
RAM:
Array Database Management through Relational Mapping

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor

aan de Universiteit van Amsterdam

op gezag van de Rector Magnificus

prof. dr. D.C. van den Boom

ten overstaan van een door het college voor promoties

ingestelde commissie,

in het openbaar te verdedigen in de Agnietenkapel

op donderdag 17 september 2009, te 14:00 uur

door

ALEXANDER ROLAND VAN BALLEGOOIJ

geboren te Amsterdam

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301645334?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Promotiecommissie

Promotor: Prof. dr. M.L. Kersten

Co-promotor: Prof. dr. A.P. de Vries

Overige Leden: Prof. dr. D. Maier
Prof. dr. A.P.J.M. Siebes
Prof. dr. P. Klint
Prof. dr. B.J. Wielinga

Faculteit: Faculteit der Natuurwetenschappen, Wiskunde en Informatica

The research reported in this thesis was conducted while the author was employed at
CWI, the Dutch national research laboratory for mathematics and computer science.

SIKS Dissertation Series No 2009-25.
The research reported in this thesis has been carried out under the auspices of SIKS,
the Dutch Research School for Information and Knowledge Systems.

ISBN 978-90-9023996-5

I’m pretty sure that if we don’t sleep much and drink enough coffee we
might perhaps be able to maybe get it done.

– Shawn Hargreaves

Table of Contents

Foreword 1

1 Introduction 3
1.1 Large Data Volumes . 4
1.2 Multi-Dimensional Arrays . 5
1.3 Relational Mapping . 6
1.4 Research Objectives . 7
Bibliography . 10

2 A History of Arrays 13
2.1 Programming Languages . 14

2.1.1 Array Oriented . 15
2.1.2 Array Comprehension . 16
2.1.3 Array Centric . 18
2.1.4 Array Shape . 19

2.2 Formalization . 20
2.2.1 Shape Separation . 20
2.2.2 APL Inspired . 21

2.3 Arrays in Database Technology . 22
2.3.1 Ordered Structures in Databases 23
2.3.2 Conceptual Arrays in Databases - OLAP 24
2.3.3 Multidimensional Arrays . 24

2.4 Summary . 26
Bibliography . 27

3 An Array Database System 33
3.1 The Data Model . 33

3.1.1 The Array . 34
3.1.2 Array-to-Set Conversion . 37

3.2 An Array Query Language . 39
3.2.1 Naming Convention . 40
3.2.2 Value Extraction . 40
3.2.3 Array Generation - Comprehension 41

i

ii TABLE OF CONTENTS

3.2.4 Built-in Functions . 43
3.2.5 Illustrating Example: Convolution 44
3.2.6 A Matter of Choice . 46
3.2.7 High-Level Array Operators 47
3.2.8 A Large Example: Sample Likelihood 50

3.3 An Array Algebra . 52
3.3.1 Intermediate Algebra . 53

3.4 Query Translation . 56
3.4.1 Query Normalization . 56
3.4.2 Translating Comprehension 61

3.5 Discussion . 63
3.5.1 Sparseness . 64
3.5.2 Language Extensions . 64

Bibliography . 66

4 Implementation 69
4.1 A Basic Mapping . 69

4.1.1 The Base Function . 70
4.1.2 The Relational Array Algebra 71
4.1.3 RAM in SQL . 74

4.2 Efficient Query Evaluation . 78
4.2.1 An Efficient Storage Scheme 80

4.3 MonetDB . 83
4.3.1 Array storage in MonetDB 83
4.3.2 Mapping to Main-Memory 85
4.3.3 Mapping to a Pipeline . 89

4.4 Mapping to Low-level Languages 92
4.4.1 RAM in Matlab . 93
4.4.2 RAM in C++ . 95

4.5 Discussion . 98
Bibliography . 99

5 Optimization 101
5.1 The RAM Optimizer . 101

5.1.1 Query Transformations . 102
5.1.2 Search Strategy . 104
5.1.3 Cost Model . 105
5.1.4 Discussion . 108

5.2 Optimizer Extensions . 108
5.2.1 Unfolding array queries . 108
5.2.2 Distributing array queries 110
5.2.3 Alternative Translations . 112
5.2.4 Avoiding Join Operations . 116

TABLE OF CONTENTS iii

Bibliography . 119

6 Case Studies 121
6.1 Performance Study . 121

6.1.1 Query-Optimization Experiments 124
6.1.2 Distributing array queries 130

6.2 RAM in Applications . 136
6.2.1 OLAP . 137
6.2.2 Time Series . 141
6.2.3 Linear Algebra . 144
6.2.4 Textual Information Retrieval 148

6.3 Discussion . 150
Bibliography . 151

7 Conclusion and Future Work 153
7.1 Summary of Contributions . 153

7.1.1 Conclusion . 154
7.2 Future Work . 155

7.2.1 Set Integration . 155
7.2.2 Control structures . 156
7.2.3 Sparse Storage . 156

Bibliography . 157

A A RAM Example: Sample Likelihood 159
A.1 The RAM Expression . 159
A.2 RAM Query Translation . 160

A.2.1 Query Normalization . 161
A.2.2 Producing Array algebra . 161
A.2.3 Query Optimization . 162

A.3 RAM Array-Algebra Mappings . 164
A.3.1 Mapping to a Low-Level Language: C++ 164
A.3.2 Mapping to Main Memory: MIL 164
A.3.3 Mapping to a Pipeline: X100 166

B Summary 169
Bibliography . 171

C Samenvatting 173
Bibliography . 175

SIKS Dissertatiereeks 177

Foreword

It has almost been a decade since I started working as a PhD student at the CWI, the
journey to the completion of this dissertation has not been an easy one. Along the
way I have collided with several of my shortcomings, painfully. Most notably the
fact that, apparently, I’m not as resilient to stress as I once thought. Fortunately the
continuing support and commendable patience of my promotors, Arjen and Martin,
have eventually proved enough to overcome years of writers block and nudge me over
the finish line; one sub-section at a time.

During my years at the CWI, I have had the pleasure of meeting a great many
enthusiastic and driven people. There have been too many people, that have crossed
my path, to mention everyone individually, but I do want to give a few of you special
attention here: To Martin, I thank you for allowing me the freedom to find my own
research interests after the research topic I was initially hired for turned out to be
wrong for me; To Arjen, I thank you for introducing me to information retrieval and
providing guidance for me and my slightly off-beat ideas; To Johan, I thank you for
your support and for unwittingly providing me with a wake-up call through your own
stress related struggles; To Roberto, I thank you for providing me with a great deal of
motivation to finish my thesis by building upon my work with your own research; To
Peter, I thank you for helping me further my professional career, more than once, by
introducing me to your professional contacts; To everyone, I thank you for being there
and making my time at the CWI interesting and worthwhile.

As I struggled to write this dissertation, I have not always been a very sociable
person. To my family and friends, I am grateful for your love, friendship, and support.
Please accept my sincere apology for behaving a bit like a hermit; I promise that from
now on I’ll actually pick up the phone when I say I’ll call. You should all realize that
I could not have gotten this far on my own.

Of-course, this theses could never have been finalized without a proper promotion
committee. To the committee members, David, Arno, Paul, and Bob; I am appre-
ciative that you have all made the time to participate in my committee and for your
constructive feedback.

1

2 TABLE OF CONTENTS

The cover of this book may seem to have no relation to the subject of this thesis, it
does, however, have everything to do with me, the author. The image on the cover is
taken from the design tattooed on my arm and is a personal expression of the person
I am today. I am a very different person now than I was ten years ago and I am
convinced that this change is, for a significant part, a result of my experiences as a
PhD student: I’ve broadened my horizons by working with foreign colleagues and
being allowed to travel to many parts of the world; I’ve been humbled by experiencing
first hand that there are people that are a lot smarter than I am; I’ve had to learn to deal
with stress and discover my limitations; And I’ve had a good time along the way.

In hindsight, I can honestly state that I feel privileged to have been given the great
many opportunities presented to me. I have learned more than I ever imagined possible
and met a great many wonderful minds along the way. Yet, it is a good thing that back
in 1999 I did not know what I know now: I imagine I would never ever have started
the journey.

Alex
(Amsterdam, June 2009)

Chapter 1

Introduction

Database technology is a central component in today’s information technology. All
kinds of business applications are built around central data repositories managed by
advanced database management systems, and for good reasons. The primary selling
point of database management systems (DBMS) is the potential for reduced application-
development time by using the data-management features made available. But there
are other important benefits from a business point of view: A central database allows
organizations to enforce a standard way of organizing and managing data and it aids
in keeping data available to various applications up-to-date and consistent.

At present the (commercial) database world is dominated by relational database
management systems. Relational database technology replaced flat-file storage sys-
tems because its high level of abstraction separates application code from physical
storage schemes. The relational data model, introduced by Codd in 1970 [1], models
data by grouping related objects into distinct relations.

Oddly enough, database technology has not penetrated scientific computing in the
same way it has the business world. In the world of supercomputers and large-scale
networks of computers, grids, custom-built software solutions are omnipresent. Yet,
scientific instruments and computer simulations create vast volumes of data to be orga-
nized, managed, and analyzed: these are the primary tasks of a database management
system. The lack of acceptance of (relational) database technology in science can be
attributed to a number of issues: the lack of performance offered by existing database
management systems; the mismatch between scientific paradigms and the relational
data model; and the unclear benefit of the investments required to switch from exist-
ing application frameworks, that at present suffice, to a database-driven environment.
The common preference to develop applications in 3rd-generation languages (C++,
FORTRAN, Matlab, ...) directly can only be changed by convincingly showing that
the other problems can be solved.

3

4 Chapter 1. Introduction

1.1 Large Data Volumes

Scientific data sets are growing into the petabyte (1015 bytes) range and clearly pose
a data-management challenge. Database technology capable of storing and managing
these volumes exists and is in use, for example at CERN [2]. But the ability of a
database management system to store vast volumes of data does not guarantee that it
can perform complex analysis tasks efficiently as well. The (perceived) lack of effi-
cient data-processing capabilities in database systems has resulted in many databases
systems merely functioning as a persistent store while external application programs
perform analysis tasks.

The process of configuring a database management system for maximum perfor-
mance is known as database tuning. This problem is known to be difficult as it in-
volves carefully balancing many parameters [3]. And since scientific workloads are
non-typical for relational systems, they require non-standard DBMS configuration.
Costly features, essential in the business domain, may not necessarily be required in
a scientific setting. For example, traditionally database management systems have of-
fered fine-grained transaction and recovery control to retain as much data as possible
in case of system failure: For many scientific analysis tasks simpler, and thus com-
putationally cheaper, solutions may suffice, like recovery through re-computation of
certain analysis results.

Properly tuned current state-of-the-art database technology showcases respectable
processing power. This processing power is for example shown by the publicly avail-
able results for the TPC-H benchmark, a simulation of decision-support systems that
examine large data volumes with complex queries. In this scenario, current database
technology can efficiently process complex queries over datasets into the multiple
terabyte (1012 bytes) range [4]. Although the TPC-H benchmark results do not yet
showcase petabyte-scale processing capabilities, current trends in business, such as
the need to analyze rapidly growing telecommunications and logistics logs, are driv-
ing database technology developments to handle ever larger data sets.

Meanwhile, typical relational query processing techniques are independently mak-
ing their way into high performance computing systems. For example, the Google
map-reduce technique applies the inherent parallelism in set-oriented bulk processing
of data to parallelize complex analysis tasks over thousands of computers [5]. This
technique is similar to those used to push the performance envelope of distributed
database technology [6]. At a lower level, basic linear-algebra operations at the core
of many scientific computing problems have been shown to benefit from data abstrac-
tion. For example, by utilizing generic relational data access methods such as join
algorithms, matrix operations over complex storage schemes can be accelerated [7].

Trends in the evolution of database technology are addressing the challenges posed
by very large scientific data sets [8].

1.2. Multi-Dimensional Arrays 5

1.2 Multi-Dimensional Arrays
What remains is the interface hurdle imposed by the mismatch between computational
paradigms and the relational model, generally known as the impedance mismatch.
While the relational data model is adequate for storing and analyzing scientific ob-
jects, implementing the algorithms required on top of a relational interface is often
awkward and cumbersome. Database management systems do offer rudimentary sup-
port for certain types of scientific data, such as spatial data and time series, but have
not supported the multi-dimensional array as a core data type. The absence of multi-
dimensional arrays as a primary data type in relatinal database systems is the main
driving force behind the development of specialized storage libraries for scientific ap-
plications such as NetCDF [9], and has been argued to be the essential ingredient
required for database technology to be embraced by the scientific community [10].

The current standard for database query languages, SQL-99 [11], does not offer
primitives to construct or query bulk data arrays. Arrays in SQL-99 are small-scale
structures that allow collections inside a single attribute, such as several lines of text
that form an address. Bulk storage in SQL remains fully relational, but there have
been several attempts at the development of database technology centered around the
multi-dimensional array structure.

Multi-dimensional array support for databases is often studied from a theoretical
perspective, with a focus on query-language design and high-level optimization strate-
gies rather than data-management issues. For example, the array query language [12]
(AQL) has been an important contribution toward the development of array support
in database systems by proposing a generic array-comprehension query-language that
seamlessly integrates into an existing set-based data model. Unfortunately, the main
contribution remains theoretical, as it has not evolved beyond a prototype system. Al-
ternatively, the array manipulation language [13, 14] (AML) shows potential for inter-
esting optimizations of array queries made possible by restricting the query-language.
Likewise, this system has not evolved beyond a prototype capable of handling several
specific cases.

One example of a complete system is the RasDaMan system [15]. It is primarily an
image database management system, but showcases many of the features required for
a generic array database system. It consists of an efficient storage manager [16] and an
array oriented query language – RasQL – implemented in a frontend that can interface
with object-oriented and relational database systems. Work by Sarawagi et al. [17]
takes this approach one step further by adding support for large multi-dimensional
arrays to the relational POSTGRES database system [18]. Here, multi-dimensional
arrays are stored in specialized data structures that are integrated into the core of the
database system. The focus of this work is on the low-level storage issues of large
arrays.

The commonality among these array-database efforts is that all of them have been
realized through custom, array-specific, functions, either implemented through exten-
sion of existing database systems or as stand-alone prototypes.

6 Chapter 1. Introduction

1.3 Relational Mapping
An alternative to implementation of new database functionality through new native
functions is relational mapping: translation of operations over non-relational data to
relational queries over a relational representation of that data. This approach has been
used in object-relational database solutions where object-oriented database function-
ality is realized by mapping operations to a relational DBMS [19]. Most functionality
required to support an object-oriented interface on top of a relational database sys-
tem is readily available in the relational paradigm. Features that require additional
functionality, such as user defined types and functions, have been implemented in
mainstream database systems [20] and have been standardized and included in the
SQL standard [11].

The object-relational approach effectively creates a new interface to an existing
database management system, which allows object-oriented data and relational data
to be combined in a single framework. As this approach delegates data-management
to the relational database system, data-management functionality readily available can
be reused for object-oriented data. Additionally, the different access paths to the data,
object-oriented and relational, combine the best of both worlds: The object-oriented
interface simplifies applications by encapsulating database interaction in persistent
objects, while the collected data can be bulk-processed for analysis using the relational
access path.

Despite the advantages of an object-relational mapping approach, specialized im-
plementations of object-database systems exist. The argument for a native implemen-
tation is performance: A native implementation avoids the inevitable overhead intro-
duced by the mapping process. It is common belief that object oriented database sys-
tems are well suited for applications involving complex and heavily interrelated data.
The relational representation of such complex entities is “flattened”, e.g. see [21],
and putting these entities back together in a meaningful way requires joining and sort-
ing, both costly operations [22]. Queries with multiple multi-way joins, required to
reconstruct complex objects, are a problem for relational database management sys-
tems [23].

Following the success of the object-relational approach, the emergence of XML
databases and the XQuery language [24, 25] has lead to various XML-relational map-
ping schemes, for example [26, 27, 28]. Relational storage of XML data is based on
“shredding”; this process translates a tree-based XML document into (several) rela-
tional tables.

The semi-structured XML tree is inherently associated with a navigational pro-
cessing paradigm. Native XQuery implementations, implementations based on a tree
representation of the data, tend to follow this navigational paradigm explicitly. Con-
versely, the relational paradigm supports bulk processing of data, which can be lever-
aged by XML-relational approaches, for example by detecting opportunities to use
optimized join algorithms [29]. The differeces between these paradigms have resulted
in a situation where native implementations outperform XML-relational systems for

1.4. Research Objectives 7

simple queries over small data sets while relational approaches tend to be significantly
more efficient at handling complex queries over large data sets [30].

Efficiency issues aside, one of the main advantages of a relational mapping ap-
proach is that support for new data types is automatically integrated into the existing
relational framework. This integration is not standardized as the details of the mapping
scheme differ per implementation, but since data is stored in relations it is relatively
easy to combine foreign and relational data in queries.

1.4 Research Objectives
We propose an approach similar to the object-relational and XML-relational schemes
for multi-dimensional array data: the Relational Array Mapping (RAM) system. The
research objective of this thesis is the realization of an extensible array database
architecture using relational mapping and existing relational database technol-
ogy. Throughout this thesis, the research objective is addressed through the three
separate goals outlined in the remainder of this section by discussing the design of the
RAM system as visualized in Figure 1.1.

The RAM system is isolated in a front end that implements the relational mapping
of the multi-dimensional array data and query language. This way, the RAM front-
end operates alongside existing front-ends, such as a SQL or XQuery compiler, that
access the same database system. The concept of multiple access methods to the same
database system is a classical database management system design pattern introduced
in the System-R architecture [31]. The bulk of the research regarding the RAM system
is conducted in the context of the MonetDB database system [32], which is designed to
be easily extensible through this multiple-front-end pattern. It is possible that certain
functionality required for (efficient) array query processing is not readily available
in a given relational back-end, therefore the design allows room for the addition of
specialized array functionality in the relational back-end itself.

The first goal is the specification an efficient array mapping scheme. Chap-
ter 3 presents an array-oriented data model and shows how this data model can be
implemented in a relational environment.

The front-end consists of four separate components that each perform a distinct
step in query translation: the first component normalizes the queries for further pro-
cessing, the second component translates the normalized queries to an intermediate
array algebra, the third component optimizes array queries through rewriting of the al-
gebraic array-expressions, and finally the fourth component translates the query to the
language of the relational back-end. Explicit separation of these components allows a
study of each of these query translation processes in isolation. Additionally, it isolates
functionality related to a specific back-end in a single component, which facilitates
the support of a variety of back-ends by replacing this single component.

The second goal is to explore the benefit of optimization at the array expres-
sion level in addition to relational query optimization of translated array queries.

8 Chapter 1. Introduction

Relational Database System

RAM Frontend

Translator

Relational
Kernel

SQL Frontend

Preprocessor

Optimizer

Array
Support

Relational Optimizer

Translator

RAM Calculus

RAM Algebra

RAM Algebra

Relational Algebra

RAM Calculus

Figure 1.1: System architecture

Chapter 5 explores the suitability of traditional relational optimization techniques to
be applied to the intermediate array algebra. Optimizing the array algebra expressions
is similar to the logical optimization phase in relational optimizers – the best order of
operations is chosen without fixing which physical operator implementations are to be
used – and the focus is on applying known techniques from the relational domain to
arrays.

The third goal is to show that translation of array operations directly into
primitive relational operations allows for more efficient execution than high-level
relational query languages would. We explore the specifics of RAM translation to
several back-ends in Chapter 4 and discuss the merits of generating a ‘smart’ phys-
ical relational query plan directly from RAM rather than relying on the back-end to
optimize naively generated query plans. Similar to the physical optimization phase
in relational optimizers: The best physical operations are chosen to evaluate an opti-
mized logical plan given known properties of the data to be processed.

The applicability of the system in applications and the benefit of the query opti-
mization are evaluated in Chapter 6. There we present a case study using the RAM

1.4. Research Objectives 9

system and several experiments that showcase the effectiveness of different optimiza-
tion techniques. For these experiments we focus on multimedia (retrieval) as an appli-
cation domain.

The remaining chapters of this thesis, Chapter 2, and Chapter 7, respectively an-
chor this work in literature and wrap up the thesis. Chapter 2 presents an investigation
into existing database technology and its relation with scientific computation and ar-
ray processing in particular. And this thesis is concluded in Chapter 7 by a summary
of the results presented and a discussion of its contributions.

10 Chapter 1. Introduction

Bibliography
[1] E.F. Codd. A relational model of data for large shared data banks. Communica-

tions of the ACM, 13(6):377–387, 1970.

[2] Dirk Dullmann. Petabyte databases. SIGMOD Record, 28(2):506, 1999.

[3] D. Shasha and P. Bonnet. Database Tuning: Principles, Experiments, and Trou-
bleshooting Techniques. Morgan Kaufmann, Singapore, 2002.

[4] Transaction Processing Performance Council. http://www.tpc.org/.

[5] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on Large
Clusters. OSDI, 2004.

[6] D. DeWitt and J. Gray. Parallel Database Systems: The Future of High Perfor-
mance Database Systems. Communications ACM, 35(6):85–98, 1992.

[7] Vladimir Kotlyar, Keshav Pingali, and Paul Stodghill. A relational approach to
the compilation of sparse matrix programs. In Proceedings of the Third Interna-
tional Euro-Par Conference on Parallel Processing, Euro-Par97, pages 318–327,
London, UK, 1997. Springer-Verlag.

[8] J. Gray, D.T. Liu, M. Nieto-Santisteban, A.S. Szalay, D. DeWitt, and G. Heber.
Scientific Data Management in the Coming Decade. Technical Report MSR-TR-
2005-10, Microsoft, Berkeley, Johns Hopkins University, Wisconsin, Cornell,
2005.

[9] R.K. Rew, G.P. Davis, S. Emmerson, and H. Davies. NetCDF User’s Guide for
C, An Interface for Data Access, Version 3. Unidata, University Corporation for
Atmospheric Research, Boulder, CO, USA, 1997.

[10] D. Maier and B. Vance. A Call to Order. In Proceedings of the 12th ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems,
pages 1–16. ACM Press, 1993.

[11] NCITS H2. Information Technology – Database Languages – SQL. Standard
ISO/IEC 9075-XX:1999, ISO, 1999.

[12] L. Libkin, R. Machlin, and L. Wong. A Query Language for Multidimensional
Arrays: Design, Implementation, and Optimization Techniques. In Proceedings
of ACM SIGMOD International Conference on Management of Data, pages 228–
239. ACM Press, June 1996.

[13] A.P. Marathe and K. Salem. A Language For Manipulating Arrays. In Proceed-
ings of the 23rd VLDB Conference, pages 46–55, 1997.

BIBLIOGRAPHY 11

[14] A.P. Marathe and K. Salem. Query Processing Techniques for Arrays. The VLDB
Journal, 11(1):68–91, 2002.

[15] P. Baumann. A Database Array Algebra for Spatio-Temporal Data and Beyond.
In Next Generation Information Technologies and Systems, pages 76–93, 1999.

[16] P. Furtado and P. Baumann. Storage of Multidimensional Arrays based on Ar-
bitrary Tiling. In Proceedings of the 15th International Conference on Data
Engineering, ICDE99, pages 408–489, March 1999.

[17] S. Sarawagi and M. Stonebraker. Efficient Organization of Large Multidimen-
sional Arrays. In Proceedigs of the 10th International Conference on Data Engi-
neering, ICDE94, pages 328–336. IEEE Computer Society Technical Committee
on Data Engineering, 1994.

[18] Michael Stonebraker and Greg Kemnitz. The POSTGRES next generation
database management system. Communications of the ACM, 34(10):78–92,
1991.

[19] Michael Stonebraker and Dorothy Moore. Object Relational DBMSs: The Next
Great Wave. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1995.

[20] Vishu Krishnamurthy, Sandeepan Banerjee, and Anil Nori. Bringing object-
relational technology to the mainstream. In Proceedings of the 1999 ACM SIG-
MOD International Conference on Management of Data, SIGMOD99, pages
513–514, New York, NY, USA, 1999. ACM Press.

[21] Peter A. Boncz, Annita N. Wilschut, and Martin L. Kersten. Flattening an Object
Algebra to Provide Performance. In Proceedings of the Fourteenth International
Conference on Data Engineering, ICDE98, pages 568–577, Washington, DC,
USA, 1998. IEEE Computer Society.

[22] Mary E.S. Loomis. Integrating Objects with Relational Technology. Journal of
Object-Oriented Programming Focus On ODBMS, Jul./Aug.:39, 1992.

[23] David Maier. Making database systems fast enough for CAD applications.
Object-Oriented Concepts, Databases, and Applications, pages 573–582, 1989.

[24] W3C. Extensible Markup Language (XML) 1.1. Recommendation,
http://www.w3.org/TR/xml11/, 2004.

[25] W3C. XML Query (XQuery). Recommendation,
http://www.w3.org/TR/xquery/, 2007.

[26] Microsoft. Microsoft support for XML. http://msdn.microsoft.com/sqlxml.

[27] IBM. DB2 XML Extender. http://www.ibm.com /software /data /db2 /extenders
/xmlext /library.html.

12 Chapter 1. Introduction

[28] University of Konstanz, University of Twente, and CWI. MonetDB/XQuery.
http://monetdb.cwi.nl/XQuery.

[29] P. Boncz, T. Grust, M. van Keulen, S. Manegold, J. Rittinger, and J. Teubner.
Pathfinder/MonetDB: XQuery - The Relational Way. In Proceedings of the 31st
International Conference on Very Large Databases (VLDB 2005), 2005.

[30] P.A. Boncz, T. Grust, S. Manegold, J. Rittinger, and J. Teuber. Pathfinder: re-
lational XQuery over multi-gigabyte XML inputs in interactive time. Technical
Report INS-E0503, CWI, 2005.

[31] M.M. Astrahan, M.W. Blasgen, D.D. Chamberlin, K.P. Eswaran, J.N. Gray, P.P.
Griffiths, W.F. King, R.A. Lorie, P.R. McJones, J.W. Mehl, G.R. Putzolu, I.L.
Traiger, B.W. Wade, and V. Watson. System R: Relational Approach to Database
Management. ACM Transactions on Database Systems (TODS), 1(2):97–137,
1976.

[32] P.A. Boncz. Monet : A Next-Generation DBMS Kernel For Query-Intensive Ap-
plications. PhD thesis, Universiteit van Amsterdam, Amsterdam, The Nether-
lands, 2002.

Chapter 2

A History of Arrays

Simply put, arrays are multi-dimensional structures with elements aligned across a
discrete, rectangular grid. An array’s elements are stored in an orderly fashion and
each element can be uniquely identified by a numerical index. Especially in the area of
high-performance computing, array structures have been, and remain to be, a popular
tool. Arrays and array operations are expressive enough to effectively model many
real world (computational) problems, yet their structure is simple enough to reason
about. The level of abstraction introduced by use of bulk types (such as arrays) has
driven high performance compiler technology by facilitating automatic vectorization
and parallelism [1].

The expressive power of array-expressions is explained by their similarity to basic
mathematical structures: vectors and matrices. These basic linear algebra structures
are structurally equivalent to one-dimensional and two-dimensional arrays. Linear
algebra is a successful field of mathematics: its techniques can be applied in many
other fields of mathematics, engineering, and, science. An often applicable approach
to problem solving is to expres the problem in terms of linear algebra problems with
known means of solution.

In computer science, the popularity of the array structure initially had little to do
with the relation to linear algebra. At the physical level, the hardware of a computer
memory uses linear adressing to identify its different elementary slots. This linear
adressing scheme is visible to the computer programmer in most programming lan-
guages. In such languages, the natural way to store multiple values of the same type is
a sequence of elements stored at consecutive addresses in memory: a one-dimensional
array. Sequential storage of data is not merely convenient, computer hardware has de-
veloped to a state in which maximum efficiency for number crunching often requires
sequential memory access [2].

The benefit of highly efficient processing for a paradigm that allows many mathe-
matical problems to be consicely expressed is appealing. For this reason, the scientific
community that deals with large-scale computational problems favours the proven
technology of low-level programming languages over generic database management
systems. Yet, scientific instruments and computer simulations are creating vast vol-

13

14 Chapter 2. A History of Arrays

umes of data to be organized, managed, and analyzed: these are the primary tasks
of a database management system. The lack of use of database technology in scien-
tific programming can be attributed to the failure of most DBMS systems to support
ordered data collections natively [3].

This chapter discusses various incarnations of the “array” throughout computer
science from the bottom-up. Section 2.1 starts by discussing different interpretations
of the array in various programming languages. Section 2.2 continues the discus-
sion by touching upon the mathematical formalization of arrays. Finally, Section 2.3
discusses the difficult relation between general-purpose database technology and the
array structure.

2.1 Programming Languages

As mentioned, the different elemententary slots in a computers memory are physically
adressed through a linear addressing scheme. This linear adressing scheme is visible
to the computer programmer in low-level imperative programming languages.

The C programming language [4], famous for its use in the UNIX operating sys-
tem, is one of these low-level languages. The C standard provides rudimentary support
for multi-dimensional arrays, primarily a syntactic construct to facilitate typecheck-
ing, but at the core an array in C is a block of consecutive memory slots [5]. This
close relation between the language and the computer system is by design: The C
language is minimalistic, close to the hardware, and portable; these features allow for
a generic implementation of low-level operating system components and applications
across different computer architectures. However, this low-level interpretation of the
“array” provides little abstraction for its users, for example:

Example 2.1 (Arrays in C). This small C program defines a two-by-two array, A, and
makes a transposed copy, B, of it

char A[2][2] = {{’a’,’b’},{’c’,’d’}};
char B[2][2];
for(i=0;i<2;i++) /* Explicit iteration over the axes */

for(j=0;j<2;j++)
B[i][j] = A[j][i]; /* Processing per single array element */

The example clearly shows the imperative nature of the language: the nested “for-
loops” explicitly instruct the computer to iterate, in a particular order, over the array
axes and process a single element each step. Multi-dimensional arrays in C are stored
in a single block of memory. The compiler translates multi-dimensional indexes to
linear memory addresses:

char A[4] = {’a’,’b’,’c’,’d’};
char B[4];
for(i=0;i<2;i++) /* Iteration over the axes */

for(j=0;j<2;j++)
B[i*2 + j] = A[j*2 + i]; /* Address computation */

2.1. Programming Languages 15

Note the straightforward mapping function that translates the multi-dimensional
array indexes to linear addresses: This function is commonly referred to as the “poly-
nomial indexing function”.

2.1.1 Array Oriented
The programming language FORTRAN [6], also imperative and considered low-level,
offers more abstraction than the C language does: Its arrays are defined as a collection
type over basic elements, and are supported by a small set of built-in functions. A
notable innovation is the rich “subscripting” functionality provided: In a single state-
ment, range selections over axes can be expressed that produce a new array containing
a subset of the elements in the original. Arrays in FORTRAN can also be “reshaped”;
reshaping reorders array elements by serializing a multi-dimensional array and subse-
quently de-serializing the produced sequence with different shape parameters.

An important difference with arrays in the C language, as discussed above, is that
the FORTRAN language definition does not specify the storage scheme for arrays.
The collection-type abstraction of arrays allows for different implementations on dif-
ferent platforms, however, the presence of the reshape operator does reflect assump-
tions about computer architecture: when an array is stored column major in a linear
memory area, reshaping is a cost-free operation that merely alters an array’s shape
parameters. A key abstraction in the language is the FORALL statement, which per-
forms an action on all elements of an array without specifying the order in which this
is done. The FORTRAN language has lead to efficient compiler implementations that
exploit “single instruction multiple data” (SIMD) type parallelism on hardware archi-
tectures that support vectorized operations: an important contribution to FORTRANs
popularity in computationally intensive problem domains.

Example 2.2 (Arrays in FORTRAN). This small FORTRAN program defines a two-
by-two array, A, and makes a transposed copy, B, of it

INTEGER :: I
INTEGER :: J
CHARACTER, DIMENSION(2,2) :: A
CHARACTER, DIMENSION(2,2) :: B
A = RESHAPE((/ ’a’,’b’,’c’,’d’ /),(/2,2/))
FORALL (I=1:SIZE(A,2))

FORALL (J=1:SIZE(A,1))
B(I,J) = A(J,I);

END FORALL
END FORALL

The RESHAPE command in the example is necessary as FORTRAN only supports
one-dimensional literals: Array A is created by reshaping a sequence of characters
into a two-dimensional array. Although visually similar to the C example presented
earlier, this example does not specify the order in which the elements are to be pro-
cessed, which leaves the compiler additional degrees of freedom for its code genera-
tion.

16 Chapter 2. A History of Arrays

Matlab is a software package that is very popular among scientists working on for
example multimedia analysis or applied mathematics in other fields [7]. Matlab uses a
syntax closely related to the FORTRAN syntax to allow manipulation of its basic unit:
the matrix. Matrices are structurally equivalent to two-dimensional arrays as the suit-
ability of the FORTRAN array primitives for matrix manipulation demonstrates. The
Matlab language is interpreted and as such does not provide the same raw processing
performance that made FORTRAN popular. Instead its popularity stems from its ease
of use, a rich library of efficient mathematical primitives, and visualization tools.

Another language influenced by FORTRAN is the FAN query language for ar-
rays [8]. It combines the syntaxes of imperative array-oriented programming lan-
guages, notably FORTRAN, into a simple query language over arrays with focus on
subscripting. Subscripting allows the selection of sub-arrays by specifying projec-
tions for each of the arrays axes. FAN is a query language in the strictest sense of the
word: It allows users to denote concisely the subset of data in a file that they are inter-
ested in, nothing more – no computation or other non-trivial combination of data from
different sources. The main contribution of this work is the realization that parallels
can be drawn between array processing in programming languages and database tech-
nology. FAN focuses on typical data management aspects: platform-independence,
persistence, and data-independence. The language is now part of a low-level software
library used to store (large) arrays in files: netCDF [9]. NetCDF is an example of a file
format designed to store large arrays in a platform independent way. It is commonly
used in scientific computation applications [10].

2.1.2 Array Comprehension
The functional programming paradigm performs computation through the evaluation
of mathematical functions. Programs in this paradigm are a collection of function
definitions rather than a sequence of commands. The strength of the paradigm is that
its functions are free of side-effects: Evaluation of functions produces results with-
out effecting a global program state which is particularly useful for proving program
correctness. As functional languages have no persistent variables, data structures are
typically defined recursively. For example a list is defined as a head value followed by
the tail of the list. Modern functional languages, however, offer a convenient method
to specify collection types: comprehensions.

The language of comprehensions uses a concise syntax to specify a collection of
data [11]. These comprehension syntaxes can be defined for a whole hierarchy of col-
lection types ranging from unordered data to highly structured: sets, lists, and multi-
dimensional arrays. Set comprehension is based on the selection of the subset desired
given a larger set of values; it is commonly used in mathematics and closely related
to common database query languages such as SQL [12, 13]. List comprehension is
a construction found in functional programming languages such as Miranda [14] and
Haskell [15]. Comprehension of lists is based on generation in combination with filter-
ing to produce the list required. Array comprehension extends list comprehension by

2.1. Programming Languages 17

associating array elements with (multi-dimensional) indices. Various proposals exist
for an array comprehension syntax which differ mostly in syntax, not semantics.

A comprehension-based array constructor defines the shape of the array and a
function that specifies the value of each cell given its array index. Examples of array
comprehension are the array support for the programming language Haskell, the query
language AQL (see Section 2.3.3), the query language supporting the RasDaMan sys-
tem (see Section 2.3.3), and the query language of our own RAM system (see Chap-
ter 3).

A set-comprehension {x ∈ D|C1, C2, . . . , Cn} (easily recognized in SQL variant
SELECT * FROM D WHERE C1 AND C2 AND . . . AND CN;) specifies which
elements from D are part of the result through selection conditions C1, C2, . . . , Cn,
whereas the array-comprehension requires specification of the process that generates
the result from its index values. This distinction in style is best demonstrated through
an example. If we want to specify the even numbers smaller than 10, using an array-
comprehension forces us to make explicit our knowledge about generating five even
numbers 1: [(2 · (x+ 1))|x < 5]. The set-comprehension approach specifies a super-
set of the desired result (N0), reducing it to the desired result through the appropriate
selection criteria: {x ∈ N0|x < 10, isEven(x)}.

Array comprehension is a declarative, monolithic approach to functional language
arrays: It defines all elements at once at the time the array is created. Comprehen-
sion syntax, however, is simple enough to allow straightforward implementation in
an imperative setting. The straightforward imperative evaluation of array compre-
hensions, nested iteration over each of the source collections, is not always the most
efficient solution. The problem is that imperative languages over-specify evaluation
order of array elements, which makes it hard for a compiler to optimize the program.
Functional languages under-specify evaluation order by focusing on what should be
computed, rather than how it should be computed. Minimal imposed execution or-
der is an advantage for any optimization process; recall that bulk operators have been
introduced in imperative languages (e.g., FORALL in FORTRAN) precisely to ease
optimization.

Example 2.3 (Array Comprehension). An array comprehension consists of an array
shape and a function that specifies the value of each cell given its location in the array.
This example specifies a 5 × 5 array, where each element has an index tuple (x, y)
and a value defined by f(x, y):

A = [((x, y), f(x, y))|x < 5, y < 5]

The straightforward translation of this comprehension in an imperative program ex-
plicitly iterates over the axes and evaluates the function for each cell:
double A[5][5];
for(y=0;y<5;y++)

for(x=0;x<5;x++)
A[y][x] = f(x,y);

1This example uses the RAM syntax for array comprehension, see Chapter 3

18 Chapter 2. A History of Arrays

Anderson and Hudak have shown that it is feasible to construct a compiler that
removes the main sources of inefficiency in functional programming and realize per-
formance comparable to native FORTRAN programs through analysis of Haskell ar-
ray comprehensions [16]. Optimizations are partially to overcome basic problems
imposed by lazy functional language design, and partially related to the Haskell array
comprehension construct. Functional programming languages are notoriously costly
to execute when heavy use is made of lazy evaluation. For efficient evaluation of a
Haskell array comprehension it is important to avoid lazy evaluation. This is achieved
through appropriate scheduling of the evaluation order of array elements, based on
analysis of dependencies between different array elements. Haskell arrays are con-
ceptually modeled as lists of index-value pairs, which requires verification that all
indexes with an array domain exists and exist only once. These checks can often
be resolved compile time, through analysis of the program, avoiding costly runtime
checks.

2.1.3 Array Centric

Array comprehension is similar to array support as offered in imperative langauges:
It requires algorithms over arrays to be expressed at the individual-element level. A
Programming Language, APL [17], takes array orientation as its central concept. APL
is built around a mathematical notation developed to reason about ordered structures
(arrays). It supports numbers and characters as basic types with arrays as the sole
method to provide structure. Arrays are supported through the introduction of over a
hundred new operators, each of which has unique and clearly defined semantics. Most
of these basic operations take whole arrays as input to produce whole arrays as output,
rather than single elements.

The practical problem with APL is that it is a very high-level language, designed
to be concise and elegant, but not to match closely to computer hardware character-
istics. In addition, the original language introduced new graphical symbols for each
of its operations: The characters needed for APL’s many operators, and their ASCII
equivalents, are standardized [18, 19]. The large number of operations and symbols
introduced make the language hard to implement and master, yet it is applicable at
each of the many different layers in computer architecture. It is well suited for tech-
nically low-level tasks, such as microprogramming of inner CPU functionality. As
Iverson himself demonstrates in his book [17], low-level interaction can be modeled
by realizing that at the lowest level, memory is no more than an array of binary values,
bits. CPU’s manipulate these arrays of bits through basic operations, such as shifting
and the various boolean combinators, easily expressed in APL.

2.1. Programming Languages 19

Example 2.4 (Arrays in APL.). This small APL program defines a two-by-two array,
A, and makes a transposed copy, B, of it

A ←
„

a b
c d

«
B ← ↖

A

The example immediately demonstrates that APL is a graphical language: The ex-
pressions clearly resemble mathematical formulas. The arrow over the variable A in
the second statement is the APL operator for transpostion, the direction of the ar-
row denotes the axis over which to transpose. In this case the northwestern direction
indicates the diagonal of the matrix.

The elegance of APL has lead to a number of other array-centric languages. These
langauges aim at solving some of the shortcomings in the original language. For ex-
ample, J [20] is a successor to APL, developed by Iverson and other APL developers.
J eliminates the non-functional elements in APL and provides a purely functional lan-
guage. Its focus is to offer the benefits of modern, functional, high-level language
design for the concise expression of bulk computation. It also breaks with the sym-
bolic language of APL through a syntax that requires only the standard ASCII char-
acter set to express its operations. Another example is the language K [21], developed
by Arthur Whitney, an influential member of the APL community. The K language
also provides a high-level, array-oriented array programming language with an ASCII
based syntax. It focusses primarily on usability by providing both efficiency and sim-
plicity for mathematical analysis with a comprehensive GUI framework. It targets
specifically business domain applications such as analysis and predictions based on
financial data.

2.1.4 Array Shape
The FISh programming language compiler goes one step further, using static program
analysis that seperates array shape from the actual values [22]. FISh, ”Functional =
Imperative + Shape”, is a functional array programming language designed to take
advantage of shape theory (see Section 2.2.1). Shape is a separate type in FISh; every
expression has both a value and a shape that can be independently manipulated. This
strict separation between shape and value results in an environment with reduced com-
plexity of the individual primitive operations, which allows for better scheduling of
operations. For example, by moving around shape manipulating operations, data re-
ductions can be pushed down avoiding operations over values that would otherwise be
discarded. At the same time shape-independent operations allows for parallelization
and vectorization of execution.

An interesting aspect of FISh is that the language operates on nested regular (dense
and rectangular) arrays. Shape is considered a part of the array type, therefore, despite
the fact that arrays can be nested, array structures in FISh are always rectangular:

20 Chapter 2. A History of Arrays

arrays must be of the same type and therefore shape when they are contained within
the same array.

2.2 Formalization
It is the intuitive nature of arrays that makes them such commonly used structures
in computer programs. Of course, array structures are defined operationally in the
specifications of programming languages that support array processing. However,
fundamental theoretical foundations for the structure have been developed to study
and get a grip on their mathematical properties. Different formalizations strive to
maximize the elegance of the methods that describe complex array transformations.
Typically, these frameworks focus on the relation between array shape and content:
the index and value of each cell.

2.2.1 Shape Separation
Shape theory separates the notion of shape from the actual data [23]. Even though
arrays are a prime example of a structure that allows such analysis, the theory unifies
many different structures in a common theme. It is important to realize that shape
has semantics: a set of numbers carries different meaning than a matrix composed of
the same numbers. A separation between shape-modifying operations and content-
manipulating operations often coincidentally results from efforts to realize elegant
formalizations. Jay and Streckler [23] stress the importance of this separation from a
conceptional point of view.

The theory separates shape from content by differentiating between shape modify-
ing and content manipulating operators, called shapely and shape-polymorphic opera-
tions respectively. Many different shapely operations can be devised depending on the
data type operated on. Shape-polymorphic operations however, are far less common.
In practice the map operation, the application of a function to each element in a collec-
tion, is the only shape-polymorphic function. Moreover, many functions rely on both
shape and value to produce their results, which implicitly reflects the semantics of the
shape component. Nevertheless, in those cases where clear distinction can be made
between a shapely and a shape polymorphic component in a computation both classes
of operations are independent. Independent operations can generally be executed in
any order, which provides optimization opportunities.

Arrays are a suitable data-type for the application of shape theory, since arrays
allow for a wide variety of shapely operations that are meaningful, which eases shape
and content separation. For example, the Google map-reduce technique applies the
inherent parallelism in set-oriented bulk processing of data to parallelize complex
analysis tasks over thousands of computers [24]. Shape theory is applied to arrays
in the development of FISh [22], an array-centric programming language discussed
earlier in Section 2.1.4.

2.2. Formalization 21

2.2.2 APL Inspired

Theoretical foundations for array structures are typically insipred by the apparent uni-
versal applicability of the structure in computer programming. APL especially, itself
intended as a mathematical framework, has inspired formalization of the array struc-
ture and its operations. Two of these theoretical foundations for array structures, are
the theory of arrays [25] and the mathematics of arrays [1].

The theory of arrays combines arrays with arithmetic and functions to produce an
axiomatic theory in which theorems hold for all arrays having any finite number of
axes of arbitrary length. The theory is initially defined over lists, arrays restricted to
a single dimension, and subsequently extended to multi-dimensional arrays. It is built
partially on top of the operations defined for LISP [26] and APL [17], both examples
of programming languages that take ordered structures, lists and multi-dimensional
arrays respectively, as basic units. Interestingly, in the theory of arrays, sets and set
based operations are defined using array based primitives as a basis: the reverse of the
traditional mathematical approaches that define arrays as a special type of set.

In the array theory, arrays are nested, rectangular structures with finite valence
and axes of countable length. Nesting is included into the theory to compensate for
the restrictions that the rectangularity constraint imposes on the structure. Contrary
to the arrays in shape theory, discussed above, in the theory of arrays it is valid to
nest arrays of arbitrary shape, which allows for the construction of non-rectangular
structures by nesting arrays of differing shape in one array. This work has motivated
the extension of arrays in APL to support nesting in APL2 [27] and forms the basis
for the programming language Nial [28].

This theory builds array processing on the principles of counting and valence as
the basis for location and shape: These properties follow from array indexes only,
not the value of array elements. Arrays have axes of countable length, therefore the
elements in an array can be serialized into a list using row-major ordering, and, any
location within a multi-dimensional array can be reached by counting the elements in
this list representation. Reshaping of arrays is also formalized through serialization:
Its semantics correspond to serialization of one array into a list that is subsequently
de-serialized, with different shape, to produce a new array. A notable example of a
formal proof made using the theory is that any sequence of reshaping operations can
always be collapsed to a single reshaping operation. The wealth of formal proofs
that provide inspiration for rewriting of array-expressions is the main contribution of
More’s work.

Like the theory of arrays, the mathematics of arrays (MOA) [1] is based on the
operations found in APL. Arrays are simple yet effective structures. But where the
theory of arrays attempts to leverage its potential by showing that this natural sim-
plicity makes the structure a suitable basis for mathematics [29], the mathematics of
arrays was developed to provide a firm mathematical reasoning system for algorithms
involving flat arrays of numbers. Instead of extending APL array support with addi-
tional complexities, such as nesting, MOA axiomatizes a subset of the structuring and

22 Chapter 2. A History of Arrays

partitioning operations found in APL.
MOA describes all partitioning operations and linear transformations on arrays

in terms of their shape and the n-dimensional indexing function ψ. The algebra de-
fined in MOA consists of a small number of operators and allows symbolic rewriting
through rules defined on the basis of functional equality. The theory is used to ex-
press and exploit parallelism at different levels of granularity, such as the fine-grained
SIMD type parallelism found in vector-processors and the coarse grained parallelism
offered by systems with multiple processors. It has been successfully applied to prove
theorems about register transfer operations in low-level hardware design. It has also
been used to describe partitioning strategies of linear-algebra operations for parallel
systems.

Another formalization of arrays is based on category theory [30]. This formaliza-
tion is built on flat (not-nested) arrays as a basic unit, while nesting has been added
as an extension to the framework in subsequent work [31]. The approach develops a
framework based on array constructors. Operations over arrays are expressed in terms
of basic array constructors, and different operations are related to each other on the
basis of these constructors. The advantage of this approach over other frameworks,
such as More’s array theory or the original APL, is that the precise semantics of the
operations in this approach follow automatically from the constructor semantics, while
existing approaches define each operation in isolation.

Two interesting array constructors produce complete arrays from a few parame-
ters: basis and grid. Given a shape, the basis function results in a list of array axes
each of which is represented as a list of possible indexes. The grid function takes this
a step further and produces an array filled with self-indexes. These simple operations
are remarkably useful for the formalization of array operations: they are used to con-
struct an array from scratch, and they allow index-variables to be converted to values
for use in computations by resolving indexes in their grid.

While claims are made about the benefits of this formalization for applications
such as compiler technology, its applicability is limited. Processing arrays by recur-
sively applying the various constructors is impractical; the theory could however give
insight into the relation between the higher-level operators commonly found in array
processing.

2.3 Arrays in Database Technology
Maier and Vance [3] identified the failure of most DBMS systems to support ordered
data collections natively. The authors hypothesize that the mismatch in domains be-
tween scientific problems, often based on ordered structures, and database systems,
based on unordered sets, explains why DBMSes are not used widely in general sci-
ence. The mismatch in domains causes unnatural encoding of inherently ordered sci-
entific data in a DBMS, encouraging users to implement client-side processing while
using a DBMS only as a persistent data store.

2.3. Arrays in Database Technology 23

The relation between the (multi-dimensional) array structure and database man-
agement system has since long been a difficult one. Relational database technology
owes its popularity in the business domain to the high degree of abstaction it offers:
seperating the application logic from data-management details [32]. Array structures
typically occur however, in a context where minute details about the physical pro-
cessing are important. Yet, these two requirements are not mutually exclusive: It
is possible to provide a high-level interface for array-based processing that allows a
smooth application integration in the domain of arrays and at the same time exploits
in-depth knowledge of the structure and its properties at the low-level to realize effi-
cient processing.

Trends in the evolution of database technology address the challenges posed by
very large scientific data sets [33]. Relational query processing techniques are inde-
pendently making their way into high performance computing systems, such as the
previously mentioned map-reduce in Google’s search technology. This is similar to
the techniques used to push the performance envelope of distributed database tech-
nology [34]. At a lower level, basic linear algebra operations at the core of many
scientific computing problems have been shown to benefit from data abstraction. By
utilizing generic relational data access methods and efficient join algorithms, matrix
operations over complex storage schemes can be accelerated [35].

2.3.1 Ordered Structures in Databases
In spite of the overwhelming evidence that arrays are a useful construct, SQL-99 [36]
the current standard for database query languages has only limited array support [37].
Relational database management systems operate on unordered data. Yet, it is known
that order, inherent to the physical representation of data, is an important issue for ef-
ficient query processing. For example, it may be cost-effective to physically sort data
in preparation for subsequent operations such as joining: Even though sorting in itself
is a costly operation, using a “sort-merge” algorithm instead of a naive nested-loop
join can be worth the initial investment. Another well known example is the propaga-
tion of order through a query plan to efficiently handle top-N type queries. Explicit
knowledge about order can be valuable for a wide range of query optimizations.

A recurring approach in database literature is the introduction of ordered storage
types at the relational algebra level. By treating relations as sets stored in lists and re-
defining the relational algebra over these lists of tuples it is possible to explicitly model
physical data order in the query process [38]. Wolniewicz and Graefe take the opposite
approach, adding scientific data types and associated operations into a database frame-
work by implicitly modelling those datatypes using the existing set primitive [39].
Both approaches are complementary: explicit addition of ordered types to a database
kernel may facilitate efficient query processing, also for conceptually unordered data
structures, while modelling new types using existing primitives provides convenient
interfaces to existing technology.

The SEQ model [40, 41] differentiates between record-oriented operations and

24 Chapter 2. A History of Arrays

positional operations. Positional operations are supported by a sequence data-model:
(nested) sequences are explicitly added to the relational data model. This data-model
allows for specialized operators that simplify the expression of operations based on
order and the order-aware optimizations of such queries.

Another example, the AQuery system, is based on “arrables”, or “array tables”.
These arrables are vertically decomposed tables (aligned one-dimensional arrays) that
are explicitly ordered on some ORDER BY clause [42]. By keeping track of this order
explicitly, the AQuery system can optimize queries that are based on order. Moreover,
the explicit storage of arrables as decomposed one-dimensional arrays allows for more
efficient low-level operators to be implemented.

Explicitly taking notice of such physical order to implement efficient storage and
processing primitives is also done in the MonetDB Database system [43]. MonetDB
explicitly decomposes tables into one-dimensional arrays (called void-BATs) in order
to allow the use of more efficient positional primitives.

2.3.2 Conceptual Arrays in Databases - OLAP
Online analytical processing (OLAP) systems are based on the notion of data-cubes,
structures that store data of interest over multiple dimensions (for an overview see
[44, 45]). Data-cubes closely resemble multi-dimensional arrays.

OLAP systems come in two flavours, ROLAP and MOLAP, either implemented
using a relational engine or on top of a specialized multi-dimensional data-cube en-
gine. Alternatively, systems exists that use a combination of both techniques. The
conceptual model of data-cubes is however independent of the underlying implemen-
tation. This independence is made explicit by Cabibbo and Torlone [46], whoseMD
model defines mappings to both relational and multi-dimensional backends.

2.3.3 Multidimensional Arrays
Multidimensional array data differs however from data that fits in data-cubes in a
fundemental way: It is shaped. This property of array data leads to a distinct class of
array operations based on the manipulation of array indices [47]. Support for these
kinds of operations differentiates array database efforts from OLAP systems.

The array query language (AQL) proposed in [48] has been an important contribu-
tion toward the development of array support in database systems. AQL is a functional
array language geared toward scientific computation. It adds some syntactic sugar to
NRCA, a nested relational calculus (NRC) extended to support arrays as well as multi-
sets. The proposed language takes the point of view that an array is a function rather
than a collection type, and is based on a comprehension-like syntax defining arrays of
complex objects.

Although a prototype system enriched with AQL is reported, the main contribu-
tions are of theoretical nature. NRCA supports most traditional set-based operations,
such as aggregation, through the manipulation of complex objects, basically nested

2.3. Arrays in Database Technology 25

collections. The authors prove that inclusion of array support to their nested relational
language entails to the addition of two functions: an operator to produce aggregation
functions and a generator for intervals of natural numbers.

The array manipulation language (AML) is more restrictive and no prototype ap-
pears to exist [49, 50]. An interesting characteristic of AML is its alternative defini-
tion of arrays and an unconventional set of operators, supposedly designed to express
image manipulation efficiently. In AML arrays are defined having infinite valence
(x × y × z × 1 × 1 × · · ·) and sub-sampling is achieved through bit patterns over
axes rather than explicit index numbers. A point of concern, however, is that AML
is not always applicable. For example, a seemingly simple array operation, matrix-
transposition, cannot be expressed elegantly – the source must be decomposed entirely
and the transposed matrix explicitly (re-)built.

A deductive database aproach with array support, DATALOGA proposed in [51],
provides many viable opportunities for (array) query optimization. Unfortunately, the
query language itself requires users to explicitly encode nested loop type evaluation
of array operations in a Prolog-like language.

Sarawagi et al. [52] have added support for large multi-dimensional arrays to the
POSTGRES database system. Multidimensional arrays are stored in specialized data-
structures, which are integrated into the core of the database system. Focus of this
work is on the low-level management of large arrays where arrays are split into chunks
(using a regular grid) that are distributed over blocks on the storage device. In addition
to discussing disk-based storage, the work focuses on specific problems that tertiary
storage poses, proposing optimizations that minimize, for example, the need for a tape
robot to swap tapes. Although some rules are derived to optimize the fragmentation
process, the process itself is only partially automated, and human intervention is re-
quired to instruct the system which particular fragmentation strategy to follow.

The RasDaMan DBMS is a domain-independent array database system [53, 54,
55]. Its RasQL query language is a SQL/OQL like query language based on a low-
level array algebra, the “RasDaMan Array Algebra”. This algebra consists of three
operators: an array constructor, an aggregation operation and a sorting operation. The
constructor is similar to the AQL array constructor, in that it defines a shape and
a function to compute the value for each array cell. The aggregation construction
reduces an array to a scalar value; the sorter facilitates the sorting of hyper-planes
over a single dimension.

The RasDaMan DBMS provides an example of an operational array based multi-
dimensional DBMS. Although RasDaMan is intended as a general purpose framework
for “multi-dimensional discrete data” (basically sparse arrays), its primary applica-
tion so far has been image databases. An interesting contribution of their work is an
optimized arbitrary tiling system for the storage manager. The RasDaMan storage
manager fragments arrays into “tiles” and optimizes the fragmentation pattern auto-
matically to best match observed access patterns.

A similar effort is based on the AMOS-II functional DBMS [56, 57]. This system

26 Chapter 2. A History of Arrays

is also implemented in an OO-DBMS, and offers a functional matrix query language
supported by a comprehensive library of foreign functions with matrix operations. In
addition, the system supports various matrix-storage schemes, such as “full”, “sparse”,
and “skyline” representations. The system takes care of selecting the appropriate func-
tions, order of application, and apropriate storage scheme for a given task.

2.4 Summary
Throughout this chapter a large spectrum of areas has been discussed, each of these
areas provides its own perspective on arrays. The RAM system, presented in this
thesis, derives inspiration from many of these areas.

Its query language is constructed around a comprehension-style array constructor
following in the footsteps of functional programming languages and multi-dimensional
array query languages such as AQL and RasQL.

Its optimizer is inspired by classical-relational database query-optimizer technol-
ogy for its design, while its transformation rules are inspired by work from a variety of
areas mentioned throughout this chapter, specifically the work on array programming
languages and array query languages.

Its query evaluation is delegated to existing relational-database technology. For
its primary target platform, MonetDB, the RAM system makes explicit use of ordered
structures and order-aware operators available in the native relational algebra, deriving
inspiration from the work on ordered structures in databases.

BIBLIOGRAPHY 27

Bibliography
[1] L.M. Restifo Mullin, M. Jenkins, G. Hains, R. Bernecky, and G. Gao. Arrays,

Functional Languages, and Parallel Systems. Kluwer Academic Publishers, 101
Philip Drive, Assinippi Park, Norwell, Massachusetts, 1991.

[2] S. Manegold. Understanding, Modeling, and Improving Main-Memory
Database Performance. Ph.d. thesis, Universiteit van Amsterdam, Amsterdam,
The Netherlands, December 2002.

[3] D. Maier and B. Vance. A Call to Order. In Proceedings of the 12th ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems,
pages 1–16. ACM Press, 1993.

[4] B. Kernighan and D. Ritchie. The C Programming Language. Prentice Hall,
Englewood Cliffs, N.J., 1978.

[5] ISO/IEC JTC1 SC22. Information Technology - Programming Languages - C.
Standard ISO/IEC 9899:1999, ISO/IEC, 1999.

[6] ISO/IEC JTC1 SC22. Information Technology - Programming Languages - For-
tran. Standard ISO/IEC 1539-X:1997, ISO/IEC, 1997.

[7] The MathWorks Inc. Matlab. http://www.mathworks.com.

[8] H. Davies. FAN - An Array-Oriented Query Language. In A. Wierse, G.G. Grin-
stein, and U. Lang, editors, Proceedings of the Workshop on Database Issues for
Data Visualization, volume 1183 of Lecture Notes in Computer Science, pages
155–170. Springer, 1996.

[9] R.K. Rew, G.P. Davis, S. Emmerson, and H. Davies. NetCDF User’s Guide for
C, An Interface for Data Access, Version 3. Unidata, University Corporation for
Atmospheric Research, Boulder, CO, USA, 1997.

[10] R.K. Rew and G.P. Davis. NetCDF: An Interface for Scientific Data Access.
IEEE Computer Graphics and Applications, 10(4):76–82, 1990.

[11] P. Buneman, L. Libkin, D. Suciu, V. Tannen, and L. Wong. Comprehension
Syntax. SIGMOD Record, 23(1):87–96, 1994.

[12] V. Tannen. Tutorial: Languages for Collection Types. In Proceedings of the thir-
teenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems, pages 150–154. ACM Press, 1994.

[13] P.W. Trinder. Comprehensions, a Query Notation for DBPLs. In P.C. Kanel-
lakis and J.W. Schmidt, editors, Database Programming Languages: Bulk Types
and Persistent Data. 3rd International Workshop, August 27-30, 1991, Nafplion,
Greece, Proceedings, pages 55–68. Morgan Kaufmann, 1991.

28 Chapter 2. A History of Arrays

[14] D.A. Turner. Miranda: A non-strict functional language with polymorphic types.
In Proceedings of the International Conference on Functional Programming
Languages and Computer Architecture, IFIP, pages 1–16, Nancy, France, 1985.
Springer.

[15] P. Hudak, S. P. Jones, P. Wadler, B. Boutel, J. Fairbairn, J. Fasel, M. M. Guzmn,
K. Hammond, J. Hughes, T. Johnsson, D. Kieburtz, R. Nikhil, W. Partain, and
J. Peterson. Report on the Programming Language Haskell. Technical report,
Yale University, USA, 1988.

[16] S. Anderson and P. Hudak. Compilation of Haskell array comprehensions for
scientific computing. In Proceedings of the conference on Programming lan-
guage design and implementation, pages 137–149. ACM Press, 1990.

[17] K.E. Iverson. A Programming Language. John Wiley and sons Inc, New York,
USA, 1962.

[18] ISO/IEC JTC1 SC22. Information Technology - Programming Languages -
APL. Standard ISO/IEC 8485:1989, ISO/IEC, 1989.

[19] ISO/IEC JTC1 SC22. Information Technology - Programming Languages - Ex-
tended APL. Standard ISO/IEC 13751:2001, ISO/IEC, 2001.

[20] K.W. Hui and K.E. Iverson. J Dictionary. J software Inc., www.jsoftware.com,
1991-2002.

[21] Kx Systems. K. http://www.kx.com.

[22] C.B. Jay. The FISh language definition. http://www-
staff.socs.uts.edu.au/˜cbj/Publications/fishdef.ps.gz, October 1998.

[23] C.B. Jay and P.A. Steckler. The Functional Imperative: Shape! In C. Hankin,
editor, Proceedings of the 7th European Symposium on Programming Languages
and Systems, ESOP98, held as Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS98, volume 1381, pages 139–153. Springer-
Verlag, 1998.

[24] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on Large
Clusters. OSDI, 2004.

[25] T. More jr. Axioms and Theorems for a Theory of Arrays. IBM Journal of
Research and Development, 17(2):135–157, March 1973.

[26] (X3J13). American National Standard for Programming Language - Common
LISP. Standard ANSI X3.226:1994, ANSI, 1994.

[27] J.A. Brown. The Principles of APL2. Technical Report TR 03-247, IBM Santa
Teresa, 1984.

BIBLIOGRAPHY 29

[28] C. D. McCrosky, J. J. Glasgow, and M. A. Jenkins. Nial: A candidate language
for fifth generation computer systems. In Proceedings of the 1984 annual confer-
ence of the ACM on The fifth generation challenge, pages 157–166, New York,
NY, USA, 1984. ACM Press.

[29] T. More. The nested rectangular array as a model of data. In Proceedings of the
International Conference on APL: part 1, pages 55–73, 1979.

[30] C. R. Banger and D. B. Skillicorn. Flat arrays as a categorical data type.
http://citeseer.nj.nec.com/78674.html, 1992.

[31] C.R. Banger and D.B. Skillicorn. A foundation for theories of arrays.
http://citeseer.nj.nec.com/banger93foundation.html, 1991.

[32] E.F. Codd. A relational model of data for large shared data banks. Communica-
tions of the ACM, 13(6):377–387, 1970.

[33] J. Gray, D.T. Liu, M. Nieto-Santisteban, A.S. Szalay, D. DeWitt, and G. Heber.
Scientific Data Management in the Coming Decade. Technical Report MSR-TR-
2005-10, Microsoft, Berkeley, Johns Hopkins University, Wisconsin, Cornell,
2005.

[34] D. DeWitt and J. Gray. Parallel Database Systems: The Future of High Perfor-
mance Database Systems. Communications ACM, 35(6):85–98, 1992.

[35] Vladimir Kotlyar, Keshav Pingali, and Paul Stodghill. A relational approach to
the compilation of sparse matrix programs. In Proceedings of the Third Interna-
tional Euro-Par Conference on Parallel Processing, Euro-Par97, pages 318–327,
London, UK, 1997. Springer-Verlag.

[36] NCITS H2. Information Technology – Database Languages – SQL. Standard
ISO/IEC 9075-XX:1999, ISO, 1999.

[37] P. Gulutzan and T. Pelzer. SQL-99 Complete, Really. R&D Books, Lawrence,
Kansas, USA, 1999.

[38] G. Slivinskas, C.S. Jensen, and R.T. Snodgrass. Bringing order to query opti-
mization. ACM SIGMOD Record, 31(2):5–14, 2002.

[39] Richard H. Wolniewicz and Goetz Graefe. Algebraic Optimization of Computa-
tions over Scientific Databases. In Rakesh Agrawal, Seán Baker, and David A.
Bell, editors, Proceedings of the 19th International Conference on Very Large
Data Bases, VLDB93, pages 13–24. Morgan Kaufmann, 1993.

[40] P. Seshadri, M. Livny, and R. Ramakrishnan. Sequence query processing. In
Proceedings of SIGMOD94, the International Conference on Management of
Data, pages 430–441. ACM Press, 1994.

30 Chapter 2. A History of Arrays

[41] P. Seshadri, M. Livny, and R. Ramakrishnan. SEQ: A Model for Sequence
Databases. In P.S. Yu and A.L.P. Chen, editors, Proceedings of ICDE95, the
Eleventh International Conference on Data Engineering, pages 232–239. IEEE
Computer Society, 1995.

[42] A. Lerner and D. Shasha. AQuery: Query Language for Ordered Data, Optimiza-
tion Techniques, and Experiments. In Proceedings of the 29th VLDB Conference,
pages 345–356, 2003.

[43] P.A. Boncz and M.L. Kersten. MIL Primitives for Querying a Fragmented
World. The VLDB Journal, 8(2):101–119, October 1999.

[44] P. Vassiliadis. Modeling Multidimensional Databases, Cubes and Cube Opera-
tions. In M. Rafanelli and M. Jarke, editors, The Proceedings of SSDB98, the
10th International Conference on Scientific and Statistical Database Manage-
ment, pages 53–62. IEEE Computer Society, 1998.

[45] P. Vassiliadis and T.K. Sellis. A Survey of Logical Models for OLAP Databases.
SIGMOD Record, 28(4):64–69, 1999.

[46] L. Cabibbo and R. Torlone. A Logical Approach to Multidimensional Databases.
In H. Schek, F. Saltor, I. Ramos, and G. Alonso, editors, The Proceedings of
EDBT98, the 6th International Conference on Extending Database Technology,
volume 1377 of Lecture Notes in Computer Science, pages 183–197. Springer,
1998.

[47] R. Machlin. Index-Based Multidimensional Array Queries: Safety and Equiva-
lence. In Proceedings of the 26th ACM SIGMOD-SIGACT-SIGART Symposium
on Principles of Database Systems, pages 175–184. ACM Press, June 2007.

[48] L. Libkin, R. Machlin, and L. Wong. A Query Language for Multidimensional
Arrays: Design, Implementation, and Optimization Techniques. In Proceedings
of ACM SIGMOD International Conference on Management of Data, pages 228–
239. ACM Press, June 1996.

[49] A.P. Marathe and K. Salem. A Language For Manipulating Arrays. In Proceed-
ings of the 23rd VLDB Conference, pages 46–55, 1997.

[50] A.P. Marathe and K. Salem. Query Processing Techniques for Arrays. The VLDB
Journal, 11(1):68–91, 2002.

[51] S. Greco, L. Palopoli, and E. Spadafora. DatalogA: Array Manipulations in
a Deductive Database Language. In T.W. Ling and Y. Masunaga, editors, The
Proceedings of DASFAA95, the 4th International Conference on Database Sys-
tems for Advanced Applications, volume 5 of Advanced Database Research and
Development Series, pages 180–188. World Scientific, 1995.

BIBLIOGRAPHY 31

[52] S. Sarawagi and M. Stonebraker. Efficient Organization of Large Multidimen-
sional Arrays. In Proceedigs of the 10th International Conference on Data Engi-
neering, ICDE94, pages 328–336. IEEE Computer Society Technical Committee
on Data Engineering, 1994.

[53] P. Baumann. A Database Array Algebra for Spatio-Temporal Data and Beyond.
In Next Generation Information Technologies and Systems, pages 76–93, 1999.

[54] P. Furtado and P. Baumann. Storage of Multidimensional Arrays based on Ar-
bitrary Tiling. In Proceedings of the 15th International Conference on Data
Engineering, ICDE99, pages 408–489, March 1999.

[55] A. Garcia Gutierrez and P. Baumann. Modeling Fundemental Geo-Raster Oper-
ations with Array Algebra. In Proceedings of the 7th International Conference
on Data Mining - Workshops, ICDMW, pages 607–612, 2007.

[56] T. Risch, V. Josifovski, and T. Katchaounov. Functional Data Integration in a
Distributed Mediator System. In P. Gray, L. Kerschberg, P. King, and A. Poulo-
vassilis, editors, Functional Approach to Data Management - Modeling, Analyz-
ing and Integrating Heterogeneous Data. Springer, 2003.

[57] K. Orsborn, T. Risch, and RS. Flodin. Representing Matrices Using Multi-
Directional Foreign Funcitons. In P. Gray, L. Kerschberg, P. King, and A. Poulo-
vassilis, editors, Functional Approach to Data Management - Modeling, Analyz-
ing and Integrating Heterogeneous Data. Springer, 2003.

Chapter 3

An Array Database System

This chapter presents the core of the RAM system: a prototype array database manage-
ment system. It is based on mapping array structures to a relational storage scheme,
and translation of array queries into relational queries over arrays stored using that
storage scheme. Section 3.1 presents the data model of the RAM system, arrays, and
its basic mapping to a relational storage architecture. The data model is followed by
a calculus based high-level query language detailed in Section 3.2, and the intermedi-
ate algebraic array-expression language presented in Section 3.3. Finally Section 3.4
discusses both the preprocessing component, which normalizes array queries into a
canonical form, and the translation of these normalized array queries to algebraic ex-
pressions.

Discussion of practical mappings to existing relational systems and the optimizer
component, are deferred to Chapter 4 and Chapter 5, respectively.

3.1 The Data Model

The RAM data model distinguishes between atomic types and collection types: Atomic
values represent a single value at a time, whereas collections store or collect (zero, one,
or) multiple values at once. Examples of atomic types include numbers, both discrete
and continuous, characters, and enumerations; examples of collection types include
sets, bags, lists, and arrays.

Arrays are common in many programming languages, nevertheless (as shown in
Chapter 2) it is difficult to find a satisfying unifying formalization of the theory behind
arrays in the literature. In most cases, arrays are defined operationally as a storage
structure for data, and, often these specifications differ in subtle details. Some formal
deliberations on arrays follow a collection type approach, by constructing arrays on
top set theory. This thesis follows the definition of arrays as mathematical functions
and follows the terminology found in literature [1, 2, 3, 4].

33

34 Chapter 3. An Array Database System

3.1.1 The Array
Mathematically, an array A is defined as a many-to-one function A : DA −→ τA over
array indexes, i.e. multi-dimensional discrete numeric vectors. What distinguishes
arrays from other classes of functions are the restrictions imposed on their domain.
An array’s range plays a less prominent role in array theory.

The domain of an array is a set of multi-dimensional discrete numeric vectors
defined by a dense n-dimensional hyper rectangle in Nn

0 . For notational convenience
we restrict the domain by imposing that the lower bound of each of the hyper-cubes
axes is 0. This restriction allows unambiguous definition of the domain of an axis by
its length alone. In array terminology: the shape of an array (the list of its axis lengths)
is determined by the combination of its valence |S| (the number of dimensions) and
the lengths of each of the axes. Methods to relax the restrictions on array axes are
discussed in Section 3.5.2.

Definition 3.1 (Shape). A n-dimensional shape SA, of an array A, is a vector
[S0

A, . . . ,S
(n−1)
A] of n natural numbers, denoting axis lengths, that uniquely defines a

compact hypercube in (N0)n located at the origin.

Definition 3.2 (Valence). The valence |SA| of an array A is defined as the number of
dimensions in its shape.

Definition 3.3 (Domain). The domain DA of an array A is defined by the shape of
that array. DA = {ı̄|̄ı ∈ (N0)n, i0 < S0

A, . . . , i(n−1) < S
(n−1)
A }, where n = |SA|.

Definition 3.4 (Index Value). An index value is a vector in the domain of an array:
ı̄ ∈ D (the notation ı̄ used for index vectors is shorthand for [i0, i1, . . . , i(n−1)]).

An array relates each of the index values implied by its shape to some value.
Following common collection-type terminology, we call these values array elements.
The restriction imposed on an array’s elements for the remainder of this thesis is that
all elements in a single array must be of the same type.

Definition 3.5 (Element Type). An array’s element type τA defines the type of the ele-
ments of that array. Arrays contain elements of an atomic type defined in the database
layer, i.e. τA ∈ {char, int, float, . . .}, or arrays1.

Definition 3.6 (Array). An array A is a function A : DA −→ τA that defines a many-
to-one relation between the index values implied by its shape SA and elements of a
type τA.

Note that these definitions allow for infinite structures: arrays with infinite va-
lence, arrays with infinite length axes, and, even infinitely nested arrays. However, in
practice, physical limitations restrict arrays to finite structures.

1 Note that, in RAM, the shape and element type are part of an array’s type and must therefore be
identical for all arrays occuring as elements in a single array.

3.1. The Data Model 35

Symbolic Meaning
A an array instance
SA the shape of A
τA the type of A’s elements
TA the type of A (SA × τA)
A (̄ı) the application of A to ı̄

(the value indexed by ı̄ in A)
|SA| the valence of A
Sj

A the length of axis j of A
|A| the size of A

Table 3.1: Array notation

The regular structure of an array guarantees that a number of basic properties, such
as valence and size, are defined by the array’s description. The fact that these proper-
ties can easily be determined is valuable for the subsequent analysis (and optimization,
see Chapter 5) of array-expressions. For example, it is possible for a query optimizer
to compute exactly the size of any intermediate result by deriving the intermediate
array’s description from the query plan.

Definition 3.7 (Size). The size |A| of an array A is defined as the number of ele-
ments it contains2. Array size can easily be derived given its shape: |A| = |DA| =∏|SA|−1

i=0 Si
A.

Base Types

Base types are the atomic types3 natively supported by a database system. In turn the
base types often correspond to the physical types supported by the hardware architec-
ture the database system operates on, such as: 32- and 64-bit integer numbers, single-
and double-precision floating point numbers, characters, and strings. A database sys-
tem offers a variety of operators over values of base types based on functionality pro-
vided by both the hardware architecture and standard programming libraries. Exam-
ples include basic arithmetic and comparison operations.

Integer numbers are an essential part of array indexes. Their manipulation is a
crucial part of array processing, and the front-end must contain explicit knowledge
about that type and its operators. By design, other atomic types are opaque to the
RAM front-end.

2 If the array is nested (contains arrays as elements) its size is the number of nested arrays it contains,
which may differ from the total number of basic elements contained in the nested structure as a whole.

3An example of a base type that is commonly supported by database kernels and which is not atomic is
the string: Strings are sequences of characters.

36 Chapter 3. An Array Database System

In the RAM architecture, the base types (both their properties and operators) need
not be (re-)defined in each layer. As long as the kernel contains explicit knowledge
about the base types, higher layers can treat values of these types as black boxes, re-
maining largely ignorant of their properties and semantics. This approach guarantees
that the RAM front-end does not have to be updated when changes are made to exist-
ing base types or even when additional atomic types are added to the database system.
It ensures propagation of the extensibility features of the back-end, by instantly allow-
ing users to use newly defined types and operations on array elements.

Methods to extend the RAM type-system such that arrays can also contain com-
pound types, such as tuples, and collection types other than arrays, for example sets,
are discussed briefly in Section 3.5.2.

Array Type

The type TA of an array A, defines both the shape of that array and the type of each of
its elements.

Definition 3.8 (Array Type). An array type is a pair: TA = (SA, τA), where SA

denotes A’s shape, and τA specifies the type of A’s elements.

We differentiate between nested and flat arrays. Nested arrays contain elements
that are in turn arrays, while flat arrays contain only atomic elements.

Consider for example a two dimensional arrayA, which has 3 columns and 2 rows
and contains characters (τA = char):

A =
U V W
X Y Z

.

Array A has the type TA = ([3, 2], char). Note the order in which the different array
axes are visualized, the first axis vertically and the second axis horizontally. This
representation is consistently used throughout this thesis.

Consider an alternative representation, the one-dimensional array B of length 2,
containing one-dimensional arrays of length 3, containing characters:

B = U V W X Y Z .

Array B has the type TB = ([2], ([3], char)).
The types of nested arrays are defined recursively: Note that by definition all

nested array elements must have the same type T and necessarily have the same shape.
Therefore, nested array structures are again rectangular structures with known param-
eters, which implies that any nested array structure can be represented by a single flat
array. The principle of data independence ensures that the physical array storage and
manipulation of arrays can safely be performed on flat arrays, while the user is only
aware of their nested counterparts.

3.1. The Data Model 37

i0 i1 Value
0 0 A
1 0 B
2 0 C
0 1 D
1 1 E
2 1 F
0 2 G
1 2 H
2 2 I

0 1 2
0 A B C
1 D E F
2 G H I

Figure 3.1: An example array and its relational equivalent.

Nested data types usually complicate the design of database engines. For example,
known algebras over nested structures – e.g., NF 2, a relational model that allows ex-
plicit nesting – result in complex expressions that are notoriously difficult to optimize
and evaluate efficiently [5]. Practically, the lack of guaranteed (sub-)set cardinality
results in a nested-loop execution strategy and costly runtime checks.

Another problem with the nested relational model is that unnest operations are
not reversible: unnesting a nested structure causes a loss of information. A nested
set structure may contain empty sets that cannot be recovered through subsequent nest
operations without explicitly re-constructing the empty sets based on prior knowledge.
This effect does not occur in the array domain. By definition, sibling arrays in a nested
structure have the same shape, which prevents problems in reconstruction of a nested
structure from unnested data.

3.1.2 Array-to-Set Conversion
The relational model is based on (multi-)set theory. The theory allows for infinite sets,
in practice, however, a set is a finite collection of objects in which element order has
no significance.

An array’s domain is discrete, therefore an arrayA is equivalent to a relationRA =
{(̄ı, A(̄ı))|̄ı ∈ SA} [6]. The rationale is that the elements of an array structure can
be represented by a set. However, by simply storing an array’s elements in a set
information is lost: Sets define no order between their elements whereas arrays do.
To compensate for this loss of information each element in the set must be explicitly
tagged with its original array index as depicted in Figure 3.1.

Indexes play an important role in many array operations [7]. An example of an
exception is the value-based selection of cells, e.g., finding (or counting) all black
pixels in an image. These value-based operations do not fit in our array framework,
nevertheless it is important to allow expression of these operations. Since the RAM
system architecture is built on top of a relational database engine, inclusion of set
support alongside array support is straightforward provided that primitives to convert

38 Chapter 3. An Array Database System

collections back and forth between arrays and sets are made available.
While conversion of arrays into sets is simple, the inverse is both potentially ex-

pensive, and at times, ambiguous. Assume two primitives, one that converts an array
into an equivalent set and, one that converts a set into an array. The semantics of the
array-to-set operator is clear: It creates a set containing each array element explicitly
tagged with its original array index.

Definition 3.9 (Operator: set). The operator set(A) converts an existing array A into
the equivalent relationRA.

set(A) = RA = {(i0, . . . , i(n−1), A(i0, . . . , i(n−1)))}

where n = |SA|, and the columns in RA are named i0, . . . , i(n−1), and, v (for value)
respectively.

The semantics of the set-to-array operator are equally clear:

Definition 3.10 (Operator: array). The operator array(R) converts an existing rela-
tionR into an array A.

array(R) = A

provided that the relationR satisfies the following constraints:

• R has at least one index column and a value column named i0, . . . , i(n−1) and
v

• the type of all columns ijisint

• S = [max(i0) + 1, . . .max(i(n−1)) + 1]

• ∀ı̄ ∈ DA : ∃ı̄ ∈ R

• |R| = |A|

The potentially costly aspect of the set-to-array conversion is to validate (and pos-
sibly enforce) that a given relation satisfies all constraints. Possible solutions to en-
force constraints on a relation for which they do not hold include:

• generation of index columns for relations that do not have them, for example by
sorting and assigning a rank to each element as its index value;

• removal of duplicate index values, for example by picking a random represen-
tative, or, by aggregating the multiple values into a single value;

• handling missing index values by inserting a predefined value.

3.2. An Array Query Language 39

3.2 An Array Query Language

The RAM query language is composed of two complementary components: methods
to extract values from arrays, and methods to construct arrays. Value extraction is
supported through array application: Arrays are functions that can be applied to index
values to yield results. For array construction the RAM query language supports a
comprehension-style constructor and a concatenation operator.

The language presented to the user contains rudimentary data-management primi-
tives, e.g., primitives to persistently store arrays, name and retrieve stored arrays, and
permanently delete arrays. However, for clarity we focus solely on the query language
at its core: array-expressions.

The RAM query language uses a functional paradigm: Arrays are immutable once
created, therefore functions (over arrays) have no side-effects. Effectively, this deci-
sion excludes update primitives from the language: Arrays can be created once and
subsequently queried, but never altered. This behavior seems reasonable since the ex-
pected use of the query language is oriented toward computation (the use of existing
arrays to compute completely new arrays containing new values).

An Example: Color Conversion

The following example intuitively introduces the language constructs that are detailed
in the remainder of this section. It demonstrates the comprehension syntax in a sim-
ple, yet realistic, array operation: colorspace conversion. Colorspace conversion is a
common operation in the digital manipulation of image and video data.

The RAM examples follow the syntax described in Table 3.2. The actual RAM
syntax differs from our symbolic notation for a pragmatic reason: It can be expressed
using the plain ASCII character-set [8].

Example 3.1 (RGB to Grayscale). Assume an array Img that represents an image
with three separate values for each pixel: red, green, and blue. This array is a nested
structure, with TImg = ([width, height], ([3], byte)): a matrix of pixels that, in turn,
are arrays of color components. A pixel at a given (x, y) location can be addressed by
applying array Img to this index vector: Img(x, y). Since a pixel itself is an array,
each of its color components can be addressed through another index vector, where
Img(x, y)(0) is the red value, Img(x, y)(1) is the green value, and Img(x, y)(2) is
the blue value.

Converting an RGB color value to a gray-scale value is achieved by taking a
weighted average of the three color channels. For example4:

Gray = 0.222 * + 0.707 * G + 0.071 * B.

4 The color channel weights used in this example have been taken from the luminosity color conversion
in the ITU-R-BT709 recommendation [9].

40 Chapter 3. An Array Database System

Through a comprehension syntax, this per-pixel computation can be performed over
a complete array of pixels:

GrayImg = [0.222 * Img(x,y)(0) +
0.707 * Img(x,y)(1) +
0.071 * Img(x,y)(2) | x < width, y < height]

This RAM expression can be intuitively explained as follows: for every pixel in the
result image GrayImg, which is width × height in size as explicitly defined in the
right-hand side of the expression, compute its gray-scale value using the expression
given in the left-hand side of the expression. This gray-scale value for a given location
(x, y) is computed from the value of the corresponding RGB pixel in the source array.

This simple example can be expressed in a more generic way, by using a separate
array with the weights:

W = [0.222, 0.707, 0.071]
GrayImg = [sum([W(i) * Img(x,y)(i) | i < 3])

| x < width, y < height]

Again, the right-hand side of the expression defines an array ofwidth×height and the
left-hand side specifies how to compute its elements values given the x and y location.
The value is computed by taking the sum of an array comprised of the appropriate
RGB values multiplied by the weights.

The color-conversion example demonstrates a typical array operation: The target
values are the result of some mathematical operation over values from the source array.
A notable characteristic is that all the input data is used and the number of elements
(in this case pixels) remains the same5. This behavior is quite different from typical
database queries; relational queries are usually selective, and the point of a query is to
select a small number of elements.

3.2.1 Naming Convention
The RAM system differentiates between regular functions and arrays through a nam-
ing convention: Identifiers starting with capital letters denote arrays, while identifiers
starting with lower-case letters refer to functions and variables. This convention makes
interpretation of queries easier, but it is not necessary: It simplifies correct parsing of
expressions.

3.2.2 Value Extraction
RAM allows value extraction from arrays through functional application. For instance
in Example 3.1 the expression Img(x, y) yields the pixel associated with location

5In this particular example, the physical amount of data is reduced because of the difference storage
requirements for RGB pixels and gray-scale pixels.

3.2. An Array Query Language 41

(x, y) in array Img. The language allows arrays to be applied to any expression that
results in an integer value.

Partial function application is not allowed: An array of valence n can only be
applied to a vector of exactly n integer values. Consider the following examples with a
flat array A, with an undefined element type τA = , that has the type TA = ([3, 3],),
and the nested array B with type TB = ([3], ([3],)). The only correct ways to apply
these arrays are A(x, y) or B(x)(y), which yields an atomic value in both cases, and
B(x) which yields an array of shape [3].

Array application is the only way in RAM to extract values from arrays. High-
level programming languages geared toward array processing often have a much more
complex value extraction mechanism: subscripting. Examples of languages with such
functionality include APL and FORTRAN [10, 11]. Subscripting allows both retrieval
of single elements as the selection of complete sub-arrays at once. To select sub-arrays
in RAM array application must be combined with the comprehension style constructor
introduced in the next section.

Arrays have a finite domain and it is trivial to construct vectors beyond this do-
main. However, application of an array to an index vector beyond its domain is un-
defined. Two solutions for this problem are readily available: such an application
can be considered invalid (the system should either guarantee that they do not oc-
cur, or produce runtime errors when they do), or such an application could yield ei-
ther a predefined value or an undefined value. For RAM we have chosen the latter6:
∀ı̄ /∈ SA : A(̄ı) = nil.

3.2.3 Array Generation - Comprehension

The RAM array constructor supports the definition of new arrays in terms of other
arrays, functions, and constant values through defining both the shape of the array and
a function that specifies the value of each cell given its array index.

The constructor is based on a comprehension syntax [12]. Most user languages
for databases are based on (set-) comprehension. For example, the set-comprehension
{x|x ∈ D,C1, C2, . . . , Cn} is easily recognized in the SQL variant SELECT *
FROM D WHERE C1 AND C2 AND . . . AND CN;. The semantics of array- com-
prehension differs fundementally from the semantics of set-comprehension in two
ways. First, a set-comprehension {x|x ∈ D,C1, C2, . . . , Cn} specifies which ele-
ments from D are part of the result through selection conditions C1, C2, . . . , Cn. The
array constructor is a generative construct: it generates a new array through specifi-
cation of its shape and the function over its index values. Second, a set-comprehension
defines a set of values, whereas an array-comprehension defines a (multi-dimensionally)
ordered and indexed collection of values.

The RAM array constructor defines an n-dimensional array by specifying its shape

6 In databases, the value nil has a variety of meanings, such as ’undefined’ and ’unknown’, in this case
nil denotes ’undefined’.

42 Chapter 3. An Array Database System

Symbolic RAM syntax Meaning
A A an array instance
A (̄ı) A (̄ı) (the application of A to ı̄)

the value indexed by ı̄ in A
|SA| val(A) the valence of A
SAj len(A, j) the length of axis j of A
|A| cnt(A) the size of A

Table 3.2: Array notation

SA and associating its indexes ı̄ = (i0, . . . , in) with their cell values f (̄ı). Its com-
prehension syntax is inspired by a similar construct in NRCA, the “low-level” array
language that supports the Array Query Language, AQL [13].

Since we defined array indexes as consecutive ranges of natural numbers starting
from 0, the shape of the array is defined completely by giving its index generators:

Definition 3.11 (Index Generator). An index generator ij < Sj , defines a dense se-
quence of integers starting at 0: {ij |ij ∈ N0, ij < Sj}, where the expression Sj is a
constant-expression.

Definition 3.12 (Array Comprehension). The comprehension

A = [f(i0, . . . , i(n−1))|i0 < S0, . . . , i(n−1) < S(n−1)]

results in an array A with shape SA = [S0
A, . . . ,S

(n−1)
A] and ∀(i0, . . . , i(n−1)) ∈

DA : A(i0, . . . , i(n−1)) = f(i0, . . . , i(n−1)), where n = |SA|.
Function f may apply the operators defined on the base type in the database layer

to values indexed in previously defined arrays, to the index values themselves, as well
as to constant values.

The semantics of the comprehension syntax are illustrated through the following
example: consider the comprehension [x + 2 ∗ y|x < 2, y < 3]. It defines an array
with shape [2, 3] and binds the (result of) function x + 2 · y to each of its cells. The
resulting array can be visualized as follows:

0 1
2 3
4 5

Nested arrays can be constructed by nesting comprehensions. Consider for exam-
ple the generation of a vector of vectors: [[x+2 ·y|x < 2]|y < 3]. This expression is a
nested variant of the previous example that defines an array with T = ([3], ([2], int)),
which can be visualized as follows:

0 1 2 3 4 5

3.2. An Array Query Language 43

Scope Nesting of comprehensions introduces questions regarding the scoping of
(axis-) variables: In flat expressions there is only a single comprehension that gen-
erates axes over any given expression, but in the nested case the situation is more
complicated. Consider the example [[x|x < 3]|x < 5], does the x in the value expres-
sion refer to the axis of length 3 or the axis of length 5 ?

The scoping rules for the RAM language are straightforward: Any variable is
bound to the nearest axis definition. In other words, with each nesting level the com-
prehension defines a scope for its variables. Therefore x in the example expression
[[x|x < 3]|x < 5] is bound to the axis of length 3, which is defined in the inner
comprehension.

Since variables are bound to axis definitions, index generators, there is a depen-
dency between an expression using a variable and the comprehension defining the
axis. Often this dependency simply means an expression depends on the comprehen-
sion that directly encapsulates it, but dependencies can cross comprehension bound-
aries. For example, consider the expression: [[f(y)|x < 3]|y < 5]. In this example,
the expression f(y) depends on the outer comprehension while it is defined as part
of the inner expression. We call such a dependency that crosses a comprehension
boundary an outward dependency.

Outward dependencies are an inconvenience during the query normalization and
translation process as will be shown in Section 3.4.1.

3.2.4 Built-in Functions
The expressions used within the RAM comprehensions consist of the standard op-
erators provided by the back-end database system and a (small) number of built-in
functions.

Choice

RAM array comprehensions allow for a choice operator to be used to guarantee that
data from multiple sources can be merged into a single result. While it is possible with
expressions to combine values from multiple sources into a single value, conventional
mathematical expressions lack the functionality to express exclusive choice between
those sources.

Consider an identity matrix:
1 0 0
0 1 0
0 0 1

This matrix can be constructed by evaluating the condition i0 = i1: In case this pred-
icate yields true the value is 1 otherwise the value is 0. Such conditional choices
can be concisely expressed with the if-then-else construct in the RAM language:
[if(x = y) then 1 else 0|x < 3, y < 3].

44 Chapter 3. An Array Database System

The choice operator in the RAM language is a simple construct that allows binary
choices to be made based on a boolean predicate:

Definition 3.13 (If Then Else). The expression

if (c) then a else b

yields a when condition c is true, and b otherwise.

Aggregation

An important operation in many applications is aggregation: the reduction of a set of
values to a single value. Similar to the functions over atomic values, the RAM system
simply propagates the aggregation functions supported by the back-end system. Ag-
gregation operators commonly supported by database management systems include
the minimum, maximum, sum, product, and, average values.

Definition 3.14 (Aggregation Function). An aggregation function, g, is a function that
reduces an array of values to a single atomic value.

Most of the examples used throughout this thesis have some kind of aggregation
embedded as part of the computation. Consider the following example, summation
over the columns of a matrix:

bi =
J∑

j=1

aij

By using the aggregation function sum the example can be formulated as follows in
the RAM query language:

[sum([A(i, j)|j < J])|i < I]

3.2.5 Illustrating Example: Convolution
Convolution is a method to apply a frequency-domain filter over a signal in its time-
domain representation [14]. It is one of the most common operations in signal pro-
cessing and defined as follows:

y(t) =
∫ ∞

v=−∞
x(t− v)f(v) dv,

where x represents a signal and f represents a filter. In practice, filters (and signals)
are sampled, and stored as finite discrete sequences, which reduces the operation to

y(t) =
V∑

v=0

x(t− v)f(v),

where V equals the number of elements in the filter.

3.2. An Array Query Language 45

... 1 12 3 10 5 8 7 6 9 4 11 2 ...

... ... 6 7.8 6.4 7.4 6.8 7 7.2 6.6 7.6 6.2

0.3 0.4 0.3
* * *

+

Figure 3.2: Convolution of a discrete signal with a filter of length 3.

Example 3.2 (Convolution). Expression of the discrete convolution in RAM is straight-
forward:

Y = [sum([X(t-v) * F(v) | v < len(F,0)]) | t < len(X,0)]

There is a problem with convolution over finite signals, however, the results for
Y (0) . . . Y (v − 1) are undefined. This problem is not an artifact of the RAM expres-
sion: It is a problem inherent to convolution over finite signals. Common solutions
to this problem include: excluding undefined elements from the result, repeating the
finite signal to create a periodic function, or, padding the signal with zeros. The choice
for one particular solution to this problem cannot be made by the RAM system, as each
solution leads to different results that may or may not be suitable given the situation:
the solution must be chosen, and made explicit, by the user.

The first two solutions can be expressed concisely in RAM:

Example 3.3 (Convolution – Excluding Undefined Values). Undefined elements can
be excluded from the result:

Y = [sum(
[X(len(F,0) + t-v) * F(v) | v<len(F,0)]

) | t<(len(X,0) - len(F,0))]

and

Example 3.4 (Convolution – Repeating the Signal). Repeating the signal is achieved
by wrapping around the index function:

Y <- [sum(
[X((t-v) % len(X,0)) * F(v) | v<len(F,0)]

) | t<len(X,0)].

The third solution, padding the signal, involves the choice operator. This choice
can be made explicitly:

Example 3.5 (Convolution – Choice). For undefined index values use the value 0, in
all other cases use the value given:

46 Chapter 3. An Array Database System

Y = [sum([if(t<v) then 0
else (X(t-v) * F(v)) | v<len(F,0)])

| t<len(X,0)]

or, alternatively, the input signal can be padded explicitly:

Example 3.6 (Convolution – Signal Padding). Explicitly pad the signal by concate-
nating array X at the end of an array filled with 0’s:

X’ = [0 | v<len(F,0)] ++ X
Y = [sum([X’(len(F,0) + t-v) * F(v) | v<len(F,0)])

| t<len(X,0)]
where
A ++ B = [if(x<len(A,0)) then A(x)

else B(x-len(A,0))
| x<len(A,0)+len(B,0)]

Both approaches utilize the choice operator, as a value is taken from either of two
distinct sources.

3.2.6 A Matter of Choice
Combination of multiple sources into a single array is an common operation. The
convolution example showed that a concatenation operator or a choice operator would
be sufficient. In fact, it is possible to express either operator using the other: the
operators are exchangeable.

To demonstrate this, we define both operations over one-dimensional arrays; ex-
tension to higher dimensional arrays is trivial. Concatenation can easily be defined
using the if-then-else construct:

Definition 3.15 (Operator: one-dimensional concatenation). Both A and B are one-
dimensional arrays, with the same element type.

A+ +B = [if(i < S0
A) then A(i)

else B(i− S0
A)|i < S0

A + S0
B]

Conversely, the if-then-else construct can be defined using a concatenation prim-
itive. This definition introduces an additional dimension over which both arrays are
concatenated; The choice is evaluated by dereferencing this additional dimension to
values originating from either the first, or second array depending on the value of the
choice condition.

Definition 3.16 (Operator: choice by concatenation). A and B are arrays with the
same shape and element type, C is an array with boolean values represented by the

3.2. An Array Query Language 47

integer values 0 and 1. The condition ı̄ ∈ S used here, is a shorthand notation for
i0 < S0, . . . , i(n−1) < S(n−1).

[if (C (̄ı)) then A(f (̄ı)) else B(g(̄ı))|̄ı < SC] = [(A⊗B)(f (̄ı), g(̄ı), C (̄ı))|̄ı < SC]

where

A⊗B = [A(̄ıA)|̄ıA < SA, ı̄B < SB , c < 1] + +[B(̄ıB)|̄ıA < SA, ı̄B < SB , c < 1] .

These definitions show that concatenation and choice are exchangeable even though
the operators are of a different granularity: While the if-then-else construct is defined
over single values at a time, the concatenation operator operates over complete arrays.

3.2.7 High-Level Array Operators

The concatenation operator is a high-level operator that allows the construction of
larger arrays from smaller components. Such operators can be both intuitive to use
and effective. As concatenation allows the merger of multiple arrays into one, it is
natural to wonder if equally intuitive counterparts exist that allow the dissection of
existing arrays into smaller parts. The following subsections discuss these two classes
of array operations.

Array Construction

The RAM array comprehension is generative and relies on both shape properties and
a value expression. The concatenation operator is a constructive mechanism: it relies
on the shapes of the input arrays to produce its output, independent of the values of
individual array elements.

The RAM concatenation operator ++ operates over multi-dimensional arrays. It
merges two arrays by appending the second array to the first. A prerequisite for ap-
plying the concatenation over two arrays A and B is that their value types match,
τA = τB , and they have compatible shape: identical valence, and, all but the last
(highest order) axes have the same length.

For clarity, we redefine the multi-dimensional concatenation operator:

Definition 3.17 (Operator: multi-dimensional concatenation). A and B are arrays
with the same element type.

A+ +B = [if(in < Sn
A) then A(̄ı)

else B(i0, . . . , i(n−1), i(n−S
n
A))|̄ı ∈ SA ⊕ SB]

48 Chapter 3. An Array Database System

where

n = |SA| − 1

SA ⊕ SB = [S0
A, . . . ,S

(n−1)
A ,Sn

A + Sn
B]

The concatenation operator is not commutative: A+ +B 6= B + +A.
For example concatenating a [2, 2]- and a [2, 1]-array:

A B
C D

+ + X Y =
A B
C D
X Y

The fact that the concatenation operator operates over the highest order axis of
arrays is an arbitrary choice. The effect of this choice is that concatenation of two
arrays over a dimension other than the last one requires an array transformation first,
e.g. transposing the source arrays to make the concatenation dimension the last one,
and after concatenation transposing the result to reconstruct the dimension order of
the source arrays:(

A B
C D

T

+ +
X
Y

T
)T

=
A B X
C D Y

The pivot operator is an operator that changes the order of array axes. Pivoting
is a common operation, and particularly useful in combination with the concatenation
operator: combined, both operators allow the construction of any array shape given
sufficient singleton arrays. The pivot operator provides the functionality to express,
for example, matrix transposition.

The pivot operator manipulates the order of the elements in an index vector.

Definition 3.18 (Operator: pivot). A is an array and O is an array with TO =
([|SA|], int): each of its values represents the original axis number in A of an axis
in the result array.

pivot(A,O) = [A(̄ı ·M)|̄ı < SA ·M]

where M is a permutation matrix constructed from vectors

M = [if(i = O(j)) then 1 else 0|i < S0
O, j < S0

O]

The RAM language does not explicitly offer a pivot operator as, fortunately, the re-
quired transformations of arrays are easily specified directly using array-comprehension:

pivot(A, [1, 0]) = [A(j, i)|i < S1
A, j < S0

A]

3.2. An Array Query Language 49

Array Dissection

The combination of pivot and concatenation operators is sufficient to construct any
shape array given singleton arrays. However, it does not facilitate in obtaining those
singleton arrays from larger arrays. Decomposition of arrays into smaller components
can easily be achieved through index-based selection. However, instead of directly
resorting to the extraction of single elements through array application, inspiration for
dissection operators can be drawn from the multi-dimensional database field.

Multidimensional database systems are built for the sole purpose of providing ef-
ficient methods to examine data. This purpose is achieved by organizing data in a
so-called data-cube which can subsequently be sliced and diced (range selections over
single or multiple axes), pivoted (rotated by swapping axes), and rolled-up 7.

The slice operator divides an array into pieces by cutting along a single axis, the
dice operator cuts along multiple axes simultaneously. Both operators follow the cake-
carving metaphor, focusing on the cuts rather than the resulting pieces. The sub-arrays
produced by these operators are essentially the result of range selections over the
indexes of the original array. One distinction between both operators is that, in some
interpretations, the slice operator reduces dimensionality: the shape of a slice from an
n-dimensional array has valence n− 1. As this reduction in array dimensionality can
be realized with a trival RAM comprehension, we ignore this distinction for now.

The rangeselect operator encapsulates both forms of range selections through se-
lection of a dense rectangular sub-array from an existing array. The operator can be
concisely expressed given with the RAM comprehension syntax:

Definition 3.19 (Operator: rangeselect). A is an array, ō is a vector representing the
lower-bound of the range to be selected from A, and SR specifies the shape of the sub
array to be selected with |SR| = |SA|.

rangeselect(A, ō,SR) = [A(o0 + i0, . . . , o(n−1) + i(n−1))|̄ı < SR]

where
n = |SA|

Discussion – The RAM Operator Set

Combined, concatenate, pivot, and rangeselect form a set of operators that allow the
dissection of existing arrays. To allow subsequent reconstruction of arbitrarily shaped
arrays from the fragments created, additional functionality, to manipulate the valence
of existing arrays, would be required. This functionality can easily be imagined as
a set of operators that increase valence by adding a length 1 axis to the shape of an

7An inverse of the roll-up operator is the drill-down: Whereas rolling-up essentially means the aggrega-
tion of groups of values into summaries, drilling down allows the “opening” of such groups to examine its
individual components.

50 Chapter 3. An Array Database System

(a) Example image (b) Visualization of its Gaussian
Mixture Model

(c) A random sample drawn from
the model

Figure 3.3: An example image and associated mixture model from the collection.

existing array, and, decreases valence by removing length 1 axes from the shape of an
existing array.

Given that both the pivot and rangeselect operators can concisely be expressed
using the existing comprehension syntax, they are not built into the RAM query lan-
guage natively. However, as we will see in Chapter 5, recognizing these operations
may be useful for the execution of array queries: The pivot and rangeselect operators
are closely related to projection and range-selection in the relational domain. For both
these relational operations efficient evaluation methods are known.

3.2.8 A Large Example: Sample Likelihood
The following example is an excerpt taken from a probabilistic image retrieval system.
This system ranks the images stored in the database, given an example image that
serves as a query, by the probability that the image in the database is produced by the
same generative model as the query image.

This approach to image retrieval is based on a two stage process: First, for each
image in the collection a probabilistic model is constructed; second, a query image is
tested against each of these models to estimate the likelihood that the modeled image
in the collection is relevant. For specifics on the theory behind this approach, and the
methods by which these models can be computed, see the work of Westerveld [15].

Indexing of the collection – building a model for each of the images – is a rather
complex process. In essence, the images are fragmented into disjoint blocks; for each
of these blocks a feature vector is computed; and over that collection of feature vectors
a Gaussian Mixture Model (GMM) is trained. An example of this process is shown in
Figure 3.3.

The retrieval part of the system uses these trained GMMs to rank the images in
the collection with respect to a given query image. For the purpose of ranking each
image in the collection is given a score by which the images are later sorted, this score
is computed by fragmenting the query image into disjoint blocks, as was done for the
images in the collection to construct the GMMs, to produce a set of feature vectors.
For each of these vectors, the probability of a given GMM generating that particular

3.2. An Array Query Language 51

(a) Query image (b) Visualized score for each
sample (lighter is higher)

log(p(~Q|θ)) = −96623

(c) Aggregated score

Figure 3.4: An example query and log-likelihood computation given a Gaussian Mix-
ture Model.

vector is estimated. The product of the individual probabilities for all vectors produces
a final score, which represents the (log-) likelihood that the image associated with the
GMM is similar to the query image. This process is visualized in Figure 3.4.

This example demonstrates the computation of these scores of a single query, given
a collection of GMMs:

Example 3.7 (Sample Likelihood). The parameters in Equation 3.1 are given, to-
gether with their array representations and the numbers actually used in our experi-
ments:

Ns number of samples in an image (1320)

Nc number of components in GMM (8)

Nn dimensionality of feature vectors (14)

Nm number of documents (GMMs) in the collection (∼ 35000)

~µc length Nn mean vector of component c. The mean vectors for each dimension
and component for each of the GMMs, are stored in an array Mu, with type
([Nm], ([Nc], ([Nn], double))).

~Σc lengthNn co-variance vector of component c. This vector represents the diagonal
of the co-variance matrix: All other co-variances are assumed to be 0. The
variance vectors for each dimension and component for each of the GMMs, are
stored in an array S, with type ([Nm], ([Nc], ([Nn], double))).

Prc prior probability of component c,
∑

c Prc = 1. The prior probabilities for
each component for each of the GMMs, are stored in an array Pr, with type
([Nm], ([Nc], double)).

52 Chapter 3. An Array Database System

x a length Nn feature vector (sample) from the query image. The feature vectors for
all of the samples from the query image are stored in an array Q, with type
([Ns], ([Nn], double)).

It is worthwhile to note that | ~Σc|, the determinant of the covariance matrix, re-
duces to the product of the vector values | ~Σc| =

∏Nn

n=1 Σc,n when the Gaussians
are assumed to have diagonal covariance matrices. Including this simplification, the
probability of observing a given sample x given a GMM θ, can be estimated by the
following formula:

p(~x|θ) =
NC∑
c=1

Prc
1√

(2π)n| ~Σc|
e−

1
2 (~x− ~µc)

2/ ~Σc . (3.1)

The final score for an image is computed by taking the sum of the log probabilities
for each of the individual samples.

This example can elegantly be expressed in the RAM language. In the following ex-
ample, the RAM expression is decomposed in four parts for readability. Three macros
are defined that encapsualte distinct fragments of Expression 3.1: ps, the probability
of a given sample (s) for a given model (m); and fr and ep, two halves of the inner
expression. The resulting scores for each model (m) are stored in an array named
Scores.

fr(s,m,c) = 1/(sqrt((2*PI)ˆNn)*prod([S(m)(c)(n)|n<Nn]))
ep(s,m,c) = -0.5*sum([(Q(s)(n)-Mu(m)(c)(n))ˆ2

/ S(m)(c)(n)|n<Nn])
ps(s,m) = sum([Pr(m)(c)*fr(s,m,c)*eˆep(s,m,c)|c<Nc])
Scores = [sum([log(ps(s,m))|s<Ns])|m<Nm]

The RAM language does not offer the primitives to perform the actual ranking of
the scores, however an “ordered set” of images can be obtained by converting the
array of scores to a set representation and ordering that set.

This example shows that complex computations over collections of data can be
concisely expressed in RAM.

3.3 An Array Algebra
The core of the RAM system is an algebraic layer between the comprehension-based
user language and the (relational) back-end DBMS. This layer consists of an array
algebra consisting of a small number of operators defined over flat arrays. It is intro-
duced for two distinct reasons.

First, the algebra simplifies the translation process: An array comprehension can
be translated into an algebra designed for arrays, and the simple algebraic operators

3.3. An Array Algebra 53

are subsequently translated to the back-end. The benefit of this intermediate alge-
braic layer is that its primitive array-at-a-time operators are independent of each other,
contrary to the individual operations in element-at-a-time array calculus expressions.
Therefore, the translation can be performed for a single operator at a time, simplifying
the process.

Second, because its operators are independent, algebraic systems are well-suited
for automatic analysis and manipulation. Analysis (cost estimation) and manipulation
of expressions (rewriting) are the basic elements in a query optimizer. The RAM query
optimization experiments presented in Chapter 5 are performed with an optimizer that
manipulates array queries at the algebraic level. In addition, as in an algebra, disjoint
sub-expressions are by definition independent, we can identify opportunities for par-
allellization. For example, in the expression f(EA, EB), sub-expressions EA and EB

have no side effects and can potentially be evaluated in parallel. Parallellization of
RAM expressions is also explored in Chapter 5.

3.3.1 Intermediate Algebra

Operation Meaning
const(S, c) [c|̄ı < S]
grid(S, j) [ij |̄ı < S]
map(f,A1, . . . , Ak) [f(A1(̄ı), . . . , Ak(̄ı))|̄ı < SA]
apply(A, I1, . . . , Ik) [A(I1(̄ı), . . . , Ik(̄ı))|̄ı < SI]
choice(C,A,B) [if(C (̄ı)) then A(̄ı) else B(̄ı)|̄ı < SC]
aggregate(g, j, A) [g([A(x0, . . . , x(j−1), ij , . . . , i(n−1))|

x0 < S0
A, . . . , x

(j−1) < S(j−1)
A])|

ij < Sj
A, . . . , i

(n−1) < S(n−1)
A],

where n = |A|
concat(A,B) A+ +B

Table 3.3: Basic Array Operations

Table 3.3 defines the semantics of the algebraic operators in our array algebra using
array comprehensions. This small number of operators is sufficient to express the array
comprehensions algebraically: It contains functionality to generate new arrays given
a shape and the functionality to manipulate existing arrays. A constructive algorithm
for translation of array comprehensions into equivalent algebraic expressions is given
in Section 3.4.

The const and grid operators generate new arrays given a shape. The const opera-
tor fills this new array with a constant value, whereas the grid operator fills this array
with numbers taken from its index values.

54 Chapter 3. An Array Database System

Definition 3.20 (Algebra: const). The const operator creates a new array of a given
shape and fills it with a constant value.

const(S, c) = [c |̄ı < S]

Example 3.8 (Algebra: const).

const([3, 2], 0) =
0 0 0
0 0 0

.

Definition 3.21 (Algebra: grid). The grid operator creates a new array of a given
shape and fills it with values taken from its index values.

grid(S, j) = [ij |̄ı < S]

Example 3.9 (Algebra: grid).

grid([3, 2], 0) =
0 1 2
0 1 2

, grid([3, 2], 1) =
0 0 0
1 1 1

.

Since RAM does not support arrays of tuples, there is a need to represent multi-
valued attributes in another way: aligned arrays.

Definition 3.22 (Aligned array). Two arrays are aligned when their shape is identical
and elements from both arrays, associated by their identical index-vector, are related.

Using aligned arrays, multiple arrays can be used to represent a single array with
tuple-elements.

Example 3.10 (Aligned arrays).

(
0 3
1 4
2 5

,

0 1
2 3
4 5

)⇐⇒
(0, 0) (3, 1)
(1, 2) (4, 3)
(2, 4) (5, 5)

.

The next pair of operators deals with function application. The map operator ap-
plies a function (offered by the DBMS) to a set of aligned arrays, whereas the apply
operator applies an array (which is a function) to a set of aligned index arrays.

Definition 3.23 (Algebra: map). The map operator creates a new array of which each
element is the result of applying a given function to aligned elements in a set of arrays.

map(f,A1, . . . , Ak) = [f(A1(̄ı), . . . , Ak(̄ı))|̄ı < SA] ,

where:

SA = SA1 = . . . = SAk

3.3. An Array Algebra 55

Example 3.11 (Algebra: map).

map(+,
0 3
1 4
2 5

,

0 1
2 3
4 5

) =
0 4
3 7
6 10

.

Definition 3.24 (Algebra: apply). The apply operator creates a new array of which
each element is the result of applying a given array to aligned elements in a set of
index-arrays that represent vectors of indices in A.

apply(A, I1, . . . , Ik) = [A(I1(̄ı), . . . , Ik(̄ı))|̄ı < SI] ,

where:

SI = SI1 = . . . = SIk

k = |SA|
∀ı̄ /∈ SA : A(̄ı) = nil

Example 3.12 (Algebra: apply).

apply(A B C ,
0 1
2 0

) =
A B
C A

.

The choice operator allows elements from two distinct sources (arrays) to be
merged into a single result.

Definition 3.25 (Algebra: choice). The choice operator combines values from two
arrays, selecting the source based on a supplied boolean function:

choice(C,A,B) = [if(C (̄ı)) then A(̄ı) else B(̄ı)|̄ı < SC] ,

where:

SA = SB = SC

τA = τB

τC = boolean

Example 3.13 (Algebra: choice).

choice(
T F
T T
F T

,

a b
c d
e f

,

A B
C D
E F

) =
a B
c d
E f

.

56 Chapter 3. An Array Database System

Definition 3.26 (Algebra: aggregate). The aggregate operator applies an aggregation
function over the first j axes of an array.

aggregate(g, j, A) = [g([A(x0, . . . , x(j−1), ij , . . . , i(n−1))|
x0 < S0

A, . . . , x
(j−1) < S(j−1)

A])|
ij < Sj

A, . . . , i
(n−1) < S(n−1)

A]

where:
n = |SA|

Example 3.14 (Algebra: aggregate).

aggregate(sum, 1,
0 3
1 4
2 5

) = 3 5 7 .

Finally, there is an algebraic operator that implements the concatenation operator
from the higher-level user language directly; see Definition 3.17.

Definition 3.27 (Algebra: concat).

concat(A,B) = A+ +B

3.4 Query Translation
Query translation in the RAM system is a multi-stage process. Queries are translated
from the high-level declarative user language into an intermediate array algebra, which
is in turn translated to the native language of the back-end system.

One of the obstacles to overcome is the discrepancy between data-models. The
user-language operates on nested array structures, the intermediate array algebra op-
erates on flat arrays, and, the back-end uses a relational data-model.

3.4.1 Query Normalization
The query preprocessor normalizes the queries posed by the user. This query normal-
ization process simplifies the queries in two ways: First, variables (and other syntactic-
sugar constructs) are resolved and made explicit; second, the queries are flattened.

Normalization is done by replacing variables, which reference axes, with explicit
axis numbers, and replacing implicit axes in comprehensions by explicit axis lengths.

The term flattening is ambiguous since we are dealing with both nested queries
and nested array structures. The query normalization process deals with the latter. In
other words: flattened queries operate on flat arrays only, these flat queries may (still)
contain nested sub-queries.

3.4. Query Translation 57

Resolving Variables

One form of syntactic sugar in the RAM language is the use of functions to compute
axis lengths, or even the use of implicit axis lengths: an axis whose length is implied
by the context. The following example introduces the use of implicit axis lengths:

Example 3.15 (Resolving array shape). The comprehension [A(x)|x] does not state
the length of axis x explicitly, yet the context in which the variable x is used implies
the intended axis length. Given contextual information, implicit axes can be resolved
and made explicit: [A(x)|x < S0

A].

The use of variables in comprehensions is another form of syntactic sugar: It
makes it easier for a user to express a query, but it is not necessary to have named
variables to express the actual query. In RAM, the axes of an array being created by a
comprehension, are numbered starting from 0. Axis numbering allows the rewriter to
replace named variables with explicit axis numbers as demonstrated in the following
example:

Example 3.16 (Axis numbering). The comprehension [f(x)|x < 3] contains the vari-
able x, which refers to the first axis of the array being generated. Hence each occur-
rence of the variable x can be replaced by an explicit axis reference to axis number 0
(axis references in RAM are denoted with the @ symbol) as follows: [f(@0)|3]. Note
that since all named variables are removed, it is no longer necessary to name axes
either: The array shape alone suffices.

In nested queries, it is possible to use variables referring to axes at another, higher,
level of nesting, for example: [[y|x < 3]|y < 3]. Such cases are handled by not
only numbering axes of an inner expression, but continuing the numbering of axes of
nested expressions outward.

Example 3.17 (Numbering nested expressions). The nested comprehension [[y|x <
3](y)|y < 3] constructs an array in the inner comprehension (A = [y|x < 3]), which
is dereferenced in the outer comprehension ([A(y)|y < 3]). The nested expression
contains two references to the axis y, defined in the outer comprehension. The first
occurrence of y is in the inner expression whereas the second is in the body of the
outer expression itself. Axis numbering yields the following normalized expression:
[[@1|3](@0)|3].

Flattening

The second stage in the normalization process entails the flattening of array queries.
The advantages of flattening array-expressions are twofold: First, nested sub-queries
become independent of outer expressions and hence easier to evaluate; second, it elim-
inates the necessity to deal with nested structures and their inherent nested-loop, eval-
uation strategies. Bulk processing can be considered instead [16].

58 Chapter 3. An Array Database System

The basis of the RAM flattening process is a shape transformation that maps a
nested array structure onto a flat array structure. The equivalent flat shape of a nested
structure is easily derived by concatenating the inner and outer shapes of a nested
structure. In RAM we have chosen the following mapping rule:

Definition 3.28 (Flattening array shape). Flattening a nested array structure entails
appending its outer shape to the inner shape:

(S2, (S1, τ))→ (S1 + +S2, τ)

The pattern that results in a nested array structure is a comprehension over an
expression that yields an array: [E |̄ı < S]. This pattern is flattened by applying the
shape transformation to the comprehension, while at the same time dereferencing the
expression E to retrieve its scalar values:

[E |̄ı < S] =⇒ [E(ē)|ē < SE , ı̄ < S].

For example:

Example 3.18 (Flattening a Simple Nested Expression). Consider an example where
the nested expression E consists of a single comprehension:

E = [f(x, y)|x < 1, y < 2]
A = [E|z < 3]

This forms the expression:

A = [[f(x, y)|x < 1, y < 2]|z < 3],

which produces a one-dimensional array with shape [3], containing two-dimensional
arrays of shape [1, 2]. After the flattening process the expression is:

B = [[f(x, y)|x < 1, y < 2](i, j)|i < 1, j < 2, z < 3],

which produces a single array of shape [1, 2, 3] containing all values from the original.
This transformation of shape ([3], ([1, 2], τ)) to shape ([1, 2, 3], τ) follows Defini-

tion 3.28. Its correctness can be intuitively derived by considering that every value
from the orignal expressionA is contained in the transformed expression, and for each
(recursive) application of A(z)(x, y) the equivalent value can be retrieved from B by
the similarly transformed index vector B(x, y, z)

In addition to nested array structures, implicit nested structures may exist. Such
implicitly nested arrays are the result of referential dependencies between inner and

3.4. Query Translation 59

outer expressions. These dependencies occur when inner expressions use axes defined
only in outer expression. For example, consider the following expression:

[[f(i, y)|i < 2](x)|x < 2, y < 3].

The inner comprehension clearly depends on the values produced by the y axis in
the outer comprehension. This means that, while the expression as a whole does
not produce a nested array, the value f(i, y) is uniquely defined for each cell in the
(implicitly) nested array.

To resolve implicitly nested expressions, the flattening transformation is applied
inwards: The shape of the outer expression is added to the inner expression and the
axes introduced in this way are dereferenced by an application. Note that those axes,
of the outer shape, not referenced by the inner expression are omitted: Only those axes
that the inner expression depends on are added to its shape. Consider the following
example, which illustrates the process by making explicit an intermediate step that
represents the addition of axes (in this case axis x of the outer shape is not referenced
and can be omitted) to the inner expression:

[[f(i, y)|i < 2](x)|x < 2, y < 3] =⇒
[[[f(i, y)|i < 2]|y < 3](y)(x)|x < 2, y < 3] =⇒

[[f(i, y)|i < 2, y < 3](x, y)|x < 2, y < 3].

The example shows how the addition of additional axes to the inner expression alters
the existing application.

Flattening Application Application is one of three operations in the RAM compre-
hension language that operate on arrays: array application, aggregation, and, array
concatenation. When arrays, produced by sub-expressions, are altered by the flat-
tening process affected array operations must be altered accordingly. We discuss the
flattening of array (sub-)expression in the context of these array operations separately.

As explained in Example 3.18, a sequence of applications is combined into single
applications by applying the flattening shape transformation (see Definition 3.28) to
the index vectors. The following example demonstrates this process for nested appli-
cations that occur naturally in a query plan. Here array E′ is the flattened equivalent
of nested array (expression) E:

[E(̄ı)(̄)|̄ı < Si, ̄ < Sj] =⇒ [E′(̄, ı̄)|̄ı < Si, ̄ < Sj]

Sequences of applications may also be created when the result of a sub-expression to
be flattened is applied. These sequences of applications must be taken into account by
the flattening process:

[E(̄ı)|̄ı < S] =⇒ [E(̄ı)(ē)|ē < SE , ı̄ < S] =⇒ [E′(ē, ı̄)|ē < SE , ı̄ < S].

60 Chapter 3. An Array Database System

Flattening Aggregation Perhaps the most common case in which nested structures
play a role is aggregation. Aggregation itself results in a scalar value, however the
occurrence of aggregates in queries implies the creation of a nested intermediate. For
example, the query [sum([x|x < 3])|y < 3] implies the nested intermediate [[x|x <
3]|y < 3].

The implicit nesting of arrays groups the elements for aggregation. Yet, there is an
alternative to grouping elements in a nested data structure: Grouping can be handled
through the introduction of explicit grouping as part of the aggregation operation8.
In the RAM context, the introduction of explicit grouping leads to a new aggregation
construct that transforms an array into a smaller array by aggregating over a number
of axes (grouping by the remainder of the index values). We defined precisely such an
aggregation construct in the context of the RAM array algebra (see Definition 3.26):

aggregate(g, j, A) = [g([A(̄ı)|i0, . . . , i(j−1)])|ij , . . . , i(|SA|−1)]

By replacing an aggregation function with a grouping alternative the (implicitly)
nested intermediate can be flattened. Like the transformation that solves referential
dependencies, detailed above, this transformation requires the alteration of the inner
array-expression rather than the outer expression. The inner expression must be al-
tered because it depends on the shape of the outer expression. What remains is that
the resulting expression now produces an array of aggregates rather than a scalar value
and must be explicitly dereferenced:

[g(E)|̄ı < S] =⇒ [aggregate(g, |SE |, [E(ē)|ē < SE , ı̄ < S])(̄ı)|̄ı < S].

Consider the following example:

Example 3.19 (Flattening Aggregation). In this example the nested expressionE con-
sists of a single comprehension:

E = [f(x)|x < 3]
A = [sum(E)|y < 5]

The example forms the nested expression expression:

A = [sum([f(x)|x < 3])|y < 5],

which produces a one-dimensional array with shape [5], containing aggregates over
arrays of shape [3]. After the flattening process the expression is:

B = [aggregate(sum, 1, [f(x)|x < 3, y < 5])(y)|y < 5],

which produces an intermediate array of shape [3, 5] that is subsequently collapsed,
over its lowest order axis, to a one dimensional array of shape [5] containing the same
aggregate values as the original.

8 This is similar to the GROUP BY construct in SQL: SQL provides this explicit grouping construct for
aggregation as it does not support nested relations.

3.4. Query Translation 61

Flattening Concatenation The RAM array concatenation operator concatenates two
arrays by appending its second argument to the first over the first axis. During the flat-
tening process, the axes added to flatten nested array-expressions may however alter
arrays to be concatenated. The following example illustrates that the basic flattening
shape transformation results in an incorrect expression because the concatenation op-
erator operates on the first axes of its arguments and the transformation prepends new
axes to the front of the shape:

Example 3.20 (Naively flattening concatenation). In this example two nested arrays
are concatenated over their respective axes x and y. Note that from the definition of
the concatenation operator, it follows that in this expression the shape of the nested
array-expressions E and F must be identical: SE = SF .

[E|x < X, ı̄ < S] + +[F |y < Y, ı̄ < S]
=⇒

[E(ē)|ē < SE , x < X, ı̄ < S] + +[F (ē)|ē < SE , Y < Y, ı̄ < S]

To overcome this problem, an additional transformation that temporarily changes
the location of the concatenation axis must be added while flattening an expression in
the context of array concatenation. Note the location of the x, y, and, z axes in the
flattened expression:

[E|x < X, ı̄ < S] + +[F |y < Y, ı̄ < S]
=⇒[(

[[E(ē)|ē < SE , x < X, ı̄ < S](ē, x, ı̄)|x, ē, ı̄] + +

[[F (ē)|ē < SE , y < Y, ı̄ < S](ē, y, ı̄)|y, ē, ı̄]
)(
z, ē, ı̄

)∣∣ē, z, ı̄]

Discussion The RAM system uses a number of straightforward translation rules to
flatten queries. While these straightforward rules simplify the flattening process, they
inadvertently result in naive query-plans that are likely to be sub-optimal. The RAM
system relies on its query optimizer (see Chapter 5) to counteract this undesirable
side-effect.

3.4.2 Translating Comprehension
The intermediate algebra presented in Section 3.3 is sufficient to express flattened
RAM array-expressions. Translation of flattened-array-expressions into an algebraic
expression is done by recursively mapping the expressions to the algebraic operators.

Only two operators that work on complete arrays are defined for the flattened-
array-expression language: array concatenation and aggregation. Any occurence of

62 Chapter 3. An Array Database System

these operators can be mapped directly on the algebraic concat operator, defined in
Definition 3.27, and the algebraic aggregate operator, defined in Definition 3.26.

A+ +B =⇒ concat(A,B)
aggregate(g, j, A) =⇒ aggregate(g, j, A)

Aside from these operators, array-expressions in RAM can only consist of array vari-
ables and array comprehensions. Any array variable in the expression translates di-
rectly to the corresponding array variable in the algebraic language. Which leaves the
comprehension; This section focuses on the translation of flattened array comprehen-
sions into algebraic expressions.

Translation of array comprehensions is achieved by recursively decomposing the
expressions within these array comprehensions into elementary sub-expressions. Once
identified, these elementary sub-expressions can be replaced directly with algebraic
constructs.

As defined in Definition 3.12, an array comprehension has the formA = [f (̄ı)|̄ı <
SA] where the function f (̄ı) defines the value for each element of array A. Since the
expression is flattened it is known that expression f (̄ı) yields a scalar value, and hence
only a limited number of patterns exist:

• f (̄ı) is a constant value,

• f (̄ı) is a reference to some axis in shape S,

• f (̄ı) is a function over some arguments,

• f (̄ı) is the built-in three-way function if − then − else ,

• f (̄ı) is the built-in aggregation function, or

• f (̄ı) is an application of an array B to some index values.

The first two possibilities map directly to the algebraic operators const and grid
as defined in Definitions 3.20 and 3.21:

[c|̄ı < S] =⇒ const(S, c),

[ij |̄ı < S] =⇒ grid(S, j).
In case f is a function, blackbox or builtin, the expression can be decomposed

into an algebraic bulk-equivalent of that function applied to a set of aligned arrays
representing the scalar arguments for each value of ı̄. These argument arrays can be
generated using the comprehension construct. For any blackbox function the algebraic
map operator, defined in Definition 3.23, maps the function over the aligned elements
of the arrays provided as arguments:

[f(g(̄ı))|̄ı < S] =⇒ map(f, [g(̄ı)|̄ı < S]).

3.5. Discussion 63

Similar, the builtin function if − then − else , defined in Defintion 3.25 can be mapped
to its special-purpose algebraic counterpart choice:

[if fC (̄ı)thenfA(̄ı)elsefB (̄ı)|̄ı < S]
=⇒

choice([fC (̄ı)|̄ı < S], [fA(̄ı)|̄ı < S], [fB (̄ı)|̄ı < S]).

The aggregate construct, introduced to support aggregation in the flattened compre-
hension language, maps directly to its algebraic counterpart aggregate defined in Def-
inition 3.26:

[g([A(̄ı)|i0, . . . , ij−1])|ij , . . . , i|SA|−1] =⇒ aggregate(g, j, A).

The last pattern to be discussed is array application. As arrays are essentially
stored functions, their application maps to the algebraic language similar to the map-
ping of regular functions. Array application in a comprehension maps to the algebraic
apply operator defined in Definition 3.24:

[A(f (̄ı))|̄ı < S] =⇒ apply(A, [f (̄ı)|̄ı < S]).

These patterns cover all patterns identified. Recursively applying the mappings
introduced in this section translates flattened array comprehensions into equivalent
array algebra expressions. For example:

Example 3.21 (Translating a Simple Comprehension). Consider a simple array com-
prehension, only using indexes and constants:

[f(ij , c)|̄ı < S].

This comprehension can be decomposed into three elementary parts: the use of an
axis variable, a constant value, and a function application. These correspond to the
grid , const , and, map operators respectively.
A = [ij |̄ı < S] , grid(S, j)
B = [c|̄ı < S] , const(S, c)

[f(A,B)|̄ı < S] , map(f,A,B)
Resulting in the expression:

map(f, grid(S, j), const(S, c)).

3.5 Discussion
The RAM system as described in this chapter provides a framework to pose array-
oriented queries, analyze and manipulate these queries, and finally translate these
queries to a back-end system for evaluation. The relational mapping scheme itself
is discussed in Chapter 4. A number of limitations have been imposed on the array

64 Chapter 3. An Array Database System

framework as presented. While most are a mere inconvenience, others might hinder
the practical usability of the system as a whole. The practical usability of the RAM
system is explored in Chapter 6. In this section we discuss two of these restrictions
and potential solutions.

3.5.1 Sparseness

Arrays are defined as functions over a dense domain: An array instance defines a
single value for each possible index value. Nevertheless, the term sparse array is
encountered frequently in the literature.

Physical storage of arrays can be implemented with different data structures and
many of these storage structures are sparse. Sparse storage is beneficial for applica-
tions in which most values are equal: for example, in linear algebra where matrices
with many zero values occur frequently. In these cases, storing a default value in
combination with a (short) list of values that differ, can result in a large reduction in
storage requirements. While such structures may be sparse physically, they represent
structures that are conceptually dense: The term sparse array indicates a compression
scheme for physical storage.

The emphasis on data independence in the RAM system architecture allows a
storage scheme that differs from the conceptual data structure. The logical view on
arrays can safely be restricted to dense functions, without imposing this restriction on
the physical storage layer. The specific (possibly sparse) storage scheme used does
not affect the higher layers of the system as they operate on logical array structures.
However, the pseudo-physical mapping layer, which maps the logical array operations
to the back-end, does require explicit knowledge about the particular storage scheme
used.

3.5.2 Language Extensions

The RAM user-level query language offers a certain amount of syntactic sugar, how-
ever, many opportunities exist to improve usability of the language. We discuss a
number of opportunities here and indicate how they could be realized without affect-
ing the rest of the system too severely.

Tuples

One example of a language feature that could be included is support for tuples: RAM
can easily be extended with tuple support.

Similar to the implementation of nested arrays, arrays of tuples could be realized
by a preprocessing layer on-top of the RAM system. Expressions over arrays of tuples
would simply remap to expressions over tuples of aligned arrays of atomics. Feasi-
bility of this principle has already been shown in the MonetDB SQL front-end, which

3.5. Discussion 65

translates relational (SQL) queries to a physical algebra over a column store (essen-
tially one-dimensional arrays) [17].

Alternatively, by adding aditional value columns to the relational representation of
an array, support for tuples as elements in arrays could be implemented explicitly at
the physical level.

Arbitrary Axes

Array axes in RAM are limited to dense ranges from Nn
0 , starting at the origin. There

is no theoretical objection to allowing axes to be defined over arbitrary dense ranges
in N , effectively dropping the restriction on the lower bound.

Alternatively, associative arrays (arrays with axes defined over any discrete set of
values) could be implemented through use of a dictionary-translation table.

66 Chapter 3. An Array Database System

Bibliography
[1] T. More jr. Axioms and Theorems for a Theory of Arrays. IBM Journal of

Research and Development, 17(2):135–157, March 1973.

[2] K.E. Iverson. A Programming Language. John Wiley and sons Inc, New York,
USA, 1962.

[3] C. R. Banger and D. B. Skillicorn. Flat arrays as a categorical data type.
http://citeseer.nj.nec.com/78674.html, 1992.

[4] L.M. Restifo Mullin. A Mathematics of Arrays. PhD thesis, Syracuse University,
December 1988.

[5] H.J. Steenhagen. Optimization of Object Query Languages. PhD thesis, Univer-
siteit Twente, October 1995.

[6] V.K. Balakrishnan. Introductionary Discrete Mathematics, pages 7–17. Dover
Publications, Inc., 31 East 2nd Street, Mineola, N.Y. 11501, 1991.

[7] R. Machlin. Index-Based Multidimensional Array Queries: Safety and Equiva-
lence. In Proceedings of the 26th ACM SIGMOD-SIGACT-SIGART Symposium
on Principles of Database Systems, pages 175–184. ACM Press, June 2007.

[8] ANSI. Coded Character Set - 7-Bit American National Standard Code for Infor-
mation Interchange. Standard X3.4-1986 (R1997), ANSI, 1986.

[9] ITU. Basic Parameter Values for the HDTV Standard for the Studio and for
International Programme Exchange. Recommendation BT.709 (Formerly CCIR
Rec. 709), ITU-R, 1990.

[10] ISO/IEC JTC1 SC22. Information Technology - Programming Languages - Ex-
tended APL. Standard ISO/IEC 13751:2001, ISO/IEC, 2001.

[11] ISO/IEC JTC1 SC22. Information Technology - Programming Languages - For-
tran. Standard ISO/IEC 1539-X:1997, ISO/IEC, 1997.

[12] P. Buneman, L. Libkin, D. Suciu, V. Tannen, and L. Wong. Comprehension
Syntax. SIGMOD Record, 23(1):87–96, 1994.

[13] L. Libkin, R. Machlin, and L. Wong. A Query Language for Multidimensional
Arrays: Design, Implementation, and Optimization Techniques. In Proceedings
of ACM SIGMOD International Conference on Management of Data, pages 228–
239. ACM Press, June 1996.

[14] H. Kwakernaak and R. Sivan. Modern signals and systems, pages 88–103. Pren-
tice Hall, Englewood Cliffs, N.J., 1991.

BIBLIOGRAPHY 67

[15] T. Westerveld. Using generative probabilistic models for multimedia retrieval.
PhD thesis, Universiteit Twente, 2004.

[16] P.A. Boncz, A.N. Wilschut, and M.L. Kersten. Flattening an object algebra to
provide performance. In Fourteenth International Conference on Data Engi-
neering, pages 568–577, Orlando, Florida, February 1998.

[17] CWI. MonetDB/SQL. http://monetdb.cwi.nl/Assets/sqlmanual.pdf.

Chapter 4

Implementation

In Chapter 3 we presented the ideas behind the RAM system and discussed how the
system can be used to map scientific problems to a database system. This chapter dis-
cusses how the intermediate RAM array algebra is mapped to the native languages of
relational back-ends. This translation has to solve two problems: The array structures
must be mapped to a relational storage scheme and the operators in the intermediate
array algebra should be translated into relational queries.

This chapter starts by presenting a generic mapping of the RAM array algebra
operators to the relational domain and an implementation of this mapping in the struc-
tured query language SQL. A discussion of possible improvements to both the storage
scheme and query generation of this implementation leads to two specialized map-
pings for radically different, but both relational, query-processing engines. We specif-
ically highlight those aspects that are important to consider when generating an array
query plan for these platforms. Finally, we present two mappings that produce code
for programming environments instead of relational database engines.

Appendix A contains a detailed example of the mapping process of a single RAM
query to three different backend languages (MIL, X100, and C++). These mappings
have been generated by the prototype RAM system that implements the mappings
outlined in this chapter.

4.1 A Basic Mapping

The storage scheme is the core of a relational mapping solution: The foreign data type
must be translated in tables and attribute types that the relational DBMS understands.
In the case of arrays, we can use the fact that, mathematically, an array is a func-
tion. As detailed in Section 3.1.2, for every array A an equivalent set of tuples exists:
RA =< (̄ı, A(̄ı))|̄ı ∈ SA >. In the relational domain (physical) storage of arrays
is realized through tables containing such set representations of arrays. These tables
explicitly enumerate the relation between array indices and their associated values as,
for example, depicted in Figure 4.1.

69

70 Chapter 4. Implementation

i0 i1 Value
0 0 A
1 0 B
2 0 C
0 1 D
1 1 E
2 1 F
0 2 G
1 2 H
2 2 I

0 1 2
0 A B C
1 D E F
2 G H I

Figure 4.1: An example array and its relational equivalent.

Given a relational storage scheme for arrays, it is possible to formulate a relational
query for each of the array algebra operators defined in Section 3.3. Even though this
appears straightforward for some of the operators, there is a fundamental problem to
overcome: Array queries in RAM are generative whereas relational queries are based
on selection. During query evaluation, results in the relational domain are always
derived from existing relations. In the array domain however, new arrays can easily
be constructed given only a few parameters. For example the const operator generates
a new array, filled with a specified constant value, given only the shape of the desired
array.

4.1.1 The Base Function
To allow arrays to be generated in a relational query plan, given only a shape, we
introduce the base function. This function takes an array shape as an argument and
materializes the complete set of all index values in that shape:

Mapping 4.1 (Function: base). The base function enumerates all index values in a
given shape 1:

base(S) = { ı̄ | ı̄ ∈ S }

Example 4.1 (Function: base).

base([3, 2]) =

i0 i1

0 0
1 0
2 0
0 1
1 1
2 1

1 Details on the realization of this function in various back-ends are presented when necessary.

4.1. A Basic Mapping 71

The functionality provided by the base function is not unique to the relational map-
ping of RAM. In fact, Libkin et al. prove that in order to add arrays to their relational
system a means to generate array indices is necessary and that array-index genera-
tion can be realized by adding nothing more than a function that enumerates dense
sequences of integers (array axes) [1]. The Mathematics Of Arrays relies on a special
operator ρ (called shape) that produces an array of indexes given a shape [2]. And,
in Banger’s array category theory, a function basis enumerates array axes whereas a
function grid produces a full array of self-indexes [3].

4.1.2 The Relational Array Algebra

The generative nature of array queries is apparent in the const and grid operators of
the RAM array algebra. These are the operators that create new arrays given only their
descriptions. The relational equivalents for the const and grid operators are defined
using the newly introduced base function:

Mapping 4.2 (Relational algebra: const). The const operator creates a new array of
a given shape and fills it with a constant value.

const(S, c) = π(ı̄,v=c)base(S)

Mapping 4.3 (Relational algebra: grid). The grid operator creates a new array of a
given shape and fills it with values taken from its index.

grid(S, j) = π(ı̄,v=ij)base(S)

Both operators add a value attribute to the set of indices provided by the base
function.

The relational operator that applies a given operation to all elements in a set is
the projection. Unfortunately, the RAM map operator, which applies a given function
to all elements in an array, is more involved than a simple projection. For the unary
case of the map operator, where a unary function is applied over a single array, the
relational projection operator suffices. The n-ary case, where the map operator is used
to apply an n-ary function to co-located elements in multiple aligned arrays, requires
the combination of these aligned arrays.

The combination of aligned arrays is a recurring process. By definition aligned
arrays have identical shape and elements in different arrays are associated by location
(aligned arrays are defined in Section 3.3.1). Combining co-located values from mul-
tiple relations that represent such arrays requires these relations to be joined over their
index values:

Definition 4.1 (Notation: aligned array join). The natural join over the relational

72 Chapter 4. Implementation

representation of aligned arrays associate values by their location (index):

A on B = π(ı̄,A.v,B.v)(A on(A.̄ı=B.̄ı))
where

SA = SB

When aligned arrays are combined in this way, two important constraints are
known that might help the database system choose an efficient join strategy. First,
by definition, the combined index columns of the array relations form a key in the re-
lation. Second, since the different arrays have the same shape, their index values have
a mutual foreign-key relation: It is known that each index in one array is guaranteed
to occur as an index in the other exactly once.

The map operator performs the application of a function f at every location in an
array or a combination of aligned arrays, A1, A2, . . . :

Mapping 4.4 (Relational algebra: map). The map operator creates a new array of
which each element is the result of applying a function to aligned elements in a set of
arrays.

map(f,A1, · · · , Ak) = π(ı̄,v=(f(A1.v,...,Ak.v))(A1 on . . . on Ak)
where

SA1 = . . . = SAk

The apply operator is similar to the map operator: It applies a function to a set of
aligned arrays. However, in this case the function is not a primitive provided by the
database back-end, but a stored function (an array). Again, the aligned arguments to
the function, I1, . . . , In, are combined through a sequence of join operations. The
actual application of the stored function, array A, is subsequently realized through
another join operation:

Mapping 4.5 (Relational algebra: apply). The apply operator creates a new array of
which each element is the result of applying a given array to aligned elements in a set
of index-arrays.

apply(A, I0, · · · , Ik) = π(ı̄=I0.̄ı,A.v)((I0 on . . . on Ik))
on(I0.v=A.i0,...,Ik.v=A.ik) A

where

SI0 = . . . = SIk

Aggregation is another type of function application in RAM. The aggregate oper-
ator collapses a given array over one or more of its axes and applies an aggregation
function to the groups created this way. In relational terms, the collapse of a given
axis specifies a grouping condition: collapsing one axis of an array means grouping

4.1. A Basic Mapping 73

the array elements over the indices of remaining axes. This way of specifying aggre-
gation conditions is similar to how aggregation is described in the OLAP domain (see
also Section 2.3.2).

Mapping 4.6 (Relational algebra: aggregate). The aggregate operator applies an ag-
gregation function g over the first j axes of an array 2.

aggregate(g, j, A) = π(i0=A.ij ,··· ,ik−j=A.ik,v)((ij ,··· ,ik)Fg(v)A)
where
n = |SA| − 1

The last two ways in which arrays can be combined in the RAM are the choice
and concat operators. As shown in Chapter 3 these operators are superfluous, only
one of these is required, but both lead to different relational operators. The choice
operator creates a new array by combining values taken from either of two aligned
arrays according to a boolean condition provided by a third aligned array:

Mapping 4.7 (Relational algebra: choice). The choice operator produces a new array
by combining values from two aligned arrays selecting the source based on a supplied
boolean function:

choice(C,A,B) = (π(ı̄,v=A.v)(σC.v(C on A))) ∪ (π(ı̄,v=B.v)(σ¬C.v(C on B)))
where
SA = SB = SC

The concatenation operator combines two arrays by appending the second to the
first. As defined in Section 3.2.7, the concatenation is performed over the highest
order axis of two compatible arrays. Two arrays are compatible if the have the same
valence and all axes, with the exception of the highest order axis, are the same length.
In the relational domain array concatenation is realized though manipulation of the the
index values of the second array such that the total set of combined tuples from both
arrays forms a new, larger, array:

Mapping 4.8 (Relational algebra: concat). The concat operator appends two arrays:

concat(A,B) = A ∪ (π(i0,i1,··· ,(ik+Sk
A),v)B)

where
n = |SA| − 1
S0

A = S0
B

· · ·
S(n−1)

A = S(n−1)
B

2No single agreed-upon notation to specify aggregation functions exists. The notation used here has
been defined by Elmasri and Navatheon [4] (page 165).

74 Chapter 4. Implementation

In combination with the normalization and transformation strategies given in Chap-
ter 3, these relational mapping patterns allow the translation of a query posed in the
RAM array calculus to relational algebra. For example, consider the multiplication of
two matrices represented by two-dimensional arrays:

Example 4.2. Matrix multiplication. A query, in this case the multiplication of two
arraysA andB representing matrices, posed in the high-level query in the RAM array
calculus:

[sum([A(i, k) ∗B(k, j)|k])|i, j]

is first normalized:

[sum([A(@1,@0) ∗B(@0,@2)|S1
A])|S0

A,S1
B]

and translated to the array algebra by matching patterns in the calculus expression to
algebraic operators as presented in Section 3.4.2:

A(@1,@0)⇒ apply(A, grid([S1
A,S0

A,S1
B], 1), grid([S1

A,S0
A,S1

B], 0))

The complete algebraic translation of this example query is depicted in Figure 4.2(a).
Each of the algebraic operators in the expression can subsequently be mapped to its
relational equivalent, e.g.:

apply(A, g1, g0)⇒ π(g1.̄ı,A.v)((g1 on g0) on(g1.v=A.i0,g0.v=A.i1) A)

The resulting relational algebra expression is visualized in Figure 4.2(b).

Unfortunately, relational algebra is not a standardized language offered as an in-
terface by database systems. Nevertheless, the patterns presented in this translation
are a valid relational representation of the array algebra operators. The specific lan-
guages offered by different relational database systems all offer ways to express the
basic relational operations used so-far.

4.1.3 RAM in SQL

The Structured Query Language (SQL) is the standardized language offered by most
relational database management systems [5]. Despite proprietary differences among
implementations, the SQL standard provides users and applications a uniform way to
interface with relational database management systems from different vendors. This
motivates the translation of RAM array queries to SQL: The implementation serves
as a proof-of-concept that allows RAM queries to be evaluated on many different
platforms.

4.1. A Basic Mapping 75

apply

apply

aggregate(sum,1)

B grid([len(A,1),len(A,0),len(B,1)],0) grid([len(A,1),len(A,0),len(B,1)],2)

A grid([len(A,1),len(A,0),len(B,1)],1) grid([len(A,1),len(A,0),len(B,1)],0)

map(*)

(a) Array algebra.

I0=project(i0,i1,i2,v=i0)

base([len(A,1),len(A,0),len(B,1)]) base([len(A,1),len(A,0),len(B,1)])

join(I0.v=B.i0 & I1.v=B.i1)

Bjoin

I1=project(i0,i1,i2,v=i2)

base([len(A,1),len(A,0),len(B,1)]) base([len(A,1),len(A,0),len(B,1)])

I0=project(i0,i1,i2,v=i1)

join

join(I0.v=A.i0 & I1.v=A.i1)

I1=project(i0,i1,i2,v=i0)

A

project(i0=i1,i1=i2,v)

groupby(i1,i2,sum(v))

project(i0,i1,i2,v=A.v*B.v)

join

(b) Relational Algebra.

Figure 4.2: Matrix multiplication in RAM.

76 Chapter 4. Implementation

Storage Scheme

The SQL implementation of RAM uses a storage scheme that directly reflects the
basic mapping suggested in Section 4.1. Each array is stored in a separate table that
consists of one column for each index dimension (called in) and a column for the cell
value (called v).

Example 4.3 (SQL: array mapping). ArrayA is represented by a table table A that
has |SA| integer index columns, one for each axis of A, and a value column with the
values of A:
A = CREATE TABLE table A {

i0 integer,
. . .
in integer,
v τA
}

The SQL Base operator

Whereas the basic SQL query language is standardized, each system has its own way
of supporting user defined functions. To maximize portability across different SQL
implementations the base operator is realized without a special native function. In-
stead, we assume the availability of a table N containing a sufficiently long, dense,
range of natural numbers starting at 0. This table could be provided transparently by
a user defined function, or it could simply be a persistent table. The enumerated se-
quence of indexes for any array axis can then be obtained with a range selection over
N and the full base of an array is defined by the Cartesian product over its axes:

Mapping 4.9 (SQL: base).

base(S) = SELECT i0 = A0.n, i1 = A1.n, . . .
FROM A0 = (SELECT n FROM N WHERE n < S0),

A1 = (SELECT n FROM N WHERE n < S1),
. . .

An alternative method to implement the base operator in SQL is to exploit the
OLAP functionality defined for SQL99. The DENSE RANK function can be used to
assign nested dense sequences of integers to tuples in a table as shown by Grust et
al. [6].

Array Primitives in SQL

The storage scheme and base operator presented above allow all of the RAM array
algebra operators to be expressed as SQL queries. These translations simply mimic

4.1. A Basic Mapping 77

the patterns as defined previously for relational algebra in Section 4.1.2. For example,
the SQL implementations for the const and grid operators follow the same structure
as their relational algebra counterparts. A table is generated with the base function
and the value column is added to this table of indexes through a single projection:

Mapping 4.10 (SQL: const).

const(S, c) = SELECT i0, i1, · · · , in , c AS v
FROM base(S)

Mapping 4.11 (SQL: grid).

grid(S, j) = SELECT i0, i1, · · · , in, ij AS v
FROM base(S)

Joining of aligned arrays, required for the map and apply operators, requires a SQL
query with a “WHERE” clause that specifies equality for all indices for the aligned
arrays.

Mapping 4.12 (SQL: map).

map(f,A1, A2, · · ·) = SELECT A1.i0, A1.i1, · · · , A1.in, f(A1.v, A2.v, · · ·)
FROM A1, A2, · · ·
WHERE A1.i0 = A2.i0 AND A1.i1 = A2.i1 AND · · ·

· · · ANDA1.in = Ak.in

Mapping 4.13 (SQL: apply).

apply(A, I1, I2, · · ·) = SELECT I1.i0, I1.i1, · · · , I1.in, A.v
FROM A, I1, I2, · · ·
WHERE I1.v = A.i0 AND I2.v = A.i1 AND

· · · AND In.v = A.i(n−1)

Aggregation in SQL is performed through a special “GROUP BY” directive. In
case of the mapping for the aggregate operator elements in the relation are grouped
on the index values that remain after aggregation, effectively collapsing the axes to be
aggregated over:

78 Chapter 4. Implementation

Mapping 4.14 (SQL: aggregate).

aggregate(g, j, A) = SELECT ij , i(n−1), g(v)
FROM A

GROUP BY ij , · · · , i(n−1)

The choice and concat operators both translate to queries involving the union of
two partial results:

Mapping 4.15 (SQL: choice).

choice(C,A,B) = SELECT ∗ FROM A, C

WHERE C.v AND
A.i0 = C.i0 AND · · · AND A.in = C.in

UNION
SELECT ∗ FROM B, C

WHERE not(C.v) AND
B.i0 = C.i0 AND · · · AND B.in = C.in

Mapping 4.16 (SQL: concat).

concat(A,B) = A

UNION
SELECT i0, i1, · · · , (in + Sn

A), v FROM B

With the mapping rules presented in this section, any RAM expression can be
translated to a single (nested) SQL statement. As we will show in the following sec-
tion, however, the translation process may produce very large SQL statements.

4.2 Efficient Query Evaluation
Where some operations translate to elegant SQL queries, for others (observe the large
WHERE clause in apply) it is apparent that the SQL representation is cumbersome.
Moreover, a complex array query consisting of many operations results in the nesting
of many SQL queries. Consider the following example:

Example 4.4. Matrix transposition. A simple RAM query, like the transposition of an
array A

[A(y, x)|x, y],

4.2. Efficient Query Evaluation 79

results in a large and complex SQL query after applying the translation rules pre-
sented

SELECT I0.i0, I0.i1, A.v AS v
FROM A,

I0 = SELECT i0,i1,i1 AS v
FROM SELECT i0=A0.n, i1=A1.n

FROM A0 = (SELECT n FROM N WHERE n<S1
A)

A1 = (SELECT n FROM N WHERE n<S0
A)

I1 = SELECT i0,i1,i0 AS v
FROM SELECT i0=A0.n, i1=A1.n

FROM A0 = (SELECT n FROM N WHERE n<S1
A)

A1 = (SELECT n FROM N WHERE n<S0
A)

WHERE I0.i0 = I1.i0 AND I0.i1 = I1.i1 AND
I0.v = A.i0 AND I1.v = A.i1

The essence of this particular operation, an exchange of the array axes, could how-
ever have been expressed much more concisely by simply swapping the axis columns
of the table representing the array:

SELECT A.i1 AS i0, A.i0 AS i1, v
FROM A

Example 4.4 demonstrates the many opportunities for optimization, when arrays
are handled in the relational domain. However, recognizing the single projection as an
alternative starting from the generated SQL query (as the relational optimizer would
have to do) is non-trivial, especially because much of the domain knowledge specific
to arrays is no longer available.

SQL is a high-level declarative query language: Technical details are hidden from
the user making the system easier to use. The high-level nature of the language pre-
vents user influence on the details of query evaluation, which gives a DBMS the free-
dom it needs to pick the best evaluation strategy itself. The underlying assumption
is that the DBMS is better equipped than the user to make those decisions given its
knowledge about physical execution cost and data storage.

A particularly effective form of query optimization is semantic query optimization.
Semantic query optimization uses domain knowledge, usually represented in a DBMS
by integrity constraints, to transform queries into cheaper, semantically equivalent
queries. Queries that are semantically equivalent given a specific database state are
not necessarily mathematically equivalent: Specific domain knowledge is required to
substantiate the equivalence. Unfortunately the high-level nature of SQL also makes
it difficult for the RAM system to communicate its domain knowledge to the back-
end. This lack of domain knowledge not only places a higher burden on the relational
back-end to infer the best evaluation strategy, it may frustrate the optimization process
altogether.

Example 4.5 (Loss of context). Consider example query

[f(A(x))|x],

80 Chapter 4. Implementation

that specifies an array whose values correspond to the function f applied to the values
in array A. The system translates it into the following array algebra expression:

map(f, apply(A, grid(SA, 0))).

By representing arrays as sets of tuples consisting of index-value pairs (i, v), the
algebra expression can subsequently be mapped to the following relational query:

πI.i,f(A.v)(A onA.i=I.v (I = grid(SA, 0))),

Many properties of the data can be communicated effectively to a relational system:
for example, it is known that the index-columns of an array-relation are key, and that
the values in array I have a foreign key relation to the index values of array A 3.

However, even in this simple case a lot of property information needs to be com-
bined to discard the join operation in the relational domain. To eliminate the join
operation a relational system must know the following properties: I and A are the
same size, I.i and A.i are keys, I.v has a foreign key relation to A.i, and for each
tuple in I; I.i = I.v.

In the array domain the problem is far simpler; the array algebra expression is
easily recognized as an identity transformation of array A and can immediately be
reduced to:

map(f,A),

which maps directly to this relational query:

πA.i,f(A.v)(A).

This loss of context is an inevitable effect caused by the relational mapping pro-
cess and, unfortunately it may result in relational engines performing sub-optimally.
We argue that because the RAM system has intimate knowledge of the array domain
that it cannot fully communicate to a relational back-end, it is better equipped to pro-
duce efficient query execution plans. This potential can only be exploited by directly
interfacing with the back-end in its native language, typically some kind of relational
algebra, rather than a high-level query interface such as SQL. In the remainder of this
chapter we aim at precisely this: The creation of efficient array-algebra implementa-
tions by mapping its operators directly to relational algebra.

4.2.1 An Efficient Storage Scheme
The storage overhead introduced by explicitly storing D index values for each data
element in a D-dimensional array makes this mapping impractical, due to the induced
cost in I/O and memory usage. Reduction of this overhead requires the representation
of a multi-dimensional array with a smaller set of index values, essentially creating an

3More properties will be known internally such as the ranges of index values.

4.2. Efficient Query Evaluation 81

Y Reference
0 Table_1
1 Table_2
2 Table_3

0 1 2
0 A B C
1 D E F
2 G H I

X Value
0 A
1 B
2 C

X Value
0 G
1 H
2 I

X Value
0 D
1 E
2 F

Figure 4.3: An example array stored using indirection.

array of lower dimensionality. Dimensional reduction of arrays can either be achieved
through a level of indirection, or by introducing a functional mapping from the original
array indices to lower-dimensional indices.

An example of using indirection to reduce storage overhead is depicted in Fig-
ure 4.3. Different indirection schemes are possible, but the essence of the approach is
simple: An array is fragmented over one (or more) of its axes, which produces slices
of lower dimensionality.

The straightforward method to realize this type of storage scheme is to physically
fragment the array into separate tables each representing one slice, like the example
in Figure 4.3. Unfortunately, data-fragmentation may introduce complexity. When
an array has an unsuitable fragmentation pattern for a given query, evaluation perfor-
mance degrades due to repetitive iteration over the various fragments. For the time
being, we avoid these issues by not considering such fragmented storage schemes.

The alternative to physical fragmentation of the array tables is to use indirection
to identify which subset of a large table, representing a complete array, represents a
given slice. A downside of using explicit indirection via relations is that it introduces
additional join operations in the relational query plan for every layer of indirection.
The introduction of additional join operations, one of the most expensive relational
operations, as a side-effect of the storage scheme should be avoided. Without the
fragmentation, the indirection tables are essentially stored functions that realize di-
mensional reduction.

The functional dimension reduction alternative uses a (mathematical) function that
maps a discrete multi-dimensional domain onto a linear range. A well-known example
of this idea, depicted in Figure 4.4, is the polynomial indexing function commonly
used in low-level programming languages to map multi-dimensional arrays into the
linear address space of computer memory:

Example 4.6 (Polynomial Indexing Function). For any two-dimensional 4 shape SA

4Extension of this principle to shapes of higher valence is trivial.

82 Chapter 4. Implementation

f(x,y)=
x+3*y Value

0 A
1 B
2 C
3 D
4 E
5 F
6 G
7 H
8 I

0 1 2
0 A B C
1 D E F
2 G H I

Figure 4.4: An example array stored using dimensional reduction.

the two-dimensional index vectors can be transformed unambiguously to indexes in a
one-dimensional shape SB = [|A|]:

j = i0 + i1 ∗ SO
A

This transformation is fully invertible given the original shape:

i0 = j%S0
A

i1 = j/S0
A

Polynomial index compression is efficient and effective. The index transforma-
tion and its inverse are simple to compute and the array is mapped to a dense one-
dimensional range which guarantees that no (address-)space is wasted. However, the
compactness of this mapping scheme can be a bottleneck for applications using dy-
namic array structures: every operation that alters the shape of an existing array re-
quires all index vectors to be remapped from the old to the new shape. Alternatives
such as space filling curves and pairing functions could eliminate this need for full
index-remapping for many types of array-reshaping operations, at a cost of “wasted”
(address-)space [7]. The characteristics of the operations to be performed determine
which is the optimal dimensional-reduction scheme.

Regardless of the specific index-compression technique chosen, it can be incor-
porated in the RAM framework elegantly. Given an index compression function
p : S, ı̄ → ip and its inverse p−1 : S, ip → ı̄, any query over multi-dimensional
arrays can be rewritten to use index compression:

Example 4.7 (Dimensional Reduction). For example, the RAM expression

B ← [A(̄ı)|̄ı < SB]

4.3. MonetDB 83

can be rewritten to a single dimensional variant, by using index compression function
p and its inverse:

B ← [A(p(SA, p
−1(SB , i

p))|ip < |B|]

Index compression has the following advantages over the naive approach. First
and foremost, reducing the number of index columns that must be explicitly stored
significantly reduces storage needs. Second, key tests and other constraint tests, that
may be required over collections of index-values are cheaper because of the reduc-
tion to single dimensional index values. Finally, operations over multi-dimensional
arrays are essentially reduced to operations over one-dimensional arrays, which could
simplify the operations and potentially increase efficiency. Still, the costs of both
index compression and decompression must be taken into account, and operations de-
pending on partial index vectors (such as aggregation) may prove to become more
complicated.

4.3 MonetDB
The MonetDB database kernel is an open-source, high-performance engine designed
for query-intensive applications. In this section we present RAM mappings for two
different query processing engines available in MonetDB. The first mapping translates
the RAM algebra to the MonetDB/MIL subsystem, which is based on main-memory
bulk processing. The second mapping translates the RAM algebra to the MonetD-
B/X100 subsystem, which implements a pipelined version of relational algebra.

4.3.1 Array storage in MonetDB
In MonetDB relational storage, and thus array storage, is based on the decomposed
storage model: Multi-valued relations are fragmented vertically by assigning a unique
object identifier (oid) to each tuple in a relation and splitting the relation into a set of
binary relations. These binary relations are linked through the oids and each represents
one column of the original relation.

When decomposed, the relations from the basic array storage scheme, introduced
in Section 4.1, are represented by several binary-association tables (BATs): one BAT
for each axis of the array and an additional axis for the value column. This property
is exploited by the RAM array storage scheme for MonetDB. The oids, which are im-
plemented as integers in the MonetDB system and used for the vertical fragmentation,
are not randomly assigned, but generated from the array indexes. Array-index genera-
tion is done using the standard polynomial dimensional reduction function, see Exam-
ple 4.6. This function is lightweight and produces a dense one-dimensional range. As
shown in Figure 4.5, the combination of the dimensional-reduction function used to
generate oids and the vertically fragmented storage scheme essentially renders the ex-
plicit array mapping equivalent to the dimensionally reduced variant. The use of these

84 Chapter 4. Implementation

X Y Value
0 0 A
1 0 B
2 0 C
0 1 D
1 1 E
2 1 F
0 2 G
1 2 H
2 2 I

X
0 0
1 1
2 2
3 0
4 1
5 2
6 0
7 1
8 2

Y
0 0
1 0
2 0
3 1
4 1
5 1
6 2
7 2
8 2

Value
0 A
1 B
2 C
3 D
4 E
5 F
6 G
7 H
8 I

f(x,y) Value
0 A
1 B
2 C
3 D
4 E
5 F
6 G
7 H
8 I

Figure 4.5: Decomposed storage model.

Value
0 A
1 B
2 C
3 D
4 E
5 F
6 G
7 H
8 I

0,+1 Value
... A
... B
... C
... D
... E
... F
... G
... H
... I

+1
+1
+1
+1
+1
+1
+1
+1

Figure 4.6: Void bats: Ordered, dense ranges of oids can be replaced by an offset and
increment.

generated oids implies that the index columns do not have to be physically stored: The
index tables can simply be generated “on-the-fly” if necessary.

An important innovation in the Monet system is the so called “virtual object iden-
tifier”, referred to as the void data type. Although relations in the relational model
represent unordered sets, the physical representation of a relation – a table – necessar-
ily has a certain order. When a table has an oid column consisting of a dense range of
oids and the table is physically ordered on this column, the oids need not be stored:
Their values can be computed as a function from the position in the table. This idea is
depicted in Figure 4.6. The inverse is also true: For any void table, the location of the
binary tuple can be computed as a function of the oid value, providing a perfect join
index. In MonetDB, a binary table with such virtual (or implicit) object identifiers is
called a “void BAT” [8].

The physical join operator in MonetDB that operates on void columns – the po-
sitional join – is the cornerstone of MonetDBs high performance. An important part
of array queries consists of fetching values from source arrays through the apply op-
erator. The linear complexity of the positional join operator allows array application

4.3. MonetDB 85

to be performed in linear time, since the relational mapping provides a function that
directly translates array indexes to the appropriate oids. The positional join is not
exclusive for MonetDB; other database kernels could provide similar functionality,
specifically kernels developed for database systems designed to handle ordered data
such as SybaseIQ and Vertica [9, 10].

A second advantage void bats offer over their materialized oid counterparts is
the reduction in storage space needed. Dimensional reduction in combination with
Monets void BAT construct provides a relational array storage scheme that requires
no physical storage space for array indices. The use of void BATs reduces memory
consumption to the actual array data itself; just like the storage cost of array data in
low-level programming languages such as C/C++ or FORTRAN.

4.3.2 Mapping to Main-Memory

Providing a query language for ordered structures is only part of making database
technology more accessible for computation-oriented users. An important issue not to
be overlooked is performance. Special-purpose language compilers can be expected
to produce programs that execute several times, perhaps even orders of magnitude,
faster than the naive SQL expressions produced by the baseline system sketched in
Section 4.1.3.

This difference in performance is in part due to the overhead introduced by the
generic nature of the DBMS. Another important part of the reason is the I/O-bottleneck.
Database management systems often access secondary storage to retrieve data and
store results, while special-purpose programs typically operate in main memory. Op-
erating in main memory provides an obvious performance advantage at the cost of
program complexity: Processing in main memory inherently introduces limitations on
the amount of data that can be processed in a single operation. Scaling main-memory
algorithms beyond these limitations is often non-trivial.

The MonetDB/MIL query processing engine aims at overcoming the limitations
imposed by the I/O-bottleneck by focusing on bulk processing in main-memory.

RAM in MIL

Translation of the intermediate array algebra into the native query language of Mon-
etDB, MIL the Monet Interpreter Language, follows the patterns for the generic rela-
tional mapping defined in Section 4.1. The shape-generation functionality is supported
by the addition of a new low-level function called milgrid. This function generates a
binary relation with one void column, representing a dense oid range starting at 0, and
one column with a repetitive pattern of oid sequences. The length of the table, as well
as the specific pattern in the second column are determined by the function arguments:

86 Chapter 4. Implementation

Definition 4.2 (MIL implementation: milgrid).

milgrid(a, b, c, d) = {((ic + c · (ib + b · ia)), ib + d)|
∀(ic, ib, ia) ∈ N3 : ic < c, ib < b, ia < a}

The MIL equivalents of the RAM array algebra operators rely on this index gen-
eration function. For example, the grid operator maps directly to an invocation of this
newly introduced MIL function. By calling the function with arguments derived from
the desired result shape, the correct relation between compressed index values for the
entire shape, the left-side void column, and the specific index of one of the array axes,
the right-side oid column, is generated:

Mapping 4.17 (MIL: grid).

grid(S, j) = milgrid(Sj ,

j−1∏
i=0

Si,

n∏
i=j+1

Si)

Like the grid operator, the const operator generates a new array given only its
parameters. The MIL mapping for the const operator uses the grid generation function
for this purpose. The constant value is assigned to all elements of the generated binary
relation by using the MIL project operator:

Mapping 4.18 (MIL: const).

const(S, c) = project(grid(1,
|S|−1∏
i=0

Si, 1, 0), c)

Note that, for BATs defined as read-only, the MIL project operator creates a view
on an existing BAT that makes it a virtually free operation. Explicitly opting to use a
view on a grid table, rather than materializing a constant array, creates opportunities
for the reuse of intermediate results.

The MIL language provides a specialized operator constructor, the multiplex, which
turns a function f over atomic values into a function [f] that applies f to each of the
(combined) values in a set of (aligned-)BATs. The map operator in the array algebra
maps a function over aligned arrays. These aligned arrays are identically shaped and
are created using the same index compression function: Aligned arrays necessarily re-
sult in aligned BATs. Therefore, the multiplex operator constructor provides precisely
the functionality needed for the map operator:

Mapping 4.19 (MIL: map).

map(f,A1, . . . , Ak) = [f](A1′, . . . , Ak′)

4.3. MonetDB 87

The MIL language provides an ‘ifthenelse’ operator, which returns its second or
third argument depending on the boolean value of the first argument. The choice
operator can be implemented by simply multiplexing this function over the aligned
arrays:

Mapping 4.20 (MIL: choice).

choice(C,A,B) = [ifthenelse](C,A,B)

The array application primitive is a special case of mapping where a stored func-
tion application is performed in bulk by the relational join operator. However, instead
of joining each of the index dimensions separately, the MIL mapping of the apply op-
erator is aware of the index compression used: In its implementation the index com-
pression function pA is mapped over the aligned index columns producing a single
column. This column contains the appropriate oids to perform the array application
by directly joining against the compressed indexes of array A:

Mapping 4.21 (MIL: apply).

apply(A, I0, . . . , Ik) = join(pA(SA, I0, . . . , Ik))

The problem with aggregation in relational systems, which makes it such an ex-
pensive operation, is that grouping by the value of a particular attribute provides little
information. In our case, we have much more information, since we know a priori the
number of groups, the constant group size, as well as the precise location of all group
elements. By exploiting this domain knowledge, a grouping index that combines all
n−1 dimensions can be directly generated using themilgrid generation function. By
taking into account the index-compression scheme, this grouping index can be directly
generated for the compressed index values.

Similar to the multiplex operator constructor for mapping, MIL provides an op-
erator constructor for grouped aggregation, the pump. It turns a basic aggregation
function g, which works on a single set, into a function {g} suitable for repeated
aggregation over groups defined by a grouping index. The aggregate operator is im-
plemented by applying this pump operator constructor and generating the grouping
index with the milgrid function:

Mapping 4.22 (MIL: aggregate).

aggregate(g,A, j) = {g}(A,milgrid(1,
|SA|−1∏

i=j

Si
A,

j−1∏
i=0

Si
A, 0),

milgrid(1,
|SA|−1∏

i=j

Si
A, 1, 0))

88 Chapter 4. Implementation

The last operation to translate is the array concatenation. Array concatenation of
two arrays, A + +B, entails shifting the domain of the second operand so that the
domains of both arrays become disjoint, at which point they can be merged by taking
their union. Here, too, the index-compression scheme is taken into account in the
generated query. Shifting the indexes of the second array is achieved by merely adding
the cardinality of the first array directly to the compressed indexes. Also, the nature of
the array concatenation operation guarantees that the key values in both the first array
and the shifted form of the right array are unique. Therefore a simple bulk-insertion
suffices, circumventing the expensive duplicate-elimination of a proper union.

MIL allows only values in the second column of a BAT to be manipulated: Arith-
metic can be performed on the first column of a BAT by swapping its columns with
the reverse operator. The MIL functions oid and int cast values between the assocated
types, which facilitates the manipulation of oid typed values using integer arithmetic.

Mapping 4.23 (MIL: concat).

concat(A,B) = insert(copy(A), reverse(oid([+](int(reverse(B)), count(A)))))

Efficient MIL generation

The MIL implementation of the array algebra operators presented here literally trans-
lates each isolated step in an array query. For array queries consisting of many op-
erators, this naive aproach may lead to a sub-optimal translation. Therefore the MIL
implementation of RAM contains a number of improvements to the generator.

The optimization problem is even more apparent when we consider a distinguish-
ing characteristic of the MonetDB system: its main memory processing. Because
tables are fully loaded into memory for processing, care must be taken to conserve
memory space. If the active set of tables in use grows beyond the memory bounds,
MonetDB will resort to secondary storage for intermediate results. The use of sec-
ondary storage significantly degrades performance. By interfacing with MonetDB di-
rectly at the low-level algebra level, the RAM system takes on the burden of memory
management 5.

MonetDB explicitly materializes every intermediate result, which provides the po-
tential to retain intermediate results without any extra materialization costs in case
they can be reused later. These reuse opportunities are plentiful in a typical generated
MIL script. In large RAM queries references to the same array axes are frequently
used in different parts of the expression: These axis references lead to identical grid
expressions.

The const operator builds on a BAT generated with the milgrid function, however,
from this table only the left-hand void column is used, as values in the right-hand
side are overwritten by the constant projection: Instead of creating a new BAT for
the const evaluation, any previously created void table of the appropriate size can be

5 Methods for the RAM system to cope with memory management are discussed in Chapter 5.

4.3. MonetDB 89

reused. Usually however, constant arrays occur as part of a larger expression and for
those cases many of the operators in MIL accept constant arguments as replacement
for a table with a constant value. Using atomic constants means that any constant-
array that is an argument in, for example, a map operation need not be created: it can
simply be replaced by a constant in the multiplexed-function invocation.

The translation of the map operator itself also provides several opportunities to
create efficient plans. As presented, the MIL query plans for each of the RAM op-
erators physically produce new arrays, which is the correct behavior for single-array
operation queries. In a larger query, however, many intermediate results are only used
once. Intermediate results that are not reused allow the MIL translation to be altered
to operate “in place” on existing BATs rather than newly generated tables, resulting in
more space and time efficient query plans.

Discussion

The MIL mapping for the RAM array algebra showcases a number of subtle tricks
that could not be applied when mapping from a higher-level query language. For
example, the storage scheme exploits explicit knowledge of the low-level storage sys-
tem in MonetDB intelligently, using index compression to eliminate storage overhead.
Naturally, the same index-compression function could be used in the high-level SQL
implementation of RAM. However, even with the index compression added to the
SQL queries, it seems unlikely that a SQL interpreter would be able to reduce an ar-
ray to a single void table without the internal logic beiing aware of arrays and index
compression.

Another detail is that all operators are implemented “order aware”. The physical
MIL operators used are carefully chosen during code-generation to guarantee that
the data remains ordered throughout the query process. As explained, the fetch-join
physical join operator in MonetDB is essential for performance: it can only be used if
BATs are properly ordered.

4.3.3 Mapping to a Pipeline
The traditional relational database kernel uses a pipeline design, formalized by the
Volcano iterator model [11]. In the pipeline, the output of one relational operator is
streamed directly into the next operator. This approach has the benefit that in many
cases explicit materialization of intermediate results (on disk) is not required. In addi-
tion, the pipeline design promotes stream-based processing, preventing the memory-
limitation issues that main-memory processing has.

MonetDB/X100, a relational query processing engine, is a high-performance im-
plementation of the classic pipelined iterator model. It provides users with a relational
algebra over tables [12]. The implementation aims at overcoming the limitations of
main-memory bandwidth by processing data-streams in small chunks that fit into the
fast cache-memory available on any modern computer processor.

90 Chapter 4. Implementation

Array Storage for X100

Externally, the X100 data model is a traditional relational multi-column table format.
Internally, at the lowest level, however, the system vertically decomposes its tables
into unary columns. These columns are associated through location: tuples are formed
by fetching values from different columns at the same location. The RAM mapping
for X100 explicitly uses this characteristic.

Like before, the X100 implementation of the RAM system relies on dimensional
reduction. It compresses multi-dimensional array indexes into a single column: a
dense sequence of integers starting at 0. It uses the same polynomial index-compression
function used to remap multi-dimensional arrays to a linear addressing space in low-
level programming languages and for the same reason. Array elements are ordered
such that their compressed index corresponds directly to the location of the data in
the column. The implicit encoding of array indexes in this way is convenient as the
X100 system internally uses positional information to locate elements during query
processing.

Essentially, the X100 storage scheme is identical to the MonetDB/MIL mapping:
Index vectors are not explicitly stored but derived from location.

RAM in X100

To support RAM, the Array operator was added to the X100 kernel. This operator
implements the base function and produces a stream with index vectors for a given
shape.

Definition 4.3 (X100 implementation: array).

base(S) = Array([i0 = dimension(S0), . . . , in = dimension(Sn))])
= {(i0, . . . , in)|∀(i0, . . . , in) ∈ N(n−1) :

0 ≤ i0 < S0, . . . , 0 ≤ in < Sn}

Note that for efficiency reasons, much like in the MIL case, array indexes are typ-
ically not propagated through an X100 pipeline. Instead index columns are generated
on the fly whenever necessary.

Mapping 4.24 (X100: const).

const(S, c) = Project(Array([i0 = dimension(S0), . . . ,
in = dimension(Sn))]), [v = c])

4.3. MonetDB 91

Mapping 4.25 (X100: grid).

grid(S, j) = Project(Array([i0 = dimension(S0), . . . ,
in = dimension(Sn))]), [v = ij])

The AlignJoin operator showcases the ordered nature of X100 stream processing.
It does not perform a real join operation between a set of single column relations,
instead it directly merges the multiple streams into a single table. The storage scheme
used by RAM allows it to benefit from these low-level primitives that exploit order and
position information. Other examples where order is exploited in the X100 translation
of RAM are the implementations of the application, aggregation, and concatenation
primitives.

Mapping 4.26 (X100: map).

map(f,A1, ..., Ak) = Project(AlignJoin(A1, ..., Ak), [v = f(v1, ..., vk)])

The RAM apply operator is implemented analogously to the MIL implementation
presented earlier. Instead of performing a full join between multiple index columns,
the index relations are merged and their values compressed using the polynomial in-
dexing function of the source array. These compressed indexes are subsequently used
in a join operation that performs a direct positional lookup.

Mapping 4.27 (X100: apply).

apply(A, I1, ..., Ik) = Fetch1(Project(AlignJoin(I1, ..., Ik),
[i = pA(SA, I1, .., Ik)]), i, A)

Physical order of data in X100 streams is exploited for RAM aggregation via the
FixedAggr operator. This operator applies an aggregation function over clustered
groups: Given a predefined size, it divides a stream into blocks and computes the
aggregation function over each block.

Mapping 4.28 (X100: aggregate).

aggregate(g, j, A) = FixedAggr(A, [], [v = g(A.v)],
j−1∏
i=0

Si
A)

Physical order is exploited fully in the implementation of the concatenation op-
erator. The Union operator in the X100 algebra simply concatenates data streams.

92 Chapter 4. Implementation

Performing this feat on two streams representing arrays is analogous to the MIL im-
plementation of the concat. Both arrays are combined by appending the stream of
the second array to the first, automatically increases the positions of the values in the
second array with the cardinality of the first array; as a side effect of the index com-
pression function, the locations in the result array automatically represent the correct
index values.

Mapping 4.29 (X100: concat).

concat(A,B) = Union(A,B)

Finally, the choice operator is implemented by mapping the builtin X100 function
ifthenelse over the aligned arrays: similar to the MIL solution.

Mapping 4.30 (X100: choice).

choice(C,A,B) = Project(AlignJoin(C,A,B),
[v = ifthenelse(v1, . . . , vk)])

Discussion

Due to the pipelined design of the X100 query processor,v it does not suffer from
memory-size limitations for most of its query processing. There is one exception
however: The apply operator translates to a relational join operation. The X100 join
operation currently requires one of its arguments to be materialized.

As with the MonetDB/MIL translation, the X100 translation is based on a storage
model that explicitly exploits knowledge about the physical representation of rela-
tional data. The X100 query processor internally relies on positional information and
this information is used by the array storage scheme. The storage scheme indirectly
encodes array indices using the physical location of elements in a column. Positional
information can be exploited because the relational translations generated for the array
operations are explicitly formulated to use the low-level positional relational opera-
tors.

Again, a SQL query would not lead to the same efficient combination of relational
operations as the details of the physical data representation and physical operators are
hidden by the language. Therefore, encoding information in a low-level property, such
as element location, cannot be expressed.

4.4 Mapping to Low-level Languages
This section presents two additional mappings for the RAM array algebra. These
mappings translate array queries directly into programs for two different programming
languages: the Matlab scripting language and C++.

4.4. Mapping to Low-level Languages 93

The purpose of the Matlab implementation is experimentation. By mapping al-
gorithms expressed in a RAM query to primitive operations in Matlab, a platform is
created where we can easily evaluate the performance advantage of optimized library
functions. Matlab comes with a vast library of optimized mathematical operators:
Comparison of the performance of these operators against the performance of equiva-
lent RAM queries provides insight into the benefit of complex native operators.

The C++ implementation serves two purposes. First, the programs produced by
this translator serve as a baseline in performance experiments. Second, it produces
programs compatible with the MonetDB interface for user defined functions (UDFs).
Compilation of UDFs adds the possibility to the RAM system as a whole to improve
query evaluation performance by compiling (partial) queries as native functions within
the MonetDB framework.

4.4.1 RAM in Matlab
Matlab is a popular software package among scientists working on, for example, mul-
timedia analysis or applied mathematics in other fields [13]. The basic data type in
Matlab is a matrix; even constants are considered 1x1 matrices. On these matrices
Matlab offers a variety of basic manipulation functions (similar to those in the FOR-
TRAN90 programming language). More importantly, Matlab offers vast libraries of
predefined mathematical operations and algorithms over matrices.

Matlab is not a database management system. It offers only rudimentary file stor-
age as data-management. The RAM translation to the Matlab language is neverthe-
less interesting as it allows for the integration of generic RAM queries with the many
highly efficient native functions offered by Matlab.

The characteristics of Matlab as a back-end are similar to those of MonetDB.
All variables are stored in main memory with all benefits and inherent restrictions
that main-memory processing gives. Logically, the basic data type in Matlab is the
matrix. However, the availability of the FORTRAN-style reshape operator exposes
that matrices are actually stored and indexed one-dimensionally, which directly relates
to the one-dimensional array structure offered by MonetDB in the form of the void-
BAT.

Matlab is itself array-oriented, therefore most RAM primitives can be translated
directly to equivalent Matlab operations. The discrepancy between the array repre-
sentation used by Matlab and the data model in RAM – that the indexes of arrays in
Matlab start at 1 not 0 – is transparently handled by the translator. An example of
direct translation between algebra operators and Matlab functions is the creation of
arrays with constant value. This is directly supported via the repmat function:

Mapping 4.31 (Matlab: const).

const(S, c) = repmat(′c′,S)

94 Chapter 4. Implementation

Matlab allows discrete sequences to be enumerated via the literal [1 : n], as used
in the realization of the grid translation:

Mapping 4.32 (Matlab: grid).

grid(S, j) = repmat(reshape([1 : Sj], [1, . . . ,Sj , . . . , 1]), [S0..j−1 1 Sj+1..n])

where the second argument, denoted as [1, . . . ,Sj , . . . , 1], is a sequence of ones of
length |S| where the j-th one is replaced with the value Sj .

Likewise, mapping functions over aligned arrays and aggregation are directly sup-
ported by the language using the “.” and shiftdim operators.

Mapping 4.33 (Matlab: map).

map(f,A1, . . . , Ak) = .f(A1′, . . . , Ak′)

Mapping 4.34 (Matlab: aggregate).

aggregate(g,A, j) = shiftdim(g(A, j))

A notable feature of this translation is the fact that Matlab offers a built-in function
to apply the polynomial-index-compression function. It makes sense that this function
is available, because as discussed earlier, Matlab allows matrix reshaping through the
FORTRAN-style reshape function. The subscript-to-index function, sub2ind, is used
in the translation of the apply operator:

Mapping 4.35 (Matlab: apply).

apply(A, I0, . . . , Ik) = subsref(A, struct(′type′,′ ()′,′ subs′,
sub2ind([SA], I0, . . . , Ik)))

The concat array algebra operator also maps directly to a single Matlab function:

Mapping 4.36 (Matlab: concat).

concat(A,B) = cat(|SA|, A,B)

Unfortunately, not all array algebra operators map nicely to Matlab functions: un-
like in MIL and X100, Matlab does not offer an “ifthenelse” function that can be used
to implement the RAM choice. In Matlab, the generic solution is to generate nested
loops – iterating over the array axes – to evaluate the condition one element at a time.
Fortunately, it can be expressed reasonably concisely for arrays containing numerical
data:

4.4. Mapping to Low-level Languages 95

Mapping 4.37 (Matlab: choice).

choice(C,A,B) = (C ∗A+ (1− C) ∗B)

4.4.2 RAM in C++

The last translation for the RAM algebra we discuss is the translation to C program
code. Like the Matlab translation discussed earlier, this mapping produces low-level
imperative code. The interesting thing is that in many ways the characteristics of this
translator are very similar to those of the X100 mapping.

Naturally, the low-level environment in which these queries are evaluated lacks
many of the benefits a database management system offers, yet (generated) special-
purpose programs are a good baseline for performance studies. Additionally, for very
costly queries, “just in time” (JIT) compilation of critical sections might be a viable
way to boost evaluation performance: This translator offers the functionality to do just
that.

The X100 queries are strictly pipelined with a “push” paradigm: Streams of el-
ements are pushed into a query tree from the leafs, eventually producing the desired
result. The C++ program code generated from the array algebra takes the opposite
approach: The program iterates over the result space and computes its contents one
element at a time by pulling the required source elements through the expression.

All mappings presented so far have included a means to generate an array given
only its shape; this ability is reflected in the base operator used in the const and grid
implementations. Because of the “pull” approach followed by the C++ implementa-
tion, this array generation does not occur at the level of these primitives. Instead, the
result space is generated. The iteration over the result space of a query is realized
through a sequence of nested for-loops, one for each array axis.

Definition 4.4 (C++: base).

S ⇒ for(in = 0; in < Sn; in+ +)
. . .

for(i0 = 0; i0 < S0; i0 + +)

Inside these for-loops, program code is generated to compute the value of each
single element. For example:

Example 4.8. Matrix multiplication. Consider the matrix multiplication example
again.

[sum([A(i, k) ∗B(k, j)|k])|i, j]

96 Chapter 4. Implementation

As shown earlier, this array query translates to the array algebra tree depicted in Fig-
ure 4.2(a). Following the C++ code generation scheme discussed in this section, that
algebra expression maps to the following C++ program:
R = malloc(sizeof(int)*

Q
SA*

Q
SB);

for (int i1=0;i1<S1
B;i1++) {

for (int i0=0;i0<S0
A;i0++) {

int a2 = 0;
for (int i2=0;i2<S1

A;i2++) {
a2 = (a2+(A[(i0+(S0

A*i2))]*B[(i2+(S
0
B*i1))]));

}
R[(i0+(S0

A*i1))] = a2;
}

}

What remains to generate code to compute the value of each array element is a
mapping for each of the array-algebra primitives. In case of the const operator, the
value for every element in the array is simply the constant:

Mapping 4.38 (C++: const).

const(S, c) = c

The grid operator produces an array with index values for one of the array axes,
in the C mapping the array axes are enumerated over by the for-loop iterators:

Mapping 4.39 (C++: grid).

grid(S, j) = ij

The map operator applies a function to every value in an array. Again, replacing
this with the single element variant is straightforward:

Mapping 4.40 (C++: map).

map(f,A1, . . . , Ak) = f(A1, . . . , Ak)

The application of an array means that for every element, the array is dereferenced
by the index provided by the arguments:

Mapping 4.41 (C++: apply).

apply(A, I0, . . . , Ik) = A[I0[̄ı], . . . , Ik[̄ı]]

4.4. Mapping to Low-level Languages 97

The aggregate operation is a bit more involved than the operators so far. Producing
a single aggregate result entails iteration over a group of elements to combine their
values 6:

Mapping 4.42 (C++: aggregate).

aggregate(g,A, j) = acc = A[0];

for(i = 1; i <
j−1∏
k=0

Sk
A; i+ +) acc = g′(acc,A[i])

An array produced by the concat operator consists of two appended arrays. To
determine the value of one if its elements it is necessary to determine which of these
arrays is the source of the element. In addition, the index value may have to be adjusted
to dereference the correct value in the source array:

Mapping 4.43 (C++: concat).

concat(A,B) = (̄ı ∈ SA) ? A[̄ı] : B [̄ı− SA]

Finally, the choice operator is realized by mapping the built-in three-way “? :”
operator:

Mapping 4.44 (C++: choice).

choice(C,A,B) = C [̄ı] ? A[̄ı] : B [̄ı]

Application of this mapping on RAM queries results in C++ program code with
a striking similarity to the original array comprehension (see Example 4.8). This
similarity is not as surprising as it may seem at first sight. The array-comprehension
language specifies a shape (reflected in the nested for loops of the C++ translation)
and a function that defines the value of a particular element given its index vector
(reflected in the C++ expression inside the body of the inner loop). This similarity
implies that generating low-level program code from an array comprehension directly
might be simpler than starting at the array algebra. Yet we take the array algebra as
a starting point for two reasons: First, translation through the array algebra allows
the RAM query optimizer, which operates at the algebra level, to optimize the query.
Second, it allows the optimizer to request compilation of sub-queries it identifies as
good candidates for compilation.

6 Note that the solution provided here works for distributive aggregation operators. For other, non-
distributive, aggregation operators special purpose mappings may be required.

98 Chapter 4. Implementation

The purpose of this implementation is twofold: first, it is known that specialized
native programs often outperform generic database solutions for the same problem.
In this context, the C++ mapping for RAM serves as a performance baseline: If the
database solution can be shown to exhibit similar performance to the compiled C++
query, we have done our job right. Second, compilation of (sub-)queries is a known
“last-resort” technique to improve query evaluation performance. This C++ mapping
demonstrates that the compilation of RAM queries to native code is viable: opening
the door to JIT compilation of subqueries.

As discussed earlier, both MonetDB-based implementations of RAM store arrays
in void-bats. The current implementation of MonetDB physically stores such void-
bats as simple one-dimensional arrays in memory: Because of this, the code generated
by the C++ mapping can be plugged directly into the MonetDB database system as
user defined functions (UDFs).

4.5 Discussion
Several relational mapping schemes for the relational storage of array data and the
RAM array algebra have been presented in this chapter. This Chapter focused on the
translation of the array algebra only: In Chapter 5 we present methods to optimize
array algebra expressions.

We have shown that the mapping directly into native relational operators allows
for more efficient storage schemes than a mapping that relies on a high-level relational
query language. This improvement in storage requirements is made possible because
the low-level relational operators provide access to the particulars of the internal data-
storage system used by a query engine.

The downsides of a low-level mapping are obvious. A specialized translator is
required for each back-end. The translator has to solve problems introduced by the
design of the back-end, such as the memory consumption problems in the MonetDB-
MIL translator, normally hidden by high-level query languages. And the translators
will duplicate functionality contained in the high-level query interpreters it circum-
vents. The techniques used to increase the efficiency of MIL queries are an example
of such duplicated functionality.

BIBLIOGRAPHY 99

Bibliography
[1] L. Libkin, R. Machlin, and L. Wong. A Query Language for Multidimensional

Arrays: Design, Implementation, and Optimization Techniques. In Proceedings
of ACM SIGMOD International Conference on Management of Data, pages 228–
239. ACM Press, June 1996.

[2] L.M. Restifo Mullin. A Mathematics of Arrays. PhD thesis, Syracuse University,
December 1988.

[3] C. R. Banger and D. B. Skillicorn. Flat arrays as a categorical data type.
http://citeseer.nj.nec.com/78674.html, 1992.

[4] R.Elmasri and S.B.Navathe. Fundamentals of Database Systems. The Benjam-
in/Cummings Publishing Company, Inc., 390 Bridge Parkway, Redwood City,
CA 94065, 1994.

[5] NCITS H2. Information Technology – Database Languages – SQL. Standard
ISO/IEC 9075-XX:1999, ISO, 1999.

[6] Torsten Grust, Sherif Sakr, and Jens Teubner. XQuery on SQL Hosts. In VLDB
’04: Proceedings of the Thirtieth international conference on Very large data
bases, pages 252–263. VLDB Endowment, 2004.

[7] A.L. Rosenberg. Efficient Pairing Functions – And Why You Should Care. In
Proceedings of the International Parallel and Distributed Processing Sympo-
sium: IPDPS 2002 Workshops, April 15-19, 2002, Fort Lauderdale, Florida.
IEEE, 2002.

[8] P.A. Boncz and M.L. Kersten. MIL Primitives for Querying a Fragmented
World. The VLDB Journal, 8(2):101–119, October 1999.

[9] Sybase. Sybase IQ. http://www.sybase.com/products/datawarehousing/sybaseiq.

[10] Vertica. Vertica Analytic Database. http://www.vertica.com/.

[11] G. Graefe. Volcano - An Extensible and Parallel Query Evaluation System. IEEE
Transactions on Knowledge and Data Engineering, 6(1):120–135, 1994.

[12] P.A. Boncz, M. Zukowski, and N. Nes. Monetdb/x100: Hyper-pipelining query
execution. In CIDR, pages 225–237, 2005.

[13] The MathWorks Inc. Matlab. http://www.mathworks.com.

Chapter 5

Optimization

Database query languages are usually declarative, which means that queries specify
the desired result, not how it is computed. In general, a database management system
has multiple options at producing a valid evaluation plan for a given query. These
plans are equivalent in the sense that they produce the same result, but may differ
vastly in resources required for execution (time, memory space, etc.). Picking the
most appropriate query plan from the alternatives is the primary task of the query
optimizer component in a DBMS.

This chapter investigates how classic relational optimizer technology can be used
to optimize array queries. The RAM optimizer is part of a frontend system designed
to delegate physical evaluation of the queries to a back-end system. Nevertheless,
as argued in Chapter 4, there is a need for array query optimization. The loss of
domain knowledge and contextual information caused by the translation of an array-
expression into a relational query makes it hard to identify array-centric optimization
opportunities in the relational query plan.

5.1 The RAM Optimizer

The task of a query optimizer is twofold: First, at a logical level the processing pattern
is optimized to best suit the constraints imposed on the query processor; second, the
most appropriate physical implementations of operators are determined. These tasks
serve the goal of the query optimizer, which is to find a suitable query plan with (near)
lowest estimated costs. The RAM optimizer follows the now classic structure of a
query optimizer as produced by the Volcano optimizer generator [1]. The optimizer
consist of three parts [2]: First, a query optimizer contains methods to generate al-
ternative query plans; second, a query optimizer has an efficient method to navigate
through the space of possible alternatives; and; finally, a query optimizer has a cost
model that estimates the cost of a given query plan.

The logical phase of query optimization includes simple heuristics, symbolic ma-
nipulation of expressions, and semantic-based optimization. Symbolic optimization

101

102 Chapter 5. Optimization

is the manipulation of a query expression by replacing patterns with potentially more
efficient, functionally equivalent alternatives. Semantic optimization is more involved
and uses integrity constraints on the data, in addition to domain knowledge about the
query language, to simplify queries.

Query optimizers often rely on heuristics to prune the search space. Pruning is
necessary because the search space (the number of alternative execution plans) is
large and (relational) query optimization is known to contain problems that are NP-
complete [3]. As query optimization is NP-complete, optimizers have to settle for a
good query plan, rather than an optimal plan. A good query plan is a plan that is likely
to be near optimal. An example of a heuristic found in relational optimizers is push-
select-down, which moves selective operations over constructive operands to reduce
data volume as early as possible during execution [4].

The RAM array-query optimizer deals with the logical phase of the optimization
process. The array algebra it operates on is not a physical language: Ultimately, the
optimizer has no control over how the query is physically executed. The physical
phase of the optimization process is delegated, either to the relational back-end sys-
tem, or a specialized array algebra translator such as those proposed for MIL and
X100 in Chapter 4. Isolation of the logical phase into a separate component builds on
the concept of a layered optimizer design where each layer performs a specific task in
the overall process. In this context, the RAM optimizer fills the role of the “strategic”
optimizer that formulates the best possible abstract query plan for the next layer to
work with [5].

5.1.1 Query Transformations
An important part of any query optimizer is the ability to generate alternative evalua-
tion plans for a given query. The RAM optimizer uses equivalence rules to generate
these alternative plans.

The basic rules provided to the RAM optimizer deal with the special case of con-
stant arrays. For example, a function performed over an array with constant values
can be performed just once over the constant value.

Equivalence 5.1.
map(f, const(S, c)) const(S, f(c))

Another example is the application of a constant array to a set of indexes, which
produces a vector.

Equivalence 5.2.

apply(const(S, c), I1, . . . , Ik) const(SI1, c)

A similar result can be obtained for constant transformations. The result of an
identity transformation is by definition identical to the original.

5.1. The RAM Optimizer 103

Equivalence 5.3.

apply(A, I1, . . . , Ik) A

when
k ≡ |SA|, I1 ≡ grid(SA, 0), . . . , Ik ≡ grid(SA, k − 1)

In some cases it is not trivial to detect these identity transformations. For exam-
ple, when persistent arrays are used in index expressions, it would be necessary to
analyze its content to prove equivalence to an array axis. The implementation of the
RAM optimizer is limited to simple symbolic analysis of the index expressions, which
in practice proved sufficient to identify and eliminate many occurrences of identity
transformations.

In the relational domain, it is often beneficial to “push selections down” through
a query expression tree to reduce data volume as soon as possible. Similar reasoning
leads to the following rule in the array domain.

Equivalence 5.4.

apply(map(f,A), I1, . . . , Ik)
!

map(f, apply(A, I1, . . . , Ik))

Notice that this rule is bi-directional: It allows for the apply operator to be pushed
both up and down through other function applications. In general, if size(A) >
size(I) it is beneficial to push down (apply the rule from left to right) and vice versa.

An interesting aspect of array application is the fact that arrays are effectively
stored functions. For any array-expression applied to indexes it is possible to perform
the application – evaluate the array function – directly through substitution.

Equivalence 5.5.

apply(E, I1, . . . , Ik) E′

where any occurence of grid(SA, 1) in expression E is substituted by I1,
. . .

any occurence of grid(SA, k) in expression E is substituted by Ik

Example 5.1 (Substitution). In the following expression,

[[f(z)|z < 6](x+ y)|x < 3, y < 3]

we substitute the index used in the array-application and obtain the result directly:

[f(x+ y)|x < 3, y < 3].

104 Chapter 5. Optimization

The inverse substitution can be used to reduce array expressions that are constant
along some of the axes. Suppose there is an array (sub-)expression that is independent
of some of the axes in this shape. This expression can then be evaluated over the
dependent axes only and extended afterward to the desired shape:

Equivalence 5.6.

A apply(A′, I)
where

SI = SA, |A′| < |A|, apply(A′, I) ≡ A

Example 5.2 (Dependencies). The calculus expression

[f(x)|x < 3, y < 4]

defines an array of shape [3, 4], however the values depend only on the x axis. If f is
an expensive function, it may be cheaper to re-formulate the query as follows:

[[f(x)|x < 3](x)|x < 3, y < 4],

where f is first evaluated for all values of x and subsequently duplicated for all values
of y.

5.1.2 Search Strategy
Searching through the space of alternative query plans is a challenging task. Ideally
an optimizer would consider all alternatives and pick the single best option. However
even for small queries the search space is very large. Fully traversing all alternatives
is infeasible and optimizers resort to pruning the search space by enumerating only
those plans that appear promising according to some heuristics.

The RAM optimizer first reduces the search space by dividing the transformation
rules into two rule sets.

The first set of rules is aimed at simplifying queries by removing unnecessary op-
erations. It consists of transformation Rules 5.1, 5.2, and, 5.3. These rules match pat-
terns that constitute unnecessary work: computations over arrays filled with constant
values and identity transformations. Each application of one of these rules directly
reduces the amount of data processed.

The second set of rules allows for more complex transformations that are not
(heuristically) guaranteed to produce a “better” plan for each application. It consists
of the remainder of transformation rules: Rules 5.4, 5.5, and, 5.6. Application of these
rules alters the order in which certain operations are applied throughout the query. In-
dividual applications of these rules may or may not directly improve the cost measure
for the query. However, a common problem with query optimization is that transfor-
mations that initially increase the cost of a query may lead to a better solution later in

5.1. The RAM Optimizer 105

the optimization process. Recall, however, that the search space of all alternatives is
very large: There is a practical need to reduce this search space.

The RAM optimizer first reduces the search space by applying both rule sets to
the problem in separate phases of the optimization process.

In the first phase the optimizer traverses the query graph applying the first rule set
wherever possible until none of the rules apply any longer.

In the second phase the RAM optimizer applies the second rule set while further
reducing the search space by allowing only n random rule applications to the query
graph. After n rules have been applied, it picks the best alternative (the plan with the
lowest estimated cost) and repeats the process. This strategy is a naive hill-climbing
approach: The value of n is arbitrary. While for infinite n the approach considers
every single alternative, in practice n will be a relatively small value to guarantee a
timely result. The exact value of n to be used depends on a variety of parameters, such
as the size of the query graph and the resources available to the optimizer.

5.1.3 Cost Model
Relational optimizers contain complex cost models to accurately estimate the costs
related to a particular query plan. The complexity of these models stems from the fact
that it is often difficult to reliably estimate the selectivity of a particular operation. For
maximal accuracy of these estimations, database systems accumulate statistical data
on their relations. Despite a high degree of sophistication, the cost models remain
based on estimators: The exact size of any result produced can only be determined by
performing the operation. In contrast, for the RAM array queries the exact dimension-
ality and size of each intermediate result can easily be computed: The array-specific
optimizer can compute exact statistics on alternative query plans.

Intermediate Shapes

The RAM optimizer estimates the cost of a query plan based on (intermediate) array
size. The size of an array follows directly from its shape, which is easy to derive for
any RAM array-algebra expression. For any of the RAM array-algebra operators, the
shape of the result can be derived given its parameters. For example, for both the const
and grid operators the shape of the array produced is directly specified by one of the
arguments:

Sconst(Sc,c) ≡ Sc,

Sgrid(Sg,i) ≡ Sg.

For the map, apply, and, choice operators the shape of the result array is deter-
mined by the shape of the arrays that the operators work on:

Smap(f,A1,...,Ak) ≡ SA1 ≡ . . . ≡ SAk,

Sapply(A,I1,...,Ik) ≡ SI1 ≡ . . . ≡ SIk,

106 Chapter 5. Optimization

Schoice(C,A,B) ≡ SC ≡ SA ≡ SB .

The shape of the results produced by both the aggregate and concat operators is
also determined by the shape of the arrays these operators work on. However, in these
cases computing the result shape is marginally more complex:

Saggregate(g,j,A) ≡ [SAj , . . . ,SAn], where n = |SA| − 1,

Sconcat(A,B) ≡ [SA0 , . . . ,SA(n−1) ,SAn + SBn], where n = |SA| − 1.

Given these rules the exact shape, and thus size, of each (intermediate) result array
in a query plan can be determined.

Cost Measures

The cost model for the RAM optimizer computes two statistics for a query plan. The
first statistic is the volume of data produced, which corresponds to the total size of
the query result itself and all intermediate results. The second statistic is the size of
the largest shape that occurs in the query plan. Both statistics are measured in array
elements, ignoring (for the time being) differences in storage requirements for the
various base types.

The total volume measure is computed by counting the number of array elements
in both the final and intermediate results in a complete query plan. This computation
is achieved by traversing a query graph and computing the size of the array produced
by all operators in the expression:

Cconst(SA,c) = |A|
Cgrid(SA,i) = |A|

Cmap(f,A1,...,Ak) = |A1|+ CA1 + . . .+ CAk

Capply(A,I1,...,Ik) = |I1|+ CA + CI1 + . . .+ CIk

Caggregate(g,j,A) =
|SA|−1∏

i=j

Si
A + SA

Cchoice(C,A,B) = |A|+ CC + CA + CB
Cconcat(A,B) = (|A|+ |B|) + CA + CB

CA = 0

Note that the size of a persistent array is not counted in this measure, only the volume
of data produced during query evaluation is counted. Exclusion of persistent arrays
in the measure is a choice: While actual query evaluation cost may differ for alterna-
tive usage patterns of a persistent array, the contribution of a persistent array to this
measure (its size) is a given.

5.1. The RAM Optimizer 107

Example 5.3 (Total volume). Consider the following example expression:

apply(A, grid([3, 3], 0)),

where A is an array with shape [100]. The expression produces and array with 9
elements as a result and the intermediate array produced by the grid operator also
contains 9 elements: the total volume measure for this query is 18.

Capply(A,grid([3,3],0)) = |grid([3, 3], 0)|+ CA + Cgrid([3,3],0) = 9 + 0 + 9 = 18

The second measure, the footprint of a query plan, reflects the largest size of any
(intermediate) array in a query plan. It is computed again by traversing the query
graph and computing the size of each intermediate result:

FPconst(SA,c) = |A|
FPgrid(SA,i) = |A|

FPmap(f,A1,...,Ak) = max(FPA1, . . . ,FPAk)
FPapply(A,I1,...,Ik) = max(FPA,FPI1, . . . ,FPIk)
FPaggregate(g,j,A) = FPA

FPchoice(C,A,B) = max(FPC ,FPA,FPB)
FPconcat(A,B) = max((|A|+ |B|),FPA,FPB)

FPA = 0

Note that in many cases the size of the array produced by the operator itself is not
considered for the maximum footprint. In these cases, the result size of an operator is
guaranteed to be equal to or smaller than the size of its lagest argument. For example,
the array produced by an aggregation operation is by definition smaller than the source
array.

Example 5.4 (Footprint). Consider again example expression 5.3: The footprint mea-
sure for this query is 9.

FPapply(A,grid([3,3],0)) = max(FPA,FPgrid([3,3],0)) = max(0, 9) = 9

Notably, neither of these heuristic measures consider differences in processing
costs among different operators: Only the volume of the data processed is used. This
simplification is motivated by the characteristics of our primary target domain (mul-
timedia) and the known characteristics of the relational backends used. In the mul-
timedia domain, the large inherent data volumes dictate that query-evaluation cost is
usually dominated by I/O.

As shown in Chapter 4, both the MIL and X100 relational translations of the array-
algebra operators consist of relational primitives with linear complexity. This includes

108 Chapter 5. Optimization

the specific physical implementation of the join operator used: the fetch-join, which
can be used due to the perfect index based on positional information provided by the
array domain. Given that memory access is a major bottleneck for database perfor-
mance [6], in the case of our primary target platform MonetDB in particular, process-
ing cost is dominated by memory access cost and not the CPU [7].

5.1.4 Discussion

The optimization goal for the optimizer presented here is relatively modest. Its focus
is the removal of unnecessary operations (such as identity transformations) and the
reduction of the amount of data to be processed. Choice of the most efficient low-level
operators to evaluate the query remains delegated to the (optimizer of the) back-end
system. The effectiveness of the cost models stems from the data model, which allows
exact sizes to be computed cheaply. The combination of these characteristics allow
the system to be effective regardless of its simplicity: This effectiveness is shown in
Chapter 6.

5.2 Optimizer Extensions

This section investigates four possibilities to tune the optimization process to cater to
the characteristics of specific back-end systems. First, we discuss how aggregation
operations can be exploited to reduce the footprint of a query. The reduction of the
footprint of a query is specifically beneficial for main-memory oriented back-ends,
whereas it can be counter-productive for pipelined systems. Second, we examine how
the optimizer can be adapted to consider distributed query processing in a parallel
computing environment. Thirdly, we focus on the recognition of specific patterns
that indicate higher-level operations. These higher-level operations can potentially be
exploited by specialized translations that are more efficient than the generic solution.
Finally, we examine how array domain knowledge about concepts such as shapes and
axes can be used to filter unnecessary joins from generated relational query plans.

5.2.1 Unfolding array queries

The RAM optimizer has no direct control over low-level details such as memory us-
age, which depends on the specific execution strategies decided by the relational back-
end system. Nevertheless, the way in which the query is formulated can assist the
back-end system in deriving an efficient execution plan.

Intermediate results can require the back end to materialize big tables, posing se-
vere memory-management issues. Fortunately, predictable access patterns in array
queries offer opportunities to rewrite these queries to optimize management of system
resources.

5.2. Optimizer Extensions 109

The evaluation of aggregation functions is critical with respect to maximum mem-
ory usage. The following equivalence can be (repeatedly) applied to any commutative
and associative aggregate1. It splits an aggregate over a (large) array into two aggra-
gates over disjoint parts of that arrray. We call this technique unfolding.

Equivalence 5.7.

aggregate(
∑
, A, j)

map(+, aggregate(
∑
, A1, j), aggregate(

∑
, A2, j))

where concat(A1, A2) ≡ A

Query Cost for Unfolding

The default measure used by the RAM optimizer is based on the total data volume
for all (intermediate) results in a query plan. This measure does not suffice for the un-
folding optimization as the additional step introduced into the query by transformation
almost always increases that particular measure. As a result, the optimizer will opt not
to apply unfolding by default. The purpose of the unfolding strategy, however, is not
overall cost reduction, but reduction of memory consumption instead. The transfor-
mation has the potential to significantly reduce the footprint of a query as measured
by the footprint cost-function.

The optimizer repeatedly triggers the unfolding strategy for a query that violates
an a priori specified limit imposed on the footprint measure. This limit is user imposed
and should reflect the limits of the memory resources available to the back-end.

Search Strategy

The opportunities for unfolding in a particular query plan are limited to occurrences
of the aggregation operator. When triggered because the query’s footprint estimate
exceeds the limit, the optimizer attempts application of the rule to each aggregate and
picks the single occurrence that yields the best cost-model score. The score used in
this case is a combination of the primary objective of reducing the footprint measure
and a secondary objective of minimizing the induced increase for the total volume cost
measure of the query plan.

Fragmentation of array queries

The unfolding strategy suggests a similar, query-footprint reducing, improvement in
the evaluation of mapping operators. In RAM, a function f can be mapped (applied
cell by cell) to n arrays A1, . . . , An if the arrays have exactly the same shape (number
and size of dimensions). If the arguments do not have the same shape, the arrays need

1 Equivalence 5.7 deals with the summation, rules for other functions are similar.

110 Chapter 5. Optimization

to be “aligned” before mapping-function f . In many cases this alignment may result
in the replication of smaller arrays. Consider, as an example, the following RAM
expression, where A is a [2, 100] array and B is a [100] array:

C = [A(i,j) + B(j) | i<2, j<100]

In this example, array C stores the cell-by-cell sum between both columns of A and
the single column of B. For evaluation, array B is transformed to match the shape of
array A.

A more efficient way of realizing this “shapes alignment” may be to fragment the
larger array A, rather than expanding the smaller array B. By fragmenting the query,
less data per array is kept in memory at the same time and the smaller array does not
need to be replicated:

C = [A(0,j) + B(j) | i<1, j<100] ++
[A(1,j) + B(j) | i<1, j<100]

We observe that the cost of on-the-fly fragmentation, as shown for array A in
the example, depends on the physical representation of the initial data. Since the
fragmentation results in a series of selections from the original array, an appropriate
organization of the initial data minimizes this cost. Naturally, re-organisation of array
storage before starting the actual computation is most effective under the assumption
that the array is to be used (frequently) by the query its storage is optimized for.

Note that, in the current RAM prototype, this technique has not been implemented,
because, at present, the optimizer is limited to the optimization of single queries at a
time: It does not include reorganization of persistent data.

5.2.2 Distributing array queries
In the field of high performance computing, array computations are usually captured in
complex algorithms carefully designed to exploit parallellization. This kind of paral-
lellization is achieved by analyzing imperative algorithms at a low-level and exploiting
opportunities for fine-grained parallelism. Viability of this approach requires a com-
plexity of the operations that provides enough work to supply multiple CPUs with a
sufficient workload inbetween the inevitable data-exchange operations.

RAM queries are composed of many primitive operators that in isolation are too
simple to warrant a parallelized implementation: The amount of work represented by
a single operator is too small for the benefits of distributed evaluation to outweigh
communication overhead. However, the workload generated by a complex query is
vast enough to consider distributed evaluation at a higher granularity. Such distributed
evaluation results in parallelism through the concurrent evaluation of a number of
queries each formulated to produce a part of the complete result.

Distribution of RAM queries over multiple machines involves discovery of a suit-
able location in the query plan to split it into disjoint sub-queries that can be executed

5.2. Optimizer Extensions 111

in parallel. In an algebra, disjoint sub-expressions are by definition independent: in
the expression f(EA, EB), sub-expressions EA and EB have no side effects and can
potentially be evaluated in parallel. Any operator with multiple arguments is an op-
portunity to split the query and parallelize sub queries.

However, using those opportunities in an existing query plan, it is hard to achieve
a balanced query load across nodes: It is rare to find sub expressions that are equally
expensive to compute. Fortunately, the structured nature of array queries allows the
creation of new, balanced opportunities for distribution.

The RAM optimizer considers query-driven distribution only it is assumed that
data is fully replicated at each site. In the case that the data itself is fragmented
and stored in a distributed manner, factors other than computation cost come into
play. These factors have been well studied in the context of distributed relational
databases [8]. When only part of the data is available at a given node, the most-
efficient query plan with respect to parallelism may no longer be viable.

A straightforward approach to distribute a query over multiple nodes is to fragment
the result space in disjoint segments and compute each of those parts individually. This
approach is simply mimicked in RAM, generating a series of queries that each yield
a specific fragment, and concatenating those resulting fragments to produce a single
result:

Equivalence 5.8.

map(f,A)
!

concat(map(f,A1),map(f,A2))
where concat(A1, A2) ≡ A

Aggregations are also a suitable operation for the creation of balanced sibling
sub-queries. Equivalence 5.7 shows how an aggregate can be split into fragments to
be combined afterward. Again, a new opportunity for balanced query distribution is
introduced.

Rewriting the query plans in this manner introduces a new operator in the query
that represents a new opportunity to split the query for distribution. Moreover, since
the size of the various fragments created can be controlled, it is possible to ensure the
costs are balanced.

The RAM optimizer is easily extended to include distribution of fragmented queries.
The distribute pseudo-operator distributes its arguments (sub-queries) over multiple
machines and collects the results:

Equivalence 5.9.

map(f,A1, A2) map(f, distribute(A1, A2))
concat(A1, A2) concat(distribute(A1, A2))

112 Chapter 5. Optimization

The term pseudo-operator is used to indicate that it does not operate on the data, but
instead it manipulates the query execution itself. Notice that it performs a role similar
to that of the exchange operator introduced in the classical Volcano system [9]. Bal-
anced sub-queries can be created using rules as Equivalence 5.7 and Equivalence 5.8
(other ways to create such opportunities can be imagined).

Estimating Query Cost

The cost of the distribute pseudo-operator is estimated differently from the normal
array algebra operators. For normal operators, the cost is recursively determined by
adding a cost for the operator itself to the sum of its children’s costs. The distribute
pseudo-operator gets assigned only the maximum cost among its children, as they are
evaluated in parallel, and an additional a cost factor related to the data volume to be
communicated.

Cdistribute(A1,A2)

=
max(CA1 , CA2) +
c ∗ sum(|A1|, |A2|),

where c is a constant representing the discrepancy between in-memory data movement
and cross-network data transfer.

This treatment of the operator guarantees that distributed plans are preferred over
sequential plans, whereas the constant c allows for the cost model to be tuned to the
characteristics of a specific platform.

Search Strategy

The benefit of splitting and distributing the query is likely to be greater closer to the
top of the operator tree: The higher up in the tree a query is distributed, the larger the
fraction of the query that is evaluated in parallel. This heuristic is incorporated in the
optimization process by performing the search for the best parallelization opportuni-
ties through a top-down traversal of the query tree.

During the search, creation of distribution opportunities is considered at each point
by attempting a uniform fragmentation of the query over the available nodes. Search
for an optimal query-distribution scheme is stopped as soon as the cost of the static
part of the query, the non-distributed part, is greater than the total cost of the best plan
identified so far.

5.2.3 Alternative Translations
The RAM algebra operators each capture a small bit of functionality; more complex
data processing is achieved through the combination of operators. This approach guar-
antees that everything that can be expressed in the RAM query language can also be

5.2. Optimizer Extensions 113

evaluated on a back-end that supports the small set of RAM algebra operators. How-
ever, combinations of individual simple operators may not always be optimal.

As shown in Section 4.2 the process of translation from the array domain to the
relational domain inevitably results in a loss of context. This loss of context can
obfuscate the nature of compound operations, hiding alternative evaluation patterns.
For example, consider the following expression, where array A has the shape [3, 3]:

apply(A, [grid([3, 1], 0), grid([3, 1], 1)]),

the expression translates to a series of relational join operations:

(X = grid([3, 1], 0) onX.i0=Y.i0 Y = grid([3, 1], 1)) onX.v=A.i0∧Y.v=A.i1 A,

that requires an understanding of exactly what both grids and A represent to optimize.
Upon closer examination of the RAM expression it becomes apparent that the query
as a whole merely selects all values in a dense rectangular subrange of the domain of
A. The query essentially performs a range selection on the indexes of A and could be
translated as such:

σA.i1<1A

The difference between this example and, for example, the identity transformation
Rule 5.3, is that this particular optimization cannot be performed solely by manipulat-
ing the internal RAM array-algebra expression. The array algebra expression has to
be extended for the optimizer to be able to express the notion of “selection”.

This section explores two ways of using domain knowledge to produce more effi-
cient query plans for the back-end. The first approach is aimed at capturing common
patterns that can be translated efficiently at the array level. The second approach ex-
amines ideas on how to approach the problem from the relational domain.

New Operators And Rules

Many large array queries contain elements that are essentially manipulations of exist-
ing arrays. The generative nature of the RAM language requires these operations to be
achieved through array application, which translates internally to the generation of in-
dexes and a relational join operation. In many cases, this method to compute the result
is more expressive than one based on a selection paradigm (instead of generation).

Pivoting An array manipulation that is relatively expensive to express through the
array algebra is the reordering of array axes. While in the array algebra, the expression
that transposes a matrix requires indices to be created and joined against the original
array, the operation can be handled in the relational domain by simply reordering the
index columns of the table representing the array.

Definition 5.1 (Operator: pivot). The pivot operator alters the order of the axes of an
array:

114 Chapter 5. Optimization

The operator takes a permutation vector p̄ that indicates how to reorder the axes
of an array A:

pivot(A, p̄) πi0=ip0 ,...,ik=ipk
,vA

What remains is a transformation rule that enables the optimizer to recognize op-
portunities to introduce this operator in the query plan:

Equivalence 5.10.

apply(A, I0, . . . , Ik) pivot(A, p̄)
when

SI0 =perm SA,
k ≡ |SA| − 1,

I0 ≡ grid(SI0, p0), . . . , Ik ≡ grid(SI0, pk)

It is apparent that a relational query consisting of a single projection operation
over an arrays index columns is likely to be more efficient than the alternative, which
generates and uses a join-index to reorder the array elements.

Range Selection Another example of an operation that can be realized efficiently in
the relational domain is range selection. Range selections occur frequently in RAM
queries, especially when queries are partitioned as a result of optimization strategies
such as unfolding and distribution discussed earlier. Selection is not part of the array
paradigm because performing a selection over array values does not guarantee a valid
array as a result. Range selection over array indexes however always produces a dense
and rectangular result.

Definition 5.2 (Operator: index range select). The index range select operator per-
forms a range selection over the axes of an array and adjusts the indexes selected such
that a valid array, with indexes starting at the origin, is produced:

The operator takes an offset-vector ō and the shape S of the desired region to be
selected from an array A:

index range select(A, ō,S)

πi0=i0−o0,...,ik=ik−ok,v(σo0≤i0<(S0+o0),...,ok≤ik<(Sk+ok)A)

Detecting opportunities to deploy this range selection operation is less straight-
forward than the pivot, as it it requires the reverse engineering of more complicated
index-generating expressions in the apply operator.

Equivalence 5.11.

apply(A, I0, . . . , Ik) index range select(A, ō,SI0)
when

SI0 ⊂ SA,
k ≡ |SA| − 1,

I0 ≡ grid(SI0, 0) + const(SI0, o0), . . . , Ik ≡ grid(SI0, k) + const(SI0, ok)

5.2. Optimizer Extensions 115

Like in the case of the pivot operator, at the relational level it is obvious that the
new query plan, a single range selection, makes more sense than the generation of a
series of indexes to be joined with the array. This improvement is equally notable at
the array level: The existing cost model will register the reduced data volume for the
query as a whole due to the absence of indexes to create.

The RAM language requires arrays to be aligned before values in multiple arrays
can be combined. For example, adding a vector to each column in a matrix, [A(x, y)+
B(y)|x, y], results in a query plan where the vector is first replicated to form a matrix
of matching size before the addition is performed: [A(x, y) + [B(x)|x, y](x, y)|x, y].
This replication pattern occurs frequently and can be translated directly to an elegant
and efficient relational query plan.

Definition 5.3 (Operator: replicate). The replicate operator creates a new array with
a shape equal to its argument with one added axis. The original array is replicated to
fill all slots in the result.

The operator takes the length of the desired axis n:

replicate(A,n) πA.i0,...,A.i|SA|−1,i|SA|=N.i0,v(N = grid([n], 0)×A)

The replication query pattern is easily recognized in array algebra.

Equivalence 5.12.

apply(A, I0, . . . , Ik) replicate(A, j,Sk+1
IO)

when
k ≡ |SA| − 1,
|SI0| = |SA|+ 1,

I0 ≡ grid(SI0, 0), . . . , Ik ≡ grid(SI0, k)

Expanding beyond these three operators, other operators can be imagined for spe-
cial cases of the apply operator. For example, an operator akin to the FORTRAN
reshape operator, which alters the shape of an existing array by serializing it using the
polynomial indexing function and subsequently deserializing the array into its new
shape. The essential component of these types of special-purpose operators is that
they approach a given situation from the opposite perspective of what the apply op-
erator would. Instead of approaching the problem from the perspective of the result
array by defining the values of its cells, these operators produce the same result by
manipulating indexes of the source array.

There are interesting commonalities among the operators introduced in this sec-
tion: First, all three operators are special cases of the apply operation; second, the
optimizations proposed cannot be made at the relational level alone as they require
in-depth knowledge on the semantics of both the grid and apply operators; and, fi-
nally, at the relational level the optimizations lead to elimination of generated grids
and relational join operations.

116 Chapter 5. Optimization

5.2.4 Avoiding Join Operations
From the notable commonalities among the special purpose apply operators two ele-
ments clearly stand out: the elimination of grids and their associated relational joins.
Normally, the relational back-end lacks the domain knowledge to achieve these re-
sults given the original relational query plan. However, given sufficient insight into
the array domain, optimization at the relational-algebra level could achieve similar
results.

This discussion is limited to fragments of array-expressions where the shape is
constant, including the index part of the apply operator, the map operator, the grid
operator, and, the const operator. These partial queries are linked with the remainder
of the query by treating sub-queries of different shape as opaque: We assume that the
results of other operators in the query plan are materiaized; these are the aggregate,
concat, and the choice operators as well as the source arrays for apply.

Following the basic translation rules, these simplified expressions are translated to
relational plans with a simple structure: a projection over join operations for the map
and apply operations, or a projection over the base function for the grid and const
operations. The resulting relational query plans consist of many projection and join
operations over a fixed number of tables. Most of these join operations will be joins
that combine aligned arrays, while the remaining join operations correspond to the
evaluation of the apply operations.

A common factor in these relational array-expressions is the shape of the result
base(SR): Every data source is either of this shape or manipulated to match it via
the apply operator. Data sources only come in two forms, either a materialized array
(either a persistent array, or the result of an opaque sub-expression), or the result of
the base function.

Focusing solely on the map, grid, and const operators for the moment, a naive
relational query plan produced from a RAM query can be improved significantly. Only
three possibilities exist for data sources of a (binary) join: first, a join between two
projections over base(SR); second, a join between a projection over base(SR) and a
materialized array; and finally a join between two materialized arrays. In the first case,
the join operation can be eliminated at the relational level by noting that the source
data on both sides is identical and joined over its key:

π(ı̄,f(v1,v2))((π(ı̄,v1=...)base(SR)) on (π(ı̄,v2=...)base(SR)))

π(ı̄,f(v1=...,v2=...))base(SR)
c

Optimization of the second case, a join between a projection over base(SR) and a
materialized array, requires knowledge from the array domain. It requires information
on the shape of the materialized data source (A). Given that the shape of the array is
equal to the result shape, π(ı̄)A = base(SR), the same optimization can be applied:

π(ı̄,f(A.v,v1))(A on (π(ı̄,v1=...)base(SR))) π(ı̄,f(A.v,v1=...))A

5.2. Optimizer Extensions 117

Unfortunately, the join in the third case, a join between two materialized arrays, can-
not be avoided. To ease further reasoning, we can however treat the result of a join
between two materialized data sources as a unit: a new (materialized) data source.
With this abstraction and the two patterns discussed so far, any query consisting of a
nested sequenced of map, grid, and const operators is reduced to a single projection
over either a base operator, or joined materialized arrays:

π(ı̄,...)(A on B on . . .).

For the most part this optimization can be performed by a purely relational optimizer,
the only additional knowledge required is the equality between the shape of material-
ized arrays and the result shape as built by the base function: π(ı̄)A ≡ base(SR).

The apply operator is somewhat more complex as it introduces a join between a set
of index relations of the result shape with an (assumed materialized) array of different
shape. This join operation is introduced according to a fixed pattern:

π(I0.̄ı,A.v)((I0 on I1 on . . .) onI0.v=A.i0,I1.v=A.i1,... A)

The sub-queries that make up the various index relations can be merged, following
the logic discussed above, resulting in a single projection over a sequence of joins
(potentially eliminating duplicate data sources):

π(I.̄ı,A.v)((I = π...(on . . .)) onI0.v=A.i0,I1.v=A.i1,... A)

Unfortunately, optimization of the apply operator in isolation does not allow for
the elimination of the join operation it introduces. In combination with other op-
erations however, shape analysis provides the potential for further optimization as
demonstrated by the following example.

Example 5.5 (Matrix multiplication). The advantages of shape analysis are clearly
demonstrated using the matrix-multiplication example:

[sum([A(i, k) ∗B(k, j)|k])|i, j].

Excluding the aggregation operation, this query translates to the following array al-
gebra expression:

map(∗, apply(A, grid(S, 1), grid(S, 0)), apply(B, grid(S, 0), grid(S, 2))),

and subsequently to the following relational query plan:

πi0=v0,i1=v1,i2=v2,v=A.v∗B.v(πA.v∗B.v(
(A onA.i0=v1,A.i1=v0 ((πv1=i1base(S)) on (πv0=i0base(S))))

onA.i0=B.i0,A.i1=B.i1,A.i2=B.i2

(B onv0=B.i0,v2=B.i1 ((πv0=i0base(S)) on (πv2=i2base(S)))))

118 Chapter 5. Optimization

Using the ideas outlined in this section, the join operations are merged to simplify this
expression to:

πi0=v0,i1=v1,i2=v2,v=A.v∗B.v(πA.v∗B.v(
A

onA.i0=v1,A.i1=v0

((πv0=i0base(S)) on (πv1=i1base(S)) on (πv2=i2base(S)))
onv0=B.i0,v2=B.v2

B)

Finally, the base operations are eliminated completely by analysis of the base shape
and the array axes used. In this case the base axes are combined with identical array
axes from A and B, S ≡ πi0=B.i0,i1=A.i0,i2=B.i1(A onA.i1=B.i0 B), therefore the
join operation with base(S) can be omitted:

πi0=B.i0,i1=A.i0,i2=B.i1,v=A.v∗B.v(A onA.i1=B.i0 B)

This expression is correct, yet it uses only a single one-way join versus five two-way
and three-way joins in the initial expression: clearly a significant improvement.

Discussion

Section 5.2.3 proposes three new operators. The operators capture specific forms of
the application operator and translate directly to existing relational operators, which
is different from the operation in the last example: matrix multiplication. Matrix mul-
tiplication is a common operation in the computational domains the RAM system is
aimed at, and efficient implementations of this operation are known. Therefore, addi-
tion of an efficient matrix multiplication implementation might provide a significant
performance increase. Unfortunately, the possibilities are endless in both the number
of additional operators and the complexity of those operations: For the RAM system
we have chosen to maintain the original design criterion of minimal additions to the
back-end. Additionally, implementation of complex operations, such as matrix multi-
plication, in isolated functions might impair the freedom of a query optimizer to opti-
mize the query as a whole: a well known problem for object-oriented databases [10].
A possible alternative is for the optimizer to identify costly sub-queries, and compile
at runtime a low-level function to evaluate that sub query: The RAM to C++ generator
discussed in the previous chapter provides the functionality required.

As argued, many of the optimizations discussed in this section take place in, or on
the boundaries of, the relational domain, yet they require knowledge about the charac-
teristics of the data: arrays. The relation between the optimizaitons and the relational
domain leads to the question of where these optimizations should take place. They
could be implemented as part of the relational mapping process as the translator has
explicit knowledge about both the array domain and the generated relational queries.
Alternatively, given limited additional knowledge about the array domain, a relational
optimizer could perform the optimizations as well.

BIBLIOGRAPHY 119

Bibliography
[1] Goetz Graefe and William J. McKenna. The Volcano Optimizer Generator: Ex-

tensibility and Efficient Search. In Proceedings of the Ninth International Con-
ference on Data Engineering, pages 209–218. IEEE Computer Society, 1993.

[2] S. Chaudhuri. An Overview of Query Optimization in Relational Systems. In
Proceedings of the Seventeenth ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, pages 34–43. ACM Press, 1998.

[3] B. Gavish and A. Segev. Set query optimization in distributed database systems.
ACM Transactions on Database Systems, 11(3):265–293, 1986.

[4] J.M. Smith and P. Y. Chang. Optimizing the performance of a relational algebra
database interface. Communications of the ACM, 18(10):568–579, 1975.

[5] S. Manegold, A. Pellenkoft, and M. L. Kersten. A Multi-Query Optimizer for
Monet. In Proceedings of the British National Conference on Databases (BN-
COD), volume 1832 of Lecture Notes in Computer Science (LNCS), Springer-
Verlag, pages 36–51, Exeter, United Kingdom, July 2000.

[6] S. Manegold. Understanding, Modeling, and Improving Main-Memory
Database Performance. Ph.d. thesis, Universiteit van Amsterdam, Amsterdam,
The Netherlands, December 2002.

[7] M. Zukowski. Parallel Query Execution in Monet on SMP Machines. Master’s
thesis, Vrije Universiteit Amsterdam/Warsaw University, July 2002.

[8] S. Ceri and G. Pelagatti. Distributed Databases. McGraw-Hill Book Company,
Singapore, 1985.

[9] G. Graefe. Volcano - An Extensible and Parallel Query Evaluation System. IEEE
Transactions on Knowledge and Data Engineering, 6(1):120–135, 1994.

[10] S. Chaudhuri and K. Shim. Query Optimization in the Presence of Foreign Func-
tions. In Proceedings of the 19th International Conference on Very Large Data
Bases, VLDB93, pages 529–542, San Francisco, CA, USA, 1993. Morgan Kauf-
mann Publishers Inc.

Chapter 6

Case Studies

The RAM system is targeted at computationally intensive domains such as multime-
dia analysis and retrieval applications. These (scientific) areas inherently deal with
large volumes of data and complex mathematical operations difficult to express with
the relational interface offered by most database systems. This chapter examines the
hypothesis that the array-based interface offered by RAM system is suitable to address
the problems in its target domains.

The first part of the chapter deals with a detailed case study of the application
of the RAM system to an image retrieval application. This part is based on results
presented in earlier publications [1, 2]. The second part of this chapter illustrates
how the RAM system can be applied to a variety of problem domains. Whereas the
problem domains differ, the array data model supported by the RAM system allows
the concise expression of their native data structures and operations.

6.1 Performance Study
In this section we present a case study of using the RAM system in a real-world
application. We test the performance of the RAM system when it is used to implement
the crucial retrieval phase of a content-based video-retrieval application.

This example is chosen because it exhibits those characteristics that RAM is aimed
at. It operates on large data volumes, consists of computation-intensive mathematical
operations, and is represented elegantly as array operations.

The Gaussian-Mixture-Model-based retrieval algorithm has been discussed before
in Chapter 3. Here we detail the performance study of the RAM driven implementa-
tion of this system running the Video-TREC 2003 data set.

The main contribution of this Section is a case study to investigate the feasibil-
ity of a RAM implementation of the probabilistic retrieval system that our research
group developed for the search task of TRECVID 2002 and 2003: the retrieval of rel-
evant shots of video material given a query image. The probabilistic retrieval method
used to rank video shots is a generative model. Using generative models for infor-

121

122 Chapter 6. Case Studies

mation retrieval (IR) follows the so-called “language modeling approach” to IR [3].
Applying this idea to image retrieval has been pioneered by Vasconcelos [4]. Now, be-
fore changing our focus to the database aspects of this retrieval problem, this section
presents concisely the visual part of the multimedia retrieval system studied [5, 6].

Image documents are first decomposed as bags of samples (8-by-8 pixel blocks),
described by their DCT coefficients. These bags of samples are subsequently modeled
as probability distributions, by fitting a Gaussian Mixture Model. The relevance of a
collection image given a query image is then assumed to be approximated by the
ability of its mixture model ωm to describe the samples X = (x1, . . . ,xNs

) of the
query image.

P (X|ωm) =
Ns∏
s=1

P (xs|ωm). (6.1)

The probability P (xs|ωm) for a single sample xs is obtained by summing the con-
tribution of each component of the mixture model, altered by its a priori probability
P (Cc).

P (xs|ωm) =
Nc∑
c=1

P (Cc,m)G(xs,µc,m,Σc,m). (6.2)

Here, the probability density function for each component is defined as a multivariate
Gaussian distribution in Nn dimensions.

G(x,µ,Σ) =
1√

(2π)Nn |Σ|
e−

1
2 (x−µ)T Σ−1(x−µ). (6.3)

Assuming that the Gaussian models have a diagonal covariance matrix (i.e. (Σ)ij =
δijσ

2
j) simplifies equation 6.3 to.

G(x,µ,Σ) =
1√

(2π)Nn
∏Nn

n=1 σ
2
n

e
− 1

2

PNn
n=1

(xn−µn)2

σ2
n . (6.4)

These formulas map almost directly to the RAM syntax. We first define a function p
corresponding to Formula 6.2.

Expression 6.1.

p(s,m) =
sum([
P(c,m) *
(1.0/(sqrt(pow(2*PI,Nn))*prod([S2(n,c,m)|n<Nn]))) *
exp(-0.5 *

sum([pow(Q(n,s)-Mu(n,c,m),2)/S2(n,c,m)|n<Nn]))
| c<Nc])

6.1. Performance Study 123

Here Q is an array containing Ns samples from the query image and P, Mu, and,
S2 are arrays containing the prior, mean, and covariance values of a Gaussian Mix-
ture Model, each consisting of Nc components over a Nn dimensional feature space.
Function p is applied in the creation of an array that contains a probability score for
each of the Nm Gaussian Mixture Models in the collection.

Expression 6.2.

Scores = [prod([p(s,m) | s<Ns]) | m<Nm]

However, to prevent precision issues, due to tiny probability values, from occur-
ring in computing the complete ranking formula we switch to log-space1.

P (X|ωm) =
Ns∏
s=1

P (xs|ωm) =rank

Ns∑
j=1

log(P (xs|ωm)). (6.5)

The swich to log-space is easily applied to the RAM expression also.

Expression 6.3.

Scores = [sum(log([p(s,m) | s<Ns])) | m<Nm]

In probabilistic retrieval, it is common to incorporate a background model in addi-
tion to the individual document models to emphasize those characteristics specific to a
particular document while suppressing characteristics that are common (across docu-
ments): a technique known as smoothing. To achieve this smoothing, the background
model is used to estimate the probability of a sample occurring anywhere in the col-
lection independent of a specific document. This probability is then used to smooth
document-specific sample probabilities with a smoothing parameter λ, resulting in the
following equation:

P (X|ωm) =
∏Ns

s=1 λP (xs|ωm) + (1− λ)P (xs)
=rank

∑Ns

s=1 log(λP (xs|ωm) + (1− λ)P (xs)).

In case of our GMM image retrieval example, the background probability P (xs) is
estimated by marginalization over all document models.

P (xs) =
Nm∑

ωm=1

P (ωm) ∗ P (xs|ωm). (6.6)

In this marginalization, each document model is assumed to be of equal importance:
P (ωm) = 1

Nm
. Again, the mathematical formulas are easily translated into a RAM

expression:

1Here, the symbol ‘=rank’ indicates equivalent document ranking.

124 Chapter 6. Case Studies

Expression 6.4.

p(s) = (1 / Nm) * sum([p(s,m) | m<Nm])
Scores = [sum(

[log(l*p(s,m) + (1-l)*p(s)) | s<Ns]
) | m<Nm]

These RAM expressions may seem far from trivial, but recall that they express a
non-trivial problem to start with. It should be clear from a comparison to Equations 6.4
and 6.5 that the mathematical description maps almost 1-on-1 to RAM. We postulate
that the RAM query language, thanks to its array-based data model, remedies many
of the interfacing hurdles encountered when implementing computation-oriented al-
gorithms in a database system.

6.1.1 Query-Optimization Experiments
The RAM prototype system implements a rather simple and straightforward transla-
tion scheme to transform the declarative RAM expressions into relational query plans.
This simplicity results in a (naive) query-execution plan that provides dissatisfying
results with respect to performance, at least for the case study at hand. The query
plan generated by the prototype was more than an order of magnitude slower than the
original Matlab application. Also, scalability proved an issue, because it generates
and materializes all intermediate stages in the computation process.

We have analyzed the specific bottlenecks in the initial query plan generated by
the RAM prototype system and, using the optimization techniques presented in Chap-
ter 5, developed several variants of the GMM computation query. Fortunately, the
well structured nature of array queries together with their highly predictable access
patterns have opened up a wide variety of effective optimizations. Here, we present
a series of experiments that improves the efficiency of the database implementation
of the retrieval system, such that the final results are actually faster than the original
Matlab code. The purpose of these experiments has been twofold: firstly, to prove that
the problem of our case study can be addressed efficiently using a database applica-
tion, and, secondly, to identify those patterns in the optimized variants that can most
effectively be utilized by the RAM system.

Figure 6.1 shows the performance of each version of the query plan relative to a
baseline. This baseline is given by the performance of our reference implementation:
the Matlab script used in our actual TRECVID participations, hand-written (using the
well-known Netlab toolkit [7]) and optimized for performance.

The presentation of the experiments is ordered by the abstraction level of the opti-
mization strategies employed, ranging from a high-level algorithmic point of view to
the exploitation of some low-level DBMS-specific features. The RAM-based solutions
are translated into MonetDB’s query language (called MIL [8]). Each improvement is
added incrementally, thus enhancing the overall performance of the query plan with

6.1. Performance Study 125

 0.1

 1

 10

 1 2 3 4 5 6 7 8

Re
la

tiv
e

ex
ec

ut
io

n
tim

e
(lo

g
sc

al
e)

1. Matlab
2. Naive

3. Precompute
4. Optimised
5. Unfolding

6. Reuse
7. Fragmentation
8. Compiled UDF

Figure 6.1: Query evaluation time relative to Matlab. (Optimizations are applied in-
crementally)

each step: The final query plan incorporates all earlier improvements as well. The rela-
tive timings in Figure 6.1 refer to the ranking of a collection of 2500 images (Gaussian
Mixture Models), using a query image composed of 1320 samples; the limitation to
a collection of 2500 images allows a comparison of all query plans. Due to memory
constraints, query variants 2, 3, and 4 fail for larger data volumes.

The RAM system translates the comprehension-type queries into an intermediate
array algebra. This algebra serves primarily as an intermediate stage, to simplify the
translation of RAM expressions to query plans for the relational back-end. However,
it also provides an excellent opportunity to optimize array queries. Chapter 5 presents
a transformation-rule based optimizer for the RAM array algebra.

Pre-computation

At the highest level, we observe that the probability estimation function contains a
part that is independent of the sample for which the probability is being estimated.
The middle part of the query only depends on parameters of the mixture model used:

1.0/(sqrt(pow(2*PI,Nn)) * prod([S2(n,c,m) | n<Nn]))

This dependency means that this value only needs to be computed once for each
of the models and can be reused in the probability estimation of all samples.

126 Chapter 6. Case Studies

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 5000 10000 15000 20000 25000 30000

ex
ec

ut
io

n
tim

e
(s

ec
s)

size of the collection (images)

Naive
Precompute

Optimised
Unfolding

Reuse
Fragmentation

Matlab
Compiled UDF

(a) Full range.

 0

 100

 200

 300

 400

 500

 600

 0 500 1000 1500 2000 2500 3000

ex
ec

ut
io

n
tim

e
(s

ec
s)

size of the collection (images)

Naive
Precompute

Optimised
Unfolding

Reuse
Fragmentation

Matlab
Compiled UDF

(b) Detail.

Figure 6.2: Query evaluation time for different collection sizes.

6.1. Performance Study 127

By isolating this portion of the query and explicitly materializing its results for
subsequent use in the remainder of the computation, re-computation of the same value
is avoided. As Figure 6.1 shows, this minor change in the query plan results in a 35%
reduction in query-execution time.

In a RAM query, specific variables are used to refer to specific axes of arrays
that represent dimensions of the problem space involved in the computation. The
occurrence of such reference variables in a sub-query identifies a dependency of that
sub-query on the dimension referenced; conversely, absence of such variables in that
sub-query imply independence from those axes. The RAM optimizer can exploit these
optimization opportunities with transformation Rule 5.6. However, for the purpose
of this experiment, measuring the effect of this optimization in isolation, we have
manually altered the query plan.

Algebraic optimization

The transformation ruleset of the RAM optimizer, presented in Section 5.1.1, contains
more than just the rule discussed so far. Figure 6.1 shows that application of these
additional rules to the query plan results in 21% more reduction in query execution
time.

Aggregate unfolding

A problem that remains, however, is that the query plan does not scale well: Aside
from its execution speed, many (often large) intermediate results are materialized,
causing the system to fail on a shortage of storage space. As can be read from Fig-
ure 6.2, the query plans obtained so far have failed at collection sizes of (over) 3000
images. Figure 6.2 shows wall-clock timings from experiments run on a machine with
a 1400 MHz AMD Opteron CPU and 16GB of internal memory. The collection used
for these experiments consisted of Gaussian Mixture Models composed of 8 compo-
nents over a 14-dimensional feature space. Finally, the query was a collection of 1320
samples (14-dimensional feature vectors) taken from an example image.

The obvious pragmatic solution to solve the scalability issues is to simply divide
the data set into smaller chunks and compute results one chunk at a time. Bluntly
chopping up the input data into uniform chunks may result in satisfying performance
in some cases, but could also result in iterative query plans that need to reference the
same chunks repeatedly. However, the GMM-based scoring function is representative
of many algorithms involving multi-dimensional spaces: The target result is an ag-
gregation over a computation involving the Cartesian product of all input dimensions.
This pattern allows deriving a suitable fragmentation strategy that matches the access
pattern.

In Section 5.2.1 we presented a possible solution to this problem: unfolding of ar-
ray queries. Most aggregation functions are basically repeated application of a binary

128 Chapter 6. Case Studies

operator to subsequent elements, e.g.: the sum aggregation operator can be written as
a series of additions.

By default the RAM system translates an aggregation query to a query plan that
explicitly represents the intermediate first and then applies the aggregation function
to this (materialized) intermediate result. As an example, consider part of the GMM
computation (see Section 6.1):

Scores = [sum([log(p(s,m)) | s<Ns]) | m<Nm]

Here, this naive approach would first create an intermediate array with shape [Ns, Nm],
compute the log(p(s,m)) expression on each cell, and finally collapse all the
columns into one by computing the sum aggregate. The alternative computes columns
of shape [Ns, Nm] and computes the aggregate by accumulating these columns one at a
time, significantly reducing intermediate storage requirements.

By applying the unfolding optimization to our original query plan, unfolding the
outer-most summation in the computation, overall performance is significantly im-
proved: a 47% speed-up, as shown in Figure 6.1. It is important to realize, however,
that this increased performance is actually achieved as a side effect of the main goal of
this strategy: improved scalability. The improvement is due to reduced memory con-
sumption, which avoids the swapping of data between main memory and disk. Indeed
scalability is improved as well: While earlier versions of the query have failed for
shortage of memory on data sets of approximately 3000 images, the unfolded query
plan scaled up to the entire TREC-2003 data set of 30000+ images.

Reuse of materialized intermediates

The naive translation of RAM expressions into the DBMS query language has adopted
a simple (and rather conservative) policy regarding intermediate results: Release an
intermediate result’s allocated memory as soon as its operator completes. Although
this policy provides an effective basic rule for limiting memory usage, a closer look at
the code generated by RAM reveals many opportunities for safely reusing such mate-
rialized intermediate results. Intermediate reuse oportunities are especially avaiable in
algorithms such as the GMM computation, where some basic computation is repeated
many times (in this case, Expression 6.2).

In addition to those intermediate arrays introduced by the algorithm directly, many
index arrays are created: RAM array operators are position based rather than value
based – they use arrays of cell indexes as input. These indexes are generated on the
fly every time they are needed. Especially in case of unfolded aggregates, repetitive
query patterns may cause the same indexes to be produced many times: Caching and
reusing those arrays can drastically improve query efficiency, in this case execution
time was reduced by 38%.

It is important to realize that this optimization is different from the application
of transformation Rule 5.6, as was done earlier in Subsection 6.1.1. Whereas the

6.1. Performance Study 129

RAM optimizer operates on an array-algebra expression, this optimization is per-
formed through post-processing of the generated relational query plan (MIL program)
directly.

Array fragmentation

As observed in Section 5.2.1, the unfolding strategy, discussed earlier, suggests a sim-
ilar improvement in the evaluation of mapping operators. However, as mentioned
Section 5.2.1, the optimizer in the RAM prototype system is limited to a single query
at a time and it does not include reorganization of persistent data. Therefore, we have
manually applied this optimization, fragmenting both the query plan and the persistent
data, for the purpose of this experiment.

Figure 6.1 and Figure 6.2 show a performance improvement of 58% achieved by
the array fragmentation strategy. Notice that the sequence of query processing strate-
gies applied so far has removed almost all overhead with respect to the baseline that
was introduced in the naive translation of the original RAM expression to its corre-
sponding relational query plan.

UDF compilation

Modern database systems allow the user to extend the database query language by
introducing user-defined functions expressed in some external programming language.
Lack of expressiveness is a first possible reason to use such a technique: consider,
as an example, an SQL query involving some multi-column complex computation
in a multimedia or financial domain. Nevertheless, the user may resort to external
languages even in those cases when functionality provided is in principle sufficient,
simply for the sake of improved runtime performance.

Unfortunately, encouraging users to construct complex queries as external libraries
to solve specific problems partially defeats the purpose of a DBMS. It forces them to
manually define data processing techniques at implementation level in an imperative
language, creating “black-boxes” opaque to the system. Shifting part of the query to
a general-purpose language decreases the chances of formulation of a consistent and
complete optimization strategy by the DBMS engine: Characteristics of the operation
implemented are unknown to the optimizer, and it is impossible to change the physical
representation of the data it consumes. For these reasons, one should use UDFs only
sporadically: for few, reusable, and performance-critical functions, and only after all
higher level optimization strategies have been exhausted.

In our case, when profiling the execution of the GMM query optimized so far, we
found that more than 75% of the whole execution time was spent on the computation
of a small part of Formula 6.4: the Mahalanobis distance function, given by (xn−µn)2

σ2
n

(for a single dimension n). This computation of the Mahalanobis distance is a perfect
candidate to be compiled into a UDF: It is performance-critical, it is a small part of
the query, its implementation is trivial, and it can be reused by several applications.

130 Chapter 6. Case Studies

Figure 6.1 shows that implementing the Mahalanobis distance as a user-defined
function squeezed out another 38% reduction of query-execution time. In fact, this fi-
nal version of the query evaluates faster than the manually optimized baseline Matlab
implementation of the algorithm. However, we should be careful drawing conclusions
from this observation: Resorting to compiled UDFs is an extreme optimization mea-
sure and it remains to be seen whether it is feasible (and desirable) to automatically
discover suitable candidates for UDF compilation. Yet, as suggested in Section 5.2.4,
the C++ mapping for RAM introduced in Section 4.4.2 shows that it is possible to
automatically generate the implementation of these UDFs.

6.1.2 Distributing array queries
Thus far we have discussed the problem of controlling the amount of memory re-
quired for the evaluation of a RAM query. Controllong memory usage boils down
to determining those steps in the query plan that consume most memory and rewrit-
ing those operations into equivalent variants that limit the amount of space required.
Aggregation operations proved to be a suitable target for this type of optimization.

Distribution of RAM queries over multiple machines involves a similar problem:
discovering a suitable location in the query plan to split it into disjoint sub queries that
can be executed in parallel. Section 5.2.2 discusses an extension of the RAM optimizer
that allows for the generation of distributed query plans for RAM expression.

Query-driven distribution

We consider query-driven distribution only, and opt for a fully replicated data distri-
bution. In the case that the data itself is fragmented and stored in a distributed manner,
factors other than computation cost come into play. When only part of the data is avail-
able at a given node, the most-efficient query plan with respect to parallelism may no
longer be viable. These factors have been well studied in the context of distributed
relational databases [9].

The strategies presented in Section 5.2.2 give us two distinct options for query
fragmentation. The first is splitting the result space of a (sub-)query in disjoint seg-
ments, concatenating the results. The second is similar to the unfolding optimization
discussed in Section 5.2.1 and entails splitting commutative and associative aggrega-
tion operations into disjoint series, accumulating the result afterwards. In both cases,
the disjoint sub-queries so created can be evaluated individually, in parallel.

Application to the case study

Traditional distributed retrieval systems are in essence based on a (manual) fragmen-
tation of the data set over various nodes. In this scheme each node, in parallel, scores
only a part of the collection, after which the results of the various nodes are merged
and ranked. Using different nodes to score disjoint subsets of the collection does not

6.1. Performance Study 131

work in our example case. This distribution strategy does not work, because of the
computation of the background probabilities for the individual samples: marginal-
ization over all models in the collection, see Formula 6.6. When performed naively,
this query-fragmentation strategy results in a situation where each node still needs
to compute sample probabilities for the entire collection to estimate the background
probability. Figure 6.3(a) depicts the original query and Figure 6.3(b) visualizes the
distributed query plan created by splitting the collection in two parts.

One solution around this problem is to push fragmentation deeper into the query
expression. For example, the matrix of individual sample probabilities per model
can be computed in fragments, assembled, and used to compute the final scores as
visualized in Figure 6.3(c). This approach has two downsides however: This matrix
has Ns × Nm elements, which may result in considerable communication overhead,
and a significant part of the computation is no longer performed in parallel as the

(a) Original query. (b) Query on disjoint sub-collections.

(c) Distribution pushed down in the query tree. (d) Partial queries on the whole collection.

Figure 6.3: Query visualizations.

132 Chapter 6. Case Studies

collected data requires further non-trivial processing.
Another solution is fragmentation of the query along another dimension of its

problem space. Consider that each node in a distributed setting would compute the
probabilities for a subset of the samples in the query document and that these partial
scores are then merged. In other words, partial queries are applied to the whole data
set. This approach, visualized in Figure 6.3(d), results in a much more manageable
communication overhead than the previous solution, only Ns elements per node.

The point is that the RAM system has derived the most suitable strategy automat-
ically given a declarative query specification. There is no need for users to study the
formulas by hand to decide on a suitable query fragmentation strategy.

Experiments

Finding an optimal query distribution strategy is a query optimization problem: It
involves the manipulation of a query to achieve maximum performance. The best
distributed query plan is that plan that gives the best response time. This requires
a balance between maximization of parallel evaluation and minimizing the induced
inter-node communication overhead.

We assume a master-slave relation where one node issues commands to other
nodes, collects the data, and produces the final result. This distinction is concep-
tual. In practice the master node also acts as one of the slaves by doing a share of
work. In addition, we make three simplifying assumptions: First, each node has full
access to the complete data set; second, all nodes are identical; finally, data volume
is the dominant factor in inter-node communication. These assumptions allow us a
focus on problems inherent to query distribution, while experimenting with a simple
uniform distribution without data-placement issues.

These experiments use the distribute pseudo-operator, introduced in Section 5.2.2,
to distribute sub-queries over multiple machines and collect the results. For example,
the pattern formed by the concatenation of partial results from the split original query
can be expressed in the RAM array algebra as E ⇒ concat(EA, EB). Inclusion of
the distribute pseudo-operator indicates that the individual query fragments should be
distributed: concat(distribute(EA, EB)). For readability, we express the resulting
query in RAM array comprehensions, denoting the distribution of sub-queries over a
number of nodes by the parallel block ‘{| |}’ (see, for example, Expression 6.6).

Three possible strategies for the query derived from Equation 6.6 are intuitively
presented earlier in this section and visualized in Figure 6.3. We focus our experi-
ments on these three variants, which we consider as the most representative and to
which we refer as Query B, Query C and Query D. Also, the original query as it is in
Expression 6.4 is executed in a non-distributed fashion and is referred to as Query A.

In the following, the common sub-expression p(s,m) computes the probability
P (xs|ωm) of observing a sample xs given a model ωm and its RAM definition is as
in Expression 6.1. Also, a binary distribution schema is adopted in these expressions:

6.1. Performance Study 133

a master node requests two slave nodes to produce partial results, ultimately merging
them in the final result.

Expression 6.5. Query A

Sc = [sum(
[log(l*p(s,m) + (1-l)*sum([p(s,m) | m<Nm])/Nm) | s<Ns]

) | m<Nm]

Expression 6.4 is rewritten in Query A as a single line. Note the two terms,
l*p(s,m) and (1-l)*sum(...), in the logarithm. The first term is the fore-
ground probability. The second term is the background probability: An aggregate
function over all the models has to be computed for each of them.

Expression 6.6. Query B2

{|
Sc1 = [sum(

[log(l*p(s,m) + (1-l)*sum([p(s,m) | m<Nm])/Nm) | s<Ns]
) | m<Nm/2]

Sc2 = [sum(
[log(l*p(s,m) + (1-l)*sum([p(s,m) | m<Nm])/Nm) | s<Ns]

) | Nm/2<=m<Nm]
|}
Sc = Sc1 ++ Sc2

The approach of Query B consists in dividing the initial collection of models and
running the same query as Query A on two nodes. The partial results Sc1 and Sc2
are then concatenated by the master node using the RAM concatenation operator ‘++’.
While this approach succeeds in efficiently distributing the computation of the fore-
ground probability, it is apparent that the same benefit cannot be achieved for the
background probability, which still requires the computation of p(s,m) for each m
< Nm.

Expression 6.7. Query C

{|
Psm1 = [p(s,m) | s<Ns, m<Nm/2]
Psm2 = [p(s,m) | s<Ns, Nm/2<=m<Nm]

|}
Psm = Psm1 ++ Psm2
Sc = [sum(

[log(l*Psm(s,m) + (1-l)*sum([Psm(s,m) | m<Nm])/Nm) | s<Ns]
) | m<Nm]

The distribution is applied here at a lower level in the query tree. The computation
of the whole matrix of values p(s,m) is distributed over the two nodes, again on two

2 The syntax ‘Nm/2 <= m < Nm’ has been introduced here as a syntactic sugar. In RAM array axes
always range from 0 to a maximum value Nm/2, therefore the computation of Sc2 would in reality look
like [... p(s,m+Nm/2) ... | m < Nm/2] .

134 Chapter 6. Case Studies

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8

sp
ee

du
p

nodes

estimated D
measured D
estimated C
measured C
estimated B
measured B

Figure 6.4: Speed-up of Queries B, C, D when using an increasing number of nodes

equal parts of the original collection. Finally, the aggregate function sum([p(s,m)
| m<Nm])/Nm) is computed by the master node over the concatenation of the two
partial results.

Expression 6.8. Query D

{|
Sc1 = [sum(

[log(l*p(s,m) + (1-l)*sum([p(s,m)|m<Nm])/Nm)) | s<Ns/2]
) | m<Nm]

Sc2 = [sum(
[log(l*p(s,m) + (1-l)*sum([p(s,m)|m<Nm])/Nm)) | Ns/2<=s<Ns]

) | m<Nm]
|}
Sc = [Sc1(m) + Sc2(m) | m<Nm]

The last distributed query plan splits the computation up along a different dimen-
sion: the number of samples Ns. Instead of computing the complete (Query B) or
partial (Query C) results on subsets of the collection, this approach computes partial
results on the whole collection, ultimately combining them together.

We have conducted our experiments on a cluster composed of 8 slaves nodes and
one master node configured as follows: 64bit Opteron 1.4GHz, 2GB of main memory,
Gigabit network interface, Linux Debian 3.0, and, MonetDB 4.4.0. The constant c

6.1. Performance Study 135

Table 6.1: Execution statistics for query distribution over 8 nodes.
Query master slave network network

% time % time % time data volume
A 100 - - -
B 0.004 99.993 0.003 c ∗Nm
C 11.6 88.1 0.3 c ∗Nm ∗Ns
D 0.005 99.993 0.002 c ∗Nm ∗#nodes

introduced in Equation 5.1 indicates how large the memory bandwidth is compared
to the available network bandwidth. The cost model uses this constant to tune the
estimates to the capabilities of the hardware. For this cluster of machines, calibration
tests have shown c = 120 to be a suitable value.

Query A has been executed on a single node. Queries B, C and D have been
distributed on a number of nodes ranging from 2 to 8 slaves and 1 master. In order to
clearly separate their role, the conceptual distinction between master and slave nodes
has been kept in our experiments as well.

Figure 6.4 summarizes the results in terms of speed-up with respect to the non-
distributed Query A. For each of the three distributed variants, the estimated speed-up
and the measured speed-up are showen.

The first observation is that Query D exhibits the best scalability, as reflected by
both the speedup estimated by the RAM optimizer and our intuitive expectations dis-
cussed in Section 6.1.2. Query C also exploits the increasing number of nodes, al-
though not as effectively as Query D does, whereas Query B does not provide any
significant improvement. As apparent from Figure 6.4, the cost-estimate function al-
lows the optimizer to make reasonably accurate estimations of the speedup achieved
by applying a particular query strategy to a given number of nodes.

As shown in Table 6.1, for both queries B (worst) and D (best), nearly all time is
spent computing the distributed part of the query. Here time spent on communication
and post processing of the data on the master node is negligible.

The query execution time for Query B is practically constant regardless of the
number of nodes used. This constant execution time is explained by the observation
that Query B does not distribute the workload evenly over the slaves. Instead, it merely
replicates the bulk of the query to all nodes.

The reasons that Query C is less scalable than Query D are explained clearly by
Table 6.1. First, since distribution is pushed down in the query tree, a significant
fraction of the query (11%) is not parallelized but executed sequentially by the master
node. Second, because Query C requires more data to be transferred, than the other
distributed queries, communication overhead is not an insignificant factor for Query C.

136 Chapter 6. Case Studies

Discussion

The experiments in this Section focused on a fully distributed environment for a mul-
timedia retrieval system. Query trees are split into fully disjoint sub-queries to be
evaluated on separate nodes. The inclusion of the distribute pseudo-operator into the
internal algebra allows the system to predict the effectiveness of the plan with reason-
able accuracy. This prediction is made by taking into account the parallel execution
of the various sub-queries and the communication cost induced by the distribution.

This technology is directly applicable in a multi-CPU shared-memory environ-
ment by adapting the communication-overhead multiplier c (see Equation 5.1) to this
new environment. The communication overhead in a shared-memory environment can
be expected to be negligible (c = 0). However the parallel evaluation plans created in
this way are rather simplistic: They are still based on fully disjoint sub-queries, while
the shared-memory environment allows for more tightly integrated parallel execution
and flexible exchange of intermediate results among the different processing units.
Examining the effect of these additional possibilities is future work.

The query examined in our case study is a single computation, which allows the
creation of fully disjoint sub-queries. Many scientific problems, such as simulations,
consist of iterative algorithms. Expression of such algorithms in RAM would require
the repeated evaluation of a query, each time operating on the data created in the pre-
vious iteration. For the experiments presented here, each node could simply access the
static database via the network file-system. On-the-fly distribution of (large volumes
of) data alongside the queries introduces costs the RAM system does not yet take into
account.

The experiments have shown that the communication costs are less significant than
expected. In fact, only in the case of Query C (see Section 6.1.2) is communication
overhead noticeable, but even then hardly significant. There are two apparent reasons:
First, the workload represented by the query in our example case is large and by far
the predominant factor in the overall execution costs. Second, experiments were per-
formed on a tightly coupled cluster of machines with a fast interconnection network.
While both aspects seem reasonable in light of our target audience – large scale sci-
entific problems inherently bring costly computations and are usually processed on
dedicated machinery – it remains to be seen how the results translate to other environ-
ments.

6.2 RAM in Applications

So far, we demonstrated that RAM is suited to express the experiments of a real-life
research problem from multimedia retrieval research, and produce query plans that are
satisfactory from an efficiency and scalability viewpoint. We now switch our focus to
the suitability of RAM as a language to express scientific problems. We explore to
what extend the array comprehension syntax captures common analysis tasks in data-

6.2. RAM in Applications 137

management by discussing three possible application areas.
The first is a set of operations that forms the basis of OLAP, On-Line Analytical

Processing, systems. These systems allow users – typically in a business setting – to
(manually) explore logged data to identify interesting characteristics of the data. This
task has requirements that can be met by using database technology. It requires large
data stores and fast bulk-processing of that data during analysis.

The second part explores operations that deal with sequences of data. The pro-
cessing of time series in particular has been well studied in the context of database
technology. The typical analysis of series, or sequence, data is aimed at the identi-
fication of events that occurred in a given time interval. A typical example from the
financial world is a series of stock quotes recorded during the day. Time series also
occur in less obvious contexts such as multimedia, e.g., the digital representation of
sound is a sequence of samples from an analogue real-world signal.

The third part covers linear algebra. Linear algebra forms the basis of mathematics
and many problems have been concisely modeled using linear algebra. The final part
briefly touches on one such problem: information retrieval.

The data sets have different names in each of these areas: data-cubes, sequences,
and matrices. Yet, in all cases the data fits in arrays.

6.2.1 OLAP

In the field of database management, the concept of multi-dimensional databases is as-
sociated with OLAP (On-Line Analytical Processing). OLAP systems allow users to
easily generate different views on data collections for further analysis. This examina-
tion of the data from different angles aids in the discovery of interesting features. The
data is modeled as so-called data cubes, multi-dimensional representations of data.
Daily sales for every product at every shop location would for example constitute a
3-dimensional data cube. The core operation in OLAP is aggregation. In the sales-
result example, an OLAP system provides the means to generate aggregates such as
total weekly sales per shop (an aggregate over the individual products), or total sales
for each product (an aggregate over the different shop locations). The added value of
individual OLAP tools are their user interfaces and integrated analysis tools, such as
rudimentary data-mining facilities that attempt to automatically discover interesting
features in the data.

An interesting aspect of OLAP systems is the coexistence of two approaches. The
first approach is based on multi-dimensional database systems. These systems, called
MOLAP systems, are especially designed to support OLAP operations. The second
approach is based on relational mapping. These systems, called ROLAP systems,
are built on top of a relational database back-end that evaluates OLAP operations
expressed as relational queries. Both approaches are successful.

The literature describes a small set of basic operators that capture the functionality
required by OLAP systems. Unfortunately, not all definitions of these operators in the

138 Chapter 6. Case Studies

literature are identical. For the purpose of this exploration, we have opted to adopt the
operator semantics as described by Vassiliadis [10]:

1. Roll (metaphor: rolling a die): rotating the data-cube, also known as pivoting.

2. Slice (metaphor: cutting a slice of cake): lowering the dimensionality of the
data by selecting a single value for one of the dimensions.

3. Dice (metaphor: cutting small cubes of cheese): chopping up a large cube into
smaller cubes of equal dimensionality.

4. Roll up (metaphor: rolling up a piece of paper (making it smaller)): reduce the
number of values in a data set through aggregation.

5. Drill down (metaphor: drilling for oil): zooming in to a (subset of) aggregated
value(s) to expose the detailed information an aggregate is based on.

If we model the data-cube as a multi-dimensional array, all OLAP operators can
be concisely expressed as array queries for the RAM system, with the drill-down
“operator” as a notable exception. Although presented as such, the drill-down is not
really an operator; regenerating the original values from an aggregate is impossible.
For a given drill-down scenario, an OLAP system takes the expression that generated
the current view on the data and derives an expression that computes the drill-down
view directly from the base data. This derived expression could be expressed using
RAM, but the RAM system itself does not keep track of the expression history.

The roll operator rotates, or pivots, a data cube changing the order of the axes
in the data cube. Note that the roll operator does not alter the data in a data-cube,
which provides the possibility for an implementation that merely changes the data
presentation in the user-interface. However, the operation can also be implemented as
a database operation: Which solution is best depends on the application. An example
of the roll operation is the flipping of axes in a two-dimensional data cube3:

Example 6.1 (OLAP: Roll). The roll operator is equivalent to a RAM expression
that specifies a new array with values taken from the original with permutated axes.
Consider the roll, or transposition, of the two axes in a two-dimensional array A:

[A(j, i)|i, j]

The slice operator selects a subset of the data in a given data-cube. It does so by
selecting a single value for one of the dimensions, this reduces the dimensionality of
the data-cube.

3It is straightforward to extend the example expression to higher dimensional cases and any permutation
of the axes.

6.2. RAM in Applications 139

Example 6.2 (OLAP: Single Slice). For example, a two-dimensional slice can be
taken from a three-dimensional data-cube A by specifying the slice using a constant
value n for one of the axes in the original:

[A(i, j, n)|i, j]

The example clearly demonstrates that an array with reduced dimensionality is
produced. The principle translates directly to higher dimensional cases: Each dimen-
sion to be reduced is removed from the result shape and a constant is introduced in
the array-expression. As described here, the slice operator selects one single slice out
of all possible slices in the data-cube. In literature the operator is often described as
producing a complete set of subsets (complete in the sense that all of the original data
is represented). This operation can be mimicked in the RAM expression by extending
it to produce an array of slices.

Example 6.3 (OLAP: All Slices). Instead of selecting a single slice, array nesting
can be utilized to produce a nested array containing all slices in A:

[[A(i, j, n)|i, j]|n]

The dice operator is another selection operator. In contrast to the slice operator, it
does not reduce dimensionality: The selected data is a smaller cube equal in dimen-
sionality to the original data.

Example 6.4 (OLAP: Single Die). For example, given an offset < oi, oj > and a
range < si, sj >, a sub-cube can be selected from a two-dimensional data-cube A:

[A(i+ oi, j + oj)|i < si, j < sj]

In this form, the dice operator directly maps onto a range selection over axes in the
array domain. However, as with the slice operator, the dice operator is often defined
as producing the complete set of all dice in the original cube. The RAM expression
could be extended to produce an array of dice.

Example 6.5 (OLAP: All Dice). Given a predefined size for the result dice< si, sj >
a nested array can be specified that contains all dice in a data-cube A:

[[A(i+ k ∗ si, j + l ∗ sj)|i < si, j < sj]|k < nk, l < nl]
where

nk = SA0/si

nl = SA1/sj

Note that this example expression only produces the complete collection of dice if there
are a whole number of partitions.

140 Chapter 6. Case Studies

The roll up operator performs aggregation: Values along a certain axis of the data-
cube are collapsed onto a single value. This produces a cube of lower dimensionality.
The operator can be mapped directly onto the RAM aggregation construct.

Example 6.6 (OLAP: Simple Roll-Up). For example, the totals for all columns in a
two-dimensional data-cube A can be generated by summing over its rows:

[sum([A(i, j)|i])|j]

The example shows that rolling up a given dimension is nothing more than aggre-
gating over that axis. In OLAP applications, however, rolling up is often presented
to be more complex, e.g., instead of aggregating over all days we may only wish to
total numbers per week – switching from a daily view to a weekly overview – or total
per day-of-the-week. This functionality can be mimicked in a RAM expression by
explicitly grouping the data by reorganizing it before aggregation.

Example 6.7 (OLAP: Weekly and Daily Roll-Up). Consider a two-dimensional data-
cube A where the i-dimension represents numbered days. It can be reshaped by split-
ting the single day-axis in to axes for the week number and day of the week:

Weekly A = [A(week ∗7+weekday, j)|weekday < 7, week < (totaldays/7), j].

After this transformation aggregation the data into weekly totals is straightforward:

[sum([Weekly A(i, w, j)|i])|w, j].

As is the generation of totals for every day of the week:

[sum([Weekly A(d, i, j)|i])|d, j].

The example shows that one axis of an array is split into two axes, each grouping
the data according to a certain condition. This type of data reorganization actually
hints that the new axes introduced where already present in the data to begin with:
The data could have been organized on a weekly basis from the start.

Discussion

The straightforward mapping of an OLAP data-cube onto an array structure requires
the data-cube to be rectangular. Unfortunately, this version of reality is simplified:
Whereas every week by definition has seven days, many grouping conditions do not
produce equally sized groups.

OLAP systems handle variable-sized groups in two ways. The first solution al-
lows variable-sized groups in the data-model, for example, through support for nest-
ing without shape limitations, or – for ROLAP systems – by reverting to the nested-set
model. The other solution pads smaller groups with nil values to enforce a rectangular

6.2. RAM in Applications 141

structure. By design, the RAM system poses shape limitations on nested structures.
And to aid in the exploration of array-centric issues, it does not offer support for the
integration of array and set structures. The option that remains, padding, can be used
to implement a complete OLAP system on top of the RAM system.

As shown, the array paradigm allows capturing the basic OLAP operations over
rectangular data-cubes concisely. However, while the RAM system is capable of the
data manipulation required for the OLAP operations, it cannot function as an OLAP
system by itself. For example, the drill-down operator requires alteration of the query
plan formed thus far instead of manipulation of the data. Another issue is the genera-
tion of the initial data-cube. Data to be processed usually originates from a relational
database and may need to be extended to form a data-cube: OLAP systems offer this
functionality, RAM does not. The potential benefit of expressing OLAP operations
as array queries, using the RAM system, is optimization. As argued in Chapter 5,
optimization in the array domain may be more effective than optimization of array-
oriented queries in the relational domain directly.

6.2.2 Time Series

Time series are sequences of data points measured at successive times and these se-
quences are used for two reasons: analysis and prediction. Time series data is inherent
to observational science (e.g., daily temperature measurements in a weather record),
common in a business environment (e.g., records of stock values), and omnipresent
in digital multimedia (e.g., digital audio). A time series forms a record of past events
generated by some process. Analysis of this event record may provide sufficient un-
derstanding of the behavior of the underlying process to construct a model of this
process. Those time series where data points are measured at uniform time intervals
are known as discrete time series. These discrete time series are most common and
map naturally to arrays: Each array cell represents one discrete time interval.

Database technology exists to manage and analyze time-series data, through series-
oriented extensions to the relational model as well as specifically designed database
systems. These systems are aimed at business type series data. Typical examples are
stock-quote records or telecommunication logs. Database solutions differ from normal
relational systems by offering convenient methods to express queries over the order
of data points in a series. Such queries are often hard to express concisely without
explicit support. A typical example is the use of relative (temporal) references such as
previous and next, e.g.: delta(day) = price(day)− price(previous(day)).

Time series also occur naturally and frequently in the (digital) multimedia domain
as digital representations of real-world signals. The type of operations involved in the
digital processing of such signals in multimedia analysis applications is closely related
to the type of manipulations found in time-series databases. This section examines the
viability of expressing time-series operations using arrays and the RAM language and
subsequently explores the extension to signal processing.

142 Chapter 6. Case Studies

Statistics

Statistical methods are used in both the analysis of time series data and the predic-
tion of trends. These methods parameterize models derived from the original data by
computing properties over a series of data. A common method to model a series of
data is to fit a straight line through the data points. The least-squares fit method fits
a line through data without the need for prior knowledge about that data. The least-
squares fit is defined as follows: given a set of data points xi and data values yi find the
parameters a and b for function f(a, b) = a+ bx that minimize

∑
{[yi− (a+ bxi)]2}.

The closed form functions that compute both a and b are not trivial; assuming a
set of time-value pairs {(xi, yi)} with n elements they are:

b = (Pn
i=1 xiyi)−nµxµy

(Pn
i=1 x2

i)−nµ2
x

,

a = µy − bµx.

The functions mentioned above are easily expressed in RAM by replacing the math-
ematical notation with RAM syntax (assuming a one-dimensional array A, where the
array-index represents the time of the associated values):

X = [i|i < len(A, 0)],
Y = A,
mean(I) = sum(I)/len(I, 0),
b(A,B) = (sum([A(i) ∗B(i)|i])− len(A, 0) ∗mean(A) ∗mean(B))/

(sum([A(i)2|i])− len(A, 0) ∗mean(A)2,
a = mean(Y)− b(X,Y) ∗mean(X).

The least-squares fit is an example of a single property computed over all values
in a series. Such operations can usually be performed quite efficiently on set-based
systems when the location of the individual elements in the series does not matter. Sys-
tems, however, may be more effective when operations are order dependent. Moving
window operations are a typical example of operations that can benefit from explicit
location information, for example, the moving average. This operation computes the
average value over a small local neighborhood and is typically used to smooth a series.
For example, we can describe the moving average of array A with a window-size n as
follows:

[sum([A(i− j)|j < n])/n|i < len(A, 0)].

This example suffers from the usual boundary problems inherent to operations per-
formed over a local window: For the first few results there are not n − 1 previous
values available. The preferable solution to this problem is application dependent.
For example one could assume a predefined value for missing values, or one could
choose to only include those elements in the result that are fully defined:

[sum([A(i+ j)|j < n])/n|i < (len(A, 0)− (n− 1))].

6.2. RAM in Applications 143

As the example shows, the locality of elements in windowed operations (such as the
moving average) can be exploited as element locations are directly reflected by array
indexes in RAM.

Another type of operation that is order dependent is the class of running or cumu-
lative operations, such as the cumulative sum (the sum of all values seen so far). The
cumulative sum operation seems simple to express in RAM (assume a 1D array A):

[sum([A(i)|i < j])|j < len(A, 0)].

Although this query concisely expresses the cumulative sum, it is not a valid RAM
expression: The length of the axis of the inner array (the number of elements to be
summed) is not a constant in this expression violates an important restriction in RAM.
The correct RAM expression is:

[sum([if(i < j) then A(i) else 0|i < len(A, 0)])|j < len(A, 0)],

Signal Processing

Digital audio and video are series of samples taken from a continuous real-world sig-
nal. Digital signal processing is the study of these digital signal representations and
involves two major domains: the time domain (operations on the time series itself);
and the frequency domain (operations on frequency spectra derived from the signal).

One of the most common operations in signal processing is the application of some
kind of filter to a signal: convolution4. In the case of digital signal processing (which
implies discrete signals) the method applies a frequency-domain filter over a signal in
its time-domain representation by multiplying the filter with the signal for each point
in time:

y(t) =
V−1∑
v=0

x(t− v)f(v),

where V equals the number of elements in the filter. This equation translates directly
to the following RAM expression:

[sum([X(t− v) ∗ F (v)|v < len(F, 0)])|t < len(X, 0)]

However, this expression is undefined for values with an index smaller than the win-
dow size. Common solutions for this problem are to either repeat the finite signal
infinitely:

[sum([X((t− v)%len(X, 0)) ∗ F (v)|v < len(F, 0)])|t < len(X, 0)]

or pad the original signal with zeros:

[sum([if(t < v) then 0 else (X(t− v) ∗ F (v))|v < len(F, 0)])|t < len(X, 0)]
4This operation has already been discussed in Section 3.2.5, therefore the details are skipped in this

discussion.

144 Chapter 6. Case Studies

The similarity to the moving-average example is not a coincidence: The moving
average is a specific case of convolution with a finite uniform filter. This expression
produces the same result as the moving average example in the previous section:

F = [a/n|i < n]

[sum([A(i+ j) ∗ F (j)|j < n])|i < (len(A, 0)− n− 1)]

Another frequently used special case of convolution is the convolution of a signal
with a time-shifted version of itself: autocorrelation. The autocorrelation identifies re-
peating patterns in a signal. Autocorrelation over discrete signals is a simple function:

f(t) =
∑

k

f(k)f(k − t)

In practical situations the signal is finite and the required infinite signal is emulated by
assuming the signal is periodic with the length of the series denoted by n:

f(t) =
n∑

k=0

f(t)f((k − t)%n)

Translated to RAM:

[sum([X(v) ∗X((t− v)%len(X, 0))|v < len(X, 0)])|t < len(X, 0)]

Discussion

Placing the RAM array-expressions in the context of time series shows that the com-
prehension construct allows operations to be expressed concisely in RAM using their
mathematical definitions.

6.2.3 Linear Algebra
Linear algebra is the branch of mathematics concerned with vector spaces, a central
theme in modern mathematics. The applications of linear algebra range from abstract
mathematical concepts such as functional analysis and analytic geometry to more con-
crete applications in the natural sciences and the social sciences. Many scientific mod-
els are formulated in terms of linear algebra.

As a result of the vast utility of linear algebra, the basic linear-algebra opera-
tors have been studied extensively in the context of high performance computing for
decades. For many operations efficient algorithms are known. However, these are typ-
ically algorithms used in stand-alone applications: relational database systems offer
little support for linear algebra.

The structure of both vectors and matrices translate directly to one-dimensional
and two-dimensional arrays. This direct translation makes it possible to elegantly ex-
press many of the linear algebra operations as array-expressions. This section explores
to what extent the RAM system is able to capture the basics of linear algebra.

6.2. RAM in Applications 145

Vectors

Traditionally, a vector refers to a quantity related to spatial coordinates. For example,
in physics vectors represent quantities with a direction and magnitude (length) such
as force or acceleration. This meaning has been generalized in mathematics, where
a vector is any element of a vector space over some field. From a purely practical
viewpoint, vectors are a number of elements (values) ordered over one dimension,
similar to a one-dimensional array. A three-dimensional vector ı̄ in can be represented
by a one-dimensional array I of length 3:

ı̄ ≡

 i1
i2
i3

 , I =
i1
i2
i3

.

The basic operations over vectors are addition, subtraction, and, the multiplication
of a vector with a scalar value. These are easily expressed as RAM expressions.

Addition of two vectors is defined as the pair-wise addition of the individual vector
elements, easily expressed in RAM.

ı̄+ ̄ ≡

 i1 + j1
i2 + j2
i3 + j3

 , add(I, J) = [I(x) + J(x)|x].

Likewise, the subtraction of two vectors is defined as the pair-wise subtraction of
the individual vector elements.

ı̄− ̄ ≡

 i1 − j1
i2 − j2
i3 − j3

 , subtract(I, J) = [I(x)− J(x)|x].

Multiplication of a vector with a scalar value is also similar. It is defined as the
multiplication of each of the individual vector elements by the single scalar value.

c · ı̄ ≡

 c · i1
c · i2
c · i3

 , multiply(c, I) = [c ∗ I(x)|x].

The operators discussed so far are element wise operations and as shown are easily
expressed in RAM. The following operators require the combination of the multiple
elements in a vector to produce a single value. These kind of operations are supported
by the aggregation construct. For example, consider computing the magnitude (or
length) of a vector:

|̄ı| ≡
√
i1

2 + i2
2 + i3

2 , length(I) = sqrt(sum([I(x) ∗ I(x)|x])).

146 Chapter 6. Case Studies

Finally we address the dot and cross products over vectors. The dot product of two
vectors ı̄ and ̄ (also called the inner product) is defined as: ı̄ · ̄ ≡ |̄ı| ∗ |̄| ∗ cos(θ),
where θ is the angle between the two vectors. Its value can be computed as follows:

ı̄ · ̄ ≡ i1j1 + i2j2 + i3j3 , dot(I, J) = sum([I(x) ∗ J(x)|x]).

Expressing the cross product in RAM is somewhat more complex. Like the dot
product, the cross product does not intuitively make much sense for vectors with a di-
mensionality higher than three. Unlike the dot product however, the cross product does
not have such an easily generalized formulation. It is defined as: ı̄× ̄ ≡ n̄|̄ı||̄| sin(θ),
where θ is the angle between the two vectors (0 ≤ θ ≤ π) and n̄ is a vector perpen-
dicular to both vectors. Methods to compute the cross product exist for a number of
dimensions, for example the three dimensional case:

ı̄× ̄ ≡

 i2j3 − i3j2
i3j1 − i1j3
i1j2 − i2j1

 ,

Cr =
1 2
2 0
0 1

cross(I, J) =
[I(Cr(x, 0)) ∗ J(Cr(x, 1))+
I(Cr(x, 1)) ∗ J(Cr(x, 0))|x]

The reason the cross-product is not easily expressed elegantly is that it is not a simple
formula that applies to all elements. Instead, the solution is different for each element
in the resulting vector, which is solved using the index matrix Cr.

Matrices

Matrices are in essence rectangular tables with numbers that depend on two categories
represented by the axes of the matrix. Mathematically, these numbers may represent
the coefficients of systems of linear equations and linear transformations.

In examining matrix operations, we observe a pattern similar to the vector opera-
tions discussed so far: It is trivial to express the simple basic operations in RAM, but
the more complex algorithms are less straightforward.

Like vectors, which are easily mapped on one-dimensional arrays, matrices are
similar in structure to arrays. In this case a 3 × 3 matrix A can be represented by a
two dimensional array A.

A ≡

 a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3

 , A =
a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3

Element-wise operations, such as matrix-addition are easily captured in RAM ex-

6.2. RAM in Applications 147

pressions.

A+B ≡

 a1,1 + b1,1 a1,2 + b1,2 a1,3 + b1,3

a2,1 + b2,1 a2,2 + b2,2 a2,3 + b2,3

a3,1 + b3,1 a3,2 + b3,2 a3,3 + b3,3

 ,

add(A,B) = [A(i, j) +B(i, j)|i, j].

The multiplication of a matrix with a scalar value is another example of an operation
that follows this element-wise pattern.

nA ≡

 na1,1 na1,2 na1,3

na2,1 na2,2 na2,3

na3,1 na3,2 na3,3

 , times(n,A) = [n ∗A(i, j)|i, j].

What makes matrices structurally more interesting than the vectors discussed in
the previous subsection is the fact that matrices have two dimensions instead of just
one. An example of a primitive operation that operates on these dimensions is the
matrix transposition:

AT ≡

 a1,1 a2,1 a3,1

a1,2 a2,2 a3,2

a1,3 a2,3 a3,3

 , transpose(A) = [A(i, j)|j, i].

An example of a simple operation that takes several values from a matrix to pro-
duce a single value is the trace. The trace of a matrix is defined as the sum of the
values on the matrix diagonal, which is trivial to express in RAM:

trace(A) ≡
∑

i ai,i , trace(A) = sum([A(i, i)|i]).

Matrix multiplication is often used as a benchmark operation as it is both an im-
portant operation in many algorithms as a relatively expensive operation. The expense
comes from the amount of data processed (i× j × k elements), not the complexity of
the operation. The simplicity of the operator itself – it can be concisely expressed in a
single formula – makes its expression in RAM trivial:

AB = C(ci,j =
∑

k ai,kbk,j),

multiply(A,B) = [sum([A(i, k) ∗B(k, j)|k])|i, j]

A similar observation can be made for the determination of the matrix determinant.
The determinant of a matrix is a number that indicates whether the linear system
represented by a square matrix has a unique solution. The system has a unique solution
if the determinant is non-zero. The Leibniz formula is a concise generic solution that
can be expressed elegantly in RAM:

det(A) =
∑

σ∈Sn
sgn(σ)

∏n
i=1Ai,σ(i),

det(A) = sum([sgn(s) ∗ prod([A(i, perm(len(A, 0), s, i))|i])|s < len(A, 0)!]).

148 Chapter 6. Case Studies

This sum is computed over all permutations of the numbers {1, 2, ..., n}, where sgn(σ)
denotes the signature of the permutation: +1 if it is an even permutation and −1 if
it is odd. These characteristics are represented in the RAM expression by a function
sgn(s) and a function perm(n, s, i) that returns the ith value in the sth permutation
of {1, 2, ..., n}.

It is not expressing these functions that is problematic, but rather the n! summands
that this method generates. There are other methods to compute the determinant value
more efficiently, but it is unrealistic to expect an optimizer to automatically derive
such (far more complex) methods.

Discussion

We have clearly shown that the RAM language can be used to elegantly capture most
of primitives found in a variety of domains. However, the declarative nature of the
language prohibits expression of certain more complex operations. The problem, as it
turns out, is not the data model but the declarative paradigm of the query language.

Declarative languages allow users to express what they want, not what the sys-
tem should do. In most cases this eases the burden on the user as the system derives
the most efficient way to compute the result. In some cases however, very efficient
methods are known but (virtually) impossible to derive from the initial problem defi-
nition automatically. In other cases the desired result can only described in an abstract
way, for example: the inverse matrix A−1 of a matrix A is the matrix that satisfies
AA−1 = A−1A = I . For the latter, algorithms are known to solve the problem given
certain specific conditions are met.

6.2.4 Textual Information Retrieval

Information retrieval (IR) is the process of retrieving information, usually in the form
of documents, relevant to a user. An information-retrieval system is different from a
database system in that it does not answer exact queries. Where database systems are
designed to retrieve exactly those data objects that satisfy the conditions exactly spec-
ified in a query, information retrieval systems are designed to return those documents
that satisfy a user’s information need. Such systems typically allow the user to express
his information need by providing keywords. The system then returns a ranked list of
documents that its retrieval model marks as relevant given the query.

Most information retrieval systems for textual documents are at the core based on
counting words, or terms, in documents. Roelleke et al. have provided an elegant
generic framework that captures a variety of different IR models [11]. The general
matrix framework for modeling information retrieval models the processes of infor-
mation retrieval as well as the evaluation of results in benchmarks as a number of
matrix operations. In this section we focus solely on the retrieval side of the frame-
work.

6.2. RAM in Applications 149

The framework models a collection of documents as a vector of terms ti ∈ T , and
a vector of documents di ∈ D. The central data structure is the document-term matrix
DT , which captures the occurrence of terms (tj) in documents (di):

∀dti,j ∈ DT : dti,j =
{

1 ⇐⇒ tj ∈ di

0 ⇐⇒ tj /∈ di

In the framework a specific query Q is similarly defined as a vector q̄ where:

∀qi ∈ q̄ : qi =
{

1 ⇐⇒ ti ∈ Q
0 ⇐⇒ ti /∈ Q

For a number of important IR models, retrieval-status-value functions (RVS) are de-
fined that compute a value for a given document-query combination. Typically this
value is a score that can be used to rank the documents in the collection on relevance.

Since theseRV S functions are defined as matrix operations, translation into RAM
expressions is simple using the linear algebra operators defined for RAM in Sec-
tion 6.2.3. Consider the basic vector-space model.

Example 6.8. Vector-space model in the general matrix framework. The vector-space
model is defined as follows:

RVSV SM (d, q) := d̄T · q̄

Which translates to the following RAM expression:

rvs vsm(d,Q) = multiply(transpose([DT (d, t)|t]), Q)

This expression produces the requested value for a single document/query pair.
Evaluating the function for the entire collection in RAM is as simple as applying it to
the vector of all documents:

score collection(Q) = [rvs vsm(D(d), Q)(0, 0)|d]

Here the result of the RVS function is dereferenced with the index value (0, 0) to extract
the value from the singleton matrix it produces. The actual ranking of the documents
based is subsequently performed by sorting the documents on the scores computed.

The example demonstrates clearly that the RAM system can be used to implement
non-trivial applications concisely. Unfortunately, the example also demonstrates a
practical problem with the limitations of the current version of RAM: limitation to
dense arrays. Representing the large document-term matrices used in information
retrieval explicitly as a dense matrix in the storage layer is infeasible for anything but
the smallest document collections5. A sparse RAM mapping, that does not materialize
the zero counts, would be needed to make a RAM implementation feasible for text
retrieval and similar applications.

5 For example, the collection for the 2006 Terabyte Track [12] consisted of 25 million documents con-
taining millions of unique terms. A collection this size would result in a document-term matrix hundreds of
terabytes large.

150 Chapter 6. Case Studies

6.3 Discussion
In this chapter we have seen a number of examples of the application of the RAM
system to specific problems. Using an example taken from a real-life problem from
multimedia-retrieval research we examined the performance potential of the RAM
system. Subsequently, we explored the expressiveness of the comprehension-based
array query language using basic operations, taken from four different potential appli-
cation areas for the RAM system, as examples.

The performance potential of the RAM system is promising. Using the the GMM
scoring application as a test case, we have shown that the RAM system has the poten-
tial for performance that is competitive with native solutions.

In addition, it is apparent that there is a definite class of problems that can be ele-
gantly and declaratively expressed using the RAM language. However, it is also clear
that there are limitations to the applicability of the RAM system, which is inherent to
the explicit focus on the array paradigm.

Another problem is a practical issue with the limitations of the current prototype of
the RAM system, in particular its limitation to dense arrays. For example, representing
the large document-term matrices used in information retrieval explicitly as a dense
matrix is infeasible for anything but the smallest document collections. A sparse
RAM mapping is essential to make a RAM implementation feasible for text retrieval
and similar applications.

BIBLIOGRAPHY 151

Bibliography
[1] R. Cornacchia, A.R. van Ballegooij, and A.P. de Vries. A Case Study on Ar-

ray Query Optimisation. In Proceedings of the First International Workshop on
Computer Vision meets Databases (CVDB 2004), 2004.

[2] A.R. van Ballegooij, R. Cornacchia, and A.P. de Vries. Automatic optimization
of array queries. Technical Report INS-E0501, CWI, 2005.

[3] D. Hiemstra. Using language models for information retrieval. PhD thesis,
Centre for Telematics and Information Technology, University of Twente, 2001.

[4] N. Vasconcelos. Bayesian Models for Visual Information Retrieval. PhD thesis,
Massachusetts Institute of Technology, 2000.

[5] T. Westerveld, A.P. de Vries, A.van Ballegooij, F.M.G. de Jong, and D.Hiemstra.
A probabilistic multimedia retrieval model and its evaluation. EURASIP Journal
on Applied Signal Processing, 2:186–198, 2003.

[6] T. Westerveld. Using generative probabilistic models for multimedia retrieval.
PhD thesis, Universiteit Twente, 2004.

[7] I.T. Nabney. NETLAB Algorithms for Pattern Recognition. Springer, 2004.

[8] P.A. Boncz and M.L. Kersten. MIL Primitives for Querying a Fragmented
World. The VLDB Journal, 8(2):101–119, October 1999.

[9] S. Ceri and G. Pelagatti. Distributed Databases. McGraw-Hill Book Company,
Singapore, 1985.

[10] P. Vassiliadis. Modeling Multidimensional Databases, Cubes and Cube Opera-
tions. In M. Rafanelli and M. Jarke, editors, The Proceedings of SSDB98, the
10th International Conference on Scientific and Statistical Database Manage-
ment, pages 53–62. IEEE Computer Society, 1998.

[11] T. Rölleke, T. Tsikrika, and G. Kazai. A general matrix framework for modelling
information retrieval. Inf. Process. Manage., 42(1):4–30, 2006.

[12] Stefan Büttcher, Charles L. A. Clarke, and Ian Soboroff. The TREC 2006 Ter-
abyte Track. In 15th Text REtrieval Conference (TREC 2006), November 2006.

Chapter 7

Conclusion and Future Work

This thesis set out to realize an extensible array-database architecture using rela-
tional mapping and existing relational database technology. To this end we have
presented the Relational Array Mapping system (RAM) and discussed a variety of
aspects regarding its mapping scheme throughout this thesis. This chapter concludes
with a brief summary of the contributions made, the conclusions to be drawn, and a
brief peek into the future of relational-array mapping.

7.1 Summary of Contributions

Chapter 3 presents a relational mapping scheme for array data and an associated
declarative query language. The relational mapping evolved from the lessons learned
from an early prototype [1] based on ideas outlined early on [2]. The query language,
based on comprehension syntax and semantics, focuses solely on the array data-type.
This explicit focus results in a system where the array paradigm can be studied with-
out being side-tracked by irrelevant engineering problems. However, the deployment
of this query language for real-world applications, explored in Chapter 6, is somewhat
impaired precisely due to this limitation.

At the core of the system sits a query optimizer. This optimizer rewrites the inter-
nal algebraic representation of an array query based on equivalence rules, as discussed
in Chapter 5. It is technologically inspired by the cost model driven query-rewriting
approach to (relational) query optimization [3]. The performance experiments, pre-
sented in Chapter 6, show that this optimizer is effective [4]. Extensibility of the
system has been shown [5] by extending the optimizer to distribute query processing
over multiple sites.

The system includes modules to translate the intermediate array algebra to the na-
tive language of a variety of back-ends. Translators are provided for SQL, the industry
standard for relational query languages; MIL, the native relational interface of Mon-
etDB; scripts for Matlab, a widely used mathematical tool; X100, a fully vectorized
next generation query processing engine for MonetDB; and low-level C++ programs.

153

154 Chapter 7. Conclusion and Future Work

The availability of mappings to different back-ends provides the opportunity to study
the requirements imposed on the system by the characteristics of the platforms con-
sidered.

7.1.1 Conclusion

Chapter 6 shows that an array database system has the potential to make database
technology interesting for a wide variety of computationally intensive problems. Inte-
gration of a multi-dimensional array data type and associated query facilities into an
existing relational framework complements it with a suitable means to concisely ex-
press many computational problems. The relational mapping proposed in this thesis,
the relational array mapping (RAM), is a viable approach to achieve this integration.

In this thesis we set out to achieve three goals, each contributing to the overall
objective of an extensible array database architecture.

The first goal was the specification of an efficient array-mapping scheme. In
Chapter 3 we presented such a scheme. The performance figures presented in Chap-
ter 6 show that a level of performance competitive with native solutions is within
reach: experimental evidence indicates that the RAM/MonetDB solution exhibits per-
formance comparable to Matlab.

The second goal was the exploration of query optimization at the array level.
Chapter 5 investigates array-query optimization based on (relational) query-optimization
techniques and the performance evaluation in Chapter 6 shows its effectiveness. The
key observation is that it makes sense to target optimization at the array level, rather
than relying on the optimizer of the relational back-end.

Optimization at the array level has two advantages: First, the array domain allows
for a simple yet effective cost model by providing exact (intermediate) result sizes.
Second, optimization at the array level overcomes the inevitable loss of context that
is a result form the translation of array queries to the relational domain. This loss
of context impairs relational optimizers to recognize optimization opportunities easily
recognized before the mapping. Examples of optimizations difficult to perform by
a relational system without explicit knowledge of the array context are discussed in
Chapter 5.

The third goal was to show that translation of array operations directly into
primitive relational operations allows for more efficient queries than high-level
relational query languages. Chapter 4 argues that the specific characteristics of a
given back-end require special attention in the query-generation process of RAM. For
example, the main-memory processing paradigm of MonetDB/MIL makes it essential
to generate iterative query plans that reuse intermediate results and control memory
usage, whereas the pipelined paradigm of MonetDB/X100 performs best on query
plans that avoid intermediate materialization. This argument is supported by the ex-
perimental evidence in Chapter 6, which convincingly shows that these specialized
query plans outperform the generic ones.

7.2. Future Work 155

Back-end specific characteristics can be exploited only because RAM explicitly
generates the query plan, which is, by design, not possible through a high-level declar-
atives query language such as SQL. Directly mapping into the relational layer allows
the RAM optimizer to provide directly the context information about the query and the
array domain. For this reason, it may be better equipped than a relational optimizer to
generate a query-evaluation plan.

7.2 Future Work

The RAM system as presented in this thesis provides for the most part a positive
answer to the research questions posed. As is, however, it has a few shortcomings that
may interfere with its deployment for full-scale applications. In this section we briefly
touch upon a number of these issues.

7.2.1 Set Integration

The RAM query language is explicitly limited to array structures, which means that
it does not offer the means to express “selection” of elements based on their values.
A lack of value-based selection does not seem problematic, at first, as we can manip-
ulate values based on location. However, certain types of value-based operations are
common and necessary.

For example, the case study recurring throughout this thesis is a retrieval applica-
tion. While the RAM system allows a concise expression of the mathematics required
to compute “scores” for documents in a collection, it lacks the means to sort these
scores to produce a ranking of documents. It cannot sort because sorting is an op-
eration that “selects” elements based on their values rather than their location in an
existing array.

In order to improve usability in practice, value-based operations are essential. Nat-
urally, a variety of such operations could be added to RAM as special functions, but
that does not solve the real problem. The generic alternative is to integrate the array
structures with sets, such that the value-based operations can be evaluated in the set
domain.

The RAM systems is based on relational mapping and as such, array queries are
evaluated by physically mapping them to the set domain. However, the details of this
mapping are hidden from the user. In Chapter 3, “array-to-set” and “set-to-array” con-
version operators were introduced to make the relational mapping process explicit. By
providing these operations to the user, both an array-based and a set-based represen-
tation of the same data can be made available.

156 Chapter 7. Conclusion and Future Work

7.2.2 Control structures
Analysis tasks often consist of steps that are to be repeated a given number of times
or until a certain condition is met. The query language of RAM does not offer any
constructs to express such repetitions other than literally repeating the same query
multiple times. However, given that a certain processing step (query) will be repeated
multiple times, the optimal execution plan may differ from the non-repetitive case.
For example, an optimizer could factorize out all parts of the query that are constant
during the loop, thereby significantly improve performance. Hence a (conditional)
loop construct may result in improved performance if the query optimizer is aware of
it.

7.2.3 Sparse Storage
The relational mapping scheme presented in this thesis stores all values in a given
array explicitly. Storing all elements explicitly is usually called a “dense” storage
scheme. However in many application domains data can easily be compressed by
using a “sparse” storage scheme. Many of these compressed storage schemes are
known for arrays, the simplest variant is defining a default value (typically 0) and
storing only those values that differ from it explicitly. This scheme is commonly used
in linear-algebra applications.

Preliminary experiments using a sparse implementation of the RAM primitives in
MIL have shown that results are promising. These results indicate that for arrays with
up to 20% non-default values, the sparse implementation does not only reduce storage
requirements, but is also more efficient.

The interesting aspect of using a “sparse” storage scheme is that it brings array
query evaluation closer to the relational domain. In the “dense” case, all array ele-
ments are physically present and the optimal query plan is essentially that plan that
scans through all that data quickest. In the “sparse” case, the optimization problem is
suddenly back in the domain of relational systems: Efficient processing of “sparse”
array queries requires efficient indexing schemes to retrieve data elements.

BIBLIOGRAPHY 157

Bibliography
[1] A.R. van Ballegooij, A.P. de Vries, and M. Kersten. RAM: Array processing over

a relational DBMS. Technical Report INS-R0301, CWI, March 2003.

[2] A.R. van Ballegooij. RAM: A Multidimensional Array DBMS. In Proceedings
of the ICDE/EDBT 2004 Joint Ph.D. Workshop, 2004.

[3] A.R. van Ballegooij, R. Cornacchia, and A.P. de Vries. Automatic optimization
of array queries. Technical Report INS-E0501, CWI, 2005.

[4] R. Cornacchia, A.R. van Ballegooij, and A.P. de Vries. A Case Study on Ar-
ray Query Optimisation. In Proceedings of the First International Workshop on
Computer Vision meets Databases (CVDB 2004), 2004.

[5] A.R. van Ballegooij, R. Cornacchia, A.P. de Vries, and M. Kersten. Distribution
Rules for Array Database Queries. In DEXA 2005, 2005.

Appendix A

A RAM Example: Sample
Likelihood

This Appendix contains the complete translation of a larger example from a RAM ex-
pression to three different back-end languages: C++, MIL, and, X100. The example
used is the GMM scoring function explained in Section 3.2.8 and used for the opti-
mization experiments in Chapter 6. Apart from the unfolding optimization presented
in Section 5.2.1, the example includes the optimizations discussed in Chapter 6.

A.1 The RAM Expression
Consider the GMM-scoring RAM expression presented earlier. The RAM query script
consists of three parts. The first part defines the shape, element type, and native names
(storage names in the back-end) of the persistent arrays present. The second part de-
fines a number of functions to ease the expression of the query: These functions are
merely syntactic sugar and implemented as macros; they are applied through straight-
forward substitution at query-compile time. The third, and final, part of the script
contains the actual query.

Definition of array-variables
Img = ([14,1320],dbl,"query_bat")
Mu = ([14,8,32318],dbl,"mu_bat")
S = ([14,8,32318],dbl,"sigma_bat")
P = ([8,32318],dbl,"prior_bat")

These arrays are defined over axes:
n = 14 , the number of dimensions of the feature vectors
c = 8 , the number of components in each Gaussian mixture model
m = 32318 , the total number of models in the collection
s = 1320 , the number of samples in query image ’Img’

Definition of RAM macros
norm(c,m) = 1.0 / (sqrt(pow(2.0 * 3.1415, 14.0)) * prod([S(n,c,m) | n]))
activ(c,s,m) = norm(c,m) *

exp(-0.5 * sum([pow(Img(n,s) - Mu(n,c,m), 2.0) / S(n,c,m) | n]))

The expression to be evaluated
RES = [sum([log(sum([P(c,m) * activ(c,s,m) | c])) | s]) | m]

159

160 Appendix A. A RAM Example: Sample Likelihood

During the optimization experiments conducted throughout Chapter 6, two major
changes where made to this query plan. First, as described in Section 6.1.1, part of the
expression was pre-computed. Normally the optimizer would realize pre-computation
by materializing the expression inline and using its values through application at the
array-algebra level. The effect of optimization can be mimicked in the RAM expres-
sion as follows:

activ(c,s,m) = [norm(c,m) | c, m](c,m) *
exp(-0.5 * sum([pow(Img(n,s) - Mu(n,c,m), 2.0) / S(n,c,m) | n]))

However, to keep the example concise, we explicitly materialize the sub expression
into a persistent array.

NORM = [norm(c,m) | c, m]
activ(c,s,m) = NORM(c,m) *

exp(-0.5 * sum([pow(Img(n,s) - Mu(n,c,m), 2.0) / S(n,c,m) | n]))

Second, as described in Section 6.1.1, the sub-query implementing the Mahalonobis
distance has been compiled into a user defined function (UDF):

activ(c,s,m) = NORM(c,m) *
exp(-0.5 * sum([mahalanobis(Img(n,s),Mu(n,c,m),S(n,c,m)) | n]))

The examples in the remainder of this appendix are based on the query script with
both these changes in place:

Definition of RAM macros and pre-computation of the NORM array
norm(c,m) = 1.0 / (sqrt(pow(2.0 * 3.1415, 14.0)) * prod([S(n,c,m) | n]))
NORM = [norm(c,m) | c, m]
activ(c,s,m) = NORM(c,m) *

exp(-0.5 * sum([mahalanobis(Img(n,s),Mu(n,c,m),S(n,c,m)) | n]))

The expression to be evaluated
RES = [sum([log(sum([P(c,m) * activ(c,s,m) | c])) | s]) | m]

A.2 RAM Query Translation
The RAM system translates queries to its intermediate array algebra before mapping
the resulting algebra expression to one of the back-end languages for query evalua-
tion. This section shows three phases in this translation process. First, the query is
normalized and flattened, as described in Section 3.4.1. Second, the normalized RAM
expression is translated into the array algebra, as described in Section 3.4.2. Finally,
the query optimizer, described in Chapter 5, optimizes the algebra expression.

Before a query is translated, the RAM system substitutes all references to macros,
inplace, with their definition. Substitution of the activ macro used, and defined, in
the query script results in the following (single) RAM expression:

[sum{
[log(sum{
[*(P(c,m),

*(NORM(c,m),
exp(*("-0.5",

sum{
[mahalanobis(Img(n,s),

Mu(n,c,m),

A.2. RAM Query Translation 161

S(c,s,m))
| n]}))))

| c]})
| s]}

| m]

A.2.1 Query Normalization
The first step in the query-translation process is normalization of the query, as de-
scribed in in Section 3.4.1. The key observation here is that all variables have been
replaced with explicit references and that as a result of the flattening process a num-
ber of additional comprehensions and subsequent applications have been added to the
expression:

[sum{
[[log(sum{

[[*(prior_bat[@0,@2],

*(NORM_bat[@0,@2],
exp(*("-0.5",

sum{
[[mahalanobis(query_bat(@0,@2),

mu_bat(@0,@1,@3),
sigma_bat(@0,@1,@3))

|14,8,1320,32318](@0,@1,@2,@3)
|14,8,1320,32318],1}(@0,@1,@2)))))

|8,1320,32318](@0,@1,@2)
|8,1320,32318],1}(@0,@1))

|1320,32318](@0,@1)
|1320,32318],1}(@0)

|32318]

Compared to the RAM expression presented above, the normalized RAM expres-
sion contains three additional comprehensions and six of these comprehensions are
dereferenced through application. Additionally, during the flattening process, addi-
tional axes have been added to the inner comprehensions to resolve axis dependencies
between inner and outer comprehensions. For example, the comprehension directly
inside the innermost summation is now specified over (all) four axes whereas the orig-
inal expression only contained axis n: these axes have been added because they are
referenced in the applications of the various arrays inside its value function (the Ma-
halanobis function).

A.2.2 Producing Array algebra
The second step in the query-translation process is the (straightforward) application of
the translation rules described in Section 3.4.2. Application of the translatioon rules
produces the following array-algebra expression:

Apply(
Aggregate("sum",
Apply(
Map("log",
[Apply(
Aggregate("sum",
Apply(

162 Appendix A. A RAM Example: Sample Likelihood

Map("*",
[Apply(Variable("priors_bat"),

[Grid([8,1320,32318],0),
Grid([8,1320,32318],2)]),

Map("*",
[Apply(Variable("NORM_bat"),

[Grid([8,1320,32318],0),
Grid([8,1320,32318],2)]),

Map("exp",
[Map("*",
[Const([8,1320,32318],"-0.5"),
Apply(
Aggregate("sum",
Apply(
Map("mahalanobis",
[Apply(Variable("query_bat"),
[Grid([14,8,1320,32318],0),
Grid([14,8,1320,32318],2)]),

Apply(Variable("mu_bat"),
[Grid([14,8,1320,32318],0),
Grid([14,8,1320,32318],1),
Grid([14,8,1320,32318],3)]),

Apply(Variable("sigma_bat"),
[Grid([14,8,1320,32318],0),
Grid([14,8,1320,32318],1),
Grid([14,8,1320,32318],3)])]),

[Grid([14,8,1320,32318],0),
Grid([14,8,1320,32318],1),
Grid([14,8,1320,32318],2),
Grid([14,8,1320,32318],3)]),

1),
[Grid([8,1320,32318],0),
Grid([8,1320,32318],1),
Grid([8,1320,32318],2)])])])])]),

[Grid([8,1320,32318],0),
Grid([8,1320,32318],1),
Grid([8,1320,32318],2)]),

1),
[Grid([1320,32318],0),
Grid([1320,32318],1)])]),

[Grid([1320,32318],0),
Grid([1320,32318],1)]),

1),
[Grid([32318],0)])

A.2.3 Query Optimization
The last step before mapping the algebra expression to any of the back-end languages
for evaluation is the application of the RAM optimizer. It is apparent that the optimizer
identifies and removes a number of identity transformations from the query plan, ev-
ident by the significant reduction in the number of Apply operators. In addition, the
optimizer attempts to apply unfolding, as described in Sections 5.2.1 and 6.1.1:

Fold("+",
Map("log",
[Aggregate("sum",

Map("*",
[Apply(Variable("priors_bat"),
[Grid([8,32318],0),
Grid([8,32318],1)]),

Map("*",

A.2. RAM Query Translation 163

[Apply(Variable("NORM_bat"),
[Grid([8,32318],0),
Grid([8,32318],1)]),

Map("exp",
[Map("*",
[Const([8,1,32318],"-0.5"),
Aggregate("sum",
Map("mahalanobis",
[Apply(Variable("query_bat"),
[Grid([14,8,32318],0),
Const([14,8,32318],"i1")]),

Apply(Variable("mu_bat"),
[Grid([14,8,32318],0),
Grid([14,8,32318],1),
Grid([14,8,32318],2)]),

Apply(Variable("sigma_bat"),
[Grid([14,8,32318],0),
Grid([14,8,32318],1),
Grid([14,8,32318],2)])]),

1)])])])]),
1)]),

"i1",
1320)

However, this Appendix is intended to illustrate the translation rules as presented in
Chapter 4. Therefore, we instruct the optimizer not to use the Fold operator, which
effectively reverts the expression back to a version that uses the regular Aggregate
operator instead:

Aggregate("sum",
Map("log",
[Aggregate("sum",
Map("*",
[Apply(Variable("priors_bat"),
[Grid([8,1320,32318],0),
Grid([8,1320,32318],2)]),

Map("*",
[Apply(Variable("NORM_bat"),
[Grid([8,1320,32318],0),
Grid([8,1320,32318],2)]),

Map("exp",
[Map("*",
[Const([8,1320,32318],"-0.5"),
Aggregate("sum",
Map("mahalanobis",
[Apply(Variable("query_bat"),
[Grid([14,8,1,32318],0),
Grid([14,8,1,32318],2)]),

Apply(Variable("mu_bat"),
[Grid([14,8,1320,32318],0),
Grid([14,8,1320,32318],1),
Grid([14,8,1320,32318],3)]),

Apply(Variable("sigma_bat"),
[Grid([14,8,1320,32318],0),
Grid([14,8,1320,32318],1),
Grid([14,8,1320,32318],3)])]),

1)])])])]),
1)]),

1)

164 Appendix A. A RAM Example: Sample Likelihood

A.3 RAM Array-Algebra Mappings
Given the array-algebra expression derived above, the RAM system has the function-
ality to produce query plans for a variety of back-end systems. Chapter 4 presents such
mappings for a number of different back-end languages: SQL, MIL, X100, Matlab,
and C++. In this section we present three of these mappings that represent different
platforms: the mapping to C++, a low-level programming language; the mapping to
MIL, a main memory relational database language; and the mapping to X100, a fully
pipelined relational query language.

Note that, in all three example mappings, the polynomial indexing function dis-
cussed in Section 4.2.1 is used to retrieve array elements from a linear storage structure
representing a multi-dimensional array.

A.3.1 Mapping to a Low-Level Language: C++
The RAM mapping to C++, presented in Section 4.4.2, produces a code fragment
that iterates over the result space computing one value at a time. Aggregates are
accumulated incrementally by iterating over the aggregation axes1:

dbl* res_bat = new dbl[(32318)];
for(int i0=0;i0<32318;i0++) { // Iterate over the result array
dbl a1 = 0;
for(int i1=0;i1<1320;i1++) { // sum(log(...))
dbl a2 = 0;
for(int i2=0;i2<8;i2++) { // sum(P * (NORM * exp(-0.5*(...))
dbl a3 = 0;
for(int i3=0;i3<14;i3++) { // sum(mahalanobis(...))
a3 += mahalanobis(query_bat[(i3+(14*i1))],

mu_bat[(i3+(14*(i2+(8*i0))))],
sigma_bat[(i3+(14*(i2+(8*i0))))]);

}
a2 += prior_bat[(i2+(8*i0))]

*(NORM_bat[(i2+(8*i0))]

*exp((-0.5*a3)));
}
a1 + log(a2);

}
res_bat[i0] = a1;

}

A.3.2 Mapping to Main Memory: MIL
The RAM mapping to MIL, presented in Section 4.3.2, produces a query script that ex-
plicitly materializes all intermediate results and produces results by processing whole
tables (storing these intermediate arrays) at once using bulk operators.

In the following MIL example all variables reference either a constant value, or a
Binary Association Table (BAT); BATs are tables with binary tuples. The BATs used
in the example all associate an object identifier (type oid) with a value (of type oid,
int, or, dbl), the object identifier column of the table is called the head column and the

1Note that the RAM system uses the type dbl instead of double.

A.3. RAM Array-Algebra Mappings 165

value column is called the tail column. A full reference on the MIL query language
can be found on the MonetDB website (http://monetdb.cwi.nl/). The example uses
only a few operators:

• The bat operator retrieves a persistent BAT by its name.

• The join operator performs the relational join over two BATs: join(A,B) =
π(A.head,B.tail)(A onA.tail=B.head B).

• The multiplex construct [f] maps a function over the natural-join result of two
BATs: [f](A,B) = π(A.head,f(A.tail,B.tail))(A onA.head=B.head B).

• The aggregation construct {g} applies the aggregate function g over grouped
values in a BAT. The groups are defined in a separate BAT, while a third BAT
(for optimization reasons) provides the full listing of groups a-priori: {g}(G,A,C) =
π(C.head,g(πA.tail(σG.tail=C.tail(GonG.head=A.headA))))C.

• Finally, the proprietary RAM milgrid operator produces a BAT containing in-
dices as defined in Section 4.3.2.

For readability, sections of MIL code that assign constants to variables and subse-
quently use those variables have been shortened, e.g. the fragment:

var t2 := lng(42659760);
var t3 := lng(8);
var t4 := lng(1);
var t5 := lng(0);
var t6 := milgrid(t2,t3,t4,t5);

has been replaced with:

var t6 := milgrid(42659760,8,1,0);

The example RAM expression results in the following MIL program:

Application of P
var t1 := bat("priors_bat");
var t6 := milgrid(42659760,8,1,0);
var t11 := milgrid(1,32318,10560,0);
var t13 := [*](8,t11);
var t14 := [+](t6,t13);
var t15 := [oid](t14);
var t16 := join(t15,t1);

Application of NORM
var t17 := bat("NORM_bat");
var t22 := milgrid(42659760,8,1,0);
var t27 := milgrid(1,32318,10560,0);
var t29 := [*](8,t27);
var t30 := [+](t22,t29);
var t31 := [oid](t30);
var t32 := join(t31,t17);

The const array (optimized to a
singleton constant)

var t33 := dbl(-0.5);

Application of Img
var t34 := bat("query_bat");
var t39 := milgrid(341278080,14,1,0);
var t44 := milgrid(32318,1320,112,0);
var t46 := [*](14,t44);
var t47 := [+](t39,t46);
var t48 := [oid](t47);
var t49 := join(t48,t34);

Application of Mu
var t50 := bat("mu_bat");
var t55 := milgrid(341278080,14,1,0);
var t60 := milgrid(42659760,8,14,0);
var t65 := milgrid(1,32318,147840,0);
var t68 := [*](8,t65);
var t69 := [+](t60,t68);
var t70 := [*](14,t69);

166 Appendix A. A RAM Example: Sample Likelihood

var t71 := [+](t55,t70);
var t72 := [oid](t71);
var t73 := join(t72,t50);

Application of Sig
var t74 := bat("sigma_bat");
var t79 := milgrid(341278080,14,1,0);
var t84 := milgrid(42659760,8,14,0);
var t89 := milgrid(1,32318,147840,0);
var t92 := [*](8,t89);
var t93 := [+](t84,t92);
var t94 := [*](14,t93);
var t95 := [+](t79,t94);
var t96 := [oid](t95);
var t97 := join(t96,t74);

Mapping of the Mahalanobis UDF
var t98 := [mahalanobis](t49,t73,t97);

Grouping and summation of the
Mahalanobis subexpression
var t103 := milgrid(42659760,8,14,0);
var t109 := milgrid(32318,1320,112,0);
var t115 := milgrid(1,32318,147804,0);
var t116 := [*](1320,t115);
var t117 := [+](t109,t116);
var t118 := [*](8,t117);
var t119 := [+](t103,t118);
var t120 := [oid](t119);
var t125 := milgrid(1,341278080,1,0);
var t126 := {sum}(t98,t120,t125);

0.5 * sum(mahalanobis)
var t127 := [*](t33,t126);

exp(0.5 * sum(mahalanobis))
var t128 := [exp](t127);

NORM * exp(...)
var t129 := [*](t32,t128);

P * (NORM * exp(...))
var t130 := [*](t16,t129);

Grouping and summation of the
second summation
var t135 := milgrid(32318,1320,8,0);
var t141 := milgrid(1,32318,10560,0);
var t142 := [*](1320,t141);
var t143 := [+](t135,t142);
var t144 := [oid](t143);
var t149 := milgrid(1,42659760,1,0);
var t150 := {sum}(t130,t144,t149);

Application of the log function
var t151 := [log](t150);

Grouping and summation of the
final summation
var t156 := milgrid(1,32318,1320,0);
var t157 := [oid](t156);
var t162 := milgrid(1,32318,1,0);
var t163 := {sum}(t151,t157,t162);

Done
var res := t163;

A.3.3 Mapping to a Pipeline: X100

The RAM mapping to X100, presented in Section 4.3.3, produces a query plan that
streams all data through an operator pipeline. The MonetDB/X100 system uses re-
lational algebra as its query language, a full reference on X100 can be found on the
MonetDB website (http://monetdb.cwi.nl/) In the example a number of X100 opera-
tors are used that warrant clarification:

• The BatMat operator retrieves a persistent column by its name.

• The AlignJoin operator positionally joins multiple columns into a single multi-
column table.

• The Fetch1 operator performs a special case join operation where it is known
that the there is a foreign-key relation: Each value in the first argument occurs
exactly once in the second argument.

• The FixedAggr operator aggregates elements in a table, grouping its elements
in fixed sized groups.

A.3. RAM Array-Algebra Mappings 167

• Finally, the proprietary RAM Array operator produces a column with array in-
dices, as defined in Section 4.3.3.

AlignJoin(# Post processing: adding an explicit axis column to the result
Project(
Array([i0_2=dimension(32318)]),
[i0_1=sint(i0_2)]),

Project(# Grouping and summation of the final summation
FixedAggr(
Project(# Grouping and summation of the second summation
FixedAggr(
Project(# P * (NORM * exp(...))
AlignJoin(
Project(# Application of P
Fetch1(
Project(
Array([v_0=dimension(8),v_1=dimension(1320),v_2=dimension(32318)]),
[Idx_10=+(uidx(v_0),*(uidx(’8’),uidx(v_2)))]),

Idx_10,
BatMat([v_12=’priors_bat’])),

[v_8=v_12]),
Project(# NORM * exp(...)
AlignJoin(
Project(# Application of NORM
Fetch1(
Project(
Array([v_0=dimension(8),v_1=dimension(1320),v_2=dimension(32318)]),
[Idx_17=+(uidx(v_0),*(uidx(’8’),uidx(v_2)))]),

Idx_17,
BatMat([v_19=’NORM_bat’])),

[v_15=v_19]),
Project(# exp(0.5 * sum(...))
Project(# 0.5 * sum(mahalanobis)
AlignJoin(
Project(# Grouping and summation of the Mahalanobis subexpression
Array([i0_24=dimension(8),i1_24=dimension(1320),

i2_24=dimension(32318)]),
[v_23=dbl(’-0.5’)]),

FixedAggr(
Project(# Application of the Mahalanobis UDF
AlignJoin(
Project(# Application of Img
Fetch1(
Project(
Array([v_0=dimension(14),v_1=dimension(8),

v_2=dimension(1320),v_3=dimension(32318)]),
[Idx_30=+(uidx(v_0),*(uidx(’14’),uidx(v_2)))]),

Idx_30,
BatMat([v_32=’query_bat’])),

[v_28=v_32]),
Project(# Application of Mu
Fetch1(
Project(
Array([v_0=dimension(14),v_1=dimension(8),

v_2=dimension(1320),v_3=dimension(32318)]),
[Idx_35=+(uidx(v_0),*(uidx(’14’),+(uidx(v_1),

*(uidx(’8’),uidx(v_3)))))]),
Idx_35,
BatMat([v_37=’mu_bat’])),

[v_33=v_37]),
Project(# Application of Sig
Fetch1(
Project(

168 Appendix A. A RAM Example: Sample Likelihood

Array([v_0=dimension(14),v_1=dimension(8),
v_2=dimension(1320),v_3=dimension(32318)]),

[Idx_40=+(uidx(v_0),*(uidx(’14’),+(uidx(v_1),

*(uidx(’8’),uidx(v_3)))))]),
Idx_40,
BatMat([v_42=’sigma_bat’])),

[v_38=v_42])),
[v_26=mahalanobis(v_28,v_33,v_38)]),

[],
[v_25=sum(v_26)],
14)),

[v_21=*(v_23,v_25)]),
[v_20=exp(v_21)])),

[v_13=*(v_15,v_20)])),
[v_6=*(v_8,v_13)]),

[],
[v_5=sum(v_6)],
8),

[v_4=log(v_5)]),
[],
[v_3=sum(v_4)],
1320),

[v_1=v_3]))

Appendix B

Summary

Database technology has not penetrated scientific computing in the same way it has the
business world. Yet scientific instruments and computer simulations are creating vast
volumes of data to be organized, managed, and analyzed: These are the primary tasks
of a database management system. The lack of acceptance of (relational) database
technology in science can be attributed to a number of issues: the lack of performance
offered by existing database management systems; the mismatch between scientific
paradigms and the relational data model; and the unclear benefit of the investments
required to switch from existing application frameworks, which at present suffice, to
a database driven environment.

Trends in the evolution of database technology are addressing the challenges posed
by very large scientific data sets [1]. Yet the interface hurdle imposed by the mis-
match between scientific paradigms and the relational model, generally known as the
impedance mismatch, remains. We seek a solution for this problem by introducing
array data structures in a database environment: Support for multi-dimensional ar-
rays as a primary data type has been argued to be the essential ingredient required for
database technology to be embraced by the scientific community [2].

The research objective of this thesis is the realization of an extensible array
database architecture using relational mapping and existing relational database
technology. Previous efforts toward array-oriented database systems were based on
the development of complete array DBMS from the ground up. We opt for an alter-
native approach based on relational mapping: the translation of operations over non-
relational data to relational queries over a relational representation of that data. This
approach has been used in object-relational database solutions where object-oriented
database functionality is realized by mapping operations to a relational DBMS [3].
Following the success of the object-relational approach, the emergence of XML data-
bases and the XQuery language [4] has lead to various XML-relational mapping
schemes [5, 6, 7].

The overall research objective is addressed through the following three goals. The
first goal is the specification of an efficient array-mapping scheme: We present
an array-oriented data model and show how this data model can be implemented in a

169

170 Appendix B. Summary

relational environment.
The second goal is to explore the benefit of query optimization at the array

level in addition to relational query optimization of translated array queries. We
explore the suitability of traditional relational optimization techniques to be applied in
the array domain.

The third goal is to show that translation of array operations directly into
primitive relational operations allows for more efficient queries than high-level
relational query languages would. We explore the specifics of translation to several
back-ends and discuss the merits of generating “smart” physical relational query plans
directly rather than relying on the relational system to optimize naively generated
query plans.

Research is conducted in the context of a prototype relational array mapping sys-
tem (called the RAM system) [8, 9]. This system is used in a case study and several
smaller scale experiments to validate the effectiveness of both the relational mapping
scheme and the different optimization techniques developed [10, 11, 12].

BIBLIOGRAPHY 171

Bibliography
[1] J. Gray, D.T. Liu, M. Nieto-Santisteban, A.S. Szalay, D. DeWitt, and G. Heber.

Scientific Data Management in the Coming Decade. Technical Report MSR-TR-
2005-10, Microsoft, Berkeley, Johns Hopkins University, Wisconsin, Cornell,
2005.

[2] D. Maier and B. Vance. A Call to Order. In Proceedings of the 12th ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems,
pages 1–16. ACM Press, 1993.

[3] Michael Stonebraker and Dorothy Moore. Object Relational DBMSs: The Next
Great Wave. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1995.

[4] W3C. XML Query (XQuery). Recommendation,
http://www.w3.org/TR/xquery/, 2007.

[5] Microsoft. Microsoft support for XML. http://msdn.microsoft.com/sqlxml.

[6] IBM. DB2 XML Extender. http://www.ibm.com /software /data /db2 /extenders
/xmlext /library.html.

[7] University of Konstanz, University of Twente, and CWI. MonetDB/XQuery.
http://monetdb.cwi.nl/XQuery.

[8] A.R. van Ballegooij, A.P. de Vries, and M. Kersten. RAM: Array processing
over a relational DBMS. Technical Report INS-R0301, CWI, March 2003.

[9] A.R. van Ballegooij. RAM: A Multidimensional Array DBMS. In Proceedings
of the ICDE/EDBT 2004 Joint Ph.D. Workshop, 2004.

[10] R. Cornacchia, A.R. van Ballegooij, and A.P. de Vries. A Case Study on Ar-
ray Query Optimisation. In Proceedings of the First International Workshop on
Computer Vision meets Databases (CVDB 2004), 2004.

[11] A.R. van Ballegooij, R. Cornacchia, and A.P. de Vries. Automatic optimization
of array queries. Technical Report INS-E0501, CWI, 2005.

[12] A.R. van Ballegooij, R. Cornacchia, A.P. de Vries, and M. Kersten. Distribution
Rules for Array Database Queries. In DEXA 2005, 2005.

Bijlage C

Samenvatting

In de wetenschappelijke wereld is database technologie lang niet zo populair als in de
zakelijke wereld, terwijl wetenschappelijke experimenten en simulaties enorme hoe-
veelheden data genereren die georganiseerd, beheerd en geanalyseerd moeten worden.
Dit zijn juist de hoofdtaken van een databasemanagementsysteem. Er zijn een aantal
redenen aan te wijzen waarom databasetechnologie niet zo veel gebruikt wordt in de
wetenschappelijke wereld: bestaande databasemanagementsystemen bieden niet vol-
doende verwerkingssnelheid; er is een verschil tussen wetenschappelijke gegevens-
structuren en het relationele model dat door databasemanagementsystemen aangebo-
den wordt en het is niet duidelijk genoeg dat het gebruik van databasemanagementsys-
temen voldoende effectief is om de investering in het gebruik er van te verantwoorden.

Recente ontwikkelingen in de database wereld richten zich juist op het omgaan
met de enorm grote wetenschappelijke verzamelingen gegevens [1]. Echter, het strui-
kelblok dat overwonnen moet worden om de structuur van wetenschappelijke gege-
vens verzamelingen te bewerken met databasetechnologie bestaat nog steeds. Wij
zoeken de oplossing voor dit probleem in de toevoeging van array datastructuren aan
een database omgeving. Deze ondersteuning voor multidimensionale array als een
gegevensstructuur voor databases kan de essentiële schakel zijn voor databasetechno-
logie om voet aan de grond te krijgen in de wetenschappelijke wereld [2].

Het onderzoeksdoel van dit proefschrift is de realisatie van een uitbreidbare
array database architectuur met gebruikmaking van bestaande relationele data-
base technologie. Eerdere pogingen om een array database systeem te ontwikkelen
begonnen helemaal opnieuw met de ontwikkeling van een nieuw systeem. Wij kie-
zen voor een alternatieve aanpak gebaseerd op relationele mapping: het representeren
van nieuwe gegevensstructuren en operaties op deze structuren in relationele termen.
Deze aanpak is eerder succesvol gebleken bij het realiseren van object georiënteerde
databases met de zogenaamde object-relational aanpak [3]. In navolging van de suc-
cesvolle object-relational aanpak heeft de opkomst van XML databases en de XQuery
taal [4] tot een reeks van XML-relational aanpakken geleid, zoals [5, 6, 7].

Dit onderzoeksdoel wordt nagestreefd met behulp van drie afzonderlijke doelen.
Het eerste doel is de specificatie van een efficiënte array mapping: we presenteren

173

174 Bijlage C. Samenvatting

een array gegevensmodel en laten zien hoe dit gegevensmodel geı̈mplementeerd kan
worden in een relationele database omgeving.

Het tweede doel is het verkennen van de mogelijkheden van de optimalisatie
van array queries in relatie tot de optimalisatie van de gegenereerde relationele
queries. Wij onderzoeken de bruikbaarheid van bestaande query optimalisatietech-
nieken voor de gepresenteerde array taal.

Het derde doel is het aantonen dat het direct vertalen van array queries in re-
lationele operaties betere resultaten oplevert dan een vertaling met tussenkomst
van een hoog niveau relationele query taal. Wij presenteren vertalingen voor array
queries naar een aantal verschillende talen en bespreken de voordelen die het direct
genereren van een ‘slimme’ vertaling biedt boven een naı̈eve vertaling die vertrouwt
op de optimalisatie mogelijkheden van het relationele systeem.

Dit onderzoek vind plaats met behulp van een prototype van een array database
systeem genaamd het RAM systeem [8, 9]. Dit systeem wordt gebruikt in een aantal
experimenten om te valideren dat zowel de relationele mapping als de ontwikkelde
optimalisatie technieken effectief zijn [10, 11, 12].

BIBLIOGRAFIE 175

Bibliografie
[1] J. Gray, D.T. Liu, M. Nieto-Santisteban, A.S. Szalay, D. DeWitt, and G. Heber.

Scientific Data Management in the Coming Decade. Technical Report MSR-TR-
2005-10, Microsoft, Berkeley, Johns Hopkins University, Wisconsin, Cornell,
2005.

[2] D. Maier and B. Vance. A Call to Order. In Proceedings of the 12th ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, pa-
ges 1–16. ACM Press, 1993.

[3] Michael Stonebraker and Dorothy Moore. Object Relational DBMSs: The Next
Great Wave. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1995.

[4] W3C. XML Query (XQuery). Recommendation,
http://www.w3.org/TR/xquery/, 2007.

[5] Microsoft. Microsoft support for XML. http://msdn.microsoft.com/sqlxml.

[6] IBM. DB2 XML Extender. http://www.ibm.com /software /data /db2 /extenders
/xmlext /library.html.

[7] University of Konstanz, University of Twente, and CWI. MonetDB/XQuery.
http://monetdb.cwi.nl/XQuery.

[8] A.R. van Ballegooij, A.P. de Vries, and M. Kersten. RAM: Array processing
over a relational DBMS. Technical Report INS-R0301, CWI, March 2003.

[9] A.R. van Ballegooij. RAM: A Multidimensional Array DBMS. In Proceedings
of the ICDE/EDBT 2004 Joint Ph.D. Workshop, 2004.

[10] R. Cornacchia, A.R. van Ballegooij, and A.P. de Vries. A Case Study on Ar-
ray Query Optimisation. In Proceedings of the First International Workshop on
Computer Vision meets Databases (CVDB 2004), 2004.

[11] A.R. van Ballegooij, R. Cornacchia, and A.P. de Vries. Automatic optimization
of array queries. Technical Report INS-E0501, CWI, 2005.

[12] A.R. van Ballegooij, R. Cornacchia, A.P. de Vries, and M. Kersten. Distribution
Rules for Array Database Queries. In DEXA 2005, 2005.

SIKS Dissertatiereeks

1998

1998-1 Johan van den Akker (CWI)
DEGAS - An Active, Temporal
Database of Autonomous Objects

1998-2 Floris Wiesman (UM)
Information Retrieval by
Graphically Browsing Meta-Information

1998-3 Ans Steuten (TUD)
A Contribution to the Linguistic
Analysis of Business Conversations
within the Language/Action Perspective

1998-4 Dennis Breuker (UM)
Memory versus Search in Games

1998-5 E.W.Oskamp (RUL)
Computerondersteuning bij Straftoemeting

1999

1999-1 Mark Sloof (VU)
Physiology of Quality Change Modelling;
Automated modelling of Quality Change
of Agricultural Products

1999-2 Rob Potharst (EUR)
Classification using decision trees
and neural nets

1999-3 Don Beal (UM)
The Nature of Minimax Search

1999-4 Jacques Penders (UM)
The practical Art of Moving Physical Objects

1999-5 Aldo de Moor (KUB)
Empowering Communities: A Method for
the Legitimate User-Driven Specification
of Network Information Systems

1999-6 Niek J.E. Wijngaards (VU)
Re-design of compositional systems

1999-7 David Spelt (UT)
Verification support for object
database design

1999-8 Jacques H.J. Lenting (UM)
Informed Gambling: Conception and
Analysis of a Multi-Agent
Mechanism for Discrete Reallocation.

2000

2000-1 Frank Niessink (VU)
Perspectives on Improving Software
Maintenance

2000-2 Koen Holtman (TUE)
Prototyping of CMS Storage Management

2000-3 Carolien M.T. Metselaar (UVA)
Sociaal-organisatorische gevolgen van
kennistechnologie; een procesbenadering
en actorperspectief.

2000-4 Geert de Haan (VU)
ETAG, A Formal Model of Competence
Knowledge for User Interface Design

2000-5 Ruud van der Pol (UM)
Knowledge-based Query Formulation in
Information Retrieval.

2000-6 Rogier van Eijk (UU)
Programming Languages for Agent
Communication

2000-7 Niels Peek (UU)
Decision-theoretic Planning of
Clinical Patient Management

2000-8 Veerle Coup (EUR)
Sensitivity Analyis of Decision-
Theoretic Networks

2000-9 Florian Waas (CWI)
Principles of Probabilistic Query
Optimization

2000-10 Niels Nes (CWI)
Image Database Management System
Design Considerations, Algorithms
and Architecture

2000-11 Jonas Karlsson (CWI)
Scalable Distributed Data Structures
for Database Management

177

178 SIKS Dissertatiereeks

2001

2001-1 Silja Renooij (UU)
Qualitative Approaches to Quantifying
Probabilistic Networks

2001-2 Koen Hindriks (UU)
Agent Programming Languages: Programming
with Mental Models

2001-3 Maarten van Someren (UvA)
Learning as problem solving

2001-4 Evgueni Smirnov (UM)
Conjunctive and Disjunctive Version Spaces with
Instance-Based Boundary Sets

2001-5 Jacco van Ossenbruggen (VU)
Processing Structured Hypermedia: A Matter
of Style

2001-6 Martijn van Welie (VU)
Task-based User Interface Design

2001-7 Bastiaan Schonhage (VU)
Diva: Architectural Perspectives on
Information Visualization

2001-8 Pascal van Eck (VU)
A Compositional Semantic Structure
for Multi-Agent Systems Dynamics.

2001-9 Pieter Jan ’t Hoen (RUL)
Towards Distributed Development of Large
Object-Oriented Models, Views of Packages
as Classes

2001-10 Maarten Sierhuis (UvA)
Modeling and Simulating Work Practice
BRAHMS: a multiagent modeling and
simulation language for work practice
analysis and design

2001-11 Tom M. van Engers (VUA)
Knowledge Management: The Role of
Mental Models in Business Systems Design

2002

2002-01 Nico Lassing (VU)
Architecture-Level Modifiability Analysis

2002-02 Roelof van Zwol (UT)
Modelling and searching web-based
document collections

2002-03 Henk Ernst Blok (UT)
Database Optimization Aspects for
Information Retrieval

2002-04 Juan Roberto Castelo Valdueza (UU)
The Discrete Acyclic Digraph Markov Model
in Data Mining

2002-05 Radu Serban (VU)
The Private Cyberspace Modeling Electronic
Environments inhabited by Privacy-concerned
Agents

2002-06 Laurens Mommers (UL)
Applied legal epistemology; Building a
knowledge-based ontology of the legal domain

2002-07 Peter Boncz (CWI)
Monet: A Next-Generation DBMS Kernel For
Query-Intensive Applications

2002-08 Jaap Gordijn (VU)
Value Based Requirements Engineering:
Exploring Innovative E-Commerce Ideas

2002-09 Willem-Jan van den Heuvel(KUB)
Integrating Modern Business Applications
with Objectified Legacy Systems

2002-10 Brian Sheppard (UM)
Towards Perfect Play of Scrabble

2002-11 Wouter C.A. Wijngaards (VU)
Agent Based Modelling of Dynamics:
Biological and Organisational Applications

2002-12 Albrecht Schmidt (Uva)
Processing XML in Database Systems

2002-13 Hongjing Wu (TUE)
A Reference Architecture for Adaptive
Hypermedia Applications

2002-14 Wieke de Vries (UU)
Agent Interaction: Abstract Approaches to
Modelling, Programming and Verifying
Multi-Agent Systems

2002-15 Rik Eshuis (UT)
Semantics and Verification of UML Activity
Diagrams for Workflow Modelling

2002-16 Pieter van Langen (VU)
The Anatomy of Design: Foundations, Models
and Applications

2002-17 Stefan Manegold (UVA)
Understanding, Modeling, and Improving
Main-Memory Database Performance

2003

2003-01 Heiner Stuckenschmidt (VU)
Ontology-Based Information Sharing in Weakly
Structured Environments

SIKS Dissertatiereeks 179

2003-02 Jan Broersen (VU)
Modal Action Logics for Reasoning About
Reactive Systems

2003-03 Martijn Schuemie (TUD)
Human-Computer Interaction and Presence in
Virtual Reality Exposure Therapy

2003-04 Milan Petkovic (UT)
Content-Based Video Retrieval Supported by
Database Technology

2003-05 Jos Lehmann (UVA)
Causation in Artificial Intelligence and Law
- A modelling approach

2003-06 Boris van Schooten (UT)
Development and specification of
virtual environments

2003-07 Machiel Jansen (UvA)
Formal Explorations of Knowledge
Intensive Tasks

2003-08 Yongping Ran (UM)
Repair Based Scheduling

2003-09 Rens Kortmann (UM)
The resolution of visually guided behaviour

2003-10 Andreas Lincke (UvT)
Electronic Business Negotiation: Some
experimental studies on the interaction
between medium, innovation context and culture

2003-11 Simon Keizer (UT)
Reasoning under Uncertainty in Natural
Language Dialogue using Bayesian Networks

2003-12 Roeland Ordelman (UT)
Dutch speech recognition in multimedia
information retrieval

2003-13 Jeroen Donkers (UM)
Nosce Hostem - Searching with Opponent
Models

2003-14 Stijn Hoppenbrouwers (KUN)
Freezing Language: Conceptualisation
Processes across ICT-Supported Organisations

2003-15 Mathijs de Weerdt (TUD)
Plan Merging in Multi-Agent Systems

2003-16 Menzo Windhouwer (CWI)
Feature Grammar Systems - Incremental
Maintenance of Indexes to Digital Media
Warehouses

2003-17 David Jansen (UT)
Extensions of Statecharts with Probability,
Time, and Stochastic Timing

2003-18 Levente Kocsis (UM)
Learning Search Decisions

2004

2004-01 Virginia Dignum (UU)
A Model for Organizational Interaction: Based
on Agents, Founded in Logic

2004-02 Lai Xu (UvT)
Monitoring Multi-party Contracts for E-business

2004-03 Perry Groot (VU)
A Theoretical and Empirical Analysis of
Approximation in Symbolic Problem Solving

2004-04 Chris van Aart (UVA)
Organizational Principles for Multi-Agent
Architectures

2004-05 Viara Popova (EUR)
Knowledge discovery and monotonicity

2004-06 Bart-Jan Hommes (TUD)
The Evaluation of Business Process Modeling
Techniques

2004-07 Elise Boltjes (UM)
Voorbeeldig onderwijs; voorbeeldgestuurd
onderwijs, een opstap naar abstract denken,
vooral voor meisjes

2004-08 Joop Verbeek(UM)
Politie en de Nieuwe Internationale
Informatiemarkt, Grensregionale politiële
gegevensuitwisseling en digitale expertise

2004-09 Martin Caminada (VU)
For the Sake of the Argument; explorations
into argument-based reasoning

2004-10 Suzanne Kabel (UVA)
Knowledge-rich indexing of learning-objects

2004-11 Michel Klein (VU)
Change Management for Distributed Ontologies

2004-12 The Duy Bui (UT)
Creating emotions and facial expressions
for embodied agents

2004-13 Wojciech Jamroga (UT)
Using Multiple Models of Reality:
On Agents who Know how to Play

2004-14 Paul Harrenstein (UU)
Logic in Conflict. Logical Explorations
in Strategic Equilibrium

2004-15 Arno Knobbe (UU)
Multi-Relational Data Mining

180 SIKS Dissertatiereeks

2004-16 Federico Divina (VU)
Hybrid Genetic Relational Search for
Inductive Learning

2004-17 Mark Winands (UM)
Informed Search in Complex Games

2004-18 Vania Bessa Machado (UvA)
Supporting the Construction of Qualitative
Knowledge Models

2004-19 Thijs Westerveld (UT)
Using generative probabilistic models for
multimedia retrieval

2004-20 Madelon Evers (Nyenrode)
Learning from Design: facilitating
multidisciplinary design teams

2005

2005-01 Floor Verdenius (UVA)
Methodological Aspects of Designing
Induction-Based Applications

2005-02 Erik van der Werf (UM))
AI techniques for the game of Go

2005-03 Franc Grootjen (RUN)
A Pragmatic Approach to the
Conceptualisation of Language

2005-04 Nirvana Meratnia (UT)
Towards Database Support for Moving
Object data

2005-05 Gabriel Infante-Lopez (UVA)
Two-Level Probabilistic Grammars for
Natural Language Parsing

2005-06 Pieter Spronck (UM)
Adaptive Game AI

2005-07 Flavius Frasincar (TUE)
Hypermedia Presentation Generation for
Semantic Web Information Systems

2005-08 Richard Vdovjak (TUE)
A Model-driven Approach for Building
Distributed Ontology-based Web Applications

2005-09 Jeen Broekstra (VU)
Storage, Querying and Inferencing for
Semantic Web Languages

2005-10 Anders Bouwer (UVA)
Explaining Behaviour: Using Qualitative
Simulation in Interactive Learning
Environments

2005-11 Elth Ogston (VU)
Agent Based Matchmaking and Clustering - A
Decentralized Approach to Search

2005-12 Csaba Boer (EUR)
Distributed Simulation in Industry

2005-13 Fred Hamburg (UL)
Een Computermodel voor het Ondersteunen
van Euthanasiebeslissingen

2005-14 Borys Omelayenko (VU)
Web-Service configuration on the Semantic
Web; Exploring how semantics meets pragmatics

2005-15 Tibor Bosse (VU)
Analysis of the Dynamics of Cognitive Processes

2005-16 Joris Graaumans (UU)
Usability of XML Query Languages

2005-17 Boris Shishkov (TUD)
Software Specification Based on Re-usable
Business Components

2005-18 Danielle Sent (UU)
Test-selection strategies for
probabilistic networks

2005-19 Michel van Dartel (UM)
Situated Representation

2005-20 Cristina Coteanu (UL)
Cyber Consumer Law,
State of the Art and Perspectives

2005-21 Wijnand Derks (UT)
Improving Concurrency and Recovery in
Database Systems by Exploiting Application
Semantics

2006

2006-01 Samuil Angelov (TUE)
Foundations of B2B Electronic Contracting

2006-02 Cristina Chisalita (VU)
Contextual issues in the design and use of
information technology in organizations

2006-03 Noor Christoph (UVA)
The role of metacognitive skills in
learning to solve problems

2006-04 Marta Sabou (VU)
Building Web Service Ontologies

2006-05 Cees Pierik (UU)
Validation Techniques for Object-Oriented
Proof Outlines

SIKS Dissertatiereeks 181

2006-06 Ziv Baida (VU)
Software-aided Service Bundling - Intelligent
Methods & Tools for Graphical Service Modeling

2006-07 Marko Smiljanic (UT)
XML schema matching – balancing efficiency
and effectiveness by means of clustering

2006-08 Eelco Herder (UT)
Forward, Back and Home Again - Analyzing
User Behavior on the Web

2006-09 Mohamed Wahdan (UM)
Automatic Formulation of the Auditor’s Opinion

2006-10 Ronny Siebes (VU)
Semantic Routing in Peer-to-Peer Systems

2006-11 Joeri van Ruth (UT)
Flattening Queries over Nested Data Types

2006-12 Bert Bongers (VU)
Interactivation - Towards an e-cology of
people, our technological environment,
and the arts

2006-13 Henk-Jan Lebbink (UU)
Dialogue and Decision Games for
Information Exchanging Agents

2006-14 Johan Hoorn (VU)
Software Requirements: Update, Upgrade,
Redesign - towards a Theory of Requirements
Change

2006-15 Rainer Malik (UU)
CONAN: Text Mining in the Biomedical Domain

2006-16 Carsten Riggelsen (UU)
Approximation Methods for Efficient
Learning of Bayesian Networks

2006-17 Stacey Nagata (UU)
User Assistance for Multitasking
with Interruptions on a Mobile Device

2006-18 Valentin Zhizhkun (UVA)
Graph transformation for Natural
Language Processing

2006-19 Birna van Riemsdijk (UU)
Cognitive Agent Programming:
A Semantic Approach

2006-20 Marina Velikova (UvT)
Monotone models for prediction in data mining

2006-21 Bas van Gils (RUN)
Aptness on the Web

2006-22 Paul de Vrieze (RUN)
Fundaments of Adaptive Personalisation

2006-23 Ion Juvina (UU)
Development of Cognitive Model for
Navigating on the Web

2006-24 Laura Hollink (VU)
Semantic Annotation for Retrieval
of Visual Resources

2006-25 Madalina Drugan (UU)
Conditional log-likelihood MDL and
Evolutionary MCMC

2006-26 Vojkan Mihajlovic (UT)
Score Region Algebra: A Flexible Framework
for Structured Information Retrieval

2006-27 Stefano Bocconi (CWI)
Vox Populi: generating video documentaries
from semantically annotated media repositories

2006-28 Borkur Sigurbjornsson (UVA)
Focused Information Access using XML
Element Retrieval

2007

2007-01 Kees Leune (UvT)
Access Control and Service-Oriented
Architectures

2007-02 Wouter Teepe (RUG)
Reconciling Information Exchange and
Confidentiality: A Formal Approach

2007-03 Peter Mika (VU)
Social Networks and the Semantic Web

2007-04 Jurriaan van Diggelen (UU)
Achieving Semantic Interoperability in
Multi-agent Systems: a dialogue-based approach

2007-05 Bart Schermer (UL)
Software Agents, Surveillance, and the Right
to Privacy: a Legislative Framework for
Agent-enabled Surveillance

2007-06 Gilad Mishne (UVA)
Applied Text Analytics for Blogs

2007-07 Natasa Jovanovic’ (UT)
To Whom It May Concern - Addressee
Identification in Face-to-Face Meetings

2007-08 Mark Hoogendoorn (VU)
Modeling of Change in Multi-Agent
Organizations

2007-09 David Mobach (VU)
Agent-Based Mediated Service Negotiation

182 SIKS Dissertatiereeks

2007-10 Huib Aldewereld (UU)
Autonomy vs. Conformity: an Institutional
Perspective on Norms and Protocols

2007-11 Natalia Stash (TUE)
Incorporating Cognitive/Learning Styles
in General-Purpose Adaptive Hypermedia
System

2007-12 Marcel van Gerven (RUN)
Bayesian Networks for Clinical Decision
Support: A Rational Approach to Dynamic
Decision-Making under Uncertainty

2007-13 Rutger Rienks (UT)
Meetings in Smart Environments;
Implications of Progressing Technology

2007-14 Niek Bergboer (UM)
Context-Based Image Analysis

2007-15 Joyca Lacroix (UM)
NIM: a Situated Computational Memory
Model

2007-16 Davide Grossi (UU)
Designing Invisible Handcuffs. Formal
investigations in Institutions and
Organizations for Multi-agent Systems

2007-17 Theodore Charitos (UU)
Reasoning with Dynamic Networks in
Practice

2007-18 Bart Orriens (UvT)
On the development an management of
adaptive business collaborations

2007-19 David Levy (UM)
Intimate relationships with artificial partners

2007-20 Slinger Jansen (UU)
Customer Configuration Updating in a
Software Supply Network

2007-21 Karianne Vermaas (UU)
Fast diffusion and broadening use:
A research on residential adoption and
usage of broadband internet in the
Netherlands between 2001 and 2005

2007-22 Zlatko Zlatev (UT)
Goal-oriented design of value and
process models from patterns

2007-23 Peter Barna (TUE)
Specification of Application Logic
in Web Information Systems

2007-24 Georgina Ramrez Camps (CWI)
Structural Features in XML Retrieval

2007-25 Joost Schalken (VU)
Empirical Investigations in Software Process
Improvement

2008

2008-01 Katalin Boer-Sorbn (EUR)
Agent-Based Simulation of Financial Markets:
A modular, continuous-time approach

2008-02 Alexei Sharpanskykh (VU)
On Computer-Aided Methods for Modeling and
Analysis of Organizations

2008-03 Vera Hollink (UVA)
Optimizing hierarchical menus:
a usage-based approach

2008-04 Ander de Keijzer (UT)
Management of Uncertain Data -
towards unattended integration

2008-05 Bela Mutschler (UT)
Modeling and simulating causal dependencies
on process-aware information systems from
a cost perspective

2008-06 Arjen Hommersom (RUN)
On the Application of Formal Methods to
Clinical Guidelines, an Artificial
Intelligence Perspective

2008-07 Peter van Rosmalen (OU)
Supporting the tutor in the design and
support of adaptive e-learning

2008-08 Janneke Bolt (UU)
Bayesian Networks: Aspects of Approximate
Inference

2008-09 Christof van Nimwegen (UU)
The paradox of the guided user: assistance
can be counter-effective

2008-10 Wauter Bosma (UT)
Discourse oriented summarization

2008-11 Vera Kartseva (VU)
Designing Controls for Network
Organizations: A Value-Based Approach

2008-12 Jozsef Farkas (RUN)
A Semiotically Oriented Cognitive Model
of Knowledge Representation

2008-13 Caterina Carraciolo (UVA)
Topic Driven Access to Scientific Handbooks

2008-14 Arthur van Bunningen (UT)
Context-Aware Querying; Better Answers
with Less Effort

SIKS Dissertatiereeks 183

2008-15 Martijn van Otterlo (UT)
The Logic of Adaptive Behavior: Knowledge
Representation and Algorithms for the Markov
Decision Process Framework in First-Order
Domains

2008-16 Henriette van Vugt (VU)
Embodied agents from a user’s perspective

2008-17 Martin Op ’t Land (TUD)
Applying Architecture and Ontology to
the Splitting and Allying of Enterprises

2008-18 Guido de Croon (UM)
Adaptive Active Vision

2008-19 Henning Rode (UT)
From Document to Entity Retrieval:
Improving Precision and Performance of
Focused Text Search

2008-20 Rex Arendsen (UVA)
Geen bericht, goed bericht. Een onderzoek
naar de effecten van de introductie van
elektronisch berichtenverkeer met de
overheid op de administratieve lasten van
bedrijven

2008-21 Krisztian Balog (UVA)
People Search in the Enterprise

2008-22 Henk Koning (UU)
Communication of IT-Architecture

2008-23 Stefan Visscher (UU)
Bayesian network models for the management
of ventilator-associated pneumonia

2008-24 Zharko Aleksovski (VU)
Using background knowledge in ontology
matching

2008-25 Geert Jonker (UU)
Efficient and Equitable Exchange in Air
Traffic Management Plan Repair using
Spender-signed Currency

2008-26 Marijn Huijbregts (UT)
Segmentation, Diarization and Speech
Transcription: Surprise Data Unraveled

2008-27 Hubert Vogten (OU)
Design and Implementation Strategies for
IMS Learning Design

2008-28 Ildiko Flesch (RUN)
On the Use of Independence Relations in
Bayesian Networks

2008-29 Dennis Reidsma (UT)
Annotations and Subjective Machines -
Of Annotators, Embodied Agents, Users, and
Other Humans

2008-30 Wouter van Atteveldt (VU)
Semantic Network Analysis: Techniques for
Extracting, Representing and Querying Media
Content

2008-31 Loes Braun (UM)
Pro-Active Medical Information Retrieval

2008-32 Trung H. Bui (UT)
Toward Affective Dialogue Management using
Partially Observable Markov Decision
Processes

2008-33 Frank Terpstra (UVA)
Scientific Workflow Design; theoretical and
practical issues

2008-34 Jeroen de Knijf (UU)
Studies in Frequent Tree Mining

2008-35 Ben Torben Nielsen (UvT)
Dendritic morphologies: function shapes
structure

2009

2009-01 Rasa Jurgelenaite (RUN)
Symmetric Causal Independence Models

2009-02 Willem Robert van Hage (VU)
Evaluating Ontology-Alignment Techniques

2009-03 Hans Stol (UvT)
A Framework for Evidence-based Policy
Making Using IT

2009-04 Josephine Nabukenya (RUN)
Improving the Quality of Organisational
Policy Making using Collaboration
Engineering

2009-05 Sietse Overbeek (RUN)
Bridging Supply and Demand for Knowledge
Intensive Tasks - Based on Knowledge,
Cognition, and Quality

2009-06 Muhammad Subianto (UU)
Understanding Classification

2009-07 Ronald Poppe (UT)
Discriminative Vision-Based Recovery and
Recognition of Human Motion

2009-08 Volker Nannen (VU)
Evolutionary Agent-Based Policy Analysis in
Dynamic Environments

2009-09 Benjamin Kanagwa (RUN)
Design, Discovery and Construction of Service-
oriented Systems

184 SIKS Dissertatiereeks

2009-10 Jan Wielemaker (UVA)
Logic programming for knowledge-intensive
interactive applications

2009-11 Alexander Boer (UVA)
Legal Theory, Sources of Law & the Semantic
Web

2009-12 Peter Massuthe (TUE, Humboldt-Universitaet
zu Berlin)
Operating Guidelines for Services

2009-13 Steven de Jong (UM)
Fairness in Multi-Agent Systems

2009-14 Maksym Korotkiy (VU)
From ontology-enabled services to service-
enabled ontologies (making ontologies work
in e-science with ONTO-SOA)

2009-15 Rinke Hoekstra (UVA)
Ontology Representation - Design Patterns
and Ontologies that Make Sense

2009-16 Fritz Reul (UvT)
New Architectures in Computer Chess

2009-17 Laurens van der Maaten (UvT)
Feature Extraction from Visual Data

2009-18 Fabian Groffen (CWI)
Armada, An Evolving Database System

2009-19 Valentin Robu (CWI)
Modeling Preferences, Strategic Reasoning
and Collaboration in Agent-Mediated Electronic
Markets

2009-20 Bob van der Vecht (UU)
Adjustable Autonomy: Controling Influences on
Decision Making

2009-21 Stijn Vanderlooy (UM)
Ranking and Reliable Classification

2009-22 Pavel Serdyukov (UT)
Search For Expertise: Going beyond direct
evidence

2009-23 Peter Hofgesang (VU)
Modelling Web Usage in a Changing
Environment

2009-24 Annerieke Heuvelink (VUA)
Cognitive Models for Training Simulations

2009-25 Alex van Ballegooij (CWI)
RAM: Array Database Management through
Relational Mapping

	Foreword
	Introduction
	Large Data Volumes
	Multi-Dimensional Arrays
	Relational Mapping
	Research Objectives
	Bibliography

	A History of Arrays
	Programming Languages
	Array Oriented
	Array Comprehension
	Array Centric
	Array Shape

	Formalization
	Shape Separation
	APL Inspired

	Arrays in Database Technology
	Ordered Structures in Databases
	Conceptual Arrays in Databases - OLAP
	Multidimensional Arrays

	Summary
	Bibliography

	An Array Database System
	The Data Model
	The Array
	Array-to-Set Conversion

	An Array Query Language
	Naming Convention
	Value Extraction
	Array Generation - Comprehension
	Built-in Functions
	Illustrating Example: Convolution
	A Matter of Choice
	High-Level Array Operators
	A Large Example: Sample Likelihood

	An Array Algebra
	Intermediate Algebra

	Query Translation
	Query Normalization
	Translating Comprehension

	Discussion
	Sparseness
	Language Extensions

	Bibliography

	Implementation
	A Basic Mapping
	The Base Function
	The Relational Array Algebra
	RAM in SQL

	Efficient Query Evaluation
	An Efficient Storage Scheme

	MonetDB
	Array storage in MonetDB
	Mapping to Main-Memory
	Mapping to a Pipeline

	Mapping to Low-level Languages
	RAM in Matlab
	RAM in C++

	Discussion
	Bibliography

	Optimization
	The RAM Optimizer
	Query Transformations
	Search Strategy
	Cost Model
	Discussion

	Optimizer Extensions
	Unfolding array queries
	Distributing array queries
	Alternative Translations
	Avoiding Join Operations

	Bibliography

	Case Studies
	Performance Study
	Query-Optimization Experiments
	Distributing array queries

	RAM in Applications
	OLAP
	Time Series
	Linear Algebra
	Textual Information Retrieval

	Discussion
	Bibliography

	Conclusion and Future Work
	Summary of Contributions
	Conclusion

	Future Work
	Set Integration
	Control structures
	Sparse Storage

	Bibliography

	A RAM Example: Sample Likelihood
	The RAM Expression
	RAM Query Translation
	Query Normalization
	Producing Array algebra
	Query Optimization

	RAM Array-Algebra Mappings
	Mapping to a Low-Level Language: C++
	Mapping to Main Memory: MIL
	Mapping to a Pipeline: X100

	Summary
	Bibliography

	Samenvatting
	Bibliography

	SIKS Dissertatiereeks

