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ABSTRACT 

It is proved that a graph on n nodes is k-connected if and only if its nodes can be 
represented by real vectors in dimension n - k such that (a) nonadjacent nodes are 
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represented by orthogonal vectors and (b) any n - k of them are linearly indepen­
dent. We show that the closure of the set of all representations with properties (a) and 
(b) is irreducible as an algebraic variety, and study the question of irreducibility of the 
variety of all representations with property (a). 

0. INTRODUCTION 

Let G be a graph and d ~ 1, an integer. We want to represent each node 
of G in IR d by a vector in such a way that nonadjacent nodes are represented 
by orthogonal vectors. Such an assignment of vectors is called an orthogonal 
representation of G. 

Orthogonal representations of graphs were introduced by Lovasz (1979) 
in the study of the Shannon capacity of a graph. Grotschel, Lovasz, and 
Schrijver (1986) showed that they are intimately related to the vertex packing 
polytope, and used them (1984) to design polynomial-time algorithms for 
finding maximum cliques and optimum colorings in perfect graphs. In these 
studies, metric properties of orthogonal representations play the main role. 
We shall be concerned with an even more immediate question: what is the 
minimum dimension of the space in which orthogonal representations with 
certain nondegeneracy properties exist? 

It is trivial that orthogonal representations exist for each G and d: e.g., 
we can represent each node by the 0 vector. To exclude such degeneracies, 
we study orthogonal representations in which any d representing vectors are 
linearly independent (we call these general-position orthogonal representa­
tions). Our main result in Section 1 says that G has a general-position 
orthogonal representation in IR d if and oniy if G is ( n - d ~onnected. The 
"only if" part of this result is easy; what is trickier is to construct a general 
position orthogonal representation for each ( n - d)-connected graph. There 
is, in fact, a trivial algorithm to construct this representation: we select the 
representing vectors one by one, obeying the orthogonality conditions im­
posed by the graph. This always yields an orthogonal representation; we have 
to do the selection so as to avoid unnecessary degeneracies. This is simply 
achieved by selecting each vector at random from among all candidates (from 
a suitable distribution). We shall show that the distribution of the resulting 
random orthogonal representation is independent of the order in which the 
selection was made, and that with probability 1, it will be in general position. 
We shall also prove a related result for directed graphs. 

Thus it seems that orthogonal representations have connections with 
several basic invariants of graphs. This justifies a study of their structure for 
its own sake. In Section 2, we investigate the set of all orthogonal representa-



ORTHOGONAL REPRESENT A TI ONS 441 

tions and the set of all general-position orthogonal representations of a graph 
as algebraic geometric varieties. In the latter case we show that the variety is 
always irreducible. It is easy to see that the variety of all orthogonal 
representations is irreducible only if G is ( n - d)-connected; however, con -
trary to the results in Section 1, this is not a necessary and sufficient 
condition. We show that for d ~ 3, it is necessary and sufficient, and the 
same holds if d = 4 and if the complement of G is connected and nonbipar­
tite. We give an example (the complement of the cube) showing that one 
cannot extend this result to complements of bipartite graphs. A complete 
characterization of the irreducibility of the variety of all orthogonal represen -
tations of the graph G (and the study of other properties of this variety) 
remains open. 

This paper was also motivated by results of Linial, Lovasz, and Wigderson 
(1986a, 1986b), who gave various geometric and linear-algebraic conditions 
for the k-connectivity of a graph, and used these conditions to design efficient 
randomized connectivity tests. The connectivity conditions given in this 
paper could be used in an algorithmic fashion in the same way, and we shall 
briefly sketch these applications in Section 3. 

1. GENERAL-POSITION ORTHOGONAL REPRESENTATIONS 

Let G be a graph. An orthogonal representation of G in IR d is an 
assignment f: V(G) ~!Rd such that f(u) and f(v) are orthogonal for every 
pair of distinct nonadjacent nodes u and v. An orthonormal representation is 
an orthogonal representation such that llf(u)ll = 1 for every u E V(G). We 
say that the orthogonal representation is in general position if every set of d 
representing vectors is linearly independent. If f is a general-position orthog­
onal representation, then f( u) <F- 0 and so f( u) / 11f(u)11 is a general-position 
orthonormal representation in the same dimension. 

Another natural "nondegeneracy" property of an orthogonal representa­
tion is to be faithful: this means that f( u) and f( v) are orthogonal if and 
only if u and v are nonadjacent. 

The assignment f = 0 is a trivial orthogonal representation for any graph. 
In dimension n = iV(G)I, every graph G has a general-position orthonormal 
representation (using n mutually orthogonal unit vectors). It is easy to give a 
faithful representation in this same dimension. It seems to be difficult to find 
the smallest dimension in which a given graph G has an orthonormal 
representation. If we consider general-position representations, however, then 
the least possible dimension is given by the following theorem, which is one 
of the main results in the paper. 
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THEOREM 1.1. A graph G with n nodes has a general-position orthogo­
nal representation in IR d if and only if G is ( n - d)-connected. 

The condition that the given set of representing vectors is in general 
position is not easy to check. Therefore, it is worthwhile to formulate another 
version of the condition: 

THEOREM 1.1'. 
equivalent: 

If G is a graph with n nodes, then the following are 

(i) G is ( n - d)-connected; 
(ii) G has a general-position orthogonal representation in IR d; 

(iii) G has an orthonormal representation in IR d such that for each node 
v, the vectors representing the nodes nonadjacent to v are linearly indepen­
dent. 

Proof First we show (ii)= (iii). Assume f is a general-position or­
thonormal representation of G in IR d. Let v be any vertex. Suppose v has a 
set W of d nonneighbors. Then by the definition of a general-position 
representation, the vectors representing W are linearly independent and 
hence span IR d. This contradicts the fact that these vectors are orthogonal to 
f( v ). Hence v has at most d - 1 nonneighbors and, by the definition of a 
general-position representation, the vectors representing them are linearly 
independent, proving (iii). 

That (iii) = (i) is also easy: assume that G is not ( n - d)-connected; then 
it has a set A of n - d - 1 nodes separating it into two components with 
vertex sets B and C with !BI+ IC!= d + 1. For any orthogonal representation 
f of G every vector in f(B) is orthogonal to every vector in f(C), and thus 
dim f(B) +dim f(C) ~d. It follows that either dim f(B) < b or dimf(C)< c, 
i.e., either the vectors representing B or the vectors representing Care not 
linearly independent. Assume for example that B is represented by linearly 
dependent vectors; then any node v E C violates (iii). 

The difficult part of the theorem is (i) =(ii), i.e., to demonstrate the 
existence of a general-position orthogonal (or orthonormal) representation for 
( n - d)-connected graphs. Actually, the construction is almost trivial; the 
difficulty is the proof of its validity. Let ( v 1, ..• , vn) be any ordering of the 
nodes of G. Let us choose f( v 1 ), f( v2 ),. .. consecutively as follows. f( v1) i:; 

any vector of unit length. Suppose that f( v;) (1 ~ i ~ j) are already chosen. 
Then we choose f( v i + 1) from the unit sphere, subject to the constraints that 
it has to be orthogonal to certain previous vectors f( v;). These orthogonality 

constraints restrict f( v i + 1 ) to a linear subspace Li+ 1. Note that if G is 
( n - d)-connected, then every node of it has degree at least n - d, and 
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hence 

dimLj+l;;.d-#{i:i~j, V;Vj+ 1 fit:E(G)} ;;;:d-(d-1)=1, 

and so f( v. + 1 ) can always be chosen. Of course, it may happen that the 
orthonormal representation constructed this way is not in general position. To 
avoid such degeneracies, we choose the vectors at random. More exactly, we 
choose f( v i + 1 ) from the uniform distribution over the unit sphere of Li+ 1. 

This way we get a random mapping f: V(G)-> ~d. We call f the 
random sequential orthogonal representation of G [associated with the order­
ing ( v1, •. ., vn )]. The following is a sharpening of Theorem 1.1: 

THEOREM 1.2. Let G be any graph, and fix any ordering of its vertices. 
Let f be the random sequential orthogonal representation of G. Then 

(a) if G is not ( n - d)-connected, then f is not in general position; 
(b) if G is ( n - d)-connected, then with probability 1, f is in general 

position. 

We have proved (a) already. The crucial step in the proof of (b) is the 
following lemma. 

MAIN LEMMA 1.3. If G is (n - d}-connected, then the distribution of 
the random sequential orthogonal representation is independent of the order­
ing of the nodes. 

Knowing this Main Lemma, the proof of (b) in Theorem 1.2 is easy. Let 
W be any d-element subset of V(G). If we order the nodes so that the first d 
nodes are the elements of W, then with probability 1 the vectors f( w) 
( w E W) will be chosen linearly independent. Since the distribution of f is 
independent of the ordering, these d vectors will be linearly independent 
whatever initial ordering we take. This holds for every d-tuple, and hence, 
with probability 1, the orthonormal representation f will be in general 
position. 

Proof of the Main Lemma. It suffices to prove that if we swap two 
consecutive nodes v i and v i + 1 in the ordering, the distribution of f does not 
change. In fact, it suffices to show that the distribution of the restriction f' of 
f to { v 1,. .. , v i + i} does not change, since then the choice of the rest is the 
same. 

We prove this by induction on j. For j = 1 the assertion is obvious. 
First assume that there is a path in G connecting v i and v . + 1 and 

containing only nodes vi with i ~ j + 1. Let P be a shortest such pa{h and t 
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its length. We also use induction on t (for j fixed). If t = 1, then vi and vi+l 
are adjacent in G and the assertion is obvious, since their representative 
vectors are chosen independently. So suppose that v i and v i + 1 are nonadja­
cent in G. Let V; be any internal node of P. So in the ordering we have 
... v; ... v iv i + 1 • .. Now the distribution of f' does not change if we 

(1) swap V; and vi (by the induction hypothesis on j, since this can be 
achieved by swapping consecutive nodes earlier in the order than Vi+ 1): we 
obtain ... vi ... v;vi+ 1 ... ; 

(2) then swap V; and Vi+ 1 (by the induction hypothesis on t ): we obtain 
... vr .. vi+1V;···; 

(3) then swap viand vi+I [same as (l)]: we obtain ... vi+ 1 ... viv; ... ; 
(4) then swap viand V; [same as (2)]: we obtain ... vi+I· .. V;Vi ... ; 

(5) finally, swap v i + 1 and V; [same as ( 1) again]: we obtain 
... V;···Vj+lVj ... · 

So the distribution of f' does not change if v i and v i + 1 are swapped. 
Second, assume that there is no path connecting v i to v i + 1 containing 

only nodes V; with i <:;; j + 1. This means that { v1, ... , Vi+ 1 } can be parti­
tioned into two sets A and B such that vi EA and Vi+ 1 E B, and no edge 
connects A to B. It also follows that { v i + 2 , •.. , vn} separates G, and hence 
n - (j + 1) ;;;<: n - d, i.e., IAI + IBI = j + l <:;;d. Let A' be the set of nodes in 
A - { vi} nonadjacent to vi, and B' be the set of nodes in B - { vi+d 
nonadjacent to vj+J· 

Assume now that f( vi), ... , f( vi_ 1) have been selected. Let LA denote 
the subspace generated by f( A - { v i} ), and L';. the subspace generated by 
f(A'). Let LA. be the orthogonal complement of L';. in LA' Let LB, L's, and 
L'-8 be defined analogously. Clearly, LA and LB are orthogonal. Finally, let 
M be the orthogonal complement of LAU L 8 in !Rd. The computation above 
shows that dim M ;;;<: 2. 

Every unit vector orthogonal to f( B U A') [i.e., every possible choice for 
f(vi)] is of the form a+ m, where a ELA. and m EM, and a similar 
description can be given for f( vi+ 1). So we may choose f( vi) and f( vi+I) as 
follows: 

(a) we select nonnegative real numbers a and µ such that a2 + µ2 =1 
from an appropriate distribution (these will be llall and llmll; it does not 
matter for our argument what this distribution is), 

(b) select nonnegative real numbers f3 and v such that {3 2 + v2 = 1 from 
an appropriate distribution, 

(c) select any unit vectors x ELA. and y E L'B from a uniform distribu­
tion, 

( d) select any unit vector p from M from a uniform distribution, 
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( e) select any unit vector q from M () { p } J. from a uniform distribution, 
(f) form f( vi) = ax + µp and f( vi+ i) = f3y + vq. 

Now if vi and vj+l are swapped, then only the roles of p and q in (d) 
and ( e) are interchanged. If dim M :;;, 2, then selecting in either order yields 
the same distribution on pairs of orthogonal unit vectors from M. This proves 
the Main Lemma. • 

REMARK. Note that the proof of the "easy" part of Theorems 1.1 and 1.2 
gives, in fact, more: it follows that if G is not ( n - d)-connected, then for 
every orthogonal representation f of G in IR d, there is a node v whose 
nonneighbors are represented by linearly dependent vectors. This remark is 
important in algorithmic applications, since recognizing whether a set of the 
vectors is in general position seems to be a hard problem. (As far as we know, 
its complexity is open.) Cf. also Section 3. 

We do not know how to determine the minimum dimension of a faithful 
orthogonal representation. It was proved by Maehara (1987) that if the 
maximum degree of the complementary graph G of a graph G is D, then G 
has a faithful orthogonal representation in D 3 dimensions. He conjectured 
that this result can be improved to D + 1. Rodi (1987) proved that the bound 
D 3 can be improved to 2D + 1. [This result is implicit in work of Erdos and 
Simonovits (1980).] Note that the condition that the maximum degree of G is 
D is equivalent to saying that the minimum degree of G is n - D - 1 (where 
n is the number of nodes). It will follow from our results above that 
Maehara' s conjecture is true if we strengthen its assumption by requiring that 
G is ( n - D - 1 )-connected. [Note that this implies Rodi' s result, since a 
graph with minimum degree n - D - 1 is at least ( n - 2D )-connected.] 

COROLLARY 1.4. Every ( n - d)-connected graph on n nodes has a 
faithful orthogonal representation in IR d. 

Proof. It suffices to show that in a random sequential orthogonal repre­
sentation, the probability of the event that two given adjacent nodes are 
represented by orthogonal vectors is 0. By the Main Lemma, we may define 
the representation from an ordering starting with these two nodes. But then 
the assertion is obvious. • 

Assume that the complement G of G is a bipartite graph with color 
classes A and B, and G does not contain a complete bipartite subgraph with 
more than d nodes. Then G is ( n - d)-connected. Hence we can construct 
an orthonormal representation of G by selecting the vectors representing A 
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first, and then the vectors representing B. In both stages, the selections can 
be done independently (and so even in parallel). So for bipartite graphs, the 
algorithm constructing the representation is even simpler. (For a discussion of 
algorithmic applications, see Section 3.) 

We can use the above observation to derive analogues of Theorems 1.1 
and 1.2 for directed graphs. Let D be any directed graph with n nodes. We 
define an orthogonal bi representation of G as a pair ( g, h) of mappings 
g, h: V(D) ~!Rd such that for each non-arc uv, (g( u ), h( v )) = 0. We say 
that this birepresentation is in general position if any d of the vectors g( u) 
and h( u) are linearly independent. 

COROLLARY 1.5. A digraph D with n nodes has a general-position 
orthogonal birepresentation in IR d if and only if it is strongly ( n - d}­
connected. 

The reduction to Theorem 1.1 goes as follows. Construct an auxiliary 
undirected graph G by representing each node v of D by two nodes v' and 
v", connecting every v' to every w', every v" to every w", and every v' to 
the corresponding v", and connecting v' to w" iff vw is an arc in D. Thus G 
is bipartite. Now observe that D is strongly k-connected if and only if G is 
( n + k )-connected, and also that an orthogonal representation of G corre­
sponds to an orthogonal birepresentation of D. Thus Theorem 1.1 implies 
Corollary 1.5. 

Next, observe that the construction of an orthogonal birepresentation is 
even easier than the construction of an orthogonal representation in the 
undirected case. Assume that every node of D has indegree at least n - d. 
First, choose g: V(D) ~!Rd, llgll = 1, at random. Then choose another map­
ping h : V( D) ~ IR d as follows: for each v E V( D ), h( v) is a random unit 
vector orthogonal to all vectors g( w) such that wv is not an arc in D. Call 
the random variable (g, h) the random, orthonormal birepresentation of D. 
Clearly g and h form a random sequential orthonormal representation of G. 
Applying Theorem 1.2, we obtain: 

COROLLARY 1.6. Let D be any digraph, and (g, h) its random, orthogo­
nal birepresentation in dimension d. 

(a) If D is not ( n - d ')-connected, then (g, h) is not in general position. 
(b) If G is (n - d')-connected, then with probability l, (g, h) is in 

general position. 

REMARK. Again, we can sharpen (a) and assert that if D is not (n - d}­
connected, then there exists a node v of G such that the vectors h( u) 
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representing the nodes not reachable from v on an arc are linearly depen­
dent. 

2. THE VARIETY OF ORTHOGONAL REPRESENTATIONS 

Let G be a k-connected graph with n nodes, and set d = n - k. Then we 
know that G has a general position orthogonal representation in Rd. One 
may suspect that more is true: every orthogonal representation in Rd is the 
limit of general position orthogonal representations, i.e., the set coRd( G) of 
general-position orthogonal representations is everywhere dense in the set 
oif(G) of all orthogonal representations of G. We shall see that this is not 
true in general, but can be proved under additional hypotheses about the 
graph G. 

One reason for asking this question is the following. The set oRd( G) is an 
algebraic variety in R nd, and it is a natural question whether it is irreducible. 
(A set Ac RN is irreducible if whenever the product p · q of two polynomi­
als in N variables vanishes on A, then either p or q vanishes on A; 
equivalently, the polynomial ideal { p: p vanishes on A} is a prime ideal.) Let 
us begin with the question of irreducibility of the set coRd( G ) of general 
position orthogonal representations of G. This can be settled quite easily. 

THEOREM 2.1. Let G be any graph and d ~ 1. Then CORd(G) is irre­
ducible. 

Proof. Let G have n nodes. We may assume that G is ( n - d )­
connected, else coRd( G) is empty and the assertion is vacuously true. 

First we show that there exist vectors if>v = 1'v(X) E R d [ v E V( G ) ] whose 
entries are multivariate polynomials with real coefficients in variables X (the 
number of these variables does not matter) such that whenever u and v are 
nonadjacent, 1'u · 1'v is identically 0, and such that every general-position 
representation of G arises from q, by substituting for the variables appropri­
ately. We do this by induction on n. 

Let v E V(G). Suppose that the vectors of polynomials 1'u(X') of length d 
exist for all u E V( G) - { v } satisfying the requirements above for the graph 
G - v [since G - v has n - 1 nodes and is ( n - d - 1 )-connected, this is 
indeed the right induction hypothesis]. Let ![J' = (<Pu: u E V(G) - { v }). Let 
u1, ... , um be the nodes in V( G) - { v} nonadjacent to v; clearly m ~ d - I. 
Let x I•· .. , x d- I - m be vectors of length d composed of new variables, and let 



448 L. LOVASZ, M. SAKS, AND A. SCHRIJVER 

y be another new variable; X will consist of X' and these new variables. 
Consider the d X ( d - I) matrix 

F=(<J>u , .•. ,<J>u ,X1, ... ,Xd-1-m), 
I m 

and let pi be the determinant of the submatrix obtained by dropping the jth 
row. Then we define </>,, = y(pl> ... , Pdl· 

It is obvious from the construction and elementary linear algebra that <fie 
is orthogonal to every vector <Pu for which u and v are nonadjacent. We show 
that every general-position orthogonal representation of G can be obtained 
from </> by substitution. In fact, let f be a general-position orthogonal 
representation of G. Then f' = fl V(G )- (,, l is a general-position orthogonal 
representation of G - v in~ d, and hence by the induction hypothesis, f' can 
be obtained from </>' by substituting for the variables X'. The vectors 
f( u 1), .. ., f( um) are linearly independent and orthogonal to f( v ); let 
a 1,. .. , ad- 1 _ m be vectors completing the system { f( u 1 ),. • ., f( um)} to a 
basis of f( v) .i. Substitute x i = a;· Then the vector (p 1, ... , Pd l will become 
a nonzero vector parallel to f( v ), and hence y can be chosen so that <fiv will 
be equal to f( v ). 

Note that from the fact that <P(X) is in general position for some 
substitution it follows that the set of substitutions for which it is in general 
position is everywhere dense. 

From here the proof is quite easy. Let p and q be two polynomials such 
that p · q vanishes on GORd( G ). Then p( <J>(X)) · q( <J>(X)) vanishes on an 
everywhere dense set of substitutions for X, and hence it vanishes identically. 
So either p( </>(X)) or q( <J>(X)) vanishes identically; say the first occurs. Since 
every general-position orthogonal representation of G arises from <fi by 
substitution, it follows that p vanishes on coRd( G ). I 

REMARK. The proof in fact shows that every orthogonal representation 
of G with the property that the nonneighbors of every node are represented 
by linearly independent vectors can be obtained from </> by substitution. 
Hence the set of all such representations is also irreducible, and coif(G) is 
dense in this set. 

Now back to the (perhaps) more natural question of irreducibility of 
oRd( G ). It is easy to see that oRd( G) is not irreducible if G is not ( n - d )­
connected. On the other hand, Theorem 2.1 implies the following. 

LEMMA 2.2. If GORd(G) is dense in ORd(G), then ORd(G) is irreducibk. 
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We shall see that oRd( G) is irreducible if G is ( n - d )-connected and 
d ~ 3. On the other hand, we shall see that for d = 4, not every ( n - d )­
connected graph gives an irreducible variety, but those graphs whose comple­
ment is connected and nonbipartite do. The general description of all graphs 
with ORd( G) irreducible is open. 

Sometimes it will be more convenient to keep the complement G of the 
graph G in mind. Note that G is ( n - d)-connected if and only if G does not 
contain any complete bipartite graph with more than d nodes (with nonernpty 
color classes) as a subgraph. In particular, G is (n - 2)-connected iff G has 
maximum degree ~ l; G is ( n - 3)-connected iff G has maximum degree 
~ 2 and contains no K 2,2; G is (n - 4)-connected if and only if G has 
maximum degree ~ 3 and contains no K2,3 . Note that (n - 4)-connected 
graphs are quite rich and interesting. 

Let us say that an orthogonal representation of a graph G in IR d is special 
(or d-special) if it does not belong to the topological closure of coRd( G ). We 
say that the graph G on n nodes is d-special if it is ( n - d)-connected and 
has a d-special orthogonal representation. A graph G is d-critical if it is 
d-special but no induced subgraph of it is. (Observe that the induced 
subgraphs of a non-d-special graph are non-d-special.) It is easy to see that if 
G is d-critical then G is connected. A graph G is d-special if and only if at 
least one of the complements of connected components of its complement is 
d-special. 

LEMMA 2.3. Let G be a d-critical graph, and fa special orthogonal 
representation of G in IR d. Then the vectors representing the nonneighbors of 
any rwde v are linearly dependent. 

Proof. Call a node "good" if its nonneighbors are represented by 
linearly independent vectors. Suppose that a node v is "good," i.e., 
f( u 1), ... , f( um) are linearly independent, where u1, ... , u,,, are the non­
neighbors of v. We construct a general-position orthogonal representation of 
G in an €-neighborhood of f for any given E > 0. [The distance of two 
representations f, g: V( G) -+ IR d is defined by 

llf-gll= !Uax llf(u)-g(u)ii, 
uEV(G) 

where llf( u) - g( u )II is the euclidean distance of f( u) and g( u ).] Extend 
f( u 1 ), .•. , f( um) by arbitrary vectors al' ... , ad-l-m to a basis of f( v) .L. Let, 
say, 



450 L. LOVASZ, M. SAKS, AND A. SCHRIJVER 

Now f' = flv(G)-{ v) is an orthogonal representation of G - v, and hence by 
the criticality of G, there exists a general position orthogonal representation 
f 1 of G - v in IR d in the e'-neighborhood of f', where e' is a sufficiently small 
positive number (in particular, e' must be smaller than e/4). We extend f 1 to 
an orthogonal representation of G as follows. Clearly if e' is small enough, the 
vectors f 1( u 1 ), ••• , f 1( um), a 1, ••• , ad_ 1 _ m are linearly independent, and hence 
they uniquely determine a vector fr( v) orthogonal to all of them such that 

It is obvious that f 1 is an orthogonal representation of G and that if e' is 
small enough, then llf(v)-ft(v)ll<e/4 and so f 1 is in the e/4-neighbor­
hood of f. Unfortunately, it does not follow in general that this extended fi 
is in general position; but at least every "good" node remains "good" if e' is 
small enough. Moreover, we know that any d vectors representing nodes 
different from v are linearly independent; in particular, every node adjacent 
to v is "good." Now if w is any other "good" node, then we can repeat the 
same argument and find an orthogonal representation h. closer to / 1 than 
e/8 in which every node previously good remains good, and in addition all 
the neighbors of w become good. 

Since G is connected, by repeating this argument at most n times we 
obtain an orthogonal representation fa of G in the e /2-neighborhood of f in 
which every node is "good," i.e., the nonneighbors of every node are 
represented by linearly independent vectors. By the remark following the 
proof of Theorem 2.1, such a representation is in the closure of FORJ(G), and 
hence we find in its e /2-neighborhood a general position orthogonal repre­
sentation f* of G. Clearly llf*- fll < e, and this proves the lemma. I 

If f is ad-special representation of G, then, by the definition of d-special, 
there exists an e > 0 such that if g is another orthogonal representation of G 
in !Rd and llf- gll < e, then g is also d-special. There must be linear 
dependencies among the vectors f( v ); if e is small enough, then there will be 
no new dependencies among the vectors g( v ). We say that a d-special 
orthogonal representation f is very special if there exists an e > 0 such that 
for every orthogonal representation g with llf- gll < e, and every subset 
Uc V(G), f(U) is linearly dependent iff g(U) is. Roughly speaking, a very 
special orthogonal representation is one which is locally freest. Clearly every 
d-special graph has a very special representation. 

LEMMA 2.4. In every very special representation of a d-critical graph, 
any two representing vectors are linearly independent. 
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Proof. Let f be a very special orthogonal representation of the given 
graph G, and e the positive threshold in the definition of "very special." First 
asswne that f( v) is the 0-vector for some v. Since the number of nonneigh­
bors of v is at most d - 1, we can replace f( v) by a nonzero vector 
orthogonal to all vectors f( u) where u is a nonneighbor of v, and shorter 
than e. This is clearly another d-special orthogonal representation with fewer 
0-vectors, a contradiction. 

Second, let v and w be two nodes with f( v) and f( w) parallel. By 
Lemma 2.3, the set of vectors f(u), where u is a nonneighbor of v, is linearly 
dependent, and hence these vectors span a linear subspace L of dimension at 
most d - 2. Thus there exists a vector a E L J_ not parallel to f( v ). We can 
replace f( v) by f( v) +Sa /llall, and obtain another orthogonal representa­
tion of G. If 0 < 8 < e, then this new representation is also d-special, and if 8 
is small enough, then it has fewer pairs of parallel representing vectors than 
f, a contradiction again. • 

COROLLARY 2.5. If G is ad-critical graph with n nodes, then every node 
has degree at most n - 4. 

Proof. Let f be a very special orthogonal representation of G in IR d. 

For any vertex v, the set { f( u) I u not adjacent to v} is linearly dependent 
by Lemma 2.3, so by Lemma 2.4, v has at least three nonneighbors. • 

CoROLLARY 2.6. If d ~ 3 and G is an ( n - d)-connected graph with n 
nodes, then cotf(G) is everywhere dense in oiti(G). 

Let f be an orthogonal representation of G and v E V(G). Let Av be the 
linear span of the nonneighbors of v, and Bv its orthogonal complement. So 
f(v) E Bv. 

LEMMA 2.7. Let G bead-critical graph, and fa very special representa­
tion of G. Let v E V( G ), and u be a nonneighbor of v such that f( u) is 
linearly dependent on the vectors representing the other nonneighbors. Then 
B,, c AV. 

Proof. Suppose not; then B,, contains a vector b arbitrarily close to f( u) 
but not in Av. Then replacing f(u) by b, we obtain another orthogonal 
representation f' of G. Moreover, b does not depend linearly on the vectors 
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representing the other nonneighbors of v, which contradicts the definition of 
"very special" representations. • 

Next we turn to the case d = 4. 

THEOREM 2.8. If G is a 4-critical graph, then G is 3-regular and 
bipartite. 

Proof. Let G have n nodes. Then Corollary 2.5 implies that it is regular 
of degree n - 4, i.e., G is 3-regular. Consider the subspaces A 0 and Be 
defined above. Lemma 2.3 implies that dim A v .,,. 2, and Lemma 2.4 implies 
that dim A 0 ;;;i,. 2, so dim Av = 2, and hence also dim Bv = 2. Thus Lemma 2.7 
implies that for any two nonadjacent nodes u and v, Au = B0 • So, fixing any 
node v, the rest of the nodes fall into two classes: those with A.,= Av and 
those with A,,= B0 • Moreover, any edge in G connects nodes in different 
classes. Hence G is bipartite as claimed. I 

COROLLARY 2.9. If G is a connected nonbipartite graph, then G is rwt 
4-special. 

We conclude this section with an example of a 4-special (in fact, 4-critical) 
graph. Let Q denote the graph of the (ordinary) 3-dimensional cube, and let 
G = Q. Note that Q is bipartite; let U = { u 1, u 2 , u3 , u4 } and V = 

{ v 1, v2, v3 , v4 } be its color classes. The indices are chosen so that u; is 
adjacent to V; in G. Consider an orthogonal representation f of G in which 
the elements of U are represented by vectors in a 2-d.imensional subspace L 
of 1R 4 and the elements of V are represented by vectors in the orthogonal 
complement LJ_ of L. Clearly, this is an orthogonal representation for any 
choice of the representing vectors in these subspaces. On the other hand, we 
claim that such a representation is the limit of general-position orthogonal 
representations only if the cross ratio of f( u 1), f( u2 ), f( u3 ), f( u4) is equal to 
the cross ratio of f(v 1 ), f(v2 ), f(v3 ), f(v4 ). [The cross ratio (x1x2x3x4 ) of 
four vectors x1, x2, x3 , x4 in a 2-d.imensional subspace can be defined as 
follows: we write x 3 = .\1x1 + .\2x2 and x 4 = µ. 1x 1 + µ 2x2 , and take 
(x1x2x3x4 ) = (.\ 1µ. 2)/(.\ 2µ. 1). This number is invariant under linear transfor· 
mations.] 

To prove this claim, we consider any general-position orthogonal repre­
sentation g of G. Let M be the linear subspace spanned by the vectors g(u1) 

and g( u2). Then its orthogonal complement M J_ is spanned by g( v3) and 
g( v4 ). Let h; be the orthogonal projection of g( u;) onto M (i = 1,2,3,4), and 
C; the orthogonal projection of g(v;) onto M J_ (i = 1,2,3,4). If we show that 
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(b 1b2b3b4 ) =(c1c2c3c4 ), then the claim follows, since g - f and hence b; -
f( u;) and c; - f( v;). . 

The proof of (b 1b2 b3b4 ) = (c1c2c3c4 ) is an exercise in linear algebra (or 
projective geometry) and is left to the reader. 

We do not know if there is any other 4-critical graph. An analysis of the 
cases d;;;. 5 seems even harder. 

3. ALGORITHMIC APPLICATIONS 

The conditions given in Theorem 1.1 and Corollary 1.5 can be used to 
design efficient randomized algorithms to test k-connectivity. (As remarked 
in the introduction, an analogous application of other geometric connectivity 
conditions by Linial, Lovasz, and Wigderson (1986a, 1986b) initiated our 
work on the topic of this paper.) More exactly, we can use Theorem 1.2 and 
Corollary 1.6. Assume that a graph G and a number k ;;;. I is given, and we 
want to test if G is k-connected. We construct a random orthogonal repre­
sentation of G in n - k dimensions and check whether or not the nonneigh­
bors of each node are linearly independent. If the answer is yes, we conclude 
that G is k-connected. If the answer is no, we can conclude with large 
probability that G is not k-connected. 

Similarly, when using Corollary 1.6, we choose the representation g of the 
nodes of the given digraph at random, and then compute the representation 
h for each node again at random. Then we check for each node v that the 
vectors h( u) representing the nonneighbors u of v are linearly independent. 
(This procedure, of course, also applies to undirected graphs.) An advantage 
of this second algorithm is that it is easily parallelizable, while the first 
algorithm is genuinely sequential. 

Several implementation details have to be filled in. All calculations are 
done modulo a reasonably large prime, and Schwartz'<> lemma (1980) can be 
used to estimate the probability of obtaining the wrong answer. To compute 
a basis in the orthogonal complement of given subspaces, one can use fast 
matrix inversion techniques, of which the best currently known is due to 
Coppersmith and Winograd ( 1987). Since the details are. essentially identical 
with the methods of Linial, Lovasz, and Wigderson (1986a), we do not go 
into them. 

For any k-connected graph G, the above algorithm generates a random 
orthogonal representation of G in R n-k which for a k-connected graph is 
almost surely in general position. We do not know an efficient deterministic 
algorithm that constructs a general-position orthogonal representation in 
R n-k for any k-connected graph. 
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