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ON THE SIZE OF SYSTEMS OF SETS EVERY t OF WHICH HAVE AN 
SDR, WITH AN APPLICATION TO THE WORST-CASE RATIO 

OF HEURISTICS FOR PACKING PROBLEMS* 

C. A. J. HURKENSt AND A. SCHRUVER:t 

Abstract. Let E1, • • • , Em be subsets of a set V of size n, such that each element of Vis in at most k of 
the E1 and such that each collection oft sets from E1 , • • • , Em has a system of distinct representatives (SDR). 
It is shown that m/n ::;;; (k(k - 1)' - k)/(2(k - !)' - k) if t = 2r - I, and m/n ::;;; (k(k - 1)' - 2)/ 
(2(k- 1)'- 2) ift = 2r. Moreover it is shown that these upper bounds are the best possible. From these results 
the "worst-case ratio" of certain heuristics for the problem offinding a maximum collection of pairwise disjoint 
sets among a given collection of sets of size k is derived. 
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1. Introduction. We prove the following theorem, where m, n, k, and tare positive 
integers, with k $; 3. 

THEOREM l. Let Ei. · · · , Em be subsets of the set V of size n, such that we have 
the following: 

(1) ( i) Each element of Vis contained in at most k of the sets E 1 , • • • , Em; 
(ii) Any collection of at most t sets among E1, · · · , Em has a system of distinct 

representatives. 

Then, we have the following: 

(2) (1.) m ~ k(k-1)'-k zift = 2r- l·, 
n - 2(k-1)'-k 

( '') m ~ k(k- IY-2 zift = 2r. 
n n - 2(k- 1)' - 2 

Note that by the Konig-Hall Theorem, condition (l)(ii) can be replaced by 
the following: 

(3) For any s ;;;! t, any s of the sets among £ 1 , • • • , Em cover at leasts elements of V. 

We give a proof of Theorem 1 in § 2. We also show that the bounds given in (2) 
are best possible in the following sense. 

THEOREM 2. For any fixed k, t (with k $; 3), there exist m, n and Ei. ···,Ems;;; 
V(with IV I = n) satisfying (1) and having equality in the appropriate line of (2). 

The proof of Theorem 2 is based on a construction using regular graphs of large 
girth (see § 3 ). 

Finally, in § 4 we apply these results to derive the worst-case ratio of certain heuristic 
algorithms for the problem of finding a largest family of pairwise disjoint sets among a 
given family of sets of size k (this problem is NP-complete for any k $; 3). 
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2. Proof of Theorem 1. To show Theorem 1, we first give a lemma. Let Ei, · · · , 
Em be a collection of finite nonempty sets, which we order so that I E 1 I, · · · , I Eh I ~ 2 
and I Eh+ 1 I = · · · = I Em I = 1, for some h ~ m. We define a new collection as 
follows. Let 

(4) W:=Eh+1 U · · · UEm. 

Let for each i = 1, · · · , h, X; be a set of size I E; I - 2, disjoint from E 1 U · · · U Em and 
so that if i =I= j then X; n .J0 = 0. Let X1 U · · · U Xh =: {y1, • • • , yq}. Then the derived 
collection of sets is formed by the following sets: 

(5) 

Furthermore, we define a collection E 1 , • • • , Em to have the t-SDR-property if any 
t sets among E 1 , • • • , Em have a system of distinct representatives. 

LEMMA. Fort"?;. 3, if Ei, · · · , Em has the t-SDR-property, then the derived collection 
(5) has the (t - 2)-SDR-property. 

Proof. Suppose (5) does not have the (t - 2)-SDR-property. Then there exists a 
collection II of p sets among ( 5) covering at most p - 1 elements, for some p ~ t - 2. 
Assume we have chosen p minimal. This immediately implies the following: 

(6) (i)IUIIl=p-1; 
(ii) Each element in U II is covered by at least two sets in II. 

From ( 6 )(ii) we directly have for any i = 1, · · · , h and x EX;: 

(7) 

Without loss of generality, all sets (E1 \W) U X 1 , • • • , (Eh \W) U Xh belong to II 
(as we can delete all sets Ej from £ 1 , • • • , Eh for which ( E1 \ W) U .J0 <I. II), and without 
loss of generality, (£1 U · · · U Eh) n W =Eh+ 1 U · · · U Em. 

Note the following: 

h 

(8) q = I X1 u · .. u xh I = 2: ( I E; I - 2), p=h+q, 
i= I 

l.u (E;\W)I= IUIIl-q=(p-l)-q=h-1. 
I= 1 

So, 

(9) \9, E;\ = \i~l (E;n w)\ +\i~I (E;\W)\ = (m-h)+(h- l)= m-1. 

Moreover, by (6)(ii), L.:7= 1 I E;\W I "?;. 2 · I Uf= 1 (E;\W) I, and hence 

(10) 

m=h+\i~l (E;n W),~h+ i~I IE;n WI =h+ j~J IE;I -i~l IE;\WI 

~h+ ~I E; 1-2· \~(E;\W)\ =h+2h+ ~ (I E;l -2)-2(h- l) 

= h + 2h + q - 2 ( h - 1) = h + q + 2 = p + 2 ~ t. 

Inequalities ( 9) and ( 10) contradict the fact that E i. · · · , Em has the t-SDR-prop-
erty. D 



70 C. A. J. HURKENS AND A. SCHRIJVER 

Proof of Theorem 1. We prove Theorem 1 by induction on t. 
Case 1. t = 1. Then we have that each of E1, · · · , Em is nonempty, and hence 

m ~ 2::!1 I E; I ~kn, by (l)(i). 
Case 2. t = 2. Then we have that each of E1, · · · , Em is nonempty, and that no 

two of the singletons among E1, · · · , Em are the same. Without loss of generality, Jet 
Eh+ 1 , • • • , Em be the singletons among E1, · · · , Em. Then m - h ~ n, and 

h m m 

(11) m+h=2h+(m-h)~ L I E;I + L I E; I= L I E;I ~kn 
i= I i=h+ I i= I 

(by (l)(i)). Hence 2m = (m - h) + (m + h) ~ (k + l)n, and (2) follows. 
Case 3. t !?;; 3. Then consider the derived collection E'1, · · · , E'm, on V' := 

ur~ I E~ as in (5). Note that m' = h + q and n' := I V'I = n - I w I + q. Denote the 
right-hand side term in (2) by cp(k, t). 

As by the lemma above, E'i. · · · , E'm 1 has the (t- 2)-SDR-property, and as trivially 
each element of V' is in at most k of the sets E'1, · · · , E'm, we have by induction that 
m' ~ cp(k, t - 2)n'. That is, 

(12) h+q~cp(k,t-2)(n- I w I +q). 

Writing the terms in different order, we have 

(13) cp(k,t- 2) I w I+ h-(cp(k,t-2)- l)q ~ cp(k, t- 2)n. 

Moreover, as Ei. · · · , Em cover any element at most k times: 
h h m 

(14) !Wl+2h+q=IWl+2h+L(IE;l-2)=1Wl+L IE.-i=L IEd~kn. 
i= I i= 1 i= I 

Hence, 

m=h+IWI 

(15) 
1 

2<P(k,t-2)-1 (cp(k,t-2) I WI +h-(cp(k,t-2)- l)q} 

+ <P(k,t-2)-1 (IWI +2h+q) 
2<P(k,t-2)-1 

1 cp(k,t-2)-1 
~2<P(k,t-2)-1<P(k,t- 2 )n+2cp(k,t-2)-1 kn 

- (k+ l)<P(k,t-2)-k - (k ) 
- 2<P(k,t-2)-1 n-cp ,t n. 

The last equality follows directly by substituting the corresponding right-hand side 
of (2). 0 

3. Proof of Theorem 2. To prove Theorem 2 we use a result of Erdos and 
Sachs [l]: 

( 16) For every k and 'Y there exists a k-regular graph of girth 'Y. 

As a consequence of (16) we have the following: 

( 17) For every k, s, and 'Y there exists a bipartite graph of girth at least 'Y, with color 
classes U and W, say, such that each vertex in Uhas degree k, and each vertex 
in W has degree s. 
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(To see that (17) follows from ( 16 ), let H be a 2ks-regular graph of girth 'Y· Consider 
any Eulerian orientation of the edges of H (i.e., one for which all in degrees and outdegrees 
equal ks). Split each vertex v into k + s vertices Vi, • • · , vk. w1 , • • • , Ws and divide the 
arcs entering v equally over v1, · · · , vk and divide the arcs leaving v equally over Wi, · · · , 
Ws. Forgetting the orientations, we obtain a bipartite graph with the required properties.) 

Now choose k, t. Let r := L!tJ. Consider the tree T, with vertices 1, 2, · · ·, 1 + 
(k - 1) + (k - 1) 2 + · · · + (k - 1y- i, so that for i <},vertices i and} are connected 
by an edge, if and only if (k - l)i ;<£ j ;<£ (k - l)i + (k - 2 ). So each vertex has degree 
k, except for vertex 1, which has degree k- 1, and for the vertices 1 + (k - 1) + · · · + 
(k-1)'- 2 + 1, ... , 1 +(k-1)+ ... +(k-1y-i,whichhavedegreeone. 

First let t be even. Let G be a ( k - l) '-regular graph of girth t + 1 ( cf. ( 16)). Let G 
have p vertices: Vi, • · · , vP. Consider p copies Ti, · · · , Tp of T (denoting the copy of 
vertex i in Tj by ij)· For each j = 1, · · · , p, partition the set of (k - 1)' edges of G 
incident to Vj (arbitrarily) into (k - iy- i classes of size k - 1, and connect them to the 
(k - l)'- 1 vertices i1 in Tj of degree one. So the final graph H = (W, F) has all degrees 
equal to k, except for the vertices 1 i. · · · , l P• which have degree k - l. Let Ei, · · · , 
Em be the collection F U { { 1 i} , · · · , { I P} } . This collection clearly satisfies ( 1 )( i), and 
direct counting shows equality in (2)(ii). To see that the collection satisfies (l)(ii), let 
Ei. · · · , Es form a subcollection with I Ei U · · · U Es I <sands as small as possible. 
Supposes;<£ t. As Ei, · · · , Es must form a connected hypergraph, it contains at most one 
singleton (since any path between 1 ; and 1 Jin H contains at least t - 1 edges). So assume 
E1, · · · , Es are edges of H. Then they do not contain any circuit (as each T; is a tree 
and as G has girth t + 1 > s). So I E 2 U · · · U Es I ~ s, a contradiction. 

Next let t be odd. Let G be a bipartite graph, of girth at least t + 1, so that in one 
col or class U each vertex has degree ( k - I)' and in the other color class W each vertex 
has degree k. Let U =: { ui, · · · , up}. Consider again p copies Ti, · · · , Tp of T, as 
above. For j = 1, .. · , p partition the set of ( k - 1 )'edges of G incident to u j (arbitrarily) 
into (k - 1)'- 1 classes of size k - 1, and connect them to the (k - I)'- 1 vertices iJ in TJ 
of degree one. Again, the final graph H = ( W, F) has all degrees equal to k, except 
for the vertices 1 i, · · · , 1 P that have degree k - 1. Let Ei, · · · , Em be the collection 
FU { { l i} , · · · , { 1 P} } . Similarly, as above, we show that this collection satisfies ( 1) and 
has equality in ( 2 )( i). 

4. Application to the worst-case ratio of heuristics. The problem offinding a largest 
collection of pairwise disjoint sets among a given collection Xi, · · · , Xq of k-sets is NP
complete, for any k ~ 3. Call any collection of pairwise disjoint sets a packing. 

For any fixed s, we can apply the following heuristic algorithm Hs. Start with the 
empty packing. If we have found a packing Yi, · · · , Yn from Xi, · · · , Xq, we could 
select p;?, s sets among Y1, • • • , Yn, and replace them by p + 1 sets from X1, · · · , Xq, 
so that the arising collection is a packing with n + 1 sets. Repeating this, the algorithm 
terminates with a collection Yi , · · · , Yn so that 

( 18) For each p ;<£ s, the union of any p + 1 pairwise disjoint sets among X1, · · · , 
Xq intersects at least p + 1 sets among Yi, · · · , Yn. 

This defines heuristic Hs, which is, for any fixed s, a polynomial-time algorithm
however it clearly need not lead to a largest packing. We might ask how far the packing 
found with Hs is from the largest packing. 

To this end, consider a largest packing Zi. · · ·, Zm from Xi. · · ·, Xq. We claim 
that m / n satisfies the bounds given in ( 2), taking t : = s + 1, and that these bounds are 
best possible. That is, the "worst-case ratio" of the heuristic is given in ( 2). 
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Indeed, let 

(19) V:={Yi. ··· ,Yn} and E;:={YjlYjnZ;+O} fori= 1, · · · ,m. 

Then by (18), E1, ···,Em satisfy (1), and hence we obtain the bounds given in (2). 
In turn, it is not difficult to see that for any collection E1, · · · , Em of sets of size at 

most k, containing any point at most k times, we can assume they are of form (19) 
for certain packings Y1, · • · , Yn and Z 1. • · • , Zm of k-sets. Thus starting with E 1, • • • , 

Em as described in § 3 above, making these Y1, • • · , Yn, Z 1, · • · , Z m, and taking 
{Xi. · · · ,Xq} :={Yi.···, Yn, Zi. · · ·, Zm}, we obtain a system of sets attaining the 
worst-case ratio. (That is because we may assume that Hs selects the sets Y 1 , • • • , Yn 
in the first n iterations.) 

Note that we may assume even that the sets Yi. · · · , Yn, Z" · · · , Zm form the 
collection of all cliques of size k in a graph. Hence, we cannot obtain a better worst-case 
ratio by restricting the collections of sets to collections of k-cliques. 
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