
A Case Study on Array Query Optimisation

Roberto Cornacchia, Alex van Ballegooij and Arjen P. de Vries
CWI, INS1, Amsterdam, The Netherlands

{R.Cornacchia,Alex.van.Ballegooij,Arjen.de.Vries}@cwi.nl

ABSTRACT
The development of applications involving multi-dimensional
data sets on top of a RDBMS raises several difficulties that
are not directly related to the scientific problem being ad­
dressed. In particular, an additional effort is needed to solve
the mismatch existing between the array-based data model
typical for such computations and the set-based data model
provided by the RDMBS. The RAM (Relational Array Map­
ping) system fills this gap, silently providing a mapping
layer between the two data models. As expected though,
a naive implementation of such an automatic translation
cannot compete with the efficiency of queries written by an
experienced programmer. In order to make RAM a valid al­
ternative to expensive and time-consuming hand-written so­
lutions, this performance gap should be reduced. We study
a real-world application aimed at the ranking of multimedia
collections to assess the impact of different implementation
strategies. The result of this study provides an illustrative
outlook for the development of generally applicable optimi­
sation techniques.

1. INTRODUCTION
Most multimedia retrieval efforts use database systems.

However, it rarely entails the entire retrieval process. Usu­
ally, the database system serves only as a persistent store
for (derived) meta data for multimedia. Only the most rudi­
mentary retrieval functionality, such as keyword search on
transcripts, is handled by the database system: complex
tasks like multimedia indexing are performed by proprietary
external tools. This phenomenon is not limited to the mul­
timedia domain: application areas beyond (simple) admin­
istrative tasks are dominated by custom-built solutions.

Using database technology for multimedia applications is
a challenge that has an impact on the requirements of such
a system. First, it shifts priority toward runtime perfor­
mance; while high performance has always been one of the
requirements of a database system, in a business setting
this requirement has been overshadowed by criteria such as

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear U:is notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CVDB'04, June 13, 2004, Paris, France.
Copyright 2004 ACM 1-58113-917-9/04/06 ... $5.00.

3

reliability and security. Also, in domains like multimedia
the order of data objects plays a very important role, such
that the set-based data model underlying relational data­
base technology may no longer suffice. Maier and Vance
have argued for long that the mismatch of data models is
the major obstacle for the deployment of (relational) data­
base technology in computation oriented domains (such as
multimedia analysis) [1]. It causes an unnatural encoding of
(multimedia) objects in the relational data model, encour­
aging users to implement their processing code client-side.
The result is that the DBMS is still used merely as a per­
sistent data store.

Our research builds upon past experience with the imple­
mentation of multimedia retrieval and analysis in a database
setting, see e.g. [2]. While the set-oriented (bulk) query pro­
cessing techniques common in relational query processing
have proven their potential value for multimedia analysis,
the efficient manipulation of the (inherently ordered) me­
dia data requires non-trivial data storage schemes. The re­
sulting query plans are rarely intuitive, while deriving such
plans is a laborious and error-prone process: it is difficult to
keep track of the relationship between the operations in the
relational query and the steps in the original algorithm.

This paper presents a case study of how to apply the data­
base approach successfully to a multimedia retrieval prob­
lem, overcoming the issues discussed above. We detail how a
non-trivial video retrieval application has been moved from
a stand-alone application to a client-server database appli­
cation. The case study relates to the video retrieval system
that our research group has applied for both TRECVID 2002
and 2003 [3, 4]. The core of its retrieval process computes
the likelihood of an example image query for each indexed
shot, using a probabilistic retrieval model based on Gaussian
mixture models.

The retrieval system has been originally implemented in
Matlab [5], precisely because of the aforementioned mis­
match in data models and the (resulting) lack of efficiency.
In this report, we focus specifically on the strategies applied
to overcome the problems encountered when implementing
our retrieval algorithm directly on top of a relational data­
base system. For each individual strategy, we discuss its
generality or its limitations with respect to its application
in different settings.

2. THE RAM APPROACH
Expressing the main algorithm of our case study using

a standard set-based database query language is not triv­
ial. As detailed in Section 3, our multimedia retrieval algo-

rithm requires multi-dimensional data structures to handle
the image representation in feature space as well as the pa­
rameters of the Gaussian Mixture models. Using these data
structures in a set-oriented query language (such as SQL)
requires the developer to make the dimensions that are re­
ferred to explicit, resulting in a rather lengthy SQL query.
Besides the added complexity, the result is also undesirable
from the perspective of the DBMS engine: large complex
SQL queries pose a problem for the query optimiser.

We seek a solution to this problem of expressiveness of
standard relational query languages for multi-dimensional
data by introducing array data structures in the database
query language. The RAM (Relational Array Mapping) sys­
tem is a prototype array database system, that aims to dis­
close database technology to users with complex computa­
tional tasks [6]. A discussion of the prototype RAM im­
plementation is presented in [7]. Instead of developing an
array database system from scratch, arrays are added to
existing database systems, by mapping internally the array
structures to relations. This way, array extensions naturally
blend in with existing database functionality.

The RAM system provides a comprehension based array­
query language (see [8]), that allows to express array-specific
queries concisely. Array comprehensions allow users to spec­
ify (new) arrays by declaring it's dimensions and a function
to compute the value for each of its cells. The RAM query
language is similar to the one described in the AQL proposal
[9]. Support for this language is isolated in a separate front­
end that communicates to the DBMS by issuing relational
queries. This approach matches the layered design of Mon­
etDB [10], the primary target system for RAM. MonetDB
supports various front-ends, each providing a different query
language, that implement their query processing strategies
on top of a generic relational kernel.

The front-end does not translate the array comprehen­
sions directly into the back-end's relational query language.
Queries are translated into an intermediate array-algebra
before the final transformation to the relational domain.
This intermediate language is utilised by a traditional System­
R style optimiser [11 J, specifically geared toward the opti­
misation of array queries. Through application of rewriting
rules the RAM optimiser searches for a (more) optimal query
plan by minimising intermediate result sizes. The actual op­
timised query expressed in the target query language is the
result of the last transformation step. Figure 1 depicts the
life-cycle of an array query through the different layers of
the RAM system, as described above.

By adding the array functionality into a relational DBMS,
we can reuse existing storage and evaluation primitives. By
storing array data as relations the full spectrum of relational
operations can be performed on that array data. This in­
directly guarantees complete query and data-management
functionality: the RAM front-end focuses solely on prob­
lems inherent to the array domain.

The challenge being addressed by our current and future
research activity is to effectively exploit the opportunities
introduced by the RAM system in the multimedia informa­
tion retrieval domain.

3. CASE STUDY
The main contribution of this paper is a case study to

investigate the feasibility of a RAM implementation of the
probabilistic retrieval system that our research group devel-

4

Abstract
quecy

RAM
query

RAM
Algebra

Optimised
RAM

Algebra

-...==~===== e
• u.2

P(s,a) • :!ltlll([Pt(C,lll) •
(l/ (sqtt(po11(2"PI ,Nn)) •ptod
([S2 (n,c,a) ln<NnJ)))

me.p (dbl, [canst([8 ,1320,3500
0],"14")])])]) ,e.pply(e.;;te;
e.te(ptod,e.pply(e.pply(#([350

ae.p(dbl,[const([S,1320,3500
OJ,"14") J l J) J) ,e.pply(e.;;teg­
e.ee (ptod, e.pply(e.pply(I ([350

MII. query SQL queiy
t25 :• {px:od) (t.27,tSl,t.73);
t8S : • jo1n(t86,be.t Q);
t.24 : • nil; -

A0.13 • Al.13) AS A GROUP
BY 10) AS Al 1i1HERE AO. 10 •
Al.iO AND A0.11 • Al.11 AND

Figure 1: Life-cycle of a query evaluated by RAM.

oped for the search task of TRECVID 2002 and 2003: the
retrieval of relevant shots of video material given a query im­
age. The probabilistic retrieval method used to rank video
shots is a generative model. Using generative models for in­
formation retrieval (IR) follows the so-called 'language mod­
elling approach' to IR (see e.g. [12]). Applying this idea
to image retrieval has been pioneered in [13]. Now, before
changing our focus to the database aspects of this retrieval
problem, this section presents concisely the visual part of the
multimedia retrieval system studied. The interested reader
is referred to [14) for more details.

Image documents are first decomposed as bags of samples
(8 by 8 pixel blocks), described by their DCT coefficients.
These bags of samples are subsequently modelled as prob­
ability distributions, by fitting a Gaussian Mixture model.
The relevance of a collection image given a query image is
then assumed to be approximated by the ability of its mix­
ture model Wm to describe the samples X = (:z:1, .. ., :Z:N.)
of the query image:

Ns

P(Xlwm) = IJ P(x.lwm). (1)
s=l

The probability P(x.lwm) for a single sample x. is obtained
by summing the contribution of each component of the mix­
ture model, altered by its a priori probability P(Cc):

Ne

P(x.lwm) = L P(Cc,m)Q(:z:a,J.£c,m' :Ec,m)• (2)
c=l

Here, the probability density function for each component
is defined as a multivariate Gaussian distribution in Nn di­
mensions:

Q(x :E) = 1 e-!<m-µ)T:E-1(.,-µ). (3)
,µ, J(2?T)N,,l:EI

Assuming that the Gaussian models have a diagonal covari-

ance matrix (i.e. (I:)ij = fi,;a}) simplifies equation 3 to:

1 -j r;;:!\ {o:o-;n)2

Q(x,µ,:E)= e - "n (4)
V(2rr)Nn 11~,;;:l O"a

We switch to log-space to avoid precision problems in com­
puting the complete ranking formula: 1

N 8 N 8

P(Xlwm) = IJ P(x.jwm) =rank 2:log(P(xalwm)). (5)
•=1 j=l

Formula 5 maps almost directly to the RAM syntax. We
first define a function p corresponding to Formula 2.

p(s,m) •
sum([

P(c,m) *
(1.0/(sqrt(pow(2•PI,Nn))•prod([S2(n,c,m)ln<Nn]))) *
exp{ -0.5 *

sum{[pow(Q(n,s)-Mu{n,c,m),2)/S2(n,c,m)ln<Nn]))
I c<Nc])

Q is an array containing Ns samples from the query image;
P, Mu and S2 are arrays containing the prior, mean and co­
variance values of a Gaussian mixture model, each consisting
of Ne components over a Nn dimensional feature space.

Function p is applied in the creation of an array that con­
tains a score for each of the Nm Gaussian mixture models in
the collection:

Scores • [sum([log(p(s,m)) I s<Ns]) I m<Nm]

The RAM queries given may seem far from trivial, but
recall that they express a non-trivial problem to start with.
It should be clear from a comparison to Equations 4 and
5 that the mathematical description maps almost 1-on-1 to
RAM. We postulate that the RAM query language, thanks
to its array based data model, remedies many of the inter­
facing hurdles encountered when implementing computation
oriented algorithms in a database system.

4. EXPERIMENTS
The RAM prototype system implements a rather sim­

ple and straightforward translation scheme to transform the
declarative RAM expressions into relational query plans.
This simplicity results in a (naive) query execution plan that
provides dissatisfying results with respect to performance,
at least for the case study at hand; the query plan gener­
ated by the prototype was more than an order of magnitude
slower than the original Matlab application. Also, scalabil­
ity proved an issue, because it generates and materialises all
intermediate stages in the computation process.

We have analysed the specific bottlenecks in the initial
query plan, and developed several variants of the GMM
computation query that was generated by the RAM pro­
totype system. Fortunately, the well structured nature of
array queries together with their highly predictable access
patterns have opened up a wide variety of effective opti­
misations. Here, we present a series of experiments that
improves the efficiency of the database implementation of
the retrieval system, such that the final results are actu­
ally faster than the original Matlab code. The purpose of
these experiments has been twofold: firstly, to prove that

1 Here, the symbol '=rank' indicates equivalent document
ranking.

5

f
l
!

1
I

10

0.1

1.
2.NW#t

3.:.~
5.~ ··-7. Frogmonlalior!

8.COn1>il«IUDI'

8

Figure 2: Query evaluation time relative to Matlab.
(Optimisations are applied incrementally)

the problem of our case study can be addressed efficiently
using a database application, and, secondly, to identify ad­
ditional patterns in the hand optimised variants that can be
utilised by the RAM system. Some of these optimisations
have already been integrated in the RAM query compiler,
while others are currently realised by manual intervention
in the automatic query generation process.

Figure 2 shows the performance of each version of the
query plan relative to a baseline. This baseline is given
by the performance of our reference implementation: the
Matlab script used in our actual TRECVID participations,
hand-written and optimised for performance.

The presentation of the experiments is ordered by the
abstraction level of the optimisation strategies employed,
ranging from a high-level algorithmic point of view to the
exploitation of some low-level DBMS specific features. The
RAM-based solutions are translated into MonetDB's query
language (called MIL [15]). Each improvement is added in­
crementally, thus enhancing the overall performance of the
query plan with each step: the final query plan incorporates
all earlier improvements as well. The relative timings in
Figure 2 refer to the ranking of a collection of 2500 images
(Gaussian mixture models), using a query image composed
of 1320 samples.

4.1 Pre-computation
At the highest level we observe that the probability esti­

mation function contains a part that is independent of the
sample for which the probability is being estimated. The
middle part of the query only depends on parameters of the
mixture model used:

1.0/(sqrt(pow(2•PI,Nn)) • prod([S2(n,c,m) I n<Nn]))

This means that this value only needs to be computed
once for each of the models and can be reused in the prob­
ability estimation of all samples.

By isolating this portion of the query and explicitly mate­
rialising its results for subsequent use in the remainder of the
computation, re-computation of the same value is avoided.
As Figure 2 shows, this minor change in the query plan re­
sults in a 35% reduction in query execution time.

Automatic identification of these kinds ofsub-queries, sub­
queries independent from a subset of the dimensions, is
straightforward. In a RAM query specific variables are used
to refer to specific axes of arrays which represent dimensions
of the problem space involved in the computation. The oc-

1800

1600

1400

I
1200

"' §
1000

5 800 "' ::i
~
~ 600

400

200

0
0

Naive -­
Precompute •••••••·

Optimised·········
Unfolding --­

Reuse ····-····
Fragmentation ·· •·•·•··

Matlab -­
Compiled UDF ··· ·······

5000 10000 15000 20000 25000 30000
size of the collection (images)

Figure 3: Query evaluation time for different collection sizes.

currence of such reference variables in a sub-query identifies
a dependency of that sub-query on the dimension referenced,
conversely absence of such variables in that sub-query imply
an Independence from those axes. Deciding between either
pre-computing and materialising such a sub-query or the al­
ternative of bluntly performing the redundant computations
is less trivial. This decision can only be made based upon
reliable cost estimation for both solutions.

4.2 Algebraic optimisation
After the mathematical analysis of RAM queries, the sys­

tem translates the comprehension type queries into an in­
termediate array algebra. This algebra serves primarily as
an intermediate stage, to simplify the translation of RAM
expressions to query plans for the relational back-end. How­
ever, it also provides an excellent opportunity to optimise
array queries.

Like most query optimisers developed for relational sys­
tems, the RAM optimiser rewrites the query-plan based on
equivalence rules. Currently, the rule-base consists of rules
aimed at reducing the amount of work performed:

• rules that eliminate identity transformations,

• rules that reduce computations over arrays with con­
stant values to constant expressions, and,

• rules that avoid computation of unused portions of in­
termediate arrays.

As Figure 2 shows, application of these optimisation rules
to the query plan already results in an additional 21 % reduc­
tion in query execution time. This step in the experiments
is already fully automatic.

4.3 Aggregates unfolding
A problem that remains however is that the query plan

does not scale well: aside from its execution speed, many
(often large) intermediate results are materialised, causing
the system to fail on a shortage of storage space. As can be

6

read from Figure 3 2 , the query plans obtained so far have
failed at collection sizes of over 3000 images.

The obvious pragmatic solution to solve the scalability is­
sues is to simply divide the dataset into smaller chunks and
compute results one chunk at a time. Bluntly chopping up
the input data into uniform chunks may result in satisfying
performance in some cases, but could also result in itera­
tive query plans that repeatedly need to reference the same
chunks. However, the GMM-based scoring function is rep­
resentative of many algorithms involving multi-dimensional
spaces: the target result is an aggregation over a computa­
tion involving the Cartesian product of all input dimensions.
This pattern allows to derive a suitable fragmentation strat­
egy that matches the access pattern.

Most aggregation functions are basically repeated appli­
cation of a binary operator to subsequent elements, e.g.: the
sum aggregation operator can be written as a series of addi­
tions. Consider a query that generates some 2-dimensional
matrix, and subsequently computes the sum of each of its
columns, ultimately producing one 1-dimensional vector of
aggregate values. By default the RAM system explicitly
translates this into a query that produces an array repre­
senting the intermediate first and then applies the aggrega­
tion function I: to the (materialised) intermediate result. In
such cases, a big multi-dimensional arrays is created, some
computation is performed on the whole array at one time,
and finally it is collapsed back to few dimensions by an ag­
gregation function. As an example, consider part of the
GMM computation (see Section 3):

Scores = [sum([log(p(s,m)) I s<Ns)) I m<Nm)

Here, the naive approach would first create a (Ns, Nm] array,
compute the log(p(s,m)) expression on each cell, and
2Figure 3 shows wall-clock timings from experiments run on
a machine with a 1400MHz AMD Opteron CPU and 16GB
of internal memory. The collection used for these experi­
ments consisted of Gaussian mixture models composed of 8
components over a 14 dimensional feature space. Finally,
the query was a collection of 1320 samples (14 dimensional
feature vectors) taken from an example image.

finally collapse all the columns into one by computing the
sum aggregate.

A natural approach to reduce the intermediate storage
a query demands for this is to make use of the fact that a
summation is essentially a sequence of additions: rewrite the
query such that only one column is computed at once and
these columns are added together to incrementally produce
the desired result. The advantage is that we know that the
query plan does not require values from multiple columns
at a time: each column is independently added to the incre­
mentally constructed result accumulator. In addition, each
column is added exactly once to the accumulator and can
thus be discarded as soon as it is used, minimising the need
to retain the entire matrix of values.

By applying this optimisation once to our original query
plan, unfolding the outer-most summation in the computa­
tion, overall performance is significantly improved, a 473
speed-up, as shown in Figure 2. The improvement is due to
reduced memory consumption, which avoids the swapping
of data between main memory and disk. It is important to
realise however, that this increased performance is actually
achieved as a side effect of the main goal of this strategy: im­
proved scalability. While earlier versions of the query have
failed for shortage of memory on datasets of approximately
3000 images, the one used in this experiment had no prob­
lem scaling up to the entire TREC-2003 dataset of 30000
images: indeed, this is the first step toward a real scalable
solution.

4.4 Reuse of materialised intermediates
The naive translation of RAM expressions into the DBMS

query language has adopted a simple (and rather conserva­
tive) policy regarding intermediate results: release an inter­
mediate results' allocated memory as soon as its operator
completes. Although this policy provides an effective basic
rule for limiting memory usage, a closer look at the code gen­
erated by RAM has revealed many opportunities for safely
reusing such materialised intermediate results. This is par­
ticularly true for algorithms like the GMM computation,
where some basic computation is repeated many times (in
this case, Equation 2).

In addition to those intermediate arrays introduced by the
algorithm directly, many index arrays are created: RAM ar­
ray operators are position based rather than value based,
they use arrays of cell indexes as input. These indexes are
generated on the fly every time they are needed. Especially
in case of unfolded aggregates, repetitive query patterns may
cause the same indexes to be produced many times: caching
and reusing those arrays can drastically improve query effi­
ciency, in this case execution time was reduced by 383.

4.5 Array fragmentation
Provided that the scalability issue can be solved by un­

folding a sufficient number of aggregate functions (see Sec­
tion 5.1 for further details), the unfolding strategy suggests
a similar improvement in the evaluation of mapping opera­
tors. In RAM, a function f can be mapped (applied cell by
cell) to n arrays A1, .. , , An if the arrays have exactly the
same shape (number and size of dimensions). If this is not
the case, RAM "aligns" the arrays to the biggest one be­
fore mapping function j, using replication of columns when
needed. Consider, as an example, the following RAM ex­
pression, where A is a [100, 20] array and B is a [100] array:

7

C = [A(i,j) + B(i) I i<100 , j<20]

which stores in C the cell by cell sum between every column
of A and the single column of B.

When such an operation has to be evaluated, a more ef­
ficient way of implementing the "shapes alignment" mech­
anism is to fragment the array A, rather than expanding
the array B. This way only one column per array is kept in
memory at the same time and the smaller array does not
need any replication of data.

As a further optimisation, we observe that the cost of
frequent on-the-fly fragmentations like the one in the ex­
ample depends on the physical representation of the initial
data. Since each fragmentation ends up in a selection from
the original array, a "smart" organisation of the initial data
would minimise this cost. In principle, the system has all the
information needed to perform a sort of pre-fragmentation
of tables before starting the actual computation, under the
assumption that these tables are to be used by the query
they were optimised for. However, for the purpose of our
experiment, we manually fragmented the initial data.

Figure 2 and Figure 3 show a performance improvement
of 583 achieved by the array fragmentation strategy. Notice
that the sequence of query processing strategies applied so
far has removed almost all overhead with respect to the base­
line, that was introduced in the naive translation of the orig­
inal RAM expression to its corresponding relational query
plan.

4.6 UDF compilation
Modern database systems allow the user to extend the

database query language by introducing user defined junc­
tions expressed in some external programming language.
Lack of expressiveness is a first possible reason to use such a
technique: consider, as an example, an SQL query involving
some multi-column complex computation in a multimedia
or financial domain. Nevertheless, the user may resort to
external languages even in those cases when functionality
provided is in principle sufficient, simply for the sake of im­
proved runtime performance.

Unfortunately, encouraging users to construct complex
queries as external libraries to solve specific problems par­
tially defeats the purpose of a DBMS. It forces them to
manually define data processing techniques at implementa­
tion level in an imperative language, creating "black-boxes"
opaque to the system. Shifting part of the query to a general­
purpose language decreases the chances of formulation of a
consistent and complete optimisation strategy by the DBMS
engine: characteristics of the operation implemented are un­
known to the optimiser, and it is impossible to change the
physical representation of the data it consumes. For these
reasons, one should use UDFs only sporadically: for few,
reusable, and performance-critical functions, and, only after
all higher level optimisation strategies have been exhausted.

In our case, when profiling the execution of the so far
optimised GMM query, we found that more than 753 of
the whole execution time was spent on the computation of a
small part of Formula 4: the Mahalanobis distance function

2 '
given by (:z:,.~f") (for a single dimension n). This compu-

tation of the Mahalanobis distance is a perfect candidate to
be compiled into a UDF: it is performance-critical, it is a
small part of the query, its implementation is trivial, and, it
can be reused by several applications.

Figure 2 shows that implementing the Mahalanobis dis­
tance as a user defined function squeezed out another 38%
reduction of query execution time. In fact, this final version
of the query evaluates faster than the manually optimised
baseline Matlab implementation of the algorithm. However,
we should be careful drawing conclusions from this observa­
tion: resorting to compiled UDFs is an extreme optimisation
measure and it remains to be seen whether it is feasible (and
desirable) to automatically discover suitable candidates for
UDF compilation.

5. DISCUSSION
The various optimisation techniques discussed in the pre­

vious section have shown to be effective as a combined pack­
age. These optimisations have been applied in a particular
order for a reason: subsequent optimisations are performed
at decreasing level of abstraction.

Analysis of the experimental results raises two main is­
sues: first, why is the unfolding technique so effective at
increasing scalability; second, are these optimisations inde­
pendent improvements, or are they only effective in combi­
nation?

5.1 Scalability
The GMM computation algorithm examined in this case

study has an inherent linear complexity with respect to the
size of the data. Therefore, regardless of the optimisations
applied, query execution time will remain dependent on the
collection size. Nevertheless, lowering the hidden constant
factor of the performance curve can bring the waiting time
closer to a range of 'acceptable' values. As clearly visible in
Figure 3, all the techniques presented provide an effective
improvement.

The Aggregates Unfolding strategy plays a particularly im­
portant role. Aside from the performance improvement it
provides, its major contribution is scalability of the system:
the ability to deal with larger datasets without failure.

The naive RAM implementation literally translates the
whole problem space to temporary arrays over all the axis: a
natural consequence of the algorithm expressed. The sizes of
such (intermediate) arrays increase dramatically the chance
of running out of main memory, introducing the need for
materialisation of intermediate results on disk even for rel­
atively small datasets.

The obvious solution to limit the size of the intermediate
results, and therefore the amount of memory required, is to
split the original problem in smaller, independent problems
and evaluate them separately. The presence of aggregation
functions is an excellent opportunity to perform such query
fragmentation. Rewriting of an aggregate as a sequence of
binary operations (e.g. the sum as a sequence of additions)
creates N sub-queries, where N is the size of the axis on
which the aggregate is computed. Each of this sub-queries
can be evaluated separately in a problem space that is N
times smaller than the original one.

Note that aggregation functions appear very frequently in
meaningful queries defined over multi-dimensional problem
spaces. This makes aggregation operations a good candi­
date for generally applicable optimisation: the fragmenta­
tion performed by the Aggregates Unfolding strategy repre­
sents the natural optimisation for an operator that decreases
the dimensionality of the problem space.

The Aggregates Unfolding strategy is already fully inte-

8

grated as part of the optimiser in the current RAM proto­
type. The decision on whether or not to apply the unfold
optimisation to a particular aggregation function currently
relies on simple heuristics. Unfolding is always applied, un­
less:

• the memory consumption of the naive execution plan
is (already) below a certain threshold;

• the optimisation would produce a large number of very
small sub-queries, where the disadvantage of intro­
duced overhead is expected to outweigh the advantage
of the optimisation.

It is worthwhile to notice two things. First, the memory
consumption of a particular query plan is not estimated by
the optimiser; as a consequence of the array data model the
actual size of all intermediate results is known in advance.
Second, the currently implemented heuristics for the unfold­
ing strategy (and for other optimisations) are simple; more
advanced heuristics could add flexibility and improve the
reliability of the optimisation choices made. One example
of more advanced application of the unfolding strategy is to
apply it partially, where, for instance, a summation is not
directly split into a long sequence of binary additions but
into several smaller aggregations.

After the optimisation step at the array-algebra level, the
actual realisation of the array-algebra operators, including
the unfold operator, depends on the target DBMS used for
evaluation.

Note that our reference platform, Matlab, tends to com­
pute operations on matrices similarly to the naive RAM ap­
proach in conjunction with MonetDB as a back-end. In­
termediate results are materialised in memory and conse­
quently Matlab also runs out of memory. For this reason,
our baseline Matlab script bounded its memory usage ex­
plicitly by applying - by hand - some of the same strategies
that have now been integrated in the RAM optimiser. For
comparison purposes, we plan to implement a layer that
translates the RAM algebra to a Matlab script: effectively
using Matlab as a back-end instead of a relational DBMS.
In the comparison between the Matlab query script gener­
ated by RAM and the one written and optimised by hand,
we expect to observe similar effectiveness of the various op­
timisations and resulting performance.

A last consideration suggests further opportunities for im­
proving the system scalability. The Aggregates Unfolding
strategy, when applied to commutative and associative ag­
gregates (e.g. I: and IJ), provides query plans with addi­
tional desirable properties, on top of reducing the sizes of
intermediate results:

• sub-queries created by rewriting of aggregates as se­
quences of binary operations are independent, and,

• the order in which the results of these sub-queries are
subsequently aggregated does not matter.

These properties indicate that those sub-queries can be
executed in parallel. Although this feature is not part of
the current RAM implementation, these patterns for parallel
execution are readily provided by the unfolding strategy.
Given a target DBMS capable of intra-operator parallelism
it is straightforward to exploit this opportunity. Our current
target DBMS, MonetDB, provides native parallel execution

80 .----..----r---~--.,..----.------,.---~
1.P~
2-.u;;;.;...~
3 .•• ~ 70

l 80
l:~~

I 50

J 40

1= 11 d 10 - - I • ·10 .____._ __ _.__ ___ ___ ___ __ .___,

Figure 4: Contribution of individual optimisations
when independently applied.

80 1-:·==
70 3.=ng

4. Reuse
s. Fragmentation

l 60 6. Cori\pilod UOF

t 50

40 j

I I I -~ 30 ...

1 20

I <:-

d 10

-10 .____._ __ _._ __ _._ ___ ___ __ .___,

Figure 5: Contribution of individual optimisations
when applied in combination.

support. Preliminary experiments, performed as a simple
post-processing to the MIL (the MonetDB query language)
query generated by the RAM translator, showed near linear
speed-up of the query with respect of the number of CPUs
deployed.

Although beyond the scope of this paper, it is apparent
that parallelisation is a promising direction for future exper­
imentation.

5.2 Optimisation Dependencies
The combined effectiveness of the proposed optimisation

strategies has been shown in Section 4. However, these re­
sults raise a question: to what extent the contribution of a
single optimisation strategy has been influenced by the ap­
plication of other optimisations? By applying each of the
strategies to the naive query plan independently, while dis­
abling all the others, we gain some insight on the dependen­
cies among the various optimisations.

Figure 4 shows the improvement with respect to the naive
query plan for each individually applied optimisation strat­
egy. For example, the exploitation of the UDF function
(strategy 6 in Figure 4) reduces the execution time of the
naive query plan by roughly 16%. Figure 5 shows the contri­
bution of the same optimisation strategies in the setting of
the previous set of experiments, where optimisation strate­
gies were applied incrementally. In comparing both figures
it is apparent that the various optimisations are not inde-

9

pendent: the effectiveness of optimisations performed in iso­
lation or in combination with the other optimisations differs
significantly.

Techniques 3, 4 and 5, for example, perform poorly when
applied in isolation, while they are among the most effec­
tive in the combined scenario. These three techniques have
in common that they result in more complex query plans:
this inadvertently introduces some degree of overhead. In
the combined case, other optimisations (rewriting at the ar­
ray algebra level in particular) compensate for most of this
induced overhead, while in the isolated case this same over­
head cancels out most advantages of these techniques. The
various optimisations need to be applied in combination for
maximum effectiveness.

Combination of optimisations does not only keep induced
overhead under control; in some cases one optimisation tech­
nique creates opportunities for another. This is the case for
the combination of unfolding and reuse: in the isolated case
there is little opportunity to reuse intermediates and the
overhead induced by the optimisation outweighs its bene­
fits. However, the fragmentation performed as part of the
unfolding technique introduces many more opportunities to
reuse intermediate results (many identically shaped array
fragments are processed with the same patterns) and the
effectiveness of intermediate-reuse is dramatic.

Naturally, different optimisations can also adversely affect
each-other. For example, the algebraic optimisation reduces
overall execution time in the isolated case by more than 30%;
in the combined case however, this contribution is closer to
20% (a reduced effectiveness of almost 50%). This effect
can be explained by the fact that the previously applied
reuse optimisation reduced the freedom of the optimiser to
rewrite the query. Note that in this case the cumulative
result of the combined optimisations still outperforms the
single optimisation.

6. CONCLUSIONS
This paper presented an overview of the RAM system,

aimed to reduce the mismatch between the need for array­
based processing in handling multi-dimensional data (e.g.
multimedia data retrieval) and the standard relational data­
base interface. RAM maps declarative array-expressions to
relational query languages. While it improves expressiveness
of the resulting database system, a significant performance
gap between a naive translation of RAM expressions and op­
timised hand-crafted applications (partially) remained to be
filled. We report upon a non-trivial case study used to iden­
tify the most promising directions for the development of
efficient query processing for RAM expressions. The result­
ing system provides an proper alternative to time-consuming
and "unnatural" custom solutions.

We analyse six different implementation strategies, show­
ing their impact on the total performance, and compare
them (including the naive translation) to the performance
of an optimised query script implemented on top of Matlab.
The choice of Matlab as a baseline for our tests is mainly due
to the observation that it is particularly suitable for com­
putation on multi-dimensional arrays, with respect to both
execution speed and language expressiveness. These charac­
teristics make it a good choice for the quick implementation
of different prototype algorithms.

Pre-computation and Algebraic optimisation techniques
provide some important high-level optimisations that re-

suit in better performance. Also, as demonstrated in Sec­
tion 5.2, these techniques influence subsequent optimisations
significantly. The turning point about the scalability issue
has been achieved with the proposed Aggregates unfolding
strategy, which reduces the memory requirements of our ex­
periment dramatically. Reuse of materialised intermediate
results and Array fragmentation provide further improve­
ments by removing some of the overhead introduced in the
transformation of RAM expressions to relation query plans.

A final experiment demonstrated the potential of UDP
Compilation. Automatic or semi-automatic recognition and
compilation of crucial UDFs is in principle possible. Never­
theless, we still consider this possibility as an extreme opti­
misation strategy, addressing our speculations on its desir­
ability more than on its feasibility.

The good results obtained in this case study leave various
insights to be carefully verified. Further investigations con­
cern the inclusion in the RAM optimiser of those techniques
that proof generically applicable. Particular emphasis will
be put in recognising abstract patterns that can be applied
at a high-level (RAM algebra), in order to take advantage
of the multi-layer structure of the RAM system. Shifting
part of the developers expertise to an automatic process is
a guarantee of exhaustive and quick exploration of the op­
timisation opportunities space. Of course, the quality of
the result of such a process also depends on the accuracy
of the implemented heuristics. Therefore, more research is
needed to develop improved heuristics for the existing opti­
misations.

7. REFERENCES
(1) D. Maier and B. Vance. A call to order. In Proceedings of

the 12th ACM SIGACT-SIGMOD-SIGART symposium on
principles of database systems, pages 1-16. ACM Press,
1993.

[2] N. Nes. Image Database Management Systems - Design
Conciderations, Algorithms and Architecture. PhD thesis,
University of Amsterdam, December 2001.

[3) T.Westerveld, A.P. de Vries, and A.van Ballegooij. CWI at
the TREC-2002 Video Track. In E.M. Voorhees and D.K.
Harman, editors, The Eleventh Text REtrieval Conference
(TREC-2002), 2002.

(4] T. Westerveld, T. Ianeva, L. Boldareva, A.P. de Vries, and
D. Hiemstra. Combining information sources for video
retrieval. In TRECVID 2009 Workshop, 2003.

[5) The Math Works Inc. Matlab. http://www.mathworks.com.
(6] A.R. van Ballegooij. RAM: A Multidimensional Array

DBMS. In Proceedings of the ICDE/EDBT 2004 Joint
Ph.D. Workshop, pages 169-174, 2004.

[7] A.R. van Ballegooij, A.P. de Vries, and M. Kersten. Ram:
Array processing over a relational dbms. Technical Report
INS-R0301, CWI, March 2003.

[8] P. Buneman, L. Libkin, D. Suciu, V. Tannen, and L. Wong.
Comprehension gyntax. SIGMOD Record, 23(1):87-96,
1994.

(9] L. Libkin, R. Machlin, and L. Wong. A query language for
multidimensional arrays: Design, implementation, and
optimization techniques. In ACM SIGMOD 1996, pages
228-239. ACM Press, June 1996.

[10] CWI Amsterdam and University of Amsterdam. Monetdb.
http://sourceforge.net/projects/monetdb/.

[11] M.M. Astrahan, M.W. Blasgen, D.D. Chamberlin, K.P.
Eswaran, J.N. Gray, P.P. Griffiths, W.F. King, RA. Lorie,
P.R. McJones, J.W. Mehl, G.R. Putzolu, 1.1. Traiger, B.W.
Wade, and V. Watson. System R: relational approach to
database management. ACM Transactions on Database
Systems, 1(2):97-137, 1976.

10

[12] D. Hiemstra. Using language models for information
retrieval. PhD thesis, Centre for Telematics and
Information Technology, University of Twente, 2001.

(13] N. Vasconcelos. Bayesian Models for Visual Information
RetrievaL PhD thesis, Massachusetts Institute of
Technology, 2000.

[14] T. Westerveld, A.P. de Vries, A.van Ballegooij, F.M.G.
de Jong, and D.Hiernstra. A probabilistic multimedia
retrieval model and its evaluation. EURASIP Journal on
Applied Signal Processing, 2:186-198, 2003.

[15] P.A. Boncz and M.L. Kersten. Mil primitives for querying a
fragmented world. The VLDB Journal, 8(2):101-119,
October 1999.

