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Summary. In this chapter we present the principles of the space-mapping iteration techniques
for the efficient solution of optimization problems. We also show how space-mapping opti-
mization can be understood in the framework of defect correction.

We observe the difference between the solution of the optimization problem and the com-
puted space-mapping solutions. We repair this discrepancy by exploiting the correspondence
with defect correction iteration and we construct the manifold-mapping algorithm, which is as
efficient as the space-mapping algorithm but converges to the true solution.

In the last section we show a simple example from practice, comparing space-mapping
and manifold mapping and illustrating the efficiency of the technique.

1 Introduction

Space mapping is a technique, using simple surrogate models, to reduce the com-
puting time in optimization procedures where time-consuming computer-models are
needed to obtain sufficiently accurate results. Thus, space mapping makes use of
both accurate (and time-consuming) models and less accurate (but cheaper) ones.

In fact, the original space-mapping procedure corresponds with right-
preconditioning the coarse (inaccurate) model in order to accelerate the iterative
procedure for the optimization of the fine (accurate) one. The iterative procedure
used in space mapping for optimization can be seen as a defect correction iteration
and the convergence can be analyzed accordingly. In this paper we show the struc-
ture of space mapping iteration. We also show that right-preconditioning is generally
insufficient and (also) left-preconditioning is needed to obtain the solution for the
accurate model. This leads to the improved space-mapping or ‘manifold-mapping’
procedure. This manifold mapping is shown in some detail in Section 5 and in the
last section a few examples of an application are given.

The space-mapping idea was introduced by Bandler [3] in the context of
microwave filter design and it has developed significantly over the last decade. In the
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rather complete survey [4] we see that the original idea has gone through a large
number of changes and improvements. The reader is referred to the original litera-
ture [1, 2, 5] for a review of earlier achievements and for a classical introduction for
engineers.

2 Fine and Coarse Models in Optimization

The Optimization Problem.

Let the specifications for the data of an optimization problem be denoted by (t,y) ≡
({ti}, {yi})i=1,...,m. The independent variable t ∈ R

m could be, e.g., time, fre-
quency, space, etc. The dependent variable y ∈ Y ⊂ R

m represents the quantities
that describe the behavior of the phenomena under study or design. The set Y ⊂ R

m

is called the set of possible aims.
The behavior of the variable y not only depends on the independent variable t

but also on an additional set of control/design variables. With x the vector of relevant
control variables, we may write the components of y as yi ≈ y(ti,x). The behavior
of the phenomenon is described by the function y(t,x) and the difference between
the measured data yi and the values y(ti,x) may be the result of, e.g., measurement
errors or the imperfection of the mathematical description.

Models to describe reality appear in several degrees of sophistication. Space
mapping exploits the combination of the simplicity of the less sophisticated methods
with the accuracy of the more complex ones. Therefore, we distinguish two types of
model: fine and coarse.

The Fine Model.

The fine model response is denoted by f(x) ∈ R
m, where x ∈ X ⊂ R

n is the fine
model control variable. The set X of possible control variables is usually a closed
and bounded subset of R

n. The set f(X) ⊂ R
m of all possible fine model responses

is the set of fine model reachable aims. The fine model is assumed to be accurate but
expensive to evaluate. We also assume that f(x) is continuous.

For the optimization problem a fine model cost function, ||| f(x)−y||| , is defined,
which is a measure for the discrepancy between the data and a particular response of
the mathematical model. This cost function should be minimized. So we look for

x∗ = argmin
x∈X

||| f(x) − y||| . (1)

A design problem, characterized by the model f(x), the aim y ∈ Y , and the space
of possible controls X ⊂ R

n, is called a reachable design if the equality f(x∗) = y
can be achieved for some x∗ ∈ X . �
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The Coarse Model.

The coarse model is denoted by c(z) ∈ R
m, with z ∈ Z ⊂ R

n the coarse model
control variable. This model is assumed to be cheap to evaluate but less accurate
than the fine model. The set c(Z) ⊂ R

m is the set of coarse model reachable aims.
For the coarse model we have the coarse model cost function, ||| c(z)−y||| . We denote
its minimizer by z∗,

z∗ = argmin
z∈Z

||| c(z) − y||| . (2)

We assume that the fine and coarse optimization problems, characterized by y,
f(x) and X , respectively y, c(z) and Z, are uniquely solvable and well defined.
If X and Z are closed and bounded non-empty sets in R

n and f and c continuous
functions, the existence of the solutions is guaranteed. Generally, uniqueness can be
achieved by properly reducing the sets X or Z. If the models are non-injective (or
extremely ill-conditioned) in a small neighborhood of a solution, essential difficulties
may arise.

The Space-Mapping Function.

The similarity or discrepancy between the responses of two models used for the same
phenomenon is an important property. It is expressed by the misalignment function

r(z,x) = ||| c(z) − f(x)||| . (3)

For a given x ∈ X it is useful to know which z ∈ Z yields the smallest discrep-
ancy. This information can be used to improve the coarse model. Therefore, the
space-mapping function is introduced. The space-mapping function p : X ⊂ R

n →
Z ⊂ R

n is defined1 by

p(x) = argmin
z∈Z

r(z,x) = argmin
z∈Z

||| c(z) − f(x)||| . (4)

It should be noted that this evaluation of the space-mapping function p(x) re-
quires both an evaluation of f(x) and a minimization process with respect to z
in ||| c(z) − f(x)||| . Hence, in algorithms we should make economic use of space-
mapping function evaluations. In Figure 1 we see an example of a misalignment
function and of a few space mapping functions.

Perfect Mapping.

In order to identify the cases where the accurate solution x∗ is related with the less
accurate solution z∗ by the space mapping function, the following definition is intro-
duced. A space-mapping function p is called a perfect mapping iff

1 The process of finding p(x) for a given x is called parameter extraction or single point
extraction because it finds the best coarse-model parameter that corresponds with a given
fine-model control x.
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Fig. 1. Misalignment and space-mapping function

The left figure shows the misalignment function for a fine and a coarse model. Darker shading
shows a smaller misalignment. The right figure shows the identity function and a few space-
mapping functions for different coarse models (example taken from [9]).

z∗ = p(x∗) . (5)

Using the definition of space mapping we see that (5) can be written as

argmin
z∈Z

||| c(z) − y||| = argmin
z∈Z

||| c(z) − f(x∗)||| , (6)

i.e., a perfect space-mapping function maps x∗, the solution of the fine model
optimization, exactly onto z∗, the minimizer of the coarse model design.

Remark. We notice that perfection is not only a property of the space-mapping func-
tion, but it also depends on the data y considered. A space-mapping function can be
perfect for one set of data but imperfect for a different data set. In this sense ‘perfect
mapping’ can be a confusing notion.

3 Space-Mapping Optimization

In literature many space mapping based algorithms can be found [1, 4], but they
all have the same basis. We first describe the original space-mapping idea and the
resulting two principal approaches (primal and dual).

3.1 Primal and Dual Space-Mapping Solutions

The idea behind space-mapping optimization is the following: if either the fine model
allows for an almost reachable design (i.e., f(x∗) ≈ y) or if both models are similar
near their respective optima (i.e., f(x∗) ≈ c(z∗)), we expect
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p(x∗) = argmin
z∈Z

||| c(z) − f(x∗)||| ≈ argmin
z∈Z

||| c(z) − y||| = z∗ . (7)

Based on this relation, the space-mapping approach assumes p(x∗) ≈ z∗. However,
in general p(x∗) �= z∗ and even z∗ ∈ p(X) is not guaranteed. Therefore the primal
space-mapping approach seeks for a solution of the minimization problem

x∗
p = argmin

x∈X
‖p(x) − z∗‖ . (8)

An alternative approach can be chosen. The idea behind space-mapping opti-
mization is the replacement of the expensive fine model optimization by a surrogate
model. For the surrogate model we can take the coarse model c(z), and improve its
accuracy by the space mapping function p. Now the improved or mapped coarse
model c(p(x)) may serve as the better surrogate model. Because of (4) we expect
c(p(x)) ≈ f(x) and hence ||| f(x) − y||| ≈ ||| c(p(x)) − y||| . Then the minimization
of ||| c(p(x))−y||| will usually give us a value, x∗

d, close to the desired optimum x∗:

x∗
d = argmin

x∈X
||| c(p(x)) − y||| . (9)

This is the dual space-mapping approach.
We will see in Section 3.3 that both approaches coincide when z∗ ∈ p(X) and

p is injective, and if the mapping is perfect both x∗
p and x∗

d are equal to x∗. However,
in general the space-mapping function p will not be perfect, and hence, a space
mapping based algorithm will not yield the solution of the fine model optimization.
The principle of the approach is summarized in Figure 2.

Fig. 2. Diagram showing the main idea of space mapping
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x0 = z∗ = argminz∈Z ||| c(z) − y|||
B0 = I
for k = 0, 1, . . .
while |||p(xk) − z∗||| > tolerance
dohk = −B−1

k (p(xk) − z∗)
xk+1 = xk + hk

Bk+1 = Bk +
(p(xk+1)−z∗)hT

hT h

enddo

Fig. 3. The ASM algorithm

3.2 Space-Mapping Algorithms

Because the evaluation of the space-mapping function is expensive, algorithms to
compute x∗

p or x∗
d are based on iterative approximation of p(x). By the similarity of

f(x) and c(z), a first approximation is the identity, p0 = I .
Linear approximations form the basis for the more popular space-mapping opti-

mization algorithms. An extensive survey of available algorithms can be found in [4].
The most representative example is ASM (the ‘Aggressive Space Mapping’ shown
in Figure 3), where the space-mapping function is approximated by linearisation to
obtain

pk(x) = p(xk) + Bk (x − xk) . (10)

In each space-mapping iteration step the matrix Bk is adapted by a rank-one up-
date. For that purpose a Broyden-type approximation for the Jacobian of the space-
mapping function p(x) is used,

Bk+1 = Bk +
p(xk+1) − p(xk) − Bkh

hT h
hT , (11)

where h = xk+1 − xk. This is combined with original space mapping, so that
xk+1 = xk − B−1

k (p(xk) − z∗).

3.3 Perfect Mapping, Flexibility and Reachability

By its definition, perfect mapping relates the similarity of the models and the specifi-
cations. If the fine model allows for a reachable design, then it is immediate that, in-
dependent of the coarse model used, the mapping is always perfect. Also if the coarse
and the fine model optimal responses are identical, the space-mapping function is
perfect. These two facts are summarized in the following lemma.

Lemma 1. (i) If f(x∗) = y then p(x∗) = z∗;
(ii) If f(x∗) = c(z∗) then p(x∗) = z∗.

The following lemma [9] follows from the definitions (8) and (9).

Lemma 2. (i) If z∗ ∈ p(X), then p(x∗
p) = p(x∗

d) = z∗;
(ii) If, in addition, p is an injective perfect mapping then x∗ = x∗

p = x∗
d.
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In some cases we can expect that the sets of fine and coarse reachable aims
overlap in a region of R

m close to their respective optima. The concept of model flex-
ibility is introduced and from that some results concerning properties of the space-
mapping functions can be derived.

Definition 1. A model is called more flexible than another if the set of its reachable
aims contains the set of reachable aims of the other. Two models are equally flexible
if their sets of reachable aims coincide. �

Thus, a coarse model c is more flexible than the fine one f if c(Z) ⊃ f(X), i.e., if the
coarse model response can reproduce all the fine model reachable aims. Similarly the
fine model is more flexible if f(X) ⊃ c(Z). Model flexibility is closely related to
properties of the space-mapping function. This is shown in the following lemmas,
where p denotes the space-mapping function. Proofs are found in [9].

Lemma 3. If c is more flexible than f then
(i) c(p(x)) = f(x) ∀x ∈ X;
(ii) p : X → Z is a perfect mapping ⇔ c(z∗) = f(x∗);
(iii) if f : X → Y is injective then p : X → Z is injective;
(iv) if c(Z) \ f(X) �= ∅, then p : X → Z cannot be surjective.

Remark. Because of (ii) generally we cannot expect space-mapping functions to be
perfect for flexible coarse models unless the two models are equally flexible near the
optimum. However, we remind that if the design is reachable, the perfect mapping
property holds, even if c(Z) \ f(X) �= ∅.

Lemma 4. If f is more flexible than c then
(i) p : X → Z is surjective;
(ii) if f(X) \ c(Z) �= ∅, then p cannot be injective.

We combine the previous two lemmas in the following.

Lemma 5. If f and c are equally flexible and f : X → Y is injective, then (i) p is a
bijection, and (ii) p is a perfect mapping.

The conclusions in Lemma 2 can now be derived from assumptions about model
flexibility.

Lemma 6. (i) If f is more flexible than c, then p(x∗
p) = p(x∗

d) = z∗. (ii) If f and c
are equally flexible and f is injective, then x∗ = x∗

p = x∗
d.

Remark. It is not really needed for the space-mapping function to be a bijection
over the whole domain in which it is defined. In fact, perfect mapping is a property
that concerns only a point, and it is enough if the function is injective in a (small)
neighborhood. Thus the assumptions for the former lemmas can be relaxed and stated
just locally.
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4 Defect Correction and Space Mapping

The technique underlying space-mapping, i.e. the efficient solution of a complex
problem by the iterative use of a simpler one, is known since long in computational
mathematics. In numerical analysis it is known as defect correction iteration and
studied in a number of papers [6, 7]. Below we first briefly summarize the defect
correction principle for solving operator equations and then we apply the idea to
optimization problems.

4.1 Defect Correction for Operator Equations

We first consider the problem of solving a nonlinear operator equation

F x = y, (12)

where F : D ⊂ E → D̂ ⊂ Ê is a continuous, generally nonlinear operator and
E and Ê are Banach spaces. In general, neither injectivity nor surjectivity of the
mapping is assumed, but in many cases these properties can be achieved by a proper
choice of the subsets D and D̂.

The classical defect correction iteration for the solution of equation (12) with
y ∈ F(D) ⊂ D̂ is based on a sequence of operators F̃k : D → D̂ approximating F .
We assume that each F̃k has an easy-to-calculate inverse G̃k : D̂ → D. Actually, it
is the existence of the easy-to-evaluate operator G̃k, rather than the existence of F̃k,
that is needed for defect correction and we do not need to assume G̃k to be invertible.

Defect correction comes in two brands [6], depending on the space, E or Ê, in
which linear combinations for extrapolation are made. The two basic iterative defect
correction procedures to generate a (hopefully convergent) sequence of approxima-
tions to the solution of (12) are{

x0 = G̃0 y
xk+1 = (I − G̃k+1 F)xk + G̃k+1 y

and

{
l0 = y
lk+1 = (I −F G̃k) lk + y .

(13)

In the second, (13b), we identify the approximate solution as xk ≡ G̃klk. We see that
the two iteration processes are dual in the sense that in the first, (13a), the extrapo-
lation is in the space D, whereas the additions in (13b) are in D̂. If G̃k is injective,
then an operator F̃k exists such that F̃kG̃k = ID̂, i.e., F̃k is the left-inverse of G̃k.
Then F̃kxk = lk and (13b) is equivalent with the iterative procedure{

F̃0x0 = y ,
F̃k+1xk+1 = F̃k xk − FG̃kF̃k xk + y .

(14)

In order to apply (14), the injectivity of G̃k is not really needed and it is immedi-
ately seen that neither (13b) nor (14) converges if y �∈ F(D). However, (14) can be
modified so that it can be used for y �∈ F(D). Then we need injectivity for F̃k and
we take G̃k its left-inverse, i.e., G̃kF̃k = ID. Then (14) leads to
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F not surjective → left-inverse G : GF = ID

Fig. 4. The non-surjective operator in the optimization problem

{
x0 = G̃0 y ,

xk+1 = G̃k+1

(
F̃k xk − F xk + y

)
.

(15)

Because (15) allows for a non-injective G̃k, this iteration can be used for optimization
purposes. In case of an invertible G̃k+1 both (14) and (15) are equivalent with (13b).

For our optimization problems, where the design may be not reachable, y ∈ D̂,
but y /∈ F(D), i.e., F is no surjection so that no solution for (12) exists and (13b)-
(14) cannot converge (Figure 4). Therefore, we drop the idea of finding an x ∈ D
satisfying (12) and we replace the aim by looking for a solution x∗ ∈ D so that the
distance between Fx and y is minimal, i.e., we want to find

x∗ = argminx∈D ‖Fx − y‖Ê . (16)

For a compact non-empty D and a continuous F , at least a solution exists and if
the operators G̃k are such that (13a) or (15) converges, the stationary point x satisfies
G̃F x = G̃y or x = G̃(F̃ x − F x + y) respectively. (We assume that G̃k = G̃ and
F̃k = F̃ for k large enough.)

Now we can associate with each defect correction iteration a process for iterative
optimization by taking E = R

n, Ê = R
m, D = X , D̂ = Y and p : X → Z, and by

substitution of the corresponding operators:

Fx = y ⇔ f(x) = y ,

x = Gy ⇔ x = argmin
ξ

‖f(ξ) − y‖ ,

F̃x = y ⇔ c(p(x)) = y ,

x = G̃y ⇔ x = argmin
ξ

‖c(p(ξ)) − y‖ .

(17)

Remark. Notice that p is not the space mapping function but an arbitrary (easy to
compute) bijection, e.g., the identity.

4.2 Defect Correction for Optimization

With (17) we derive from (13a) and (15) two defect-correction iteration schemes
for optimization. Substitution of (17) yields the initial estimate and two iteration
processes for k = 0, 1, 2, · · · , with pk+1 for p in every step,
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x0 = argmin
x∈X

||| c(p0(x)) − y||| , (18)

xk+1 = xk − argmin
x∈X

||| c(pk+1(x)) − f(xk)|||

+ argmin
x∈X

||| c(pk+1(x)) − y||| , (19)

xk+1 = argmin
x∈X

||| c(pk+1(x)) − c(pk(xk)) + f(xk) − y||| . (20)

The two processes (19) and (20) are still dual in the sense that extrapolation is applied
in the space X for process (19) and in Y for process (20). The operators pk are right-
preconditioners for the coarse model, which may be adapted during the initial steps
of the iteration. We take pk non-singular and for the initial estimate (18), and if
X = Z we usually take p0 = I , the identity.

In the above iterations every minimization involves the surrogate model, c ◦ pk.
However, it is the coarse model that was assumed to be cheaply optimized. Therefore,
it is more convenient to write the procedures such that optimization over the coarse
model becomes obvious. By taking in (13a) and (15) F z = f(q(z)), F̃k z = c(z)
and G̃k y = argminz∈Z ||| c(z)−y||| , with q and qk bijections from Z to X fulfilling
in every iteration qzk = qk zk, we obtain, for k = 0, 1, 2, · · · ,

z0 = z∗ = argmin
z∈Z

||| c(z) − y||| , (21)

zk+1 = zk − argmin
z∈Z

||| c(z) − f(qk(zk))||| + z∗ , (22)

zk+1 = argmin
z∈Z

||| c(z) − c(zk) + f(qk(zk)) − y||| . (23)

As the solution is wanted in terms of fine-model control variables, the procedures are
complemented with xk = qk(zk). The bijections can be interpreted as qk = p−1

k .
For k > k0, we assume the iteration process to be stationary: pk = p and qk = q.
It is a little exercise to see by proper simplifications of (19) and (20) that space-
mapping iteration can be recovered from defect correction [9, Section 4.3.2].

Orthogonality and the Need for Left-preconditioning.

For thestationarypointsof theaboveprocesses,wecanderive the following lemma [9].

Lemma 7. In the case of convergence of (23), with fixed point limk→∞ xk = x we
obtain

f(x) − y ∈ c(Z)⊥(p(x)) . (24)

In case of convergence of (22) with a fixed point x we obtain

f(x) − y ∈ c(Z)⊥(z∗) . (25)

Like the space-mapping methods, the above iterations have the disadvantage
that, in general, the fixed point of the iteration does not coincide with the so-
lution of the fine model minimization problem. This is due to the fact that the
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Fig. 5. The relative location of c(z∗), f(x∗) and f(x)

approximate solution x satisfies either (24) or (25). whereas a (local) minimum
x∗ = argminx∈X ‖f(x) − y‖ satisfies (see Figure 5)

f(x∗) − y ∈ f(X)⊥(x∗) . (26)

Hence, differences between x and x∗ will be larger for larger distances between
y and the sets f(X) and c(Z) and for larger angles between the linear manifolds
tangential at c(Z) and f(X) near the optima.

By the orthogonality relations above, we see that it is advantageous, both for the
conditioning of the problem and for the minimization of the residual, if the manifolds
f(X) and c(Z) are found parallel in the neighborhood of the solution. However,
by space mapping or by right-preconditioning the relation between the manifolds
f(X) and c(Z) remains unchanged. This causes that the fixed point of traditional
space mapping does generally not correspond with x∗. This relation, however, can
be improved by the introduction of an additional left-preconditioner. Therefore we
introduce such a preconditioner S so that near f(x∗) ∈ Y the manifold c(Z) ⊂ Y is
mapped onto f(X) ⊂ Y :

f(x) ≈ S(c(p(x))) . (27)

In the next section we propose a new algorithm where an affine operator maps c(Z)
onto f(X) in the neighborhood of the solution. (More precisely: it approximately
maps one tangential linear manifold onto the other.) This restores the orthogonality
relation f(x) − y ⊥ f(X)(x∗). Thus it improves significantly the traditional ap-
proach and makes the solution x∗ a stationary point of the iteration. Details on the
convergence of the processes can be found in [10].

5 Manifold Mapping, the Improved Space Mapping Algorithm

We introduce the affine mapping S : Y → Y such that Sc(z) = f(x∗) for a proper
z ∈ Z, and the linear manifold tangential to c(Z) in c(z) maps onto the one tangen-
tial to f(X) in f(x∗). Because, in the non-degenerate case when m ≥ n, both f(X)
and c(Z) are n-dimensional sets in R

m, the mapping S can be described by
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Sv = f(x∗) + S (v − c(z)) , (28)

where S is an m ×m-matrix S of rank n. This mapping S is not a priori available,
but an approximation to it can be computed iteratively during the optimization. A full
rank m×m-matrix S can be constructed, which has a well-determined part of rank
n, while a remaining part of rank m − n is free to choose. Because of the supposed
similarity between the models f and c we keep the latter part close to the identity.
The meaning of the mapping S is illustrated in the Figures 6 and 7

Fig. 6. Restoring the orthogonality relation by manifold mapping

Better mapping by left and right preconditioning.

Fig. 7. Manifold Mapping
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So we propose the following algorithm (where the optional right-preconditioner
p : X → Z is still an arbitrary non-singular operator. It can be adapted to the
problem. Often we will simply take the identity.)

1. Set k = 0, set S0 = I the m×m identity matrix, and compute

x0 = argminx∈X ||| c(p(x)) − y||| . (29)

2. Compute f(xk) and c(p(xk)).
3. If k > 0, with ∆ci = c(p(xk−i)) − c(p(xk)) and ∆fi = f(xk−i) − f(xk),

i = 1, · · · ,min(n, k), we define ∆C and ∆F to be the rectangu-
lar m × min(n, k)-matrices with respectively ∆ci and ∆fi as columns.
Their singular value decompositions are respectively ∆C = UcΣcV

T
c and

∆F = UfΣfV
T
f .

4. The next iterand is computed as

xk+1 =argmin
x∈X

‖c(p(x)) − c(p(xk)) +
[
∆C∆F †+I−UcU

T
c

]
(f(xk) − y)‖.

(30)
5. Set k := k + 1 and goto 2.

Here, † denotes the pseudo-inverse: ∆F † = VfΣ
−1
f UT

f . It can be shown that (30) is
asymtotically equivalent to

xk+1 = argminx∈X ‖Sk(c(p(x))) − y‖ . (31)

Above, the matrix Sk = ∆F ∆C† + (I −Uf U
T
f ) (I −Uc U

T
c ) and the approximate

affine mapping is

Sk v = f(xk) + Sk(v − c(p(xk)) , ∀v ∈ Y,

which, for l > 0 and l = k − 1, · · · ,max(0, k − n), satisfies

Sk (c(p(xl)) − c(p(xk))) = f(xl) − f(xk) .

In (30), the freedom in making Sk full-rank is used, replacing ∆C ∆F † + (I −
UcU

T
c )(I − UfU

T
f ) by ∆C ∆F † + I − UcU

T
c , in order to stabilize the algorithm.

This does not change the solution.
If the above iteration converges with fixed point x and mappings S and p, we

have
f(x) − y ∈ S(c(p(X)))⊥(x) = f(X)⊥(x) . (32)

From this relation and the fact that Sk(c(p(xk))) = f(xk), it can be concluded
that, under convergence to x, the fixed point is a (local) optimum of the fine model
minimization.

The improved space-mapping scheme

xk+1 = argmin
x

|||Sk(c(pk(x)))) − y||| (33)

can also be recognized as defect correction iteration with either F̃k = Sk ◦ c ◦p and
F = f in (19) or (20), or with F̃k = Sk ◦ c and F = f ◦ p−1 in (22) or (23).
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6 Examples

We illustrate the application of space-mapping and manifold-mapping by a design
problem for a linear actuator. We compare the performance of these algorithms with
that of two classical optimization methods: Nelder-Mead Simplex (NMS) and Se-
quential Quadratic Programming (SQP).

Linear actuators are electromechanical devices that convert electromechanical
power into linear motion. An axi-symmetrical variant, called a voice-coil actuator,
consisting of a permanent magnet, a current-carrying coil and a ferromagnetic core
is shown in Figure 8. The permanent magnet is magnetized in the vertical direction.
The coil, steered by the magnetic force, moves along the z-axis in the gap of the
core, as illustrated in Figure 9. The position of the coil relative to the top of the

Fig. 8. A cylindrical voice-coil actuator consisting of a ferromagnetic core, permanent magnet
and coil

Design Variables. Geometry.

Fig. 9. Geometry and design variables of the cylindrical voice-coil actuator
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core is denoted by D. Due to the axisymmetrical geometry, the force has an axial
component only. It will be denoted by Fz(D).

The design variables [13] are shown in Figure 9: x1 and x2 denote the height and
radius of the magnet, x3 and x4 the height and thickness of the coil and x5, x6 and
x7 the sizes of the core. Two additional linear inequality constraints define feasible
coil positions. The air-gap sizes p1 and p2 to the left and right of the coil are kept
fixed. Remaining details are found in [11].

We allow the coil to move over a 4 mm range, i.e., 0 ≤ D ≤ 4 mm. The force
on the coil is computed at nine equidistant points Di in this interval. Values for the
design variables have to be found such that the force response is flat and as close to
y = 24 N as possible. The cost function is(

9∑
i=1

[Fz(Di) − y(Di)]2/
9∑

i=1

y(Di)2
)1/2

. (34)

The fine model is a second order Lagrangian finite element (FE) model in which
the non-linearBH-curve of the ferromagnetic core is taken into account. The force is
computed by means of the Lorentz Force Law [8]. The number of degrees of freedom
in the FE model is between 8000 and 11000, yielding three digits of accuracy in the
computed force.

The first of two coarse models is a FE model in which the BH-curve of the
actuator core is linearized. Depending on the number of Newton iterations required
in the non-linear case, this model is a factor between 30 and 50 cheaper than the fine
one. The second coarse model is a lumped parameter model. This so-called magnetic
equivalent circuit (MEC) [8] model has a negligible computational cost compared
to the fine one. In both the FE and the MEC coarse models, the relative magnetic
permeability in the core was overestimated and set equal to 1000. This was done for
illustration purposes.

Below we will consider three variants of modelling approaches for this type of
problem. The use of manifold mapping with the linearized finite element, respec-
tively the MEC as coarse model, will be denoted by FE/MM and MEC/MM. Similar
notations FE/SM and MEC/SM are used for space mapping.

6.1 A Variant with One Design Variable

We initially consider a design problem with a single design variable, only varying the
radius of the permanent magnet. We denote the design variable x2 simply by x. As
a starting guess we use the coarse model optimum, i.e., x0 = z∗, as in Section 4.2,
where the choice p0 = I was made. For this one-parameter problem both space
mapping (SM) and manifold mapping (MM), with either the linear FE or the MEC as
coarse model, converge to the unique x∗ in four iterations and both methods deliver
a speed-up with a factor between four and five compared with the NMS or the SQP
algorithm [11].

The cost function associated with the surrogate model that MM builds in the
final iteration step approximates the fine model cost function in a neighbourhood
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x∗ much better than its SM counterpart. We illustrate the convergence of SM and
MM by looking at the cost function of the surrogate models during successive itera-
tions. Figure 10 (top) shows the cost functions of the surrogate model during the first

Space-Mapping (SM).

Manifold-Mapping (MM).

Fig. 10. Convergence history of SM and MM using the MEC as coarse model
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Table 1. Computational efficiency of SM and MM for an example with a single design vari-
able, compared with the NMS and the SQP method

# iters # f evals. # c evals
NMS 10 20 20
SQP 5 18 20

MEC/SM 4 4 80
MEC/MM 4 4 80

MEC/SM iterations, i.e., ‖c(pk(x)) − y‖2/‖y‖2, for k = 1, . . . , 3 as function of x.
The coarse (k = 0) and fine model cost functions are also shown. Figure 10 (bottom)
shows the same for MEC/MM with ‖Sk(c(x)) − y‖2/‖y‖2 for successive k. The
overestimation of the magnetic permeability of the core in the coarse models is such
that for these models a smaller radius is required to reach the design objective, i.e,
z∗ < x∗. The figures also illustrate the convergence of the iterands xk to x∗. They
furthermore show that the mapping of the tangent manifold in MM provides a better
approximation of the fine model cost function in a neighbourhood of x∗

f .
To show the speed-ups that SM and MM-algorithms may yield, in Table 1 we

show the number of fine and coarse model evaluations of MEC/SM and MEC/MM
as well as the number required by NMS and SQP. For the latter two, the coarse model
was used to generate an appropriate initial guess. In the other two algorithms each
iteration requires one fine and twenty coarse model evaluations. From the table the
computational speed-up is obvious. Even though the coarse model was chosen to be
quite inaccurate, the SM based algorithms deliver a significant speed-up.

To quantify the difference between the two coarse models, in Figure 11 we show
the decrease in cost function during SM and MM iteration with both coarse models.
From this figure we conclude that the linear FE coarse model does not accelerate the
converge of SM or MM better than the (much cheaper) MEC model. A linear FE
coarse model can however be advantageous in more complex design problems.

6.2 A Variant with Two Design Variables

We now consider a design problem with two design variables, allowing changes in
height (x1) and radius (x2) of the permanent magnet. Numerical results comparing
the performance of SM and MM with NMS and SQP for this problem are given in
Table 2. The first row in this table gives the total amount of work expressed in number
of equivalent fine model evaluations. These figures are approximately proportional
to the total computing time. As starting guess for the optimization procedures we
used the values obtained by optimizing the MEC model. This design problem is
extremely ill-conditioned and has a manifold of equivalent solutions. To stabilize the
convergence of MM, the Levenberg-Marquardt method is used. The best results in
terms of computational efficiency (speed-up by a factor of six) are obtained using
MM with the MEC as coarse model. Full details about this problem and its solution
by SM or MM are found in [11].
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Fig. 11. Reduction in cost function value in successive iterations of SM and MM

Table 2. Computational efficiency of SM and MM for the example with two design variables.
The total amount of computational work is approximately equal to the cost of the fine model
function evaluations (# f evals.)

NMS SQP FE/SM MEC/SM FE/MM MEC/MM
# f evals. 24 31 9 6 9 4

cost function 0.046 0.046 0.046 0.065 0.046 0.046

6.3 A Variant with Seven Design Variables

In the last example we show the potential of MM and SM in the problem with all
seven design variables and non-linear equality and inequality constraints. This design
problem was introduced in [12] and details can be found in [11]. The total mass of
the actuator has to be minimized, while the mass of the coil is constrained to 10 g.
Thus, the cost function is the total mass of the device. The force at coil position
D = 4.25 mm should be kept at 5 N and the magnetic flux density in three regions
of the core should not exceed 1 T. In the fine model the constraints are evaluated by
the same FE model as used in the two previous design problems. In the coarse model
the constraints are based on a MEC model. Each coarse model related optimization
is solved by SQP. Either MM or SM is applied for the constraints evaluation.

Numerical results for this problem are shown in Table 3. SM and MM show a
similar behaviour: convergence is reached in seven or six fine constraint evaluations
respectively. Having the coarse model optimum z∗ as the initial guess, SQP con-
verges within 56 fine constraint evaluations. MM offers an additional advantage over
SM: the computation of the SM function p(x) is a very delicate issue [4], but MM
replaces it simply by the identity.
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Table 3. Computational efficiency of SM and MM for an example with seven design variables

# evals. total mass final design (mm)
SQP 56 81.86 g [8.543, 9.793, 11.489, 1.876, 3.876, 3.197, 2.524]
SM 7 81.11 g [8.500, 9.786, 11.450, 1.883, 3.838, 3.200, 2.497]
MM 6 81.45 g [8.500, 9.784, 11.452, 1.883, 3.860, 3.202, 2.515]

The initial guess for SQP is the coarse model optimum z∗.
The total amount of work is approximately equal to the cost of the fine model constraint

evaluations (# evals.).

7 Conclusions

The space-mapping technique aims at accelerating expensive optimization proce-
dures by combining problem descriptions with different degrees of accuracy. In nu-
merical analysis, for the solution of operator equations, the same principle is known
as defect correction iteration.

When analyzing the behaviour of space-mapping iteration, it is important to
know the notions of reachability of a design and flexibility of the underlying models.
One can show that if neither the design is reachable nor the models are equally flex-
ible, space mapping iteration does generally not converge to the (accurate) solution
of the optimization problem.

Using the principle of defect correction iteration, we can repair this deficiency
and construct the manifold-mapping iteration, which is as efficient as space mapping,
but converges to the right solution.

Our findings are illustrated by an example from electromagnetics. Here parame-
ters for the design of a voice coil actuator are determined, using a finite element
discretization for the fine model and an equivalent magnetic circuit description for
the coarse one.
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