
ar
X

iv
:1

50
4.

00
18

5v
1

 [
m

at
h.

C
O

]
 1

 A
pr

 2
01

5

FINDING k PARTIALLY DISJOINT PATHS IN A DIRECTED
PLANAR GRAPH

Alexander Schrijver 1

Abstract. The partially disjoint paths problem is: given: a directed graph, vertices r1, s1, . . . ,
rk, sk, and a set F of pairs {i, j} from {1, . . . , k}, find: for each i = 1, . . . , k a directed ri − si path
Pi such that if {i, j} ∈ F then Pi and Pj are disjoint.

We show that for fixed k, this problem is solvable in polynomial time if the directed graph is
planar. More generally, the problem is solvable in polynomial time for directed graphs embedded on
a fixed compact surface. Moreover, one may specify for each edge a subset of {1, . . . , k} prescribing
which of the ri − si paths are allowed to traverse this edge.

1. Introduction

In this paper we show that the following problem, the k partially disjoint paths problem, is
solvable in polynomial time for directed planar graphs, for each fixed k:

(1) given: a directed graph D = (V,E), vertices r1, s1, . . . , rk, sk of D, and a set F of
pairs {i, j} from {1, . . . , k},

find: for each i = 1, . . . , k, a directed ri − si path Pi in D such that if {i, j} ∈ F then
Pi and Pj are disjoint.

Here ‘disjoint’ means vertex-disjoint. So F prescribes the set of pairs of paths that are
forbidden to intersect.

This paper extends [15], where all pairs of paths are prescribed to be disjoint (so F
is the set of all pairs from {1, . . . , k}). Also the method of [15] based on free groups and
cohomology is extended to free partially commutative groups (but also some simplifications
of the method in [15] have been included in the present paper).

The partially disjoint paths problem comes up in multi-commodity routing where certain
commodities are forbidden to use the same facility, to avoid clashes of conflicting commodi-
ties (radio frequencies, soccer fan gangs, chemicals (including gases) through a pipeline
network, or time slots in routing on a VLSI-chip).

The disjoint paths problem is well-studied, and generally NP-complete, implying a for-
tiori that the partially disjoint paths problem is generally NP-complete. The problem is
NP-complete if we do not fix k, even in the undirected case (Lynch [10]). Moreover, it is
NP-complete for k = 2 for directed graphs (Fortune, Hopcroft, and Wyllie [8]). This is in
contrast to the undirected case (if NP 6=P), where Robertson and Seymour [14] showed that,
for any fixed k, the k disjoint paths problem is polynomial-time solvable for any graph (not
necessarily planar). For a survey of results till 2003 we refer to Chapter 70 of [16].

1 University of Amsterdam and CWI, Amsterdam. Mailing address: Korteweg-de Vries Institute for
Mathematics, University of Amsterdam, P.O. Box 94248, 1090 GE Amsterdam, The Netherlands. Email:
lex@cwi.nl. [April 2, 2015] — The research leading to these results has received funding from the European
Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013) / ERC
grant agreement n◦ 339109.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301645276?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/1504.00185v1

Our method for the partially disjoint paths problem (1) for directed planar graphs
consists of a number of layers and reductions:

(2) (i) The top layer is to select a homology type for the solution. The number of
potentially feasible homology types can be bounded by (2|E(G)|+1)4k

2
. This is

the only level where the ‘fixed k’ comes in.
(ii) For each homology type, one can find in polynomial time a solution of that type,

if it exists. The formalism to keep track of homology is that of flows over a ‘graph
group’: the group given by generators g1, . . . , gk and relations gigj = gjgi for all
i, j with {i, j} 6∈ F .

(iii) Finding such a solution of the prescribed homology type is done by reduction
to a ‘cohomology feasibility problem’ in a (generally nonplanar) extension of the
planar dual of the input graph. (This is why we need cohomology — homology
in the original, planar graph seems not enough, mainly because disjoint paths
should not only be edge-disjoint, but also vertex-disjoint.)

(iv) This cohomology feasibility problem is reduced to a 2-satisfiability problem,
whose input is based on a (polynomial) number of ‘pre-feasible’ solutions for
the cohomology feasibility problem.

(v) Finding these pre-feasible solutions forms the bottom layer of the algorithm. It
consists of a rather brute-force, but yet polynomial-time, constraint satisfaction
method (adapting an instance as long as it is not pre-feasible).

In our description, we start at the bottom and work our way up to the top layer.
The method rests on quite basic combinatorial group theory. The approach allows

application of the algorithm where the embedding of the graph in the plane is given in an
implicit way, viz. by a list of the cycles that bound the faces of the graph, or alternatively
by the clockwise order of edges incident with v, for each vertex v.

Our method directly extends to directed graphs on any fixed compact surface and to
inputs where for each edge e a subset Ke of {1, . . . , k} is given that prescribes which of the
ri − si paths may traverse e. We did not see if the method would extend to a polynomial-
time algorithm if, instead of fixing k, we fix the number of faces by which r1, s1, . . . , rk, sk
can be covered.

Our algorithm is a ‘brute force’ polynomial-time algorithm. We did not aim at obtaining
the best possible running time bound, as we presume that there are much faster (but
possibly more complicated) methods for problem (1) for directed planar graphs than the
one we describe in this paper.

We could not avoid that k pops up in the degree of the polynomial. In fact, Cygan, Marx,
Pilipczuk, and Pilipczuk [3] recently showed that there exists a constant t, independent of
k, such that the k (fully) disjoint paths problem for directed planar graphs is solvable in
O(nt) time, for any fixed k. So k only shows up in the coefficient of the polynomial. In
other words, the problem is ‘fixed parameter tractable’. This raises the question if also the
partially disjoint paths problem is fixed parameter tractable for directed planar graphs.

In the case of undirected planar graphs, it was shown by Reed, Robertson, Schrijver, and
Seymour [13] that the k disjoint paths problem can be solved in linear time, for any fixed k.
This algorithm utilizes methods from Robertson and Seymour’s graph minors theory. For

2

general undirected graphs, the k disjoint paths problem is solvable in time O(n2) for any
fixed k ([14], [9]).

2. Graph groups

Our method uses the framework of combinatorial group theory, viz. groups defined by
generators and relations. For background literature on combinatorial group theory we refer
to Magnus, Karrass, and Solitar [12] and Lyndon and Schupp [11].

In particular we utilize ‘graph groups’. These groups are studied inter alia by Baudisch
[2], Droms [6], Servatius [17], Wrathall [18], and Esyp, Kazachkov, and Remeslennikov [7].
Specific properties of graph groups that we will use are given in [2] and [7], but we will also
need several other properties that seem not to have been considered before, in particular
concerning phenomena like convexity and periodicity emanating in graph groups.

We first give some standard terminology. Let g1, . . . , gk form an abstract set of genera-
tors. Call g1, g

−1
1 , . . . , gk, g

−1
k symbols. A word (of size t) is a sequence α1 · · ·αt where each

αj is a symbol. The empty word (of size 0) is denoted by ∅. Define (g−1
i)−1 := gi, and

(α1 · · ·αt)
−1 := α−1

t · · ·α−1
1 .

Let g1, . . . , gk be generators, and let F be a set of unordered pairs {i, j} from [k] with
i 6= j. So ([k], F) is an undirected graph. (Throughout this paper: [k] := {1, . . . , k}.)

Then the group G = GF is generated by the generators g1, . . . , gk, with relations

(3) gigj = gjgi for each pair {i, j} 6∈ F .

If F = ∅p GF is the free group generated by g1, . . . , gk. If F consists of all pairs, the group
GF is the free group generated by g1, . . . , gk. If F = ∅ then GF is isomorphic to Z

k. Let 1
denote the unit element of GF . So 1 = ∅.

The group GF is called a graph group, or a free partially commutative group, or a
right-angled Artin group, or a semifree group. (Our definition (3) of graph group differs
in a nonessential way from that generally used, where the graph describes the pairs of
commuting generators, rather than the pairs of noncommuting generators. Definition (3)
is more convenient for our purposes. For instance, it implies that the group GF is equal to
the product of the groups obtained from each component of the graph ([k], F).)

2.1. Independent symbols, commuting, reduced words

We review the basics of graph groups, referring to Baudisch [2] and Esyp, Kazachkov, and
Remeslennikov [7] for the elaboration of some details.

To describe GF , call symbols α and β independent if α ∈ {gi, g
−1
i } and β ∈ {gj , g

−1
j } for

some {i, j} 6∈ F with i 6= j. So if α and β are independent then αβ = βα and β 6= α±1. (It
follows from (5) below that also the converse implication holds.)

Call words w and v equivalent if v if v arises from w by iteratively:

(4) (i) replacing xαα−1y by xy or vice versa, where α is a symbol,
(ii) replacing xαβy by xβαy where α and β are independent symbols.

By commuting we will mean applying (ii) iteratively.

3

Then the elements of GF are equivalence classes of words, which we can indicate by
words, although one should obviously keep in mind that different words will indicate one
group element. We will write w ≡ v if we want to stress that w and v are equal as words.
We denote GF by G if F is clear from the context.

A word w is called reduced if it is not equal (as a word) to xαyα−1z for some symbol
α independent of y. Note that reducedness is a property of words, and that it is invariant
under commuting. We say that a symbol α occurs in an element x of G, or that x contains
α, if α occurs in any reduced word representing x. Two elements x and y of G are called
independent if any symbol in x and any symbol in y are independent. (In particular, β 6= α±1

for any symbols α in x and β in y.)
The following is basic — see Lemma 2.3 in [7]:

(5) Let w and x be reduced words with w = x as group elements. Then word x can
be obtained from w by a series of commutings.

Define, for x ∈ G, |x| as the size of any reduced word representing x. So |xy| ≤ |x|+ |y| for
all x, y ∈ G.

(5) implies that testing if w = 1 is easy: just replace (iteratively) any contiguous subword
αyα−1 by y where α is a symbol and y is a word independent of α. The final word is empty if
and only if w = 1. This gives a test for equivalence of words w and x: just test if wx−1 = 1.
So the ‘word problem’ for graph groups is solvable in polynomial time. (In fact it can be
solved in linear time — see Wrathall [18].)

It will be convenient to have a mean to emphasize when the concatenation of two reduced
words x and y gives again a reduced word (without cancellation as in (4)(i)). In other words,
when |xy| = |x|+ |y|.

To this end, we add an abstract new element ∗ to G and define a multiplication · on
G ∪ {∗} as follows. Let x, y ∈ G. Then x · y := xy if |xy| = |x| + |y|, and x · y := ∗ if
|xy| < |x|+ |y|. So x · y belongs to G if for any reduced words x′ and y′ representing x and
y one has that the concatenation of x′ and y′ is reduced. So no symbol in x′ cancels out
any symbol in y′. If we moreover set ∗ · x := ∗ and x · ∗ := ∗ for all x ∈ G ∪ {∗}, we obtain
an associative multiplication · on G ∪ {∗}.

The only purpose of introducing ∗ is to have a convenient and formally correct tool to
write, for x, y, z ∈ G, x = y · z, meaning x = yz and |x| = |y| + |z|. By extension, for
x, y1, . . . , yn ∈ G, x = y1 · . . . ·yn means x = y1y2 . . . yn and |x| = |y1|+ |y2|+ · · ·+ |yn|. That
is, in the concatenation of reduced words y1, . . . , yn there is no cancelation. The element ∗
will not occur anymore below.

While the multiplication · is associative, it is generally not the case that if xy = x · y
and yz = y · z then xyz = x ·y · z, because in xyz, symbols in x might cancel out symbols in
z. Nevertheless, the following holds. Call y ∈ G a segment of a ∈ G if there exist x, z ∈ G
with a = x · y · z. Then:

(6) If xy = x · y and yz = y · z, then y is a segment of xyz.

To see this, let x, y, and z be reduced words, and consider the concatenation of x, y, z. In
the cancellation to obtain a reduced word, only symbols in x and symbols in z can cancel
each other out (since the concatenations x, y and y, z are reduced). So y survives as segment

4

of xyz.

2.2. The partial order ≤

Most of what follows in this section is, explicitly or implicitly, in [7]. Let x, y ∈ G. We
write x ≤ y if x = x · a for some a (namely, a = y−1x). (If x ≤ y, x is called in [7] a left
divisor of y.) So if y is given as reduced word, it means that y can be commuted so that
the first |x| symbols in y form x (by (5)). Also, x ≤ y if and only if |y| = |x|+ |x−1y|.

It is easy to derive from the norm properties of |.| that ≤ is a partial order. In fact, the
partial order ≤ is a lattice if we add to G an element ∞ at infinity (Propositions 3.10 and
3.12 in [7]). This follows from the existence of the meet x∧ y for all x, y ∈ G. Then the join
∨ exists for all x, y for which there exists z ∈ G with x, y ≤ z (then x ∨ y is the meet of all
such z). So adding an element ∞ with ∞ ≥ x for all x, makes (G ∪ {∞},≤) to a lattice.
Then x ∨ y = ∞ if there is no z ∈ G with z ≥ x, y.

If finite, the join x ∨ y can be described as follows (Proposition 3.18 in [7]):

(7) Let x, y ∈ G and define x′ := (x ∧ y)−1x and y′ := (x ∧ y)−1y. Then x ∨ y < ∞
if and only if x′ and y′ are independent.

Moreover:

(8) If x ∨ y <∞ then x ∨ y = (x ∧ y) · x′ · y′ = x(x ∧ y)−1y.

For any a ∈ G define:

(9) a↓ := {x ∈ G | x ≤ a} and a↑ := {x ∈ G | x ≥ a}.

The norm characterization of ≤ implies for all x, y, z with x ≤ y, z:

(10) y ≤ z if and only if x−1y ≤ x−1z.

Hence for any a ∈ G, the function a↑ → a−1a↑ with b 7→ a−1b for b ∈ a↑ is an order
isomorphism, and therefore:

(11) If b, c ≥ a then a−1(b ∧ c) = a−1b ∧ a−1c, and if moreover b ∨ c < ∞, then
a−1(b ∨ c) = a−1b ∨ a−1c.

Proposition 1. Let x1, . . . , xt be such that xi∨xj <∞ for all i, j. Then x1∨· · ·∨xt <∞.

Proof. It suffices to show this for t = 3. Suppose x ∨ y ∨ z = ∞ while y ∨ z < ∞. Let
a := x ∧ (y ∨ z). As x ∨ y ∨ z = ∞, a−1x and a−1(y ∨ z) are dependent. Now, using (11)
(with b := a ∨ y and c := a ∨ z) and (8):

(12) a−1(y ∨ z) = a−1(a ∨ y ∨ z) = a−1(a ∨ y) ∨ a−1(a ∨ z) =
(a ∧ y)−1y ∨ (a ∧ z)−1z = (x ∧ y)−1y ∨ (x ∧ z)−1z.

So a−1x is dependent on at least one of (x ∧ y)−1y and (x ∧ z)−1z, say a−1x is dependent
on (x ∧ y)−1y. Since x ∧ y ≤ a this implies that (x ∧ y)−1x is dependent (x ∧ y)−1y. So
x ∨ y is infinite.

5

We say that a symbol α is a minimal symbol of x ∈ G if α ≤ x (so α can be commuted
so as to become the first symbol). Similarly, α is a maximal symbol if α−1 ≤ x−1, i.e., if
xα−1 ≤ x (so α can be commuted so as to become the last symbol).

We will need that for all x, y, z ∈ G:

(13) If y ≤ xyz = x · y · z, then y ≤ xy.

This can be seen by induction on |z|. Let α be a maximal element of z, let z′ := zα−1, and
suppose that y 6≤ xyz′. Let α occur m times in y. As y ≤ xyz and y 6≤ xyz′, α occurs m−1
times in xyz′. This contradicts the fact that α occurs m times in y, hence in x · y · z′. This
proves (13).

We also will need that for all x, y, z ∈ G:

(14) If x, y ≤ z then (x ∧ y)−1x ≤ y−1z.

To see this, let b := x ∨ y = y(x ∧ y)−1x. As y ≤ b ≤ z, we have (x ∧ y)−1x = y−1b ≤ y−1z
by (10). proving (14).

Moreover, for all x, y, z ∈ G:

(15) If y−1x ∧ y−1z = 1 then (x ∧ z) ∨ (x ∧ y) ∨ (y ∧ z) = y.

To prove this, we can assume (by (11)) that x ∧ y ∧ z = 1. Let a := y ∧ z, b := x ∧ z,
and c := x ∧ y. Then a ∧ b = a ∧ c = b ∧ c = 1. Hence, by (7), a, b,and c are pairwise
independent, and bc ≤ x, ac ≤ y, ab ≤ z. Let x′, y′, and z′ satisfy x = bcx′, y = acy′,
and z = abz′. Since x ∧ y = c, we know y−1x = y′−1 · a−1 · b · x′. Hence, as a and b are
independent, y′−1 · b ≤ y−1x. Similarly, y′−1 · b ≤ y−1z. As y−1x∧ y−1z = 1, we have y′ = 1
and b = 1. Hence (x ∧ z) ∨ (x ∧ y) ∨ (y ∧ z) = a ∨ b ∨ c = ac = y.

(We finally remark, but will not need, that the lattice G ∪ {∞} is not distributive (if
F 6= ∅), while for each a ∈ G, the sublattice a↓ is distributive.)

2.3. Convex sets

The function dist(x, y) := |x−1y| is a metric, since, for all x, y ∈ G, (i) |x| = 0 ⇐⇒
x = 1, (ii) |x−1| = |x|, and (iii) |xy| ≤ |x| + |y|. Note that this distance is left-invariant:
dist(zx, zy) = dist(x, y) for all x, y, z.

We call a subset L ofG convex if L is nonempty and if x, z ∈ L and dist(x, y)+dist(y, z) =
dist(x, z) then y ∈ L. Since the distance function is left-invariant, if L is convex also yL is
convex, for each y ∈ G.

Proposition 2. A nonempty subset L of G is convex if and only if

(16) (i) if x ≤ y ≤ z and x, z ∈ L then y ∈ L,
(ii) if x, y ∈ L then x ∧ y ∈ L and, if x ∨ y is finite, x ∨ y ∈ L.

Proof. Necessity follows from the facts that if x ≤ y ≤ z then dist(x, y) + dist(y, z) =
dist(x, z), that dist(x, y) = dist(x, x ∧ y) + dist(x ∧ y, y) and that, if x ∨ y is finite then
dist(x, y) = dist(x, x ∨ y) + dist(x ∨ y, y).

6

To see sufficiency, let dist(x, y) + dist(y, z) = dist(x, z) with x, z ∈ L. We must show
y ∈ L. So |x−1y|+ |y−1z| = |x−1z|, hence y−1x ∧ y−1z = 1. Hence by (15), (x ∧ z) ∨ (x ∧
y) ∨ (y ∧ z) = y. So x ∧ z ≤ x ∧ y ≤ x and x ∧ z ≤ y ∧ z ≤ z. Therefore, x ∧ y and y ∧ z
belong to L and hence y belongs to L.

This implies that a↑ and a↓ are convex. Moreover, each convex set L has a unique
minimal element minL. This in fact characterizes convex sets:

(17) A nonempty subset L of G is convex if and only if for each a ∈ G, aL has a
unique minimal element.

Here necessity follows from (16)(ii). To see sufficiency, let x, z ∈ L and y ∈ G such that
dist(x, y)+dist(y, z) = dist(x, z). We prove y ∈ L. We may assume y = 1 (as the condition
is invariant under resetting L → y−1L). Let a be the unique minimal element in L. So
x ≥ a and z ≥ a. On the other hand, |x| + |z| = |x−1z|, and hence x ∧ z = 1. So a = 1,
proving (17).

Clearly, the intersection of any number of convex sets is convex again. Moreover, convex
sets satisfy the following ‘Helly-property’:

(18) Let L1, L2, L3 be convex sets with Li ∩ Lj 6= ∅ for all i, j = 1, 2, 3. Then L1 ∩
L2 ∩ L3 6= ∅.

For choose x ∈ L1 ∩ L2, y ∈ L1 ∩ L3, z ∈ L2 ∩ L3. Without loss of generality, z = 1 (as we
can replace L1, L2, L3 by z−1L1, z

−1L2, z
−1L3). Now x ∧ y ∈ L1 ∩ L2 ∩ L3.

This proves (18), which implies the following. As usual, define XY := {xy | x ∈ X, y ∈
Y } and X−1 := {x−1 | x ∈ X}, for X,Y ⊆ G. Then:

(19) Let L1, L2, and L3 be convex, with L1 ∩ L2 6= ∅. Then L1L
−1
3 ∩ L2L

−1
3 =

(L1 ∩ L2)L
−1
3 .

Indeed, trivially, L1L
−1
3 ∩ L2L

−1
3 ⊇ (L1 ∩ L2)L

−1
3 . To see the reverse inclusion, let x ∈

L1L
−1
3 ∩ L2L

−1
3 . Since x ∈ L1L

−1
3 , we know x−1L1 ∩ L3 6= ∅. Similarly, x−1L2 ∩ L3 6= ∅.

Since also L1 ∩ L2 6= ∅, (18) gives x−1L1 ∩ x
−1L2 ∩ L3 6= ∅. Hence x ∈ (L1 ∩ L2)L

−1
3 .

2.4. Ideals and closed sets

A subset I of G an ideal if I is nonempty and

(20) (i) if y ≤ x and x ∈ I then y ∈ I,
(ii) if x, y ∈ I and x ∨ y is finite then x ∨ y ∈ I.

Since 1 belongs to any ideal, by comparing (16) and (20) one sees that each ideal is convex.
Moreover, for any L ⊆ G and x ∈ L:

(21) L is convex if and only if x−1L is an ideal.

7

Call H closed if both H and H−1 are ideals. In particular, if H is closed and x ∈ H,
then any segment of x belongs to H.

Proposition 3. If H is closed and x, y ∈ G, then x ≤ y implies min(xH) ≤ min(yH).

Proof. We can assume that y = xα for some symbol α. Let c ∈ H with yc = min(yH). It
suffices to show that there exists d ∈ H with xd ≤ yc.

If α−1 ≤ c, let d := αc, in which case d ∈ H (as H−1 is an ideal) and xd = yc. If
α−1 6≤ c, then let d := c, in which case xd ≤ yc. Indeed, as yc = min(yH) and H is
an ideal, we know c ≤ y−1. Since c ≤ y−1 and α−1 ≤ y−1, α−1 and c are independent.
As moreover α−1 ≤ y−1, we know α−1 ≤ c−1y−1. Therefore, ycα−1 ≤ yc, and hence
xc = yα−1c = ycα−1 ≤ yc.

This is used in showing:

(22) If L is convex and H is closed, then LH is convex. Moreover, min(LH) =
min(min(L)H).

To show that LH is convex, by (17) it suffices to show that LH has a unique minimal element
(as each xL is again convex). Let a = min(L) and choose c ∈ H with ac := min(aH).
Then for each x ∈ L and y ∈ H, we have by Proposition 3, as a ≤ x, ac = min(aH) ≤
min(xH) ≤ xy. So ac is the unique minimal element in LH. Hence min(LH) = min(aH) =
min(min(L)H), and we have (22).

This implies:

(23) If H and H ′ are closed, then HH ′ is closed.

Indeed, H is an ideal, hence convex, hence by (22), HH ′ is convex. As 1 ∈ HH ′, it follows
that HH ′ is an ideal. Similarly, (HH ′)−1 is an ideal. So HH ′ is closed.

This gives for any closed H and x, x ∈ G:

(24) xHz−1 = x↓H(z↓)−1 ∩ x↑H(z↓)−1 ∩ x↓H(z↑)−1 ∩ x↑H(z↑)−1.

This follows from (19) and (22), as x↑, x↓, z↑, and z↓ all are convex, hence z↓H−1 and
z↑H−1 are convex. Then (19) gives that the right-hand side in (24) is equal to xH(z↓)−1 ∩
xH(z↑)−1. Applying (19) to the inverse of this set, we obtain (24).

2.5. Peaks

An element of G is called a peak if it has precisely one maximal symbol. The peaks are
precisely the join-irreducible elements of G with respect to ∨. If the maximal symbol equals
α, then p is called an α-peak. For each x ∈ G and symbol α, all α-peaks p ≤ x are totally
ordered by ≤. Moreover:

(25) Each x ∈ G is the join of all peaks p ≤ x.

To see this, let y be the join of all peaks p ≤ x. If y 6= x, choose a maximal symbol α of
y−1x. Then α is also a maximal symbol of x. Write x = ξ1 · . . . · ξn with symbols ξ1, . . . , ξn,
in such a way that the maximum j for which ξj = α is minimized. Then q := ξ1 · . . . · ξj

8

is an α-peak with q ≤ x. So q ≤ y. This however contradicts the fact y−1x has maximal
symbol α, thus showing (25).

For each x ∈ G and symbol α, let |x|α be the number of occurrences of symbol α in x
(not considering α−1).

Proposition 4. Let x, y ∈ G and let p ≤ x and q ≤ y be α-peaks satisfying |p−1x|α =
|q−1y|α. Then |pq−1| ≤ |xy−1|.

Proof. By induction on |x| + |y|. If x is not an α-peak, let β be a maximal symbol of
x with β 6= α. Let x′ := xβ−1. If β is also a maximal symbol of y, then we can apply
induction to x′ and y′ := yβ−1, since x′(y′)−1 = xy−1. If β is not a maximal symbol of y
then |x′y−1| ≤ |xy−1| (as β is not canceled in the concatenation of x and y−1), and hence
we can apply induction to x′ and y.

So we can assume that x is an α-peak, and similarly that y is an α-peak. If |p−1x|α = 0,
then x = p and y = q, and we are done. If |p−1x|α > 0, then x > p and y > q and we
can apply induction to x′ := xα−1 and y′ := yα−1. Note that |p−1x′|α = |p−1x|α − 1 =
|q−1y|α − 1 = |q−1y′|α.

We use this proposition only in obtaining the following:

(26) Let p ≤ r ≤ ar with p an α-peak. Then there exists a′ with p ≤ a′p, |p−1a′p|α =
|r−1ar|α, and |a′| ≤ |a|.

This follows by applying Proposition 4 to x := r and y := ar, taking for q the (unique)
α-peak satisfying p ≤ q ≤ ar with |q−1ar|α = |p−1r|α, which shows that we can take
a′ := qp−1. (Note that |q−1ar|α = |p−1r|α is equivalent to |p−1q|α = |r−1ar|α, since
|p−1q|α + |q−1ar|α = |p−1ar|α = |p−1r|α + |r−1ar|α.)

We also need:

(27) If x ≤ y and α is a symbol not occurring in x−1y, then |xp−1| ≤ |yp−1| for each
α-peak p.

Indeed, by induction we can assume that x−1y = β for some symbol β 6= α. Then in yp−1,
the maximal symbol β of y is not cancelled, since otherwise β would be maximal symbol
also of p, hence β = α, contradicting our assumption. Hence |xp−1| ≤ |xβp−1| = |yp−1|.

2.6. Connectedness and cyclic reducedness

We study periodicity of symbols in elements of G in order to obtain control on ‘stalling’ in
the algorithm. For this we need Proposition 8 below — the other results in Sections 2.6–2.9
are only needed to prove Proposition 8.

Call an element b of G connected if the generators occurring in b induce a connected
subgraph of ([k], F). So b is connected if and only if there are no a, c ∈ G with b = ac,
a 6= 1 6= c, and a and c independent. Each peak is connected.

Call an element b of G cyclically reduced if b ∧ b−1 = 1. So b is cyclically reduced if and
only if b2 = b · b. Also, if b is cyclically reduced, then for each s ≥ 0: bs = b · b · . . . · b (cf.
[2]).

9

The following proposition will be used in proving Propositions 6 and 7.

Proposition 5. Let c, d ∈ G satisfy d ≤ dc, c ≤ dc, and d 6≤ c. Suppose that d is connected
and that all minimal symbols of c occur in d. Then |c| ≤ |c∧ d|2. If d is moreover cyclically
reduced, then c ≤ d|c∧d|.

Proof. The proof is by induction on |c|. Let c′ := (c ∧ d)−1c. Then c′ ≤ c, by (14), since
c, d ≤ dc. Also, d ≤ dc′ (as d ≤ dc and c′ ≤ c) and c′ ≤ dc′ (by (13), as c′ ≤ c ≤ dc and
dc′ ≤ dc). As d 6≤ c and c′ ≤ c, we know d 6≤ c′. Moreover, as c′ ≤ c, all minimal symbols
of c′ occur in c, hence in d.

If c′∧d < c∧d, then by induction |c′| ≤ |c′∧d|2 and, if d is cyclically reduced, c′ ≤ d|c
′∧d|.

Hence |c| = |c ∧ d|+ |c′| ≤ |c ∧ d|+ |c′ ∧ d|2 ≤ |c ∧ d|2 and c ≤ c ∨ d = d(c ∧ d)−1c = dc′ ≤
d|c

′∧d|+1 ≤ d|c∧d|, as required.
So we can assume c′∧d = c∧d. As c, d ≤ dc, c∨d <∞. So (c∧d)−1c = c′ and (c∧d)−1d

are independent. Hence c′ ∧ d = c ∧ d and (c ∧ d)−1d are independent. As c ∧ d 6= d and as
d is connected, we know c ∧ d = 1. So c and d are independent. Since all minimal symbols
of c occur in d, this implies c = 1 and the bounds are trivial.

2.7. Conjugates

An element c of G is called a conjugate of a ∈ G if c = x−1ax for some x ∈ G. Then:

(28) For each a ∈ G, each conjugate c of a contains a segment x−1ax with x using
only generators occurring in a.

Indeed, let c = y−1ay. Then (28) can be proved by induction on |y|. If z := y ∧ a 6= 1,
replace y by z−1y and a by z−1az, and apply induction (this resetting does not change
y−1ay). So we can assume that y−1a = y−1 · a and similarly that ay = a · y. Hence a is a
segment of y−1ay by (6), proving (28).

We use this in proving:

(29) If a and b are independent, then each conjugate c of ab contains a segment which
is a conjugate of a.

Indeed, by (28) c has a segment x−1abx with x only using generators occurring in ab. As
a and b are independent we can write x = yz with y only using generators occurring in a
and z only using generators occurring in b. Hence y−1ay and z−1bz are independent, and
so y−1ay is a segment of x−1abx.

Proposition 5 implies:

Proposition 6. Let d be connected and cyclically reduced. Then for each n ≥ 0, each
conjugate c of dn+2|d| contains dn as segment.

Proof. Choose x ∈ G with c = x−1dn+2|d|x and |x| as small as possible. Then d 6≤ x,
otherwise replacing x by d−1x contradicts the minimality of x. Let y := x ∧ dn+|d|. Then
y ≤ dn+|d|+1 and d ≤ dy ≤ dn+|d|+1, hence by (13), y ≤ dy. Since y ≤ dn+|d|, all minimal
symbols of y occur in d. Hence by Proposition 5, y ≤ d|d|. So d|d| = y · a for some a. Hence
for z := y−1x one has x−1dn+|d| = z−1 · a · dn, implying x−1dn+|d| = x−1d|d| · dn.

10

By symmetry, dn+|d|x = dn · d|d|x. So by (6), dn is a segment of x−1d|d|dnd|d|x = c.

2.8. Periodicity

We give conditions for the eventual periodicity of a peak:

Proposition 7. Let q be connected and contain symbol α, and let p be an α-peak with
p ≤ pq. Then there exists an α-peak r and t ≥ 0 with p = r · qt and |r| ≤ 2|pqp−1|2.

Proof. Let a := pqp−1. Then |q| ≤ |a|, as |p| + |q| = |pq| = |ap| ≤ |p| + |a|. If |p| ≤ 2|a|2,
we can take r := p and t := 0. So we can assume that |p| > 2|a|2.

Let m := |q|α, and let p′ be minimal with the properties that p′ ≤ p and |p′|α ≥ |p|α−m.
Then p′ = 1 or p′ is an α-peak. By showing that (p′)−1p = q we are done, since then we
can apply induction, as p′q(p′)−1 = pqp−1.

Define c := p−1, d := q−1, and u := c ∧ dc. As u ≤ c, u ≤ dc, and d ≤ dc, we know
u ≤ du = d · u (by (13)). Since a = (dc)−1c, we have |a| = |c| + |dc| − 2|u|, and so, as
|c| = |p| > 2|a|2 and |a| ≥ |d|:

(30) 2|u| = |c|+ |dc| − |a| = 2|c|+ |d| − |a| > 4|a|2 + |d| − |a| ≥ 2|d|2 + 2|d|.

Hence |u| > |d|2 + |d| ≥ |u ∧ d|2. Therefore, d ≤ u by Proposition 5.
Let b := p−1p′. So we must show b = d. Since q−1 = d ≤ u ≤ c = p−1 and m = |q|α, we

know p′ ≤ pq−1, that is, d ≤ b. On the other hand, b∧u ≤ d, since b∧u ≤ u ≤ dc = q−1p−1,
|b ∧ u|α ≤ m = |q|α, and p is a peak. So b ∧ u = d, and hence we must show b ≤ u.

Let u′ := d−1u. Since d ≤ u ≤ du, we have u′ ≤ u (by (10)). Moreover, as b, u ≤ c,
b ∨ u < ∞. Hence u′ ≤ u ≤ b ∨ u = bd−1u = b · u′. Since |u′| = |u| − |d| > |d|2 = |u ∧ b|2 ≥
|u′ ∧ b|2, Proposition 5 gives b ≤ u′, implying b ≤ u.

A g.c.d argument shows:

(31) Let p, r, r′, q, q′ be α-peaks, and let t, t′ ≥ 0 with p = r · qt = r′ · (q′)t
′

and
1
3 |p|α ≥ |r|, |r′|, |q|, |q′|. Then there exists d such that q and q′ are powers of d.

Indeed, define g := max{|r|, |r′|, |q|, |q′|}, m := |p|α, u := |q|α, and u
′ := |q′|α. So m ≥ 3g.

As p is an α-peak, we can uniquely write p = p1 · p2 · . . . · pm, with each pi being an α-peak.
Since r is an α-peak with |r|α ≤ g, and since p = r · qt, the sequence z := (pg+1, . . . , pm)
is periodic with period u. Similarly, z is periodic with period u′. Moreover, z has at least
u + u′ terms, since m − g ≥ 2g ≥ u + u′. This implies2 that z is periodic with period
v := gcd{u, u′}. Let d := zm−v+1 · . . . · zm. Then q = zm−u+1 · . . . · zm = du/v and similarly
q′ = du

′/v.

2 If a and b are periods of x = (x1, . . . , xn) and n ≥ a + b, then a− b is a period of x: if i ≤ n− a then
xi+(a−b) = x(i+a)−b = xi+a = xi; if n−a < i ≤ n−(a−b) then i > b, hence xi+(a−b) = x(i−b)+a = xi−b = xi.

11

2.9. A main tool

We now come to a main tool for bounding the complexity of our algorithm (which we will
use in Section 3.3).

Proposition 8. Let p be an α-peak, and let a, a′ ∈ G be such that p ≤ ap and p ≤ a′p
and such that α occurs in p−1a′p. If |p| ≥ 8|a|3, then each conjugate of a has a segment s
satisfying |p−1aps−1|α ≤ 2|a′|2.

Proof. We can assume |p−1ap|α > 2|a′|2, as otherwise we can take s := 1. This implies
|a| ≥ |ap| − |p| = |p−1ap| ≥ |a′|.

Let q be the component of p−1ap that contains α; that is, q is the element such that
p−1ap = qu for some u independent of q, with q connected and containing α. Similarly, let
q′ be the component of p−1a′p that contains α. Note that |q| ≤ |a| and |q′| ≤ |a′|.

By (27) applied to x := pq and y := ap we have |pqp−1| ≤ |a|. Hence, by Proposition 7,
p = r · qt for some α-peak r with |r| ≤ 2|pqp−1|2 ≤ 2|a|2. Similarly, p = r′ · (q′)t

′

for some
α-peak r′ with |r′| ≤ 2|a′|2 ≤ 2|a|2. Now

(32) |p|α ≥ t = (|p| − |r|)/|q| ≥ (8|a|3 − 2|a|2)/|a| ≥ 6|a|2 ≥ 3max{|r|, |r′|, |q|, |q′|},

Hence by (31), q = dn for some d and n ≥ 0, with |d| ≤ |q′| ≤ |a′|. As t ≥ 1 by (32), q is
cyclically reduced, hence also d is cyclically reduced. As q is connected, also d is connected.

Let c be a conjugate of a. Then c is a conjugate of p−1ap = qu, with u independent of
q. Hence by (29), c contains a segment c′ which is a conjugate of q = dn. Now n = |q|/|d| ≥
|p−1ap|α/|a

′| > 2|a′| ≥ 2|d|. Hence, by Proposition 6, c′ contains s := dn−2|d| as segment.
Then qs−1 = d2|d|, hence |p−1aps−1|α = |qs−1|α ≤ |qs−1| = 2|d|2 ≤ 2|a′|2.

2.10. The function µa,H : x 7→ min(a−1x↑H)

The following function µa,H : G → G forms an important ingredient in our algorithm.
Fixing a ∈ G and a closed set H ⊆ G, it is defined by

(33) µa,H(x) := min(a−1x↑H)

for x ∈ G, which is well-defined as a−1xH is convex by (22). So for each x ∈ G:

(34) µa,H(x) ≤ a−1x.

Moreover, for all x, y ∈ G:

(35) µa,H(x) ≤ y if and only if a ∈ x↑H(y↓)−1,

since min(a−1x↑H) ≤ y if and only if a−1bh = c for some b ∈ x↑, h ∈ H and c ∈ y↓.

Proposition 9. Let a ∈ G and H ⊆ G be closed, and set µ := µa,H . Then for all x, y ∈ G:

(36) (i) if x ≤ y then µ(x) ≤ µ(y),
(ii) µ(x ∧ y) ≤ µ(x) ∧ µ(y),
(iii) if x ∨ y is finite, then µ(x ∨ y) = µ(x) ∨ µ(y).

12

Proof. Since x ≤ y implies x↑ ⊇ y↑, we have (i). Then (ii) follows from (i). To see (iii), we
have µ(x) ∨ µ(y) ≤ µ(x ∨ y) by (i). In particular, µ(x) ∨ µ(y) is finite. To see the reverse
inequality, set d := µ(x) = min(a−1x↑H) and e := µ(y) = min(a−1y↑H). Then, by (35)
and as both d−1 and e−1 belong to ((d ∨ e)↓)−1,

(37) a ∈ x↑Hd−1∩y↑He−1 ⊆ x↑H((d∨e)↓)−1∩y↑H((d∨e)↓)−1 = (x∨y)↑H((d∨e)↓)−1,

where the equality follows from (19) (as x↑ ∩ y↑ = (x ∨ y)↑). So by (35), µ(x ∨ y) =
min(a−1(x ∨ y)↑H) ≤ d ∨ e.

The composition of functions µa,H have the following property. Let x, a, a′ ∈ G and let
H and H ′ be closed. Then

(38) µa′,H′(µa,H(x)) ≤ µaa′,HH′(x).

Indeed, by the definitions of HH ′ and µaa′,HH′(x), there exist x′ ≥ x and c ∈ H, c′ ∈ H ′

with µaa′,HH′(x) = (aa′)−1x′cc′. Now µa,H(x) ≤ a−1x′c. Hence, using (36)(i),

(39) µa′,H′ ◦ µa,H(x) ≤ µa′,H′(a−1x′c) ≤ (a′)−1(a−1x′c)c′ = µaa′,HH′(x).

2.11. Polynomial-time algorithms

Let I be an ideal and x ∈ G. Then there is a unique largest element y ≤ x with y ∈ I. We
can find it in polynomial time if membership of I can be tested in polynomial time:

(40) Let I be an ideal of which we can test membership in polynomial time. Then
for any x ∈ G, we can find the maximal element y ≤ x with y ∈ I in polynomial
time.

To see this, grow a word y ≤ x with y ∈ I, starting with y = 1. If there is a minimal symbol
in y−1x with yα ∈ I, replace y by yα. If no such α exists, y is as required.

Note that y is the closest (with respect to dist) element in I to x. Hence, by the
left-invariance of the distance function, x−1y is the closest element in x−1I to 1. That is:
x−1y = min(x−1I). Therefore:

(41) Let I be an ideal of which we can test membership in polynomial time. Then for
any z ∈ G, we can find min(zI) in polynomial time.

Note that we can test membership of x↑ and of x↓ in polynomial time. Hence:

(42) For any y, x ∈ G, we can find min(y−1x↑) in polynomial time.

This follows from (41) setting I := x−1x↑ and z := y−1x.
If H is closed, then for any y ∈ G, y−1x↑H is convex (by (22)). Its minimum can be

found in polynomial time:

(43) Let H be a closed set of which we can test membership in polynomial time. Then
for any x, a ∈ G, µa,H(x) = min(a−1x↑H) can be found in polynomial time.

13

Indeed, by (22), min(a−1x↑H) = min(min(a−1x↑)H). Hence (43) follows from (42) and
(41).

Finally,

(44) Let H be a closed set of which we can test membership in polynomial time. Then
for any x, y, z ∈ G, we can test in polynomial time if y belongs to x↑H(z↑)−1.

Indeed, y ∈ x↑H(z↑)−1 if and only if y−1x↑H ∩ z↑ 6= ∅. This is the case if and only if
z−1y−1x↑H ∩ z−1z↑ 6= ∅. The latter statement is equivalent to: min(z−1y−1x↑H) belongs
to the ideal z−1z↑. As this minimum can be determined in polynomial time by (43) and as
membership of z−1z↑ can be tested in polynomial time, we have proved (44).

3. The cohomology feasibility problem

Let D = (V,E) be a directed graph and let G be a group. Two functions ϕ,ψ : E → G are
called cohomologous if there exists a function f : V → G such that ψ(e) = f(u)−1ϕ(e)f(w)
for each edge e = (u,w). One directly checks that this gives an equivalence relation.

We give a polynomial-time algorithm for the following cohomology feasibility problem
for graph groups:

(45) given: a directed graph D = (V,E), an undirected graph ([k], F), a function ϕ : E →
GF , and for each edge e a closed set H(e) ⊆ GF ,

find: a function ψ : E → GF such that ψ is cohomologous to ϕ and such that ψ(e) ∈
H(e) for each e ∈ E.

The running time of the algorithm for this problem is bounded by a polynomial in
n := |V |, m := |E|, σ := max{|ϕ(e)| | e ∈ E}, and the maximum time needed to test
if any word of polynomial size belongs to H(e) (over all edges e). (The number k of
generators can be bounded by mσ, since we may assume that all generators occur among
the ϕ(e).) More precisely, there exist polynomials p1 and p2 such that the problem takes
time p1(n,m, σ)τH(p2(n,m, σ)), where τH(x) is the time needed to test membership of the
H(e) for words of size at most x.

Note that, by the definition of cohomologous, equivalent to finding a function ψ as in
(45), is finding a function f : V → GF satisfying:

(46) f(u)−1ϕ(e)f(w) ∈ H(e) for each edge e = (u,w).

We call such a function f feasible.
We can assume that

(47) |ϕ(e)| ≤ 1 for each edge e.

Indeed, if ϕ(e) = xy for edge e = (u,w), we can split the edge into two edges (u, v), (v,w),
where v is a new vertex, and define ϕ(u, v) := x, ϕ(v,w) := y, H(u, v) := H(e), and
H(v,w) := {1}. The new problem is equivalent to the original problem: if f is a solution to
the original problem, we can set f(v) := yf(w), and obtain a solution for the new problem;

14

conversely, if f is a solution to the original problem, forgetting the value of f on v, we
obtain a solution to the original problem.

3.1. Pre-feasible functions

Given the input of the cohomology feasibility problem (45), we call a function f : V → GF

pre-feasible if for each edge e = (u,w) of D there exist x ≥ f(u) and z ≤ f(w) such that
x−1ϕ(e)z ∈ H(e). Clearly, each feasible function is pre-feasible. There is a trivial pre-
feasible function f , defined by f(v) := 1 for each v ∈ V . Note that f is pre-feasible if and
only if

(48) µϕ(e),H(e)(f(u)) ≤ f(w) for each edge e = (u,w).

The collection GV
F of all functions f : V → GF can be partially ordered by: f ≤ g if

and only if f(v) ≤ g(v) for each v ∈ V . Then GV
F forms a lattice if we add an element ∞

at infinity. Let ∧ and ∨ denote meet and join. Then (36)(ii) and (iii) directly give:

(49) Let f1 and f2 be pre-feasible functions. Then f1 ∧ f2 and, if f1 ∨ f2 <∞, f1 ∨ f2
are pre-feasible again.

It follows that for each function f : V → GF there is a unique smallest pre-feasible
function f̄ ≥ f , provided that there exists at least one pre-feasible function g ≥ f . If no
such g exists we set f̄ := ∞. By (49), f ∨ g = f̄ ∨ ḡ for any two functions f, g with f ∨ g
finite.

3.2. A subroutine finding f̄

Condition (48) suggests a ‘constraint satisfaction’ algorithm to find f̄ for a given function
f . Let input D = (V,E), F, ϕ,H for the cohomology feasibility problem be given. For any
edge e, we can determine µϕ(e),H(e)(f(u)) in polynomial time, by (43).

Subroutine to find f̄ : Find an edge e = (u,w) for which me := µϕ(e),H(e)(f(u)) 6≤ f(w).
If me ∨ f(w) is finite, reset f(w) := me ∨ f(w) and iterate. If me ∨ f(w) = ∞, output
f̄ := ∞. If no such edge e exists, output f̄ := f .

Then the output of the subroutine (if any) is correct. For let f ′ be the reset function.
If f̄ is finite, then f ≤ f ′ ≤ f̄ , since f ′(w) = µϕ(e),H(e)(f(u)) ∨ f(w) ≤ µϕ(e),H(e)(f(u)) ∨
f̄(w) = f̄(w), since f̄ is pre-feasible. So in this case f̄ ′ = f̄ . This moreover implies that if
me ∨ f(w) = ∞ then f̄ = ∞.

3.3. Running time of the subroutine

For each walk P = e1e2 . . . et, where e1, . . . , et are consecutive edges of D, we set ϕ(P) :=
ϕ(e1)ϕ(e2) . . . ϕ(et) and H(P) := H(e1)H(e2) . . . H(et).

We will study the running time of the subroutine under the condition that the cohomol-
ogy feasibility problem has a solution, or more weakly, that

(50) for each closed walk C, H(C) contains a conjugate of ϕ(C).

15

For any function f : V → GF , let |f | := max{|f(v)| | v ∈ V }.

Proposition 10. If (47) and (50) hold, then for any f : V → GF with f̄ finite:

(51) |f̄ | ≤ k|f |+ 220k(2nk)9.

Proof. Define c := 2nk and m := 3c2, and suppose |f̄ | > k|f | + 220kc9. Consider the
(infinite) directed graph D with vertex set V := {(v, p) | v ∈ V , p peak} and edge set all
pairs ((v, p), (w, q)) ∈ V × V with e = (v,w) ∈ E and q ≤ µϕ(e),H(e)(p). Let S be the set of
all vertices (v, p) of D with p ≤ f(v). Then for each v ∈ V and peak p:

(52) f̄(v) =
∨

{p | there exists a walk in D from S to (v, p)}.

This follows with (25) and Proposition 9(iii). Hence:

(53) if p ≤ f̄(v), then there exists a walk in D from S to (v, p).

Since |f̄ | > k|f |+ 220kc9, there exists w ∈ V with |f̄(w)| > k|f |+ 220kc9. Hence there
exists a peak q ≤ f̄(w) with |q| > |f | + 220c9 (since f̄(w) is a join of at most k peaks).
By (53), there is a walk P in D from S to (w, q). Choose a shortest such walk P; let it
have length ℓ. Since |ϕ(e)| ≤ 1 by assumption, |p| ≤ |ϕ(e)−1p′| ≤ |p′| + 1 for each edge
((v, p), (v′, p′)) of D, where e = (v, v′). Hence ℓ ≥ |q| − |f | > 220c9.

Let P traverse vertices (v0, q0), (v1, q1) . . . , (vℓ, qℓ) of D, in this order. So vℓ = w and
qℓ = q. For each u ∈ V and each symbol α let Iu,α denote the set of indices j ∈ {ℓ−3c3, . . . , ℓ}
such that vj = u and qj is an α-peak. Then there exist u ∈ V and a symbol α such that
|Iu,α| > 3c3/c = m. Choose j0 < j1 < · · · < jm in Iu,α. Set pi := qji for i = 0, 1, . . . ,m. So
each pi is an α-peak and p0 < p1 < · · · < pm. We will apply Proposition 8 to p := p0.

Let Ci be the u − u walk vji−1 , vji−1+1, . . . , vji−1, vji in D, and let C := C1C2 . . . Cm

(the concatenation of C1, . . . , Cm). Then |C| ≤ 3c3 and so there exists i ∈ {1, . . . ,m} with
|Ci| ≤ |C|/m ≤ 3c3/m = c.

Let a := ϕ(C)−1 and a′′ := ϕ(Ci)
−1. Then |a| = |ϕ(C)| ≤ |C| ≤ 3c3 and |a′′| =

|ϕ(Ci)| ≤ |Ci| ≤ c. This gives

(54) |p0| ≥ |q| − 3c3 ≥ 220c9 − 3c3 ≥ 216c9 = 8(3c3)3 ≥ 8|a|3.

Moreover, p0 ≤ pm ≤ µϕ(C),H(C)(p0) ≤ ap0 and similarly pi ≤ pi+1 ≤ a′′pi. As α occurs

in p−1
i pi+1, α also occurs in p−1

i a′′pi. By (26), p0 ≤ a′p0 for some a′ with |a′| ≤ |a′′| and
|p−1

0 a′p0|α = |p−1
i a′′pi|α.

As we assume that (50) holds, some conjugate x of ϕ(C) belongs to H(C). So x−1 is
a conjugate of a. Hence, by Proposition 8, x−1 has a segment s such that |p−1

0 ap0s
−1|α ≤

2|a′|2 ≤ 2c2 < 3c2 = m. Now pm ≤ min(ϕ(C)−1p↑0H(C)) ≤ ap0s
−1, since s−1 ∈ H(C), as

H(C) is closed and x ∈ H(C). So |p−1
0 pm|α < m, contradicting the fact that pm contains

at least m α’s more than p0.

This implies, where n := |V (D)|, and where, for any σ ∈ Z+, τH(σ) is the maximum
time needed to test if any word of size ≤ σ belongs to H(e), for any given edge e.

Theorem 1. There exist polynomials p1 and p2 such that, if (47) and (50) hold, then the

16

running time of the subroutine is bounded by p1(n, k, |f |)τH(p2(n, k, |f |)).

Proof. At each iteration, we increase |f(v)| for some vertex v. Hence Proposition 10 implies
that, if f̄ is finite, the number of iterations is bounded by some polynomial p1 in n, k, |f |.
If the subroutine exceeds this number of iterations, we conclude thatf̄ = ∞.

Since in each iteration, the reset f ′ satisfies |f ′| ≤ |f̄ |, and since |f̄ | is bounded by a
polynomial p2 in n, k, |f |, in each iteration we only need to test membership of words of
size at most p2(n, k, |f |).

3.4. A polynomial-time algorithm for the cohomology feasibility problem
for graph groups

We now describe the algorithm for the cohomology feasibility problem for graph groups.
Let input D = (V,E), F , ϕ, H of (45) be given.

Let F be the collection of all functions f : V → GF such that for each edge e = (u,w)
of D there exist x ≥ f(u) and z ≥ f(w) satisfying x−1ϕ(e)z ∈ H(e); equivalently:

(55) ϕ(e) ∈ f(u)↑H(e)(f(w)↑)−1.

This can be tested in polynomial time by (44). So for any given function f one can check
in polynomial time whether f belongs to F . Trivially, if f ∈ F and g ≤ f then g ∈ F .
Moreover:

(56) Let f1, . . . , ft be functions such that fi∨fj ∈ F for all i, j. Then f := f1∨· · ·∨ft ∈
F .

Proof. We must show that for each edge e = (u,w), ϕ(e) belongs to f(u)↑H(e)(f(w)↑)−1.
Since fi ∨ fj ∈ F for all i, j, we know

(57) ϕ(e) ∈ fi(u)
↑H(e)fj(w)

↑−1

for all i, j. Hence by (19),

(58) ϕ(e) ∈
⋂

i

⋂

j

fi(u)
↑H(e)(fj(w)

↑)−1 =
(

⋂

i

fi(u)
↑
)

H(e)
(

⋂

j

(fj(w)
↑)−1

)

=

f(u)↑H(e)(f(w)↑)−1.

Here i and j range over 1, . . . , t.

In the following theorem, ‘solvable in polynomial time’ means as before that there exist
polynomials p1 and p2 such that the problem is solvable in time p1(n +m,k, ρ)τH(p2(n +
m,k, ρ)), where n := |V (D)|, m := |E(D)|, ρ is the maximum of |ϕ(e)| over all e ∈ E, and
where τH(σ) again is the maximum time needed to test if any word of size ≤ σ belongs to
H(e), for any given edge e.

Theorem 2. The cohomology feasibility problem for graph groups is solvable in polynomial
time.

17

Proof. We can assume again that |ϕ(e)| ≤ 1 for each edge e. Moreover, we can assume
that with each edge e = (u,w) also e−1 = (w, u) is an edge, with ϕ(e−1) = ϕ(e)−1 and
H(e−1) = H(e)−1.

For any e = (u,w) ∈ E, let fe be the function defined by

(59) fe(v) :=

{

ϕ(e) if v = u,

1 if v 6= u.

Let L be the set of pairs {e, e−1} from E such that ϕ(e) 6∈ H(e). Let N be the collection of
all pairs {e, d} from E such that the function f̄e ∨ f̄d = ∞, or is finite and does not belong
to F (possibly e = d).

Choose a subset B of E such that B intersects each pair in L and such that B contains
no pair in N . This is a special case of the 2-satisfiability problem, and hence can be solved
in polynomial time. Assuming that there exists a feasible function f , then B exists, as
B := {e = (u, v) ∈ E | ϕ(e) ≤ f(u)} would have the required properties.

If we find B, define f by:

(60) f(v) :=
∨

e∈B

f̄e.

We are done by proving that f is feasible. Since f̄e ∨ f̄b < ∞ for each pair {e, d} ⊆ B, we
know f <∞. Moreover, f is the join of a finite number of pre-feasible functions, and hence
f is pre-feasible. So by (24) it suffices to prove that for each edge e = (u,w):

(61) (i) there exist x ≥ f(u) and z ≥ f(w) such that x−1ϕ(e)z ∈ H(e),
(ii) there exist x ≤ f(u) and z ≤ f(w) such that x−1ϕ(e)z ∈ H(e).

To prove (61)(i), note that it is equivalent to: f ∈ F . As f̄e ∨ f̄b ∈ F for all a, b ∈ B,
(56) gives f ∈ F .

To prove (61)(ii), if it does not hold then ϕ(e) 6∈ H(e), hence {e, e−1} ∈ L. So e or
e−1 belongs to B. By symmetry, we can assume that e ∈ B. So fe ≤ f , and therefore
ϕ(e) ≤ f(u). So we can take x := ϕ(e) and z := 1 in (61)(ii).

An analysis of this algorithm shows that the cohomology feasibility problem has a so-
lution if and only if for each vertex u and each pair C,C ′ of (undirected) u− u walks in D
there exists x ∈ G such that x−1ϕ(C)x ∈ H(C) and x−1ϕ(C ′)x ∈ H(C ′). This condition is
trivially necessary.

4. Planar graphs

We repeat the partially disjoint paths problem for directed planar graphs:

(62) given: a directed planar graph D = (V,E), vertices r1, s1, . . . , rk, sk of D, and a set
F of pairs {i, j} with i, j ∈ [k],

find: a k-tuple P = (P1, . . . , Pk), where Pi is a directed ri−si path Pi, for i = 1, . . . , k,
such that Pi and Pj are disjoint whenever {i, j} ∈ F .

18

We can assume without loss of generality:

(63) r1, s1, . . . , rk, sk are distinct, each ri has outdegree 1 and indegree 0, and each si
has indegree 1 and outdegree 0.

Again, let GF be the graph group generated by g1, . . . , gk and relations gigj = gjgi
whenever {i, j} 6∈ F . For each solution P of (62), let χP : E → GF be defined by:

(64) χP(e) :=
∏

i

Pi traverses e

gi.

The order in which we take this product is irrelevant, since if both Pi and Pj traverse e,
then {i, j} 6∈ F and hence gigj = gjgi.

Let F be the collection of faces of D. Call ϕ,ψ : E → GF homologous if there exists
f : F → GF such that for each edge e: ψ(e) = f(F)−1ϕ(e)f(F ′), where F and F ′ are
the left-hand and the right-hand face at e, respectively (seen when traversing e in forward
direction).

4.1. Finding partially disjoint paths of prescribed homology

We first consider the homology version of the partially disjoint paths problem:

(65) given: a directed planar graph D = (V,E), vertices r1, s1, . . . , rk, sk of D satisfying
(63), a set F of pairs {i, j} with i, j ∈ [k], and a function ϕ : E → GF ,

find: a solution P of (62) such that χP is homologous to ϕ.

Proposition 11. Problem (65) is solvable in polynomial time.

Proof. We can assume that problem (65) has a solution — that is, ϕ is homologous to χP

for some solution P of (62).
Let F be the collection of faces of D. Consider the dual directed graph D∗ = (F , E∗),

where for each edge e of D there is a directed edge e∗ ∈ E∗ from the face at the left-hand
side of e to the face at the right-hand side of e. We define ϕ̂(e∗) := ϕ(e) and

(66) H(e∗) := {
∏

i∈I gi | I ⊆ [k], I stable set in ([k], F)},

where I is stable if it contains no pair in F as subset. Note that H(e∗) is a closed subset of
GF .

We extend the planar graph D∗ by a number of further ‘nonplanar’ edges, as follows.
Consider any vertex v 6∈ {r1, s1, . . . , rk, sk} of D and two faces F and F ′ of D incident with
v. Let e1, . . . , et be the edges incident with v that are crossed when going clockwise from
F to F ′ around v. Then add to D∗ an edge ev,F,F ′ from F to F ′, and define

(67) ϕ̂(ev,F,F ′) := ϕ(e1)
σ1 . . . ϕ(et)

σt ,

where, for j = 1, . . . , t, σj := 1 if ej is oriented away from v and σj := −1 if ej is oriented
towards v. Note that, as by assumption ϕ is homologous to χP for some solution P of (62),

19

we necessarily have ϕ̂(ev,F ′,F) = ϕ̂(ev,F,F ′)−1.
Moreover, define

(68) H(ev,F,F ′) := {
∏

i∈I g
τ(i)
i | I ⊆ [k], I stable set in ([k], F), τ : I → {+1,−1}}.

Also H(ev,F,F ′) is a closed subset of GF .

Let D̂ be the extended directed graph, and consider the cohomology feasibility problem
Π for (D̂, ϕ̂), in which we require that the output is only weakly allowed on the edges in E′.
As, by assumption, ϕ is homologous to χP for some P, problem Π has a solution, namely
χP . Conversely, let ψ : E(D̂) → GF be any solution of Π. Define ψ̌ : E(D) → GF by
ψ̌(e) := ψ(e∗) for e ∈ E(D). Then ψ̌ is equal to χP for some P. This because, by our
assumption, ϕ is homologous to χP for some P. Hence, for the edge e incident with ri, ϕ(e)
is conjugate to gi (as by (63) e is incident at both sides to the same face), therefore ψ̌(e) is
conjugate to gi. Since ψ̌(e) is allowed, it follows that in fact ψ̌(e) = gi. So only Pi traverses
e, and in the forward direction. Similarly for the edge incident with si.

Therefore, the proposition follows from Theorem 2.

4.2. Enumerating homologies of disjoint paths

We finally describe an algorithm that finds, for any input of (62), a collection Φ of functions
ϕ : E → GF with the property that

(69) for each solution P of (62), χP is homologous to at least one ϕ ∈ Φ.

So, although there exist infinitely many homology classes (if F 6= ∅), in our algorithm we
can restrict ourselves to a number of homology classes that, for fixed k, is bounded by a
polynomial in the size of the graph.

Proposition 12. Fixing k, a collection Φ satisfying (69) can be found in polynomial time.

Proof. Again, we can assume (63). Moreover, we can assume that D is weakly connected
and that (for the convenience of the exposition) each i ∈ [k] is contained in at least one
pair {i, j} in F (otherwise we can easily reduce the problem). We also can assume that
each vertex v 6= r1, s1, . . . , rk, sk has total degree deg(v) equal to 3: replace v by a directed
circuit of length deg(v) and attach the edges incident with v to the different vertices of the
circuit (in a planar manner of course). Any ϕ found for the modified graph can be ‘shrunk’
to the smaller graph.

Choose a spanning tree T inD. We will consider graphs T ′ obtained from T by replacing
each edge e by a number (possibly 0) of parallel edges. These edges form a parallel class,
denoted by πe. Each such graph T ′ is trivially planar, by drawing the edges properly parallel
in the plane.

We moreover consider undirected walks in such graphs T ′. (An undirected walk may
traverse edges in any direction.) Call undirected walks W and W ′ in T ′ crossing if there
is a vertex v and distinct edges e1, e2, e3, e4 of T ′ incident with v, in clockwise or counter-
clockwise order, such that W traverses e1 and e3 consecutively, and W ′ traverses e2 and e4
consecutively. If W =W ′, we say that W is self-crossing.

20

In particular, we consider k-tuples W = (W1, . . . ,Wk) of undirected walks in T ′ such
that

(70) (i) Wi runs from ri to si and is not self-crossing, for each i = 1, . . . , k,
(ii) Wi and Wj are not crossing, for each {i, j} ∈ F ,
(iii) each edge of T ′ is traversed by precisely one Wi.

The last condition implies that T ′ is determined by W1, . . . ,Wk.
For each k-tuple W satisfying (70), define ϕW : E → GF as follows. If e is an edge of D

not in T , set ϕW(e) := 1. If e = (u,w) is an edge of T , let e1, . . . , et be the edges in πe, from
left to right with respect to the orientation (u,w) of e. Let αj := gi if ej is traversed by
Wi in the direction from u to w, and let αj := g−1

i if ej is traversed by Wi in the direction
from w to u. Define ϕW(e) := α1 . . . αt. Then:

(71) For each solution P of (62), there exists T ′ and W = (W1, . . . ,Wk) satisfying
(70) such that χP and ϕW are homologous and such that, for each i = 1, . . . , k,
each parallel class in T ′ is traversed at most 2|E| times by Wi.

To see this, reroute P1, . . . , Pk along T as follows. For each e in E(D) \E(T), let Qe be the
path in T connecting the ends of e. Order the edges in E(D) \ E(T) as e1, e2, . . . , em such
that if Qej is longer than Qei then j > i. Then for j = 1, . . . ,m, if Pi traverses ej , reroute
Pi along Qej ; that is, add edges parallel to the edges in Qej , in the disk enclosed by ej and
Qej , and replace ej in Pi by the new edges (in order). This gives T ′ and W1, . . . ,Wk as
required, proving (71).

So to cover all homology classes of solutions of problem (62), it suffices to enumerate all
T ′ and W1, . . . ,Wk satisfying (70).

In fact, we can assume that each Wi is non-returning in the following sense. Let Wi

traverse edges e, vertex v, and edges e′ consecutively.

(72) (i) If v 6∈ {r1, s1, . . . , rk, sk}, then e and e′ belong to different parallel classes
incident with v.
(ii) If v ∈ {rj , sj} for some j ∈ [k], then e and e′ enclose the starting or ending
edge of Wj.

This can be attained as follows. Suppose Wi, e, v, e
′ violate (72). Fixing v, choose Wi, e, e

′

such that the number of edges inbetween of (that is, enclosed by) e and e′ is as small as
possible. Then each edge inbetween of e and e′ is traversed by some Wj with j 6= i (as Wi

is not self-crossing) and {i, j} 6∈ F (as Wi and Wj cross). So deleting e and e′ from Wi and
from T ′, gives a walk system W ′ again satisfying (70), with ϕW ′ = ϕW , and with a smaller
total length. Iterating this, we end up with each Wi non-returning.

This implies that if v ∈ V \ {r1, s1, . . . , rk, sk} has degree 1 in T , it is incident with no
edges in T ′. Delete such vertices from T repeatedly. Let T0 be the final graph. It is a tree
with maximum degree 3 and with 2k vertices of degree 1 (namely, r1, s1, . . . , rk, sk). Hence
T0 has 2k − 2 vertices of degree 3. The vertices of degree 1 and 3 are connected by 4k − 3
internally vertex-disjoint paths, together forming T0.

21

Let W = (W1, . . . ,Wk) be a k-tuple of walks satisfying (70) and (72). Consider a vertex
v of degree 2 in T0, say incident with edges e and e′ of T0. By (72), Wi traverses edges in
πe as often as it traverses edges in πe′ .

For each i = 1, . . . , k, define hi : E(T0) → {0, 1, . . . , 2|E|} by: hi(e) is the number of
times that Wi traverses πe, in any direction (for e ∈ E(T0)). Then we can derive ϕW from
h1, . . . , hk, without knowing W:

Claim. Given h1, . . . , hk, one can find ϕW in polynomial time.

Proof. Consider any {i, j} ∈ F . Let T ′′ be the subgraph of T ′ consisting of the edges
traversed byWi andWj . We know T ′′ since we know hi and hj . We determine an undirected
graph H with vertex set E(T ′′), calling two edges in E(T ′′) associated if they form an edge
of H.

First, consider any vertex v of T0 of degree 2. Let e and e′ be the edges of T0 incident
with v, and consider the parallel classes πe and πe′ in T ′′. As |πe| = hi(e) + hj(e) =
hi(e

′) + hj(e
′) = |πe′ |, we can order the edges in πe as e1, . . . , em from left to right when

going towards v, and similarly, the edges in πe′ as e
′
1, . . . , e

′
m, from left to right when going

away from v. For each t = 1, . . . ,m, we ‘associate’ et and e
′
t.

Next, consider any vertex v of T0 of degree 3. Let e, e′, and e′′ be the edges of T0
incident with v. Consider the parallel classes πe, πe′ , and πe′′ in T ′′. As Wi and Wj are
non-returning (that is, satisfy (72)(i)), we know that there exist nonnegative integers a, b,
and c such that |πe| = b+ c, |πe′ | = a+ c, and |πe′′ | = a+ b. These numbers are unique and
can be directly calculated from |π(e)|, |π(e′)|, and |π(e′′)|. This implies that the edges in
πe∪πe′ ∪πe′′ can uniquely be pairwise ‘associated’ in such a fashion that any two associated
pairs of edges are noncrossing at v and such that no two edges in the same parallel class
are associated.

Finally, consider any vertex v of T0 of degree 1. So v belongs to {r1, s1, . . . , rk, sk}. Let
e be the edge of T0 incident with v. Let e1, . . . , et be the edges in the parallel class πe of
T ′′, in order. ‘Associate’ ei with et+1−i for each i = 1, . . . , ⌊12 t⌋. So if t is odd (which is the
case if and only if v ∈ {ri, si, rj , sj}), one edge in πe remains unassociated at v (namely the
middle edge).

Then the graph H with E(T ′′) as vertex set and all pairs of associated edges of T ′′ as
edges of H, consists of two paths, corresponding to Wi and Wj in T ′. These sets of edges
form two walks that we can orient, one from ri to si, the other from rj to sj. Then for each
edge e of T0 we know the order, from left to right, in which Wi and Wj traverse the parallel
class πe of T ′′, and we can derive the direction. Concluding, we can derive the subword of
ϕW(e) made up by the symbols gi, g

−1
i , gj , and g

−1
j . (It is important here that we know

that H comes from an ri − si walk Wi and an rj − sj walk Wj . So H contains no circuit,
for which we would not know whether it belongs to Wi or to Wj .)

As we can do this for each {i, j} ∈ F , we can derive ϕW(e). This follows from the
fact that for any word w with symbols g1, g

−1
1 , . . . , gk, g

−1
k , if we know for each {i, j} ∈ F

the subword wi,j of w made up by gi, g
−1
i , gj , g

−1
j , we can determine w as word up to

transposition of commuting symbols (but without cancellation): Start by finding an i ∈ [k]
and α ∈ {gi, g

−1
i } that occurs first in wi,j for each j with {i, j} ∈ F . By transposition we

can assume that α is the first symbol of w. Then delete the first α from each wi,j with

22

{i, j} ∈ F , and iterate.
Thus, temporarily, we do not cancel gi with g

−1
i or gj with g−1

j , but work in the semi-

group generated by g1, g
−1
1 , . . . , gk, g

−1
k with relations gigj = gjgi, gig

−1
j = g−1

j gi, and

g−1
i g−1

j = g−1
j g−1

i for all distinct i, j with {i, j} 6∈ F . At the end we factor out to the
group GF .

Concluding, we can find the element of GF represented by word w. (Here we use the
assumption that each i is contained in some pair in F .) �

We finally describe the required algorithm. Enumerate all k-tuples of functions h1, . . . , hk :
E(T0) → {0, 1, . . . , 2|E|} with the property that if e and e′ are the edges of T0 incident with
a vertex of T0 of degree 2, then hi(e) = hi(e

′) for each i. Determine, if possible, ϕW . All
such ϕW form Φ.

Since T0 consists of vertices of degree 1 and 3 together with 4k − 3 internally vertex-
disjoint paths connecting these vertices, there are ((2|E|+1)4k−3)k such k-tuples h1, . . . , hk.
For fixed k, this is polynomially bounded.

4.3. Finding partially disjoint paths

Concluding, we have:

Theorem 3. For each fixed k, the partially disjoint paths problem in directed planar graphs
is solvable in polynomial time.

Proof. Directly from Propositions 11 and 12.

5. Some extensions and open questions

The theorem can be extended to the case where for each edge e of D a subset Ke of [k] is
given, prescribing that e may be traversed only by paths Pi with i ∈ Ke. This amounts to
restricting I in (66) to subsets of Ke. Instead of requiring disjointness of certain pairs of
paths, one may relax this to requiring that certain pairs of paths are noncrossing: so they
are allowed to ‘touch’ each other in a vertex, but not cross. This amounts to deleting the
‘nonplanar’ edges ev,F,F ′ .

One may impose further conditions of the following kind. Choose an (undirected) path
Q in the dual graph D∗, connecting two faces F and F ′ of D. Then one may restrict the
total ‘flow’ of paths Pi in D that intersect Q: as long as the restriction can be described by
a closed subset of GF , this requirement translates into an extra nonplanar edge added to
the dual graph D∗, like before we did for paths in D∗ connecting two faces incident with a
vertex v.

Moreover, the theorem extends to directed graphs D on any fixed compact surface
instead of planar graphs. Then, instead of considering the spanning tree T in Section
4.2, one considers a minimal connected spanning subgraph T that is cellularly embedded,
i.e., each face is a disk (assuming without loss of generality that D is cellularly embedded).
Fixing the surface, the number of edges in T is only a fixed amount more than in a spanning
tree, and the enumeration of homology classes can be bounded accordingly.

23

We finally mention some open questions. The running time of the algorithm above
is bounded by a polynomial with exponent depending on k (in fact, O(k2)). This raises
the question if the problem is ‘fixed parameter tractable’; that is, can the degree of the
polynomial be fixed independently of k, while the dependence of k is only in the coefficient.
As mentioned, this question was answered confirmatively by Cygan, Marx, Pilipczuk, and
Pilipczuk [3] for the k fully disjoint paths problem in directed planar graphs.

Another open question is if the condition of fixing k can be relaxed to fixing other
parameters of the graph Γ = ([k], F). One may think of fixing the maximum degree of Γ,
or (more weakly) fixing the chromatic number of Γ, or (even more weakly) fixing the clique
number of Γ. A different open question is if instead of fixing k, it suffices to fix the number
of faces that can cover all terminals (by the face boundaries).

A closely related open question is the complexity of the edge-disjoint version of the
problem. Even for the following problem it is not known whether it is polynomial-time
solvable or NP-complete: given a directed planar graph D = (V,E) and vertices r and
s, find a directed r − s path P and a directed s − r path Q such that P and Q are edge-
disjoint. The corresponding problem for the undirected case is polynomial-time solvable (for
any fixed number of paths), even for general nonplanar graphs, by Robertson and Seymour
[14].

Let us finally question whether the polynomial-time solvability of the cohomology feasi-
bility problem for graph groups (polynomial-time even for unfixed k) has other applications,
for instance to free partially commutative semigroups as studied for inhomogeneous sorting
and scheduling of concurrent processes (cf. Anisimov and Knuth [1], Diekert [4,5]).

References

[1] A.V. Anisimov, D.E. Knuth, Inhomogeneous sorting, International Journal of Computer and
Information Sciences 8 (1979) 255–260.

[2] A. Baudisch, Kommutationsgleichungen in semifreien Gruppen, Acta Mathematica Academiae
Scientiarum Hungaricae 29 (1977) 235–249.

[3] M. Cygan, D. Marx, M. Pilipczuk, M. Pilipczuk, The planar directed k-vertex-disjoint paths
problem is fixed-parameter tractable, in: 2013 IEEE 54th Annual Symposium on Foundations
of Computer Science (FOCS), IEEE, 2013, pp. 197–206.

[4] V. Diekert, On the Knuth-Bendix completion for concurrent processes, Theoretical Computer
Science 66 (1989) 117–136.

[5] V. Diekert, Combinatorics on Traces, Lecture Notes in Computer Science 454, Springer,
Berlin, 1990.

[6] C. Droms, Isomorphisms of graph groups, Proceedings of the American Mathematical Society
100 (1987) 407–408.

[7] E.S. Esyp, I.V. Kazachkov, V.N. Remeslennikov, Divisibility theory and complexity of algo-
rithms for free partially commutative groups, in: Groups, Languages, Algorithms, Contempo-
rary Mathematics 378, American Mathematical Society, Providence, R.I., 2005, pp. 319–348.

[8] S. Fortune, J. Hopcroft, J. Wyllie, The directed subgraph homeomorphism problem, Theoret-
ical Computer Science 10 (1980) 111–121.

24

[9] K. Kawarabayashi, Y. Kobayashi, B. Reed, The disjoint paths problem in quadratic time,
Journal of Combinatorial Theory, Series B 102 (2012) 424–435.

[10] J.F. Lynch, The equivalence of theorem proving and the interconnection problem, (ACM)
SIGDA Newsletter 5:3 (1975) 31–36.

[11] R.C. Lyndon, P.E. Schupp, Combinatorial Group Theory, Springer, Berlin, 1977.

[12] W. Magnus, A. Karrass, D. Solitar, Combinatorial Group Theory, Wiley-Interscience, New
York, 1966.

[13] B.A. Reed, N. Robertson, A. Schrijver, P.D. Seymour, Finding disjoint trees in planar graphs
in linear time, in: Graph Structure Theory (N. Robertson, P. Seymour, eds.), Contemporary
Mathematics 147, American Mathematical Society, Providence, R.I., 1993, pp. 295–301.

[14] N. Robertson, P.D. Seymour, Graph minors. XIII. The disjoint paths problem, Journal of
Combinatorial Theory, Series B 63 (1995) 65–110.

[15] A. Schrijver, Finding k disjoint paths in a directed planar graph, SIAM Journal on Computing
23 (1994) 780–788.

[16] A. Schrijver, Combinatorial Optimization — Polyhedra and Efficiency, Springer, Berlin, 2003.

[17] H. Servatius, Automorphisms of graph groups, Journal of Algebra 126 (1989) 34–60.

[18] C. Wrathall, The word problem for free partially commutative groups, Journal of Symbolic
Computation 6 (1988) 99–104.

25

