as input a finite sequence of strings x1, x2, . . . , xt sharing a parameter
value k = κ(x1) = κ(x2) = . . . = κ(xt),

• uses time polynomial in
∑t

i=1 |xi|,
• outputs a string y such that

– we have y ∈ X if and only if for all (any) i we have xi ∈ X,
– κ(y) is bounded by a polynomial in k.

514 J. Witteveen et al.

Here, a bound is placed on the parameter value of the output of the algorithm,
instead of on the length of the output. Additionally, this bound is a function of
the unique parameter value shared by all input strings. Conceptually, a bound
of this kind makes sense as parameter values serve as a proxy of the computa-
tional hardness of instances. Thus, a parameterized problem is compositional,
when instances can be combined efficiently, without an increase in computational
hardness.

Generalizing the results of Bodlaender et al. [2,3], we find that not just reg-
ular polynomial kernelizations, but also psize kernelizations tie the two ways of
aggregating instances together. For our proof to work, two aspects of the defi-
nition of psize kernelizations on page 8 that were not made explicit are crucial.
Firstly, because a psize kernelization is a polynomial truth-table kernelization,
the size of the queries can be bounded by a polynomial of the parameter value.
Secondly, it is important to note that the circuits involved must be uniformly
computable from the input instances.

Theorem 6. If (X,κ) is an and-compositional (or-compositional) parameter-
ized problem that has a psize kernelization, then X has a weak and-distillation
(weak or-distillation).

Proof. Given a set X, consider the following set based on circuits and inputs
derived from membership in X,

C(X) = {〈φ, (x1, x2, . . . , xt)〉 | φ is a circuit with t inputs,
accepting (x1 ∈ X,x2 ∈ X, . . . , xt ∈ X)}.

Note that a pairing of the specification of a circuit φ and t strings (x1, x2, . . . , xt)
can be done so that |〈φ, (x1, x2, . . . , xt)〉| is bounded by a polynomial in |φ| +
|x1| + |x2| + . . . + |xt|.

We sketch the proceedings of a distillation that is given x1, x2, . . . , xt as
input. This procedure is adapted from [2].

First, the inputs are grouped by their parameter value ki = κ(xi)
and the composition algorithm is applied to each group, obtaining
(y1, k′

1), (y2, k
′
2), . . . , (ys, k

′
s). Taking kmax = max1≤i≤t ki, we have s ≤ kmax and,

for some polynomial p, all k′
i are bounded by p(kmax).

Next, the psize kernelization is applied to each (yi, k
′
i), obtaining s polynomial

sized circuits and s sequences of strings to query in order to get the inputs of the
circuits. These circuits and strings can be amalgamated (dependent on the type
of composition) into a single circuit φ and sequence of strings (z1, z2, . . . , zr).

We claim that the mapping of (x1, x2, . . . , xt) to 〈φ, (z1, z2, . . . , zr)〉 consti-
tutes a weak distillation of X into C(X). Both s and kmax are bounded by
max1≤i≤t |xi|, since, for all i, we have ki ≤ |xi|. Therefore, the proposed weak
distillation procedure produces an output of which the size is bounded by a poly-
nomial in max1≤i≤t |xi| and its running time is indeed polynomial in

∑t
i=1 |xi|.

Moreover, by definition of a psize kernelization the required preservation of mem-
bership is satisfied, hence the procedure is truly a weak distillation of X into
C(X).
�

A Hierarchy of Polynomial Kernels 515

Assuming we have NP �⊆ coNP/poly, it has been shown that NP-hard
problems admit neither weak or-distillations [8], nor weak and-distillations [6].
Thus we can further our generalization of the results of Bodlaender et al. [3].

Corollary 1. If (X,κ) is an and-compositional (or-compositional) parameter-
ized problem and X is NP-hard, then (X,κ) does not have a psize kernelization
unless we have NP ⊆ coNP/poly.

Accordingly, our hierarchy of polynomial kernels is not merely synthetic and
the place of many natural problems in the hierarchy is lower bounded. In light
of the more general setting of Bodlaender et al. [3], we remark that a general-
ization of our results to cross-composition (generalizing compositionality) and
psize compression (generalizing psize kernelization) is immediate.

5 Classical Connections

Algorithms for fixed-parameter tractable problems are not easily diagonalized
against. Such algorithms have a running time of the form f(κ(x))|x|c, where f is
a computable function and c a constant. The challenge in diagonalizing is caused
by the absence of a computable sequence of computable functions such that
every computable function is outgrown by a member of the sequence. However,
as witnessed by this document, diagonalization can be used to uncover structure
inside FPT. Key to this possibility is that a problem is fixed-parameter tractable
precisely when it is kernelizable, and the running time bound for kernelizations
does not include arbitrary computable functions.

While, to our knowledge, not done before in a parameterized context, sepa-
rating many–one, truth-table, and Turing reductions is an old endeavour, dating
back to Ladner et al. [13]. Indeed, kernelizations are in essence reductions, more
specifically, they are autoreductions in the spirit of Trakhtenbrot [16]. Since ker-
nelizations come with a time bound, a Turing kernelization could more accurately
be described as a bounded Turing kernelization, or weak truth-table kernelization
(see [14], Sect. 3.8). However, the adaptiveness of a Turing kernelization entails
that the number of different queries it could make (unaware of the answers of the
Oracle) is much higher than that of a truth-table kernelization, given the same
time bound. In that sense, our separation based on adaptiveness, Theorem4, is
also a separation based on the number of queries made.

An important feature of kernelizations is not covered by an interpretation
of kernelizations as autoreductions. Where the definition of an autoreduction
excludes querying the input string, the definition of a kernelization imposes a
stronger condition on the queries, namely a size bound as a function of the
parameter value. In this light, it may be worthwhile comparing kernelizations
to a more restrictive type of autoreduction, the self-reduction (see [1], Sect. 4.5).
Self-reducibility is defined in [1] as autoreducibility where all queries are shorter
than the input. However, many of the results around self-reducibility extend
to more general orders than the “shorter than”-order and the definition can
be generalized [11]. While the size bound on the queries that is required of

516 J. Witteveen et al.

kernelizations does not fit the self-reducibility scheme perfectly, the similarities
in the definitions urge the consideration of other forms of self-reducibility in a
parameterized context. In particular, reducibility with a decreasing parameter
value may be of interest.

Appendix (Deferred Proofs)

Theorem 2. There is a parameterized problem that has a polynomial truth-table
kernelization but no psize kernelization.

Proof. Given any decidable set V , we can define

X(V) = {0v | v ∈ V } ∪
{
1x

∣∣∣ log |x| ∈ N and {0, 1}log |x| ∩ V �= ∅
}

,

parameterized so that for all x ∈ {0, 1}∗, κ(0x) = |x| and κ(1x) = log |x|.
Clearly, (X(V), κ) has a polynomial truth-table kernelization regardless of V :
on input 0x it queries the oracle for the input, and on input 1x, with log |x| ∈ N,
it queries the oracle with each string 0y, for all y ∈ {0, 1}log |x|, and accepts if
one of the queries has a positive answer (otherwise it rejects). This procedure
runs in polynomial time and makes at most n oracle queries on any input of
length n + 1.

We construct V by diagonalizing against psize kernelization algorithms. To
do this, we consider a computable list of TMs such that every machine appears
infinitely often. At stage i of the construction we choose n, a power of 2, so that
membership in V has not been decided at a previous stage for any strings of
length at least log n. We then run the i-th machine on input 10n for ni steps. All
new oracle queries are answered with ‘no’, all other queries are answered so as to
be consistent with previous answers. If the machine at stage i terminates without
having queried the oracle for all strings of the form 0y with y ∈ {0, 1}log n, we
add an unqueried string of this length to V if and only if the machine rejects.

If P is a psize kernelization, then the number of oracle queries it makes on
an input 1x is upper-bounded by q(log |x|), for some fixed polynomial q. This
is clearly o(|x|), so for some sufficiently large i and n, P will terminate with-
out having queried all n strings which can determine the correct answer. Thus,
our diagonalization procedure will ensure that it terminates with the incorrect
answer. On the other hand, the above-mentioned polynomial truth-table ker-
nelization will always query all necessary strings in order to output the correct
answer.
�
Theorem 4. There is a parameterized problem that has a polynomial Turing
kernelization but no polynomial truth-table kernelization.

Proof. For any decidable set V we can define the function: sV : {0, 1}∗ → {0, 1}∗

by

sV (q) =

{
0q if q /∈ V,

1q if q ∈ V.

A Hierarchy of Polynomial Kernels 517

Also for a decidable set V , we define the following parameterized problem:

X(V)={0x | x ∈ V }∪

⎧
⎪⎨
⎪⎩
1x

∣∣∣∣∣∣∣
log |x| ∈ N and (sV ◦ sV ◦ · · · ◦ sV)︸ ︷︷ ︸

(log |x|)2 times

(0log |x|) ∈ V

⎫
⎪⎬
⎪⎭

,

where the parameterization is defined so that for all x ∈ {0, 1}∗, κ(0x) = |x|
and κ(1x) = log |x|. The problem X(V) has a polynomial Turing kernelization
regardless of the set V : On inputs of the form 0x, the machine queries the oracle
with its input (whose size is linear in the parameter value), and outputs the
answer. On inputs of the form 1x the machine makes the following (log |x|)2
queries: 0log |x|+1, 0b10log |x|, 0b2b10log |x|, . . . , 0b(log |x|)2 . . . b10log |x|, where bi is
the outcome of the i-th query, for each i ≤ (log |x|)2. The output is the answer of
the last oracle query. Since each of the queries in the second case is of size at most
quadratic in κ(1x) = log |x|, this procedure is a polynomial Turing kernelization.

We now construct the set V so that no polynomial truth-table kernelization
can solve X(V). Consider a variant of oracle TMs where the oracle can be queried
for an arbitrary number of queries at once. Let P1, P2, . . . be a computable list
of all such TMs in which each machine appears infinitely often.

At each stage i ∈ N, we set n to be the smallest positive integer so that
no oracle queries to X(V) at any previous stage of the simulation depend on
instances of V of size at least n, and so that n > i and 2n > ni. At stage i
of the construction, we run Pi on input 102

n

for (2n)i steps (note that this is
a polynomial of degree i in 2n + 1, the size of the input). In case the machine
queries the oracle, let S be the set of strings it queries. If S includes strings of
length at least 2n, we move on to the next stage. In particular, when no query of
length 2n + 1 is made, Pi is not making a query with prefix 1 that is equivalent
to the input. By the time bound, we have |S| ≤ 2ni < 2n2

, so there must be a
string y = bn2 . . . b2b10n, bj ∈ {0, 1}, such that 0y is not in S. The queries in S
are answered as follows: all queries also made at previous stages are answered so
as to be consistent with previous answers; all queries of the form 0bj . . . b2b10n,
with j ≤ n2 − 1, are answered with bj+1; all other queries are answered with
0 (‘no’). For all j ≤ n2 − 1 such that bj+1 = 1, we place bj . . . b2b10n into
V . After thus answering the queries in S, we resume the simulation of Pi for
the remainder of its allotted 2ni steps and treat every subsequent invocation of
the query instruction as a crash. Finally, we place y into V if and only if Pi

terminated within the time bound and rejected, making 102
n

a ‘yes’-instance if
and only the Pi rejects it.

Assume now that there is a polynomial truth-table kernelization for X(V).
Such a procedure will eventually be targeted in the above construction. Indeed, a
problem has a truth-table kernelization precisely when it is decided by a machine
that runs in polynomial time and can make all its queries at once. Let i be
such that Pi is a polynomial truth-table kernelization for X(V), running in
time p(|x|) on any input of the form 1x, and non-adaptively making oracle
queries of size at most q(log |x|), where p and q are fixed polynomials. As this
machine occurs infinitely often in the list P1, P2, . . ., we may assume that i and

518 J. Witteveen et al.

its corresponding n are large enough for Pi to terminate on input 102
n

, because
we have p(2n +1) < 2ni. Moreover, we may assume that i and n are large enough
for q(n) < ni < 2n to hold. As Pi will not be able to query all strings of the form
0y0n with |y| = n2, it will, by our construction of V , incorrectly decide some
instance of X(V).
�

References

1. Balcázar, J.L., Dı́az, J., Gabarró, J.: Structural Complexity I. Springer, Heidelberg
(1995). https://doi.org/10.1007/978-3-642-79235-9

2. Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems with-
out polynomial kernels. J. Comput. Syst. Sci. 75(8), 423–434 (2009)

3. Bodlaender, H.L., Jansen, B.M., Kratsch, S.: Kernelization lower bounds by cross-
composition. SIAM J. Discret. Math. 28(1), 277–305 (2014)

4. Cygan, M., et al.: Parameterized Algorithms. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-319-21275-3

5. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-1-4471-5559-1

6. Drucker, A.: New limits to classical and quantum instance compression. SIAM J.
Comput. 44(5), 1443–1479 (2015)

7. Flum, J., Grohe, M.: Parameterized Complexity Theory. TTCSAES. Springer,
Heidelberg (2006). https://doi.org/10.1007/3-540-29953-X

8. Fortnow, L., Santhanam, R.: Infeasibility of instance compression and succinct
PCPs for NP. J. Comput. Syst. Sci. 77(1), 91–106 (2011)

9. Jansen, B.M.: Turing kernelization for finding long paths and cycles in restricted
graph classes. J. Comput. Syst. Sci. 85, 18–37 (2017)

10. Jansen, B.M., Pilipczuk, M., Wrochna, M.: Turing kernelization for finding long
paths in graphs excluding a topological minor. In: 12th International Symposium
on Parameterized and Exact Computation (IPEC 2017), vol. 89, pp. 23:1–23:13.
Schloss Dagstuhl-Leibniz Zentrum fuer Informatik (2018)

11. Ko, K.I.: On self-reducibility and weak P-selectivity. J. Comput. Syst. Sci. 26(2),
209–221 (1983)

12. Kratsch, S.: Recent developments in kernelization: a survey. Bull. EATCS 2(113),
57–97 (2014)

13. Ladner, R.E., Lynch, N.A., Selman, A.L.: A comparison of polynomial time
reducibilities. Theor. Comput. Sci. 1(2), 103–123 (1975)

14. Soare, R.I.: Turing Computability. Springer, Heidlberg (2016). https://doi.org/10.
1007/978-3-642-31933-4

15. Thomassé, S., Trotignon, N., Vušković, K.: A polynomial Turing-kernel for weighted
independent set in bull-free graphs. Algorithmica 77(3), 619–641 (2017)

16. Trakhtenbrot, B.A.: On autoreducibility. Doklady Akademii Nauk SSSR 192(6),
1224–1227 (1970)

https://doi.org/10.1007/978-3-642-79235-9
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.1007/978-3-642-31933-4
https://doi.org/10.1007/978-3-642-31933-4

	A Hierarchy of Polynomial Kernels
	1 Introduction
	1.1 Overview of Our Results
	1.2 Proof Techniques

	2 Preliminaries
	3 Separations
	4 Lower Bounds
	5 Classical Connections
	References

