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THE STRONG ARNOLD PROPERTY FOR 4-CONNECTED FLAT

GRAPHS

Alexander Schrijver1 and Bart Sevenster1

Abstract. We show that if G = (V,E) is a 4-connected flat graph, then any real symmetric V × V

matrix M with exactly one negative eigenvalue and satisfying, for any two distinct vertices i and
j, Mij < 0 if i and j are adjacent, and Mij = 0 if i and j are nonadjacent, has the Strong Arnold
Property: there is no nonzero real symmetric V ×V matrix X with MX = 0 and Xij = 0 whenever
i and j are equal or adjacent. (A graph G is flat if it can be embedded injectively in 3-dimensional
Euclidean space such that the image of any circuit is the boundary of some disk disjoint from the
image of the remainder of the graph.)

This applies to the Colin de Verdière graph parameter, and extends similar results for 2-connected
outerplanar graphs and 3-connected planar graphs.

Key words: flat graph, Colin de Verdière parameter, Strong Arnold Property
MSC Mathematical Subject Classification: 05C50, 15A18, 05C10

1. Introduction

Let G = (V,E) be an undirected graph. Call a real symmetric V × V matrix a well-signed

G-matrix if for all distinct i, j ∈ V : Mij < 0 if ij ∈ E and Mij = 0 if ij 6∈ E. (No condition
on the diagonal elements.) For any real symmetric matrix M , let λ−(M) be the number of
negative eigenvalues, taking multiplicities into account. The corank of M is the dimension
of its nullspace ker(M).

The famous Colin de Verdière parameter µ(G) [1] is defined to be the maximal corank
of any well-signed G-matrix M with λ−(M) = 1 and having the Strong Arnold Property:

(1) there is no nonzero real symmetric V × V matrix X with MX = 0 and Xij = 0
whenever i and j are equal or adjacent.

The interest of the parameter µ(G) was exhibited by Colin de Verdière [1], who showed
that µ(G) is minor-monotone, that is, µ(H) ≤ µ(G) if H is a minor of G, — in other
words, for each k, the collection of graphs G with µ(G) ≤ k is closed under taking minors;
hence there are finitely many forbidden minors, by Robertson and Seymour [9]. The Strong
Arnold Property is crucial for the minor-monotonicity.

Moreover, Colin de Verdière [1] showed (i), (ii), and (iii) in:

(2) (i) µ(G) ≤ 1 if and only if G is a disjoint union of paths,
(ii) µ(G) ≤ 2 if and only if G is outerplanar,
(iii) µ(G) ≤ 3 if and only if G is planar,
(iv) µ(G) ≤ 4 if and only if G is flat.

Statement (iv) was proved by Robertson, Seymour, and Thomas [10] (only if) and Lovász
and Schrijver [6] (if). Recall that a graph G is flat if it can be embedded injectively in R

3

such that the image of any circuit is the boundary of some disk disjoint from the image
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of the remainder of the graph. As was shown in [10], a graph is flat if and only if it is
linklessly embeddable, that is, can be embedded injectively in R

3 such that the images of
any two disjoint circuits are unlinked. We refer to [4] for a survey of the Colin de Verdière
parameter.

A short proof of (iii) was given by van der Holst [2], which proof also implies that if G
is 3-connected and planar, then any well-signed G-matrix M with λ−(M) = 1, has corank
at most 3. So the Strong Arnold Property is not needed to define µ(G) for such graphs
G. That is, if we define κ(G) to be the maximum corank of any well-signed G-matrix M

with λ−(M) = 1, then κ(G) = µ(G) for 3-connected planar graphs G. Here 3-connectivity
cannot be relaxed to 2-connectivity, since κ(K2,t) = t for all t, while µ(K2,t) = 3 for all
t ≥ 3. In [6], it was shown that κ(G) = µ(G) also for 4-connected flat graphs.

The latter means that for any 4-connected flat graph G, among the well-signed G-
matrices M with λ−(M) = 1 that maximize corank(M), there is one having the Strong
Arnold Property. In this paper, we prove that for any 4-connected flat graph G, each well-
signed G-matrix M with λ−(M) = 1 has the Strong Arnold Property. This extends results
of van der Holst [3] who proved this for 2-connected outerplanar graphs and for 3-connected
planar graphs. In fact, one may show that if this holds for all µ(G)-connected graphs with
µ(G) = k, then also for all µ(G)-connected graphs G with µ(G) ≤ k (by an apex graph
argument).

The above raises the question whether the Strong Arnold Property would be superfluous
to impose for all µ(G)-connected graphs G — in the weak sense: that κ(G) = µ(G), or in
the strong sense: that each well-signed G-matrix M with λ−(M) = 1, has the Strong Arnold
Property. We do not put this as conjecture, since our proof method might suggest that the
case µ(G) ≤ 4 is exceptional.

The relevance of the present paper may also lie in obtaining a better understanding of
the nullspace embedding of a graph G defined by M (see below). For a 3-connected planar
graph, such a nullspace embedding corresponds to a planar embedding of the graph on the
2-sphere (Lovász [5], cf. [7,8]). An intriguing question is whether, if G is a 4-connected
flat graph and M is a well-signed G-matrix with λ−(M) = 1, its nullspace embedding
(normalized to unit-length vectors) yields a flat embedding of G on the 3-sphere. The fact
that any such matrix has the Strong Arnold Property may help in proving this.

2. The Strong Arnold Property and quadrics

We first formulate the Strong Arnold Property of M in terms of the nullspace embedding
defined by M . Let G = (V,E) be an undirected graph and let M be a well-signed G-matrix
with λ−(M) = 1 and with corank d. Let b1, . . . , bd ∈ R

V be a basis of ker(M). Define, for
each i ∈ V , the vector ui ∈ R

d by: (ui)j := (bj)i, for j = 1, . . . , d. So we have u : V → R
d.

Then u is called the nullspace embedding of G defined by M . Note that u is unique up to
linear transformations of Rd.

The Strong Arnold Property of M is in fact a property only of the graph G and the
function i 7→ 〈ui〉. (Throughout, 〈. . .〉 denotes the linear space spanned by . . ..) When we
have u : V → R

d, define |G| to be the following subset of Rd:

(3) |G| :=
⋃

{〈ui〉 | i ∈ V } ∪
⋃

{〈ui, uj〉 | ij ∈ E}.
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A subset Q of R
d is called a homogeneous quadric if it is the solution set of a nonzero

homogeneous quadratic equation.

Proposition 1. M has the Strong Arnold Property if and only |G| is not contained in any

homogeneous quadric.

Proof. Let U be the d× V matrix with as columns the vectors ui for i ∈ V .
Suppose that some homogeneous quadric Q = {y | yTNy = 0} contains |G|, where N

is a nonzero symmetric d × d matrix. Then X := UTNU is a nonzero symmetric V × V

matrix that contradicts the Strong Arnold Property (1).
Conversely, suppose thatM has not the Strong Arnold Property. LetX be a matrix as in

(1). As MX = 0 and as X is symmetric, we have X = UTNU for some nonzero symmetric
d× d matrix N . Then Q := {y | yTNy = 0} is a homogeneous quadric containing |G|.

Throughout this paper, by a hyperplane, plane, and line in R
d we mean linear subspaces,

of dimension d− 1, 2, and 1, respectively. Note that if a homogeneous quadric Q contains
a hyperplane then Q is the union of one or two hyperplanes (as we can assume that Q

contains {x | x1 = 0}, hence the quadratic form is (aTx)x1 for some nonzero a ∈ R
d).

We will consider triples G,M, u where

(4) G is a graph, M is a well-signed G-matrix with one negative eigenvalue, and
u : V → R

d is the nullspace embedding defined by M .

The essence of our proof is showing that, for any such triple G,M, u with G a 4-connected
flat graph and d = 4,

(5) |G| is not contained in the union of two hyperplanes, and |G| contains distinct
planes P1, . . . , P4 with P1 ∩ P2 ∩ P3 6= {0} and P1 ∩ P4 = {0}.

Having this, the following basic fact on quadrics shows that |G| cannot be contained in any
homogeneous quadric:

Proposition 2. Let Q be a homogeneous quadric in R
4, not being the union of two hy-

perplanes. If a line is contained in three planes on Q, it is contained in each plane on

Q.

Proof. Suppose line ℓ is contained in planes P1, P2, P3 on Q, but not in plane R on Q.
Consider two distinct i, j ∈ {1, 2, 3}, and define H := Pi + Pj. As H 6⊆ Q, Q′ := Q ∩ H

is a homogeneous quadric in H. Since Q′ ⊇ Pi ∪ Pj , we know Q′ = Pi ∪ Pj . Hence, as
R∩H 6= {0} (since dim(R) = 2 and dim(H) = 3) and as Pi ∩Pj ∩R = ℓ∩R = {0}, R \{0}
intersects precisely one of Pi and Pj. As this cannot hold simultaneously for each two i, j

in {1, 2, 3}, we are done.
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3. Graphs and hyperplanes

Having u : V → R
d, we say that a subspace is spanned if it is linearly spanned by a subset

of u(V ). A crucial tool will be the following lemma of van der Holst [2]:

Proposition 3 (Van der Holst’s lemma). Let G,M, u satisfy (4), and let H be a hyperplane

in R
d, splitting R

d into the two halfspaces H ′ and H ′′.

(6) (i) If G is connected and H is spanned, then each of the vertex sets u−1(H ′) and

u−1(H ′′) is nonempty and spans a connected subgraph of G;

(ii) Any vertex in u−1(H) with a neighbour in u−1(H ′), has also a neighbour in

u−1(H ′′).

Van der Holst’s lemma gives the first half in (5):

Proposition 4. Let G,M, u satisfy (4), with G a 4-connected flat graph. Then |G| is not

contained in the union of two hyperplanes.

Proof. Suppose |G| ⊆ H1 ∪H2 for hyperplanes H1, H2 in R
d. As u(V ) is full-dimensional,

H1 andH2 are distinct, and we can assume they are spanned hyperplanes. LetH ′

i andH ′′

i be
the two sides of Hi. By (6)(i), for each i = 1, 2, each of the vertex sets u−1(H ′

i) and u−1(H ′′

i )
induces a connected subgraph of G. As G is 4-connected, there exist 4 internally disjoint
paths connecting u−1(H ′

1) and u−1(H ′

2). By (6)(ii), H ′

1 and H ′′

1 have the same neighbours
in u−1(H1 ∩H2). Similarly, H ′

2 and H ′′

2 have the same neighbours in u−1(H1 ∩H2). Hence
we can assume that all internal vertices of these paths belong to u−1(H1∩H2). Contracting
each of these paths, and contracting each u−1(H ′

i) and u−1(H ′′

i ), we obtain K4,4. This is a
contradiction, as K4,4 is not flat.

From Proposition 4 we derive:

Proposition 5. Let G,M, u satisfy (4), with G a 4-connected flat graph and d = 4. Then

there exist planes P,R ⊆ |G| with P ∩R = {0}.

Proof. Let P be the collection of planes P ⊆ |G|, and let L be the collection of lines in |G|
not contained in any plane. Suppose to the contrary that P ∩R 6= {0} for all P,R ∈ P.

Let H be a spanned hyperplane containing a maximum number of planes in P. If some
P ∈ P is not contained inH, then there exist R,S ∈ P withH = R+S (by the maximality),
and R ∩ S ⊆ P (as R ∩ P 6= {0} and S ∩ P 6= {0}, while P 6⊆ R + S). Hence there exists
a line ℓ ⊂ H with P ∩ H = ℓ for each P ∈ P with P 6⊆ H. Concluding, for all distinct
P,R ∈ P ∪L, P \H and R \H are disjoint (as if P,R ∈ P then ℓ = P ∩R, hence P \ ℓ and
R \ ℓ are disjoint).

Let H ′ and H ′′ be the halfspaces separated by H. By (6)(i), u−1(H ′) and u−1(H ′′)
induce connected subgraphs of G. So there are at most two P ∈ P ∪L with P 6⊆ H. Let J
be the sum of these P . Then J has dimension at most 3. So |G| is contained in the union
of two hyperplanes, contradicting Proposition 4.
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4. Existence of P1, P2, P3, P4

In this section, we prove the second half in (5). First, three lemmas.

Lemma 1. Let G,M, u satisfy (4), with d = κ(G) ≥ 2 and G connected. Let G′ be a

subgraph of G with V (G′) = V , and let A be a well-signed G′-matrix with ker(M) ⊆ ker(A).
Then λ−(A) ≤ 1.

Proof. Suppose λ−(A) ≥ 2. Then there exists β > 0 such that λ−(βA+M) ≥ 2. Let α be
the infimum of these β. Note that corank(βA+M) ≥ corank(M), since ker(M) ⊆ ker(A).
For any real symmetric matrix X, denote by λi(X) the i-th eigenvalue of X from below,
taking multiplicities into account.

Then λ−(αA + M) = 1. Suppose not. Then α > 0. As αA + M is a G-matrix, as
G is connected, and as corank(αA + M) ≥ corank(M) ≥ 2, αA + M has at least one
negative eigenvalue, by Perron-Frobenius. For each γ < α one has λ−(γA + M) ≤ 1, so
λ2(γA + M) ≥ 0, hence by continuity of λ2, λ2(αA + M) ≥ 0. So λ−(αA + M) = 1,
contradicting our assumption.

Moreover, by definition of α, there exist β > α arbitrarily close to α with λ−(βA+M) ≥
2. As corank(βA + M) ≥ corank(M) = κ(G) =: k, we have λk+2(βA + M) ≤ 0. Then,
by continuity of λk+2, λk+2(αA + M) ≤ 0. So corank(αA + M) ≥ k + 1 > κ(G). This
contradicts the definition of κ(G).

Lemma 2. Let C be a circuit and let u : V (C) → R
2 \{0} be such that for any two incident

edges ij and jk, the vectors ui and uk are at different sides of the line 〈uj〉. Then there

exists a well-signed C-matrix A with λ−(A) ≥ 1 such that u is the nullspace embedding

defined by A.

Proof. For each edge ij of C, define aij := −|det(ui, uj)|
−1. If i and k are the two

neighbours of vertex j, then v := aijui + ajkuk is a scalar multiple of uj ; equivalently,
det(v, uj) = 0. Indeed,

(7) det(v, uj) = aij det(ui, uj) + ajk det(uk, uj) = −
det(ui, uj)

|det(ui, uj)|
−

det(uk, uj)

|det(uj , uk)|
= 0,

since det(ui, uj) and det(uk, uj) have opposite signs (as ui and uk are at different sides of
〈uj〉).

Concluding, there exists ajj such that v = −ajjuj , yielding the matrix A. Note that
necessarily λ−(A) ≥ 1, by Perron-Frobenius, as corank(A) ≥ 2 and C is connected.

Lemma 3. Let G,M, u satisfy (4). Let P ⊆ |G| be a plane such that there are no two other

planes R,S ⊆ |G| with P ∩ R ∩ S 6= {0}. Then there exists a subgraph GP of G which is a

circuit on a subset of u−1(P \{0}) added with isolated vertices, and a well-signed GP -matrix

AP with ker(M) ⊆ ker(AP ) and λ−(AP ) ≥ 1.

Proof. Choose an edge ij such that P = 〈ui, uj〉. As uj is in at most two planes, there is a
hyperplane H of R4 such that H ∩P is equal to the line 〈uj〉, and such that all neighbours
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t of j satisfy ut ∈ H ∪ P . As j has a neighbour i with ui at one side of H, it also has a
neighbour k with uk at the other side of H, by (6)(ii). So uk ∈ P . Repeating this for jk

instead of ij, and iterating, we obtain an infinite walk in G, and hence a circuit C. This
circuit satisfies the conditions of Lemma 2, giving the matrix AP .

Proposition 6. Let G,M, u satisfy (4), with G a 4-connected flat graph and d = 4. Then

there exist distinct planes P1, P2, P3, P4 ⊆ |G| with P1 ∩ P2 ∩ P3 6= {0} and P1 ∩ P4 = {0}.

Proof. By Proposition 5, there exist planes P,R ⊆ |G| with P ∩ R = {0}. If planes as
required do not exist, we can apply Lemma 3 both to P and to R. Consider the graphs
GP and GR and the matrices AP and AR as in Lemma 3. From these we can construct a
graph G′ = GP ∪GR and a matrix A := AP +AR (where we may assume that AP and AR

are 0 outside P and R respectively) satisfying the conditions of Lemma 1, however with
λ−(A) ≥ 2 (as P ∩R = {0}), contradicting Lemma 1.

5. Theorem and proof

Having all ingredients, the proof of the theorem now is easy.

Theorem. Let G be a 4-connected flat graph. Then each well-signed G-matrix M with one

negative eigenvalue has the Strong Arnold Property.

Proof. Suppose M has not the Strong Arnold Property. Let d := corank(M) and let
u : V (G) → R

d be the nullspace embedding defined by M . By [6], d ≤ 4. Then Propositions
2, 4, and 6 imply d ≤ 3.

Let Q be a homogeneous quadric in R
d with |G| ⊆ Q. By Proposition 4, Q is not the

union of two hyperplanes. This implies that d = 3 and that Q, and hence |G|, contains no
plane. So if i and j are adjacent, then dim〈ui, uj〉 ≤ 1. Let H be a spanned plane. Then by
(6)(i), |G| \H has at most two components. Hence it is contained in the union of at most
two lines. So |G| is contained in the union of two planes, a contradiction.
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