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ABSTRACT 
The development of applications involving multi-dimensional 
data sets on top of a RDBMS raises several difficulties that 
are not directly related to the scientific problem being ad­
dressed. In particular, an additional effort is needed to solve 
the mismatch existing between the array-based data model 
typical for such computations and the set-based data model 
provided by the RDMBS. The RAM (Relational Array Map­
ping) system fills this gap, silently providing a mapping 
layer between the two data models. As expected though, 
a naive implementation of such an automatic translation 
cannot compete with the efficiency of queries written by an 
experienced programmer. In order to make RAM a valid al­
ternative to expensive and time-consuming hand-written so­
lutions, this performance gap should be reduced. We study 
a real-world application aimed at the ranking of multimedia 
collections to assess the impact of different implementation 
strategies. The result of this study provides an illustrative 
outlook for the development of generally applicable optimi­
sation techniques. 

1. INTRODUCTION 
Most multimedia retrieval efforts use database systems. 

However, it rarely entails the entire retrieval process. Usu­
ally, the database system serves only as a persistent store 
for (derived) meta data for multimedia. Only the most rudi­
mentary retrieval functionality, such as keyword search on 
transcripts, is handled by the database system: complex 
tasks like multimedia indexing are performed by proprietary 
external tools. This phenomenon is not limited to the mul­
timedia domain: application areas beyond (simple) admin­
istrative tasks are dominated by custom-built solutions. 

Using database technology for multimedia applications is 
a challenge that has an impact on the requirements of such 
a system. First, it shifts priority toward runtime perfor­
mance; while high performance has always been one of the 
requirements of a database system, in a business setting 
this requirement has been overshadowed by criteria such as 
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reliability and security. Also, in domains like multimedia 
the order of data objects plays a very important role, such 
that the set-based data model underlying relational data­
base technology may no longer suffice. Maier and Vance 
have argued for long that the mismatch of data models is 
the major obstacle for the deployment of (relational) data­
base technology in computation oriented domains (such as 
multimedia analysis) [1]. It causes an unnatural encoding of 
(multimedia) objects in the relational data model, encour­
aging users to implement their processing code client-side. 
The result is that the DBMS is still used merely as a per­
sistent data store. 

Our research builds upon past experience with the imple­
mentation of multimedia retrieval and analysis in a database 
setting, see e.g. [2]. While the set-oriented (bulk) query pro­
cessing techniques common in relational query processing 
have proven their potential value for multimedia analysis, 
the efficient manipulation of the (inherently ordered) me­
dia data requires non-trivial data storage schemes. The re­
sulting query plans are rarely intuitive, while deriving such 
plans is a laborious and error-prone process: it is difficult to 
keep track of the relationship between the operations in the 
relational query and the steps in the original algorithm. 

This paper presents a case study of how to apply the data­
base approach successfully to a multimedia retrieval prob­
lem, overcoming the issues discussed above. We detail how a 
non-trivial video retrieval application has been moved from 
a stand-alone application to a client-server database appli­
cation. The case study relates to the video retrieval system 
that our research group has applied for both TRECVID 2002 
and 2003 [3, 4]. The core of its retrieval process computes 
the likelihood of an example image query for each indexed 
shot, using a probabilistic retrieval model based on Gaussian 
mixture models. 

The retrieval system has been originally implemented in 
Matlab [5], precisely because of the aforementioned mis­
match in data models and the (resulting) lack of efficiency. 
In this report, we focus specifically on the strategies applied 
to overcome the problems encountered when implementing 
our retrieval algorithm directly on top of a relational data­
base system. For each individual strategy, we discuss its 
generality or its limitations with respect to its application 
in different settings. 

2. THE RAM APPROACH 
Expressing the main algorithm of our case study using 

a standard set-based database query language is not triv­
ial. As detailed in Section 3, our multimedia retrieval algo-



rithm requires multi-dimensional data structures to handle 
the image representation in feature space as well as the pa­
rameters of the Gaussian Mixture models. Using these data 
structures in a set-oriented query language (such as SQL) 
requires the developer to make the dimensions that are re­
ferred to explicit, resulting in a rather lengthy SQL query. 
Besides the added complexity, the result is also undesirable 
from the perspective of the DBMS engine: large complex 
SQL queries pose a problem for the query optimiser. 

We seek a solution to this problem of expressiveness of 
standard relational query languages for multi-dimensional 
data by introducing array data structures in the database 
query language. The RAM (Relational Array Mapping) sys­
tem is a prototype array database system, that aims to dis­
close database technology to users with complex computa­
tional tasks [6]. A discussion of the prototype RAM im­
plementation is presented in [7]. Instead of developing an 
array database system from scratch, arrays are added to 
existing database systems, by mapping internally the array 
structures to relations. This way, array extensions naturally 
blend in with existing database functionality. 

The RAM system provides a comprehension based array­
query language (see [8]), that allows to express array-specific 
queries concisely. Array comprehensions allow users to spec­
ify (new) arrays by declaring it's dimensions and a function 
to compute the value for each of its cells. The RAM query 
language is similar to the one described in the AQL proposal 
[9]. Support for this language is isolated in a separate front­
end that communicates to the DBMS by issuing relational 
queries. This approach matches the layered design of Mon­
etDB [10], the primary target system for RAM. MonetDB 
supports various front-ends, each providing a different query 
language, that implement their query processing strategies 
on top of a generic relational kernel. 

The front-end does not translate the array comprehen­
sions directly into the back-end's relational query language. 
Queries are translated into an intermediate array-algebra 
before the final transformation to the relational domain. 
This intermediate language is utilised by a traditional System­
R style optimiser [11 J, specifically geared toward the opti­
misation of array queries. Through application of rewriting 
rules the RAM optimiser searches for a (more) optimal query 
plan by minimising intermediate result sizes. The actual op­
timised query expressed in the target query language is the 
result of the last transformation step. Figure 1 depicts the 
life-cycle of an array query through the different layers of 
the RAM system, as described above. 

By adding the array functionality into a relational DBMS, 
we can reuse existing storage and evaluation primitives. By 
storing array data as relations the full spectrum of relational 
operations can be performed on that array data. This in­
directly guarantees complete query and data-management 
functionality: the RAM front-end focuses solely on prob­
lems inherent to the array domain. 

The challenge being addressed by our current and future 
research activity is to effectively exploit the opportunities 
introduced by the RAM system in the multimedia informa­
tion retrieval domain. 

3. CASE STUDY 
The main contribution of this paper is a case study to 

investigate the feasibility of a RAM implementation of the 
probabilistic retrieval system that our research group devel-
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Figure 1: Life-cycle of a query evaluated by RAM. 

oped for the search task of TRECVID 2002 and 2003: the 
retrieval of relevant shots of video material given a query im­
age. The probabilistic retrieval method used to rank video 
shots is a generative model. Using generative models for in­
formation retrieval (IR) follows the so-called 'language mod­
elling approach' to IR (see e.g. [12]). Applying this idea 
to image retrieval has been pioneered in [13]. Now, before 
changing our focus to the database aspects of this retrieval 
problem, this section presents concisely the visual part of the 
multimedia retrieval system studied. The interested reader 
is referred to [14) for more details. 

Image documents are first decomposed as bags of samples 
(8 by 8 pixel blocks), described by their DCT coefficients. 
These bags of samples are subsequently modelled as prob­
ability distributions, by fitting a Gaussian Mixture model. 
The relevance of a collection image given a query image is 
then assumed to be approximated by the ability of its mix­
ture model Wm to describe the samples X = (:z:1, .. ., :Z:N.) 
of the query image: 

Ns 

P(Xlwm) = IJ P(x.lwm). ( 1) 
s=l 

The probability P(x.lwm) for a single sample x. is obtained 
by summing the contribution of each component of the mix­
ture model, altered by its a priori probability P(Cc): 

Ne 

P(x.lwm) = L P(Cc,m)Q(:z:a,J.£c,m' :Ec,m)• (2) 
c=l 

Here, the probability density function for each component 
is defined as a multivariate Gaussian distribution in Nn di­
mensions: 

Q(x :E) = 1 e-!<m-µ)T:E-1(.,-µ). (3) 
,µ, J(2?T)N,,l:EI 

Assuming that the Gaussian models have a diagonal covari-



ance matrix (i.e. (I:)ij = fi,;a}) simplifies equation 3 to: 

1 -j r;;:!\ {o:o-;n)2 

Q(x,µ,:E)= e - "n (4) 
V(2rr)Nn 11~,;;:l O"a 

We switch to log-space to avoid precision problems in com­
puting the complete ranking formula: 1 

N 8 N 8 

P(Xlwm) = IJ P(x.jwm) =rank 2:log(P(xalwm)). (5) 
•=1 j=l 

Formula 5 maps almost directly to the RAM syntax. We 
first define a function p corresponding to Formula 2. 

p(s,m) • 
sum([ 

P(c,m) * 
(1.0/(sqrt(pow(2•PI,Nn))•prod([S2(n,c,m)ln<Nn]))) * 
exp{ -0.5 * 

sum{[pow(Q(n,s)-Mu{n,c,m),2)/S2(n,c,m)ln<Nn])) 
I c<Nc ]) 

Q is an array containing Ns samples from the query image; 
P, Mu and S2 are arrays containing the prior, mean and co­
variance values of a Gaussian mixture model, each consisting 
of Ne components over a Nn dimensional feature space. 

Function p is applied in the creation of an array that con­
tains a score for each of the Nm Gaussian mixture models in 
the collection: 

Scores • [ sum( [ log( p(s,m) ) I s<Ns ] ) I m<Nm ] 

The RAM queries given may seem far from trivial, but 
recall that they express a non-trivial problem to start with. 
It should be clear from a comparison to Equations 4 and 
5 that the mathematical description maps almost 1-on-1 to 
RAM. We postulate that the RAM query language, thanks 
to its array based data model, remedies many of the inter­
facing hurdles encountered when implementing computation 
oriented algorithms in a database system. 

4. EXPERIMENTS 
The RAM prototype system implements a rather sim­

ple and straightforward translation scheme to transform the 
declarative RAM expressions into relational query plans. 
This simplicity results in a (naive) query execution plan that 
provides dissatisfying results with respect to performance, 
at least for the case study at hand; the query plan gener­
ated by the prototype was more than an order of magnitude 
slower than the original Matlab application. Also, scalabil­
ity proved an issue, because it generates and materialises all 
intermediate stages in the computation process. 

We have analysed the specific bottlenecks in the initial 
query plan, and developed several variants of the GMM 
computation query that was generated by the RAM pro­
totype system. Fortunately, the well structured nature of 
array queries together with their highly predictable access 
patterns have opened up a wide variety of effective opti­
misations. Here, we present a series of experiments that 
improves the efficiency of the database implementation of 
the retrieval system, such that the final results are actu­
ally faster than the original Matlab code. The purpose of 
these experiments has been twofold: firstly, to prove that 

1 Here, the symbol '=rank' indicates equivalent document 
ranking. 
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Figure 2: Query evaluation time relative to Matlab. 
(Optimisations are applied incrementally) 

the problem of our case study can be addressed efficiently 
using a database application, and, secondly, to identify ad­
ditional patterns in the hand optimised variants that can be 
utilised by the RAM system. Some of these optimisations 
have already been integrated in the RAM query compiler, 
while others are currently realised by manual intervention 
in the automatic query generation process. 

Figure 2 shows the performance of each version of the 
query plan relative to a baseline. This baseline is given 
by the performance of our reference implementation: the 
Matlab script used in our actual TRECVID participations, 
hand-written and optimised for performance. 

The presentation of the experiments is ordered by the 
abstraction level of the optimisation strategies employed, 
ranging from a high-level algorithmic point of view to the 
exploitation of some low-level DBMS specific features. The 
RAM-based solutions are translated into MonetDB's query 
language (called MIL [15]). Each improvement is added in­
crementally, thus enhancing the overall performance of the 
query plan with each step: the final query plan incorporates 
all earlier improvements as well. The relative timings in 
Figure 2 refer to the ranking of a collection of 2500 images 
(Gaussian mixture models), using a query image composed 
of 1320 samples. 

4.1 Pre-computation 
At the highest level we observe that the probability esti­

mation function contains a part that is independent of the 
sample for which the probability is being estimated. The 
middle part of the query only depends on parameters of the 
mixture model used: 

1.0/(sqrt(pow(2•PI,Nn)) • prod([S2(n,c,m) I n<Nn])) 

This means that this value only needs to be computed 
once for each of the models and can be reused in the prob­
ability estimation of all samples. 

By isolating this portion of the query and explicitly mate­
rialising its results for subsequent use in the remainder of the 
computation, re-computation of the same value is avoided. 
As Figure 2 shows, this minor change in the query plan re­
sults in a 35% reduction in query execution time. 

Automatic identification of these kinds ofsub-queries, sub­
queries independent from a subset of the dimensions, is 
straightforward. In a RAM query specific variables are used 
to refer to specific axes of arrays which represent dimensions 
of the problem space involved in the computation. The oc-
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Figure 3: Query evaluation time for different collection sizes. 

currence of such reference variables in a sub-query identifies 
a dependency of that sub-query on the dimension referenced, 
conversely absence of such variables in that sub-query imply 
an Independence from those axes. Deciding between either 
pre-computing and materialising such a sub-query or the al­
ternative of bluntly performing the redundant computations 
is less trivial. This decision can only be made based upon 
reliable cost estimation for both solutions. 

4.2 Algebraic optimisation 
After the mathematical analysis of RAM queries, the sys­

tem translates the comprehension type queries into an in­
termediate array algebra. This algebra serves primarily as 
an intermediate stage, to simplify the translation of RAM 
expressions to query plans for the relational back-end. How­
ever, it also provides an excellent opportunity to optimise 
array queries. 

Like most query optimisers developed for relational sys­
tems, the RAM optimiser rewrites the query-plan based on 
equivalence rules. Currently, the rule-base consists of rules 
aimed at reducing the amount of work performed: 

• rules that eliminate identity transformations, 

• rules that reduce computations over arrays with con­
stant values to constant expressions, and, 

• rules that avoid computation of unused portions of in­
termediate arrays. 

As Figure 2 shows, application of these optimisation rules 
to the query plan already results in an additional 21 % reduc­
tion in query execution time. This step in the experiments 
is already fully automatic. 

4.3 Aggregates unfolding 
A problem that remains however is that the query plan 

does not scale well: aside from its execution speed, many 
(often large) intermediate results are materialised, causing 
the system to fail on a shortage of storage space. As can be 
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read from Figure 3 2 , the query plans obtained so far have 
failed at collection sizes of over 3000 images. 

The obvious pragmatic solution to solve the scalability is­
sues is to simply divide the dataset into smaller chunks and 
compute results one chunk at a time. Bluntly chopping up 
the input data into uniform chunks may result in satisfying 
performance in some cases, but could also result in itera­
tive query plans that repeatedly need to reference the same 
chunks. However, the GMM-based scoring function is rep­
resentative of many algorithms involving multi-dimensional 
spaces: the target result is an aggregation over a computa­
tion involving the Cartesian product of all input dimensions. 
This pattern allows to derive a suitable fragmentation strat­
egy that matches the access pattern. 

Most aggregation functions are basically repeated appli­
cation of a binary operator to subsequent elements, e.g.: the 
sum aggregation operator can be written as a series of addi­
tions. Consider a query that generates some 2-dimensional 
matrix, and subsequently computes the sum of each of its 
columns, ultimately producing one 1-dimensional vector of 
aggregate values. By default the RAM system explicitly 
translates this into a query that produces an array repre­
senting the intermediate first and then applies the aggrega­
tion function I: to the (materialised) intermediate result. In 
such cases, a big multi-dimensional arrays is created, some 
computation is performed on the whole array at one time, 
and finally it is collapsed back to few dimensions by an ag­
gregation function. As an example, consider part of the 
GMM computation (see Section 3): 

Scores = [ sum( [ log( p(s,m) ) I s<Ns ) ) I m<Nm ) 

Here, the naive approach would first create a (Ns, Nm] array, 
compute the log( p(s,m) ) expression on each cell, and 
2Figure 3 shows wall-clock timings from experiments run on 
a machine with a 1400MHz AMD Opteron CPU and 16GB 
of internal memory. The collection used for these experi­
ments consisted of Gaussian mixture models composed of 8 
components over a 14 dimensional feature space. Finally, 
the query was a collection of 1320 samples (14 dimensional 
feature vectors) taken from an example image. 



finally collapse all the columns into one by computing the 
sum aggregate. 

A natural approach to reduce the intermediate storage 
a query demands for this is to make use of the fact that a 
summation is essentially a sequence of additions: rewrite the 
query such that only one column is computed at once and 
these columns are added together to incrementally produce 
the desired result. The advantage is that we know that the 
query plan does not require values from multiple columns 
at a time: each column is independently added to the incre­
mentally constructed result accumulator. In addition, each 
column is added exactly once to the accumulator and can 
thus be discarded as soon as it is used, minimising the need 
to retain the entire matrix of values. 

By applying this optimisation once to our original query 
plan, unfolding the outer-most summation in the computa­
tion, overall performance is significantly improved, a 473 
speed-up, as shown in Figure 2. The improvement is due to 
reduced memory consumption, which avoids the swapping 
of data between main memory and disk. It is important to 
realise however, that this increased performance is actually 
achieved as a side effect of the main goal of this strategy: im­
proved scalability. While earlier versions of the query have 
failed for shortage of memory on datasets of approximately 
3000 images, the one used in this experiment had no prob­
lem scaling up to the entire TREC-2003 dataset of 30000 
images: indeed, this is the first step toward a real scalable 
solution. 

4.4 Reuse of materialised intermediates 
The naive translation of RAM expressions into the DBMS 

query language has adopted a simple (and rather conserva­
tive) policy regarding intermediate results: release an inter­
mediate results' allocated memory as soon as its operator 
completes. Although this policy provides an effective basic 
rule for limiting memory usage, a closer look at the code gen­
erated by RAM has revealed many opportunities for safely 
reusing such materialised intermediate results. This is par­
ticularly true for algorithms like the GMM computation, 
where some basic computation is repeated many times (in 
this case, Equation 2). 

In addition to those intermediate arrays introduced by the 
algorithm directly, many index arrays are created: RAM ar­
ray operators are position based rather than value based, 
they use arrays of cell indexes as input. These indexes are 
generated on the fly every time they are needed. Especially 
in case of unfolded aggregates, repetitive query patterns may 
cause the same indexes to be produced many times: caching 
and reusing those arrays can drastically improve query effi­
ciency, in this case execution time was reduced by 383. 

4.5 Array fragmentation 
Provided that the scalability issue can be solved by un­

folding a sufficient number of aggregate functions (see Sec­
tion 5.1 for further details), the unfolding strategy suggests 
a similar improvement in the evaluation of mapping opera­
tors. In RAM, a function f can be mapped (applied cell by 
cell) to n arrays A1, .. , , An if the arrays have exactly the 
same shape (number and size of dimensions). If this is not 
the case, RAM "aligns" the arrays to the biggest one be­
fore mapping function j, using replication of columns when 
needed. Consider, as an example, the following RAM ex­
pression, where A is a [100, 20] array and B is a [100] array: 
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C = [A(i,j) + B(i) I i<100 , j<20] 

which stores in C the cell by cell sum between every column 
of A and the single column of B. 

When such an operation has to be evaluated, a more ef­
ficient way of implementing the "shapes alignment" mech­
anism is to fragment the array A, rather than expanding 
the array B. This way only one column per array is kept in 
memory at the same time and the smaller array does not 
need any replication of data. 

As a further optimisation, we observe that the cost of 
frequent on-the-fly fragmentations like the one in the ex­
ample depends on the physical representation of the initial 
data. Since each fragmentation ends up in a selection from 
the original array, a "smart" organisation of the initial data 
would minimise this cost. In principle, the system has all the 
information needed to perform a sort of pre-fragmentation 
of tables before starting the actual computation, under the 
assumption that these tables are to be used by the query 
they were optimised for. However, for the purpose of our 
experiment, we manually fragmented the initial data. 

Figure 2 and Figure 3 show a performance improvement 
of 583 achieved by the array fragmentation strategy. Notice 
that the sequence of query processing strategies applied so 
far has removed almost all overhead with respect to the base­
line, that was introduced in the naive translation of the orig­
inal RAM expression to its corresponding relational query 
plan. 

4.6 UDF compilation 
Modern database systems allow the user to extend the 

database query language by introducing user defined junc­
tions expressed in some external programming language. 
Lack of expressiveness is a first possible reason to use such a 
technique: consider, as an example, an SQL query involving 
some multi-column complex computation in a multimedia 
or financial domain. Nevertheless, the user may resort to 
external languages even in those cases when functionality 
provided is in principle sufficient, simply for the sake of im­
proved runtime performance. 

Unfortunately, encouraging users to construct complex 
queries as external libraries to solve specific problems par­
tially defeats the purpose of a DBMS. It forces them to 
manually define data processing techniques at implementa­
tion level in an imperative language, creating "black-boxes" 
opaque to the system. Shifting part of the query to a general­
purpose language decreases the chances of formulation of a 
consistent and complete optimisation strategy by the DBMS 
engine: characteristics of the operation implemented are un­
known to the optimiser, and it is impossible to change the 
physical representation of the data it consumes. For these 
reasons, one should use UDFs only sporadically: for few, 
reusable, and performance-critical functions, and, only after 
all higher level optimisation strategies have been exhausted. 

In our case, when profiling the execution of the so far 
optimised GMM query, we found that more than 753 of 
the whole execution time was spent on the computation of a 
small part of Formula 4: the Mahalanobis distance function 

2 ' 
given by (:z:,.~f") (for a single dimension n). This compu-

tation of the Mahalanobis distance is a perfect candidate to 
be compiled into a UDF: it is performance-critical, it is a 
small part of the query, its implementation is trivial, and, it 
can be reused by several applications. 



Figure 2 shows that implementing the Mahalanobis dis­
tance as a user defined function squeezed out another 38% 
reduction of query execution time. In fact, this final version 
of the query evaluates faster than the manually optimised 
baseline Matlab implementation of the algorithm. However, 
we should be careful drawing conclusions from this observa­
tion: resorting to compiled UDFs is an extreme optimisation 
measure and it remains to be seen whether it is feasible (and 
desirable) to automatically discover suitable candidates for 
UDF compilation. 

5. DISCUSSION 
The various optimisation techniques discussed in the pre­

vious section have shown to be effective as a combined pack­
age. These optimisations have been applied in a particular 
order for a reason: subsequent optimisations are performed 
at decreasing level of abstraction. 

Analysis of the experimental results raises two main is­
sues: first, why is the unfolding technique so effective at 
increasing scalability; second, are these optimisations inde­
pendent improvements, or are they only effective in combi­
nation? 

5.1 Scalability 
The GMM computation algorithm examined in this case 

study has an inherent linear complexity with respect to the 
size of the data. Therefore, regardless of the optimisations 
applied, query execution time will remain dependent on the 
collection size. Nevertheless, lowering the hidden constant 
factor of the performance curve can bring the waiting time 
closer to a range of 'acceptable' values. As clearly visible in 
Figure 3, all the techniques presented provide an effective 
improvement. 

The Aggregates Unfolding strategy plays a particularly im­
portant role. Aside from the performance improvement it 
provides, its major contribution is scalability of the system: 
the ability to deal with larger datasets without failure. 

The naive RAM implementation literally translates the 
whole problem space to temporary arrays over all the axis: a 
natural consequence of the algorithm expressed. The sizes of 
such (intermediate) arrays increase dramatically the chance 
of running out of main memory, introducing the need for 
materialisation of intermediate results on disk even for rel­
atively small datasets. 

The obvious solution to limit the size of the intermediate 
results, and therefore the amount of memory required, is to 
split the original problem in smaller, independent problems 
and evaluate them separately. The presence of aggregation 
functions is an excellent opportunity to perform such query 
fragmentation. Rewriting of an aggregate as a sequence of 
binary operations (e.g. the sum as a sequence of additions) 
creates N sub-queries, where N is the size of the axis on 
which the aggregate is computed. Each of this sub-queries 
can be evaluated separately in a problem space that is N 
times smaller than the original one. 

Note that aggregation functions appear very frequently in 
meaningful queries defined over multi-dimensional problem 
spaces. This makes aggregation operations a good candi­
date for generally applicable optimisation: the fragmenta­
tion performed by the Aggregates Unfolding strategy repre­
sents the natural optimisation for an operator that decreases 
the dimensionality of the problem space. 

The Aggregates Unfolding strategy is already fully inte-
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grated as part of the optimiser in the current RAM proto­
type. The decision on whether or not to apply the unfold 
optimisation to a particular aggregation function currently 
relies on simple heuristics. Unfolding is always applied, un­
less: 

• the memory consumption of the naive execution plan 
is (already) below a certain threshold; 

• the optimisation would produce a large number of very 
small sub-queries, where the disadvantage of intro­
duced overhead is expected to outweigh the advantage 
of the optimisation. 

It is worthwhile to notice two things. First, the memory 
consumption of a particular query plan is not estimated by 
the optimiser; as a consequence of the array data model the 
actual size of all intermediate results is known in advance. 
Second, the currently implemented heuristics for the unfold­
ing strategy (and for other optimisations) are simple; more 
advanced heuristics could add flexibility and improve the 
reliability of the optimisation choices made. One example 
of more advanced application of the unfolding strategy is to 
apply it partially, where, for instance, a summation is not 
directly split into a long sequence of binary additions but 
into several smaller aggregations. 

After the optimisation step at the array-algebra level, the 
actual realisation of the array-algebra operators, including 
the unfold operator, depends on the target DBMS used for 
evaluation. 

Note that our reference platform, Matlab, tends to com­
pute operations on matrices similarly to the naive RAM ap­
proach in conjunction with MonetDB as a back-end. In­
termediate results are materialised in memory and conse­
quently Matlab also runs out of memory. For this reason, 
our baseline Matlab script bounded its memory usage ex­
plicitly by applying - by hand - some of the same strategies 
that have now been integrated in the RAM optimiser. For 
comparison purposes, we plan to implement a layer that 
translates the RAM algebra to a Matlab script: effectively 
using Matlab as a back-end instead of a relational DBMS. 
In the comparison between the Matlab query script gener­
ated by RAM and the one written and optimised by hand, 
we expect to observe similar effectiveness of the various op­
timisations and resulting performance. 

A last consideration suggests further opportunities for im­
proving the system scalability. The Aggregates Unfolding 
strategy, when applied to commutative and associative ag­
gregates (e.g. I: and IJ), provides query plans with addi­
tional desirable properties, on top of reducing the sizes of 
intermediate results: 

• sub-queries created by rewriting of aggregates as se­
quences of binary operations are independent, and, 

• the order in which the results of these sub-queries are 
subsequently aggregated does not matter. 

These properties indicate that those sub-queries can be 
executed in parallel. Although this feature is not part of 
the current RAM implementation, these patterns for parallel 
execution are readily provided by the unfolding strategy. 
Given a target DBMS capable of intra-operator parallelism 
it is straightforward to exploit this opportunity. Our current 
target DBMS, MonetDB, provides native parallel execution 
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Figure 4: Contribution of individual optimisations 
when independently applied. 

80 1-:·== 
70 3.=ng 

4. Reuse 
s. Fragmentation 

l 60 6. Cori\pilod UOF 

t 50 

40 j 

I I I -~ 30 ... 

1 20 

I <:-

d 10 

-10 .____._ __ _._ __ _._ __ ...._ __ ....._ __ .___, 

Figure 5: Contribution of individual optimisations 
when applied in combination. 

support. Preliminary experiments, performed as a simple 
post-processing to the MIL (the MonetDB query language) 
query generated by the RAM translator, showed near linear 
speed-up of the query with respect of the number of CPUs 
deployed. 

Although beyond the scope of this paper, it is apparent 
that parallelisation is a promising direction for future exper­
imentation. 

5.2 Optimisation Dependencies 
The combined effectiveness of the proposed optimisation 

strategies has been shown in Section 4. However, these re­
sults raise a question: to what extent the contribution of a 
single optimisation strategy has been influenced by the ap­
plication of other optimisations? By applying each of the 
strategies to the naive query plan independently, while dis­
abling all the others, we gain some insight on the dependen­
cies among the various optimisations. 

Figure 4 shows the improvement with respect to the naive 
query plan for each individually applied optimisation strat­
egy. For example, the exploitation of the UDF function 
(strategy 6 in Figure 4) reduces the execution time of the 
naive query plan by roughly 16%. Figure 5 shows the contri­
bution of the same optimisation strategies in the setting of 
the previous set of experiments, where optimisation strate­
gies were applied incrementally. In comparing both figures 
it is apparent that the various optimisations are not inde-
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pendent: the effectiveness of optimisations performed in iso­
lation or in combination with the other optimisations differs 
significantly. 

Techniques 3, 4 and 5, for example, perform poorly when 
applied in isolation, while they are among the most effec­
tive in the combined scenario. These three techniques have 
in common that they result in more complex query plans: 
this inadvertently introduces some degree of overhead. In 
the combined case, other optimisations (rewriting at the ar­
ray algebra level in particular) compensate for most of this 
induced overhead, while in the isolated case this same over­
head cancels out most advantages of these techniques. The 
various optimisations need to be applied in combination for 
maximum effectiveness. 

Combination of optimisations does not only keep induced 
overhead under control; in some cases one optimisation tech­
nique creates opportunities for another. This is the case for 
the combination of unfolding and reuse: in the isolated case 
there is little opportunity to reuse intermediates and the 
overhead induced by the optimisation outweighs its bene­
fits. However, the fragmentation performed as part of the 
unfolding technique introduces many more opportunities to 
reuse intermediate results (many identically shaped array 
fragments are processed with the same patterns) and the 
effectiveness of intermediate-reuse is dramatic. 

Naturally, different optimisations can also adversely affect 
each-other. For example, the algebraic optimisation reduces 
overall execution time in the isolated case by more than 30%; 
in the combined case however, this contribution is closer to 
20% (a reduced effectiveness of almost 50%). This effect 
can be explained by the fact that the previously applied 
reuse optimisation reduced the freedom of the optimiser to 
rewrite the query. Note that in this case the cumulative 
result of the combined optimisations still outperforms the 
single optimisation. 

6. CONCLUSIONS 
This paper presented an overview of the RAM system, 

aimed to reduce the mismatch between the need for array­
based processing in handling multi-dimensional data (e.g. 
multimedia data retrieval) and the standard relational data­
base interface. RAM maps declarative array-expressions to 
relational query languages. While it improves expressiveness 
of the resulting database system, a significant performance 
gap between a naive translation of RAM expressions and op­
timised hand-crafted applications (partially) remained to be 
filled. We report upon a non-trivial case study used to iden­
tify the most promising directions for the development of 
efficient query processing for RAM expressions. The result­
ing system provides an proper alternative to time-consuming 
and "unnatural" custom solutions. 

We analyse six different implementation strategies, show­
ing their impact on the total performance, and compare 
them (including the naive translation) to the performance 
of an optimised query script implemented on top of Matlab. 
The choice of Matlab as a baseline for our tests is mainly due 
to the observation that it is particularly suitable for com­
putation on multi-dimensional arrays, with respect to both 
execution speed and language expressiveness. These charac­
teristics make it a good choice for the quick implementation 
of different prototype algorithms. 

Pre-computation and Algebraic optimisation techniques 
provide some important high-level optimisations that re-



suit in better performance. Also, as demonstrated in Sec­
tion 5.2, these techniques influence subsequent optimisations 
significantly. The turning point about the scalability issue 
has been achieved with the proposed Aggregates unfolding 
strategy, which reduces the memory requirements of our ex­
periment dramatically. Reuse of materialised intermediate 
results and Array fragmentation provide further improve­
ments by removing some of the overhead introduced in the 
transformation of RAM expressions to relation query plans. 

A final experiment demonstrated the potential of UDP 
Compilation. Automatic or semi-automatic recognition and 
compilation of crucial UDFs is in principle possible. Never­
theless, we still consider this possibility as an extreme opti­
misation strategy, addressing our speculations on its desir­
ability more than on its feasibility. 

The good results obtained in this case study leave various 
insights to be carefully verified. Further investigations con­
cern the inclusion in the RAM optimiser of those techniques 
that proof generically applicable. Particular emphasis will 
be put in recognising abstract patterns that can be applied 
at a high-level (RAM algebra), in order to take advantage 
of the multi-layer structure of the RAM system. Shifting 
part of the developers expertise to an automatic process is 
a guarantee of exhaustive and quick exploration of the op­
timisation opportunities space. Of course, the quality of 
the result of such a process also depends on the accuracy 
of the implemented heuristics. Therefore, more research is 
needed to develop improved heuristics for the existing opti­
misations. 
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