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Chvatal introduced the idea of viewing cutting planes as a system for proving that every integral 

solution of a given set of linear inequalities satisfies another given linear inequality. This viewpoint 

has proven to be very useful in many studies of combinatorial and integer programming problems. 

The basic ingredient in these cutting-plane proofs is that for a polyhedron P and integral ve.:tor 

w, if max( wx Ix E P, wx integer}= I, then wx"' t is valid for all integral vectors in P. We consider 

the variant of this step where the requirement that wx be integer may be replaced by the requirement 

that wx be integer for some other integral vector w. The cutting-plane proofs thus obtained ma) 

be seen either as an abstraction of Gomory's mixed integer cutting-plane technique or as a proof 

version of a simple class of the disjunctive cutting planes studied by Balas and Jeroslow. Our 

main result is that for a given polyhedron P, the set of vectors that satisfy every cutting plane for 

P with respect to a specified subset of integer variables is again a polyhedron. This allows us to 

obtain a finite recursive procedure for generating the mixed integer hull of a polyhedron, analogous 

to the process of repeatedly taking Chvatal closures in the integer programming case. These results 

are illustrated with a number of examples from combinatorial optimization. Our work can be 

seen as a continuation of that of Nemhauser and Wolsey on mixed integer cutting planes. 

1. Introduction 

Cutting-plane techniques have been one of the most studied topics in the theory 

of integer programming. Early, fundamental work was carried out by Dantzig, 

Fulkerson and Johnson [ 12] and Gomory [ 14], resulting in Gomory's well known 

integer programming algorithm. Although a very important theoretical development, 

this method turned out to be considerably less important from a practical point of 

view, where enumerative techniques have generally ruled. In recent years, however, 

cutting planes have also come to the forefront of practical methods. One of the 
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developments which sparked this resurgence was Chvatal's [8] treatment of 

Gomory's early work. Rather than viewing Gomory's technique as an algorithm, 

Chvatal looked at cutting planes as a method for proving that every integral solution 

to a given set of linear inequalities satisfies another given linear inequality. His 

approach is as follows: Consider a system of linear inequalities 

(1) 

If we have non negative numbers y;, . .. , Yk such that y, a 1 + · · · + ykak is integral, 

then every integral solution of (1) is satisfied by the inequality 

(2) 

for any number y which is greater than or equal to ly 1b1 + · · · + Ykbd (the number 

y 1 b, + · · · + ykbk rounded down to the nearest integer). We say that the inequality 

(2) is derived from (1) using the numbers y 1 , ••• , Yk· A cutting-plane proof of an 

inequality wx ~ t from (1) is a list of inequalities ak+;X ~bk+; (i = 1, ... , M), together 

with nonnegative numbers Yu ( i = 1, ... , M, j = 1, ... , k + i -1), such that for each 

i the inequality ak+;X ~bk+; is derived from the inequalities a;x ~ b; (j = 1, ... , 

k + i -1) using the numbers Yu (j = 1, ... , k + i -1) and where the last inequality in 

the list is wx ~ t. Clearly, an inequality which has a cutting-plane proof satisfies 

every integral solution of the given system. Conversely, Chvatal [8] and Schrijver 

[23; 24, Corollary 23.2b] showed: 

Theorem 1. Let P = {xiAx ~ b} be a nonempty polyhedron which is either rational or 

bounded. 

(i) If wx ~ t is satisfied by all integral vectors in P ( w being integral) and P contains 

at least one such vector, then there is a cutting-plane proof of wx ~ t from Ax~ b. 

(ii) If P contains no integral vectors, then there is a cutting-plane proof of Ox~ - 1 

from Ax~p. 0 

This result may be viewed geometrically as giving a procedure which takes a 

polyhedron P and generates a linear description of P1, the convex hull of the integral 

vectors in P, in the following sense. Call an inequality wx ~ l 8 j a Chvatal cutting 

plane for P if w is integral and wx~ 8 is satisfied by all vectors in P (so if 

p = {xiAx.;; b} then wx ~ La j can be derived from Ax~ b). NOW denote by P' the 

Chvatal closure of P, that is, the set of vectors which satisfy every Chvatal cutting 

plane for P, and let p<Ol = P and plil = p<i-ll, for all i;::;, l. The result of Chvatal 

and Schrijver gives: 

Theorem 2. Let P be a rational polyhedron. Then: 

(i) P' is again a polyhedron. 

(ii) P1 = p<kJ for some integer k. 0 
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Chvatal [8, 9, 10, 11] has shown that the viewpoints given in these two theorems 

lead to many nice results in combinatorics, and cutting-plane proof arguments can 

be found in papers such as Barahona, Gri:itschel, and Majoub [2], Gri:itschel and 

Padberg [15], Gri:itschel and Pulleyblank [16], and others, which have laid the 

foundation for subsequent computational work. The frequency of cutting-plane 

proof arguments in these papers lies in the fact that they provide a concrete model 

for approaching the task of finding useful valid inequalities for the problem at hand. 

In the description of Chvatal cutting planes, we implicitly use the following simple 
principle. 

Principle A. For an integral vector w, if max{ wx \Ax~ b, wx integer}= t, then wx ~ t 

is satisfied by all integral solutions of Ax~ b. O 

Chvatal cutting planes are precisely those inequalities wx ~ t which can be defined 

using this principle. In this paper we study the cutting planes which arise by relaxing 

this to the following, equally simple principle. 

Principle B. For an integral vector c, if max{ wx I Ax~ b, ex integer}= t, then wx ~ t 

is satisfied by all integral solutions of Ax~ b. 0 

Here we do not require that c and w be identical. The cutting-plane proofs which 

can be obtained with this second principle can be seen either as an abstraction of 

Gomory's [ 13] mixed integer programming technique or as a proof version of a 

simple class of the disjunctive cutting planes studied by Balas [l], and Jeroslow 

[ 18] as we will make clear in the next section. We study the extent to which these 

cuts, when generalized to the context of mixed integer programming, preserve the 

nice features of Chvatal's cutting-plane proofs. Our main result is the analogue of 

Theorem 2(i) for these cutting planes, which gives, together with a rounding 

operation, analogues of Theorem 1 and Theorem 2(ii) for mixed integer programming 

problems. These theorems can be seen as a continuation of the work of Nemhauser 

and Wolsey [21] on cutting planes in the spirit of Chvatal cuts, for mixed integer 

programming. The results are presented and discussed in Section 2 and proven in 

Section 3. The applicability of these cutting plane proofs is illustrated in Section 4 

with a number of examples from combinatorial optimization. Throughout the paper 

we make use of results in polyhedral theory, for which we refer the reader to the 

book of Schrijver [24]. 

2. Split cuts 

An important feature of Chvatal cutting planes is that, given the nonnegative 

multipliers y;, it is trivial to verify that a derived inequality is indeed satisfied by 

all integral solutions of the given system. The cutting planes we study have a similar 

property. First note the following. 
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Principle C. For a given system Ax~ b, integral vector e and integer k, if wx ~ t is 

valid for both {x I Ax~ b, ex~ k} and {x I Ax~ b, ex ;3 k + l}, then wx.:;;; t is satisfied 

by all integral solutions of Ax,,,.: b. 0 

Now observe that by letting k = l ex* J where x* is any optimal solution to 

max{wxlAx~ b}, we obtain Principle B. (If max{wxlAx.s; b} does not exist, then 

either max{ wx I Ax,,:;;; b, ex integer} does not exist or there is an integer k with 

k <ex< k + 1 for all solutions of Ax,,,.: b. To see the implication in general, notice 

that if i is any optimal solution to max{ wx I Ax,,,.: b, ex,,:;;; l ex* J} then ex= Lex* J. 
Since lcx*J is integer, we must have max{wx!Ax,,.: b, ex.:;; Lex*j}.:;; t. Similarly, 

max{ wx I Ax,,,.: b, ex~ l ex* J + 1},,,.: t.) 

Thus, an inequality wx,,,.: t can be verified by checking separately that it is valid 

for {xlAx,,.:b,ex,,.:k} and valid for {x!Ax~b,cx~k+l} (see Figure 1), each of 

which can be done, via Farkas' lemma, by using the appropriate nonnegative 

multipliers. Due to the form of this verification, we refer to the cutting planes we 

propose to study as split cuts. So wx,,,.: t is a split cut for a polyhedron P if for some 

integral vector c and integer k, it is a valid inequality for both {x E PI ex,,,.: k} and 

{ x E PI ex~ k + 1}. It follows immediately that these cutting planes are a simple class 

of disjunctive cuts, as mentioned in the introduction. In a mixed integer programming 

problem, only a subset of the variables are restricted to integral values. So the set 

of feasible solutions to such a problem has the form 

We extend the definition of a split cut to such sets in the following way: An inequality 

wx + vy,,:;;; t is a split cut for P s; IR m+n with respect to the integer variables x if there 

wx.;t 

Fig. 1. 
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exists an integral vector c E IR m and an integer k such that wx + vy ,,s; t is valid for both 

It is again a simple fact that such an inequality is satisfied by all x-integral vectors 

in P (those vectors 

such that x is integral). Analogous to the definition of the Chvatal closure of a 

polyhedron, we define the split closure of P with respect to the integer variables x 

as the set of all vectors that satisfy every split cut for P with respect to x. One way 

to view this is as follows. For each c E 1. m let 

P" =convex hull{(;) E P I ex integer}. (3) 

Clearly, pc is a polyhedron (see [24, the proof of Theorem 16.1, p. 231]) and the 

split closure of P is 

Our main result is the following. 

Theorem 3. The split closure of a rational polyhedron P, with respect to any subset of 

integer variables, is again a polyhedron. 

The proof of this theorem is given in the next section. 

For a polyhedron 

p = { (;) E !R m+n I Ax+ By ,,s; b}, 
let P1(x) denote the convex hull of the x-integral vectors in P. From Motzkin's 

decomposition theorem for polyhedra, it follows that if P is rational then PHx > is a 

polyhedron (see [24, Section 16.7]). Thus, given Theorem 3, one may suspect that 

repeatedly taking the split closure of P would give Pi(xl after a finite number of 

iterations, which of course follows from Theorem 2 when all variables are integer. 

This however is not the case. To see the difficulty, first consider the following direct 

extension of Chvatal closures, based on Principle A rather than Principle B: For a 

given polyhedron P <:; IR m+n, let P~ be the set of all vectors 

which satisfy each inequality wx + vy ,,s; 8, where w is integral and 

8 = max { wx+ vy: (;) E P, wx integer}. 
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Now if all variables are integral, then P~ is the Chvatal closure of P, so, in that 

case, repeating the closure finitely many times gives P1 • In the general case however, 

it may happen that P ¥ P 11 x) but P = P~, that is, the procedure may get 'stuck' before 

reaching the convex hull of the x-integral vectors. Consider the following: 

Example 1. Let P s IR2+ 1 be defined by 

and suppose that only x 1 and x2 are restricted to integer values. Clearly P ;£. Pl(x). 

(For instance, d, 1, 0) E P\P11 x) .) Now consider an inequality w1x 1 + w2x2 + v1y 1 ~ 8 

where w1 and w2 are integers and 

Since 8 is finite, 

(4) 

is also finite. So (4) is achieved by all vectors on the unique minimal face F = 
{(x1 , x 2 , Y1)l(xi +Yi= L x2+ Yi= l} of P. We must have Wi ~ 0 and w2 ~ 0 (since (4) 

is finite), so there exists a number q such that ~wi + w2 -( Wi + w2 )q = 0. Now (~- q, 

1- q, q) is a vector on F with WiX 1 + w2x 2 integer. Thus 8 is equal to ( 4). Since this 

is true for any choice of w1 , w2 , and Vi, it follows that P~ = P. 

It is easy to see that the split closure cannot get 'stuck' in the sense of the above 

example. Indeed, if P ¥ P11 x 1 then there exists a minimal face F of P that contains 

no x-integral vectors. As F is a rational affine subspace of IR m+n, the projection of 

F onto the x variables is a rational affine subspace of IR m that contains no integral 

vectors. So the 'integer Farkas lemma' [24, Corollary 4.la] implies that there exists 
an integral vector c E IR m and a rational (nonintegral) number y such that 

ex= y for all(;) E F 

Now 

Thus, letting wx + vy ~ q be a valid inequality for P with 

for a small enough e > 0 the inequality wx + vy ~ q - e is a split cut for P. So, letting 

P denote the split closure of P, we have F n P = 0, which implies Pr" P. 
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The problem that arises with split closures is that although fa ,c. P, the difference 
between these two polyhedra may become arbitrarily small after the split closure 
operation has been repeated a number of times, as in the following: 

Example 2. Let Pc:;;; IR 2+ 1 be the convex hull of the four vectors 

(O, 0, 0), (2, 0, 0), (O, 2, O), G, !, e) 

for some rational 0< e < 1, where the first two variables, x 1 and x2 , are required to 
be integers and the third variable, y 1 , may be noninteger. Clearly, Pi(x> is simply 
the convex hull of (O, 0, O), (2, 0, O) and (0, 2, O). Now for any integers Ci. c2 , and 
k, there exists a rational E(c, .c,,kl > 0 such that (!, !, e(<v·,,ki) is contained in the 
convex hull of the two polytopes 

{(xi, X2, Y1) E p lc1X1 + C2X2,;;:; k} 

and 

(As suggested by the referee, one way to see this is by noting that if 0 < A1 ,;;:; 1 is 
chosen such that either !A 1(c1 + c2 ),;;:; k or !A. 1 (c 1 +c2)~k+1 and A2 = A3 =~-~Ai. 
then the convex combination A1(!, L e)+Ai(2, 0, O)+A 3(2, O,O)+(l-A 1 -A2 -A3)x 
(0, 0, O) gives a point of the desired form.) 

Thus, since the split closure, f>, of P is a polyhedron, it follows that there exists 
an e1 > 0 such that(!,!, e1) E f> -:P Pi<xi and contains a polytope of the same form as 
P. So repeating the argument, for any k the polytope obtained from P by taking 
the split closure k times contains the vector C!, ! , sk) for some Ek > 0. Therefore, we 
cannot obtain PHx> after a finite number of split closures. 

An immediate way to deal with this problem is to treat the continuous variables 
y in a discrete fashion by examining the numbers that appear in the inequalities 
Ax+ By,;;:; b. Indeed, if P is rational then we may assume that A, B and b are 
integral. Thus, for any vector 

such that 

max{ wx + vy I Ax+ By,;;:; b, x integral} (5) 

exists, there is an optimal solution 
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such that ( det B)y* is integral for some submatrix B of B. (This follows from 

Cramer's rule and the fact that if 

is an optimal solution to (5) then so is 

for any optimal solution y* of max{ vy: By <S; b +Ax}.) So if we replace each variable 
y; by My; where M is an upper bound on the product of the subdeterminants of 
B, then we may treat all variables as integers and consider Chvatal cuts on this 
transformed problem. Interpreting this directly on P gives that if 

is integral and wx + vy <S; o is valid for P, then 

wx+vy<S; LMoj/ M (6) 

is satisfied by all x-integral vectors in P. The trouble with this is that the size of M 
(in binary notation) may be exponential in the size of Ax+ By <S; b. Thus it may be 
impossible to verify that (6) is valid for all x-integral solutions in polynomial time, 
which is counter to the idea behind cutting-plane proofs. 

As suggested by Eva Tardos (private communication), the difficulty with (6) can 
be overcome by employing a more sophisticated type of rounding. For an integral 
r x n matrix B, let L1 8 denote the number n !{3" where f3 is the maximum of the 
absolute values of the entries of B. As L1 8 is trivially an upper bound on the largest 
subdeterminant of B, it follows that if (5) exists then the maximum is achieved by 
a vector 

such that sy* is integral for some integer 1 <S; s <S; '1 8 • Thus, if w and v are integral 
and wx + vy <S; o is valid for P then 

wx + vy <S; [ 8]'1 8 (7) 

is satisfied by all x-integral vectors in P, where [ oL8 is the greatest rational number 
p I q <S; o such that 1 <S; q <S; L1 8 . The point of this type of rounding is that [ o] '1 8 can 
be calculated easily (in polynomial time) using continued fractions (see [ 17, Chapter 
3; 20, Section 1.1; 24, Section 6.1]). Let ROUND(P, L1 8 ) denote the set of vectors 
which satisfy every inequality of the type given in (7). Example 1 given above again 
shows that it may happen that P rf. P1(xl but ROUND(P, '1 8 ) = P. However, suppose 
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we combine split closures and rounding by letting SPLIT(P, Ll 8 ) = ROUND(P, L1 8 ) 

where P is the split closure of P with respect to the integer variables x. Then letting 

SPLIT0(P, .:18) == p 

and 

we have: 

Theorem 4. Let 

for some integral A, Band b. Then, with respect to the set x of integer variables: 

(i) SPLIT(P, .:18 ) is again a polyhedron. 

(ii) SPLITk(P, Ll 8 ) == P1<xl for some integer k. 

The proof of this theorem is also given in the next section. 
This result gives a finite cutting-plane proof system for mixed integer programming 

problems. Of course, when looking for such proofs one would hope that the rounding 
cuts would not be required, as is the case in the combinatorial examples presented 
in Section 4. 

Remarks. (i) Although there is no finite bound on the number of split closures 

needed to obtain Picxi in general, it is easy to see that if the integer variables are 
bounded between 0 and 1 then m closures will suffice. 

(ii) A different recursive procedure for proving the validity of mixed integer 
cutting planes was developed by Nemhauser and Wolsey [23]. The cuts used in 
their proofs are a special type of split cut, as shown to us by Chvatal (private 
communication). 

(iii) For another approach to the problem of generalizing Chvatal's methods to 
mixed integer programming, we refer the reader to the papers of Blair and Jeroslow 
[5, 6], where the theory is treated in terms of 'Chvatal functions'. 

3. Proofs of Theorems 3 and 4 

Throughout this section, we let 

where A is an integral r x ( m + n) matrix and b is an integral vector, and consider 
the split cuts with respect to the integer variables x. (To shorten the notation, we 
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have combined the matrices A and B and the vectors v and w of the previous 
sections into a single matrix and vector.) 

Proof of Theorem 3. Define for each c E l "', 

P" =convex hull { (;) E PI ex integer}. 

Since P" is a polyhedron and 

f>= n P". 
cE.Z. 11 

the following claim immediately implies the theorem. 
Claim. There exists a finite subset cgP of l"' such that 

f>= n P". 

Proof of claim. The proof is by induction on the dimension of P, the case when 
this is zero being trivial. We may assume that P" ¥- 0 for all c E Z"' since otherwise 
the claim is trivial. This implies that 

char. cone(P'") =char. cone(P) (8) 

(char. cone( K) denotes the characteristic cone of K) for each c El"' (see [24, 
Theorem 16.l]). This also implies that the affine hull of P must contain x-integral 
vectors, since otherwise, by the 'integer Farkas lemma' (see [24, Corollary 4. la]), 
there would exist a hyperplane 

with c E Z"' and o nonintegral, which contains P and hence P' = 0. Using this, we 
may assume that P is of full dimension, by taking an appropriate affine transforma­
tion of IR"'+n if necessary (see [24, p. 341]). 

By induction, for each facet F of P there exists a finite subset <gF of Z"' so that 

F= n F" 
CE: '(,F 

where F" denotes convex hull 

Let 

'{5 = u cgF· 
F facet of P 

So cg is finite. Let Q be the polyhedron 

Q= n P". 
l'E '{} 
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We use later that for each facet F of P, 

FnQ=Fn n Pc= n (FnPc)= n Fer;;. n F"=F. 
CE 'fil cer:eF 

If Q = 0 we can take C€P = ~- So we may assume Q-,,: 0. Let 

I§= {g I g is a minimal face of Q;g Sf U F} 
F facet of P 

and 

K ={ WE!Rm+n j JJwJJ = 1; 

165 

(9) 

max { w(;) I(;) E Q} is finite and attained at some g E I§}. 
So K is compact. Let h : K ~ IR be defined by 

h(w) =max{ w(;) I(;) E P }-max{ w(;) J(;) E Q }. 

(This is well defined, since if w E K then 

if finite, since by (8), char. cone(P) =char. cone( Q).) The function his continuous, 
as it is the difference of two piece-wise linear functions. Moreover, h ( w) > 0 for all 
w in K. Indeed, suppose to the contrary that 

max { w(;) I(;) E Q} = max { w(;) I(;) E P} = µ 

for some w E K and some µ. As w E K, 

is attained at some g E I§. Then 

gr;;. { (;) E QI w (;) = µ} £ { (;) E p I w (;) = µ} . 
and hence g would be contained in some facet of P, a contradiction. 

It follows that there exists an c: > 0 so that h ( w) ~ e for all w E K. Obviously, 
there exists a p > 0 (depending on E and P only) so that for each minimal face f 
of P the set 
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contains a ball of radius p. Now for each w EK, there exists a minimal face f of P 

so that 

is attained at f, and therefore 

{ (;) E Plw(;) ~max{ w(;) I(;) E Q}} 
= { (;) E PI w (;) ~ max { w(;) I(;) E P }-h( w)} 

2{ (;) E PI w(;) ~max{ w(;) I(;) E P}-e} 
2 { (;) E PI dist ( (;) ,f) ~ e} 

(as llwll = 1). Therefore: 

For each w EK, the set { (;) E PI w(;) ~ max { w (;)I(;) E Q}} 

contains a ball of radius p. (10) 

We finally show that this implies that for each c E Z m with II c II> 1/ p one has 

Qc;;r. (11) 

This implies that we may take 

since 

n pc=Qn n Pc= n P°=f>. 
cE 'lip ce.Z"' cezm 

11<11"" I/ p 

In order to prove (11), observe that it suffices to show that 

max{ w(;) I(;) E Q} ~max{ (;)I(;) E P'} 

for each wEIRm+n with llwll = 1 and 

finite (since by (9), char. cone(Q) =char. cone(P')). 
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We consider two cases: 
Case 1. 

is attained at a minimal face g of Q with g e 'fi. So g s; F for some facet F of P. 
Then by (9): 

max { w(;) I(;) E Q} = max { w(;) I(;) E F n Q} 
~max{ w(;) I(;) E F} 
~ max { w (;)I(;) E P} 
~ max{ w(;) I(;) E pc}. 

Case 2. 

is attained at a minimal face g of Q with g E 'fi. Then w E K. Hence by ( 10), 

for some ball B of radius p. As llcll > 1/ p, 

(since, for any t, the distance between the hyperplanes defined by 

c(;)=t and c(;)=t+l 
is 1/llcll). 

Hence B n pc >6 0. Choose 

(;) E BnPc. 

So by (12), 

w(;) ~max{ w(;) IC) E Q }. 

implying 

(12) 
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To prove Theorem 4, we need the following lemma, which will be used in an 
inductive argument. 

Lemma 5. If F is a face of P, then for any .d > 0 we have 

SPLIT(F, .d) == F n SPLIT(P, .d). 

Proof. For each c E "1L m we have F' = F n P". Therefore ft= F 11 P. So if ft= 0 the 
result follows. Suppose this is not the case. Then ft is a face of the polyhedron fa. 
So there is a linear system 

such that 

and 

where M 0 , M 1 , d 0 , and d 1 are all integral. Let 

be a valid inequality for ft with w E zrn+n. For a large enough positive integer T, 
adding T times each inequality in 

to 

we obtain an inequality 

w(;) ~8 
that is valid for P. (This follows from Farkas' lemma.) Furthermore, since o == 5 
(mod 1), we have 
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It follows that 

ROUND(F) = F n ROUND(P), 

which proves the lemma. D 

Proof of Theorem 4. (i) By Theorem 3, it suffices to show that ROUND(P, .d) is a 
polyhedron for any .d > 0. Now since A and b are integral, Farkas' lemma implies 
that ROUND(P, .d) is defined by the set of all inequalities of the form 

w(;) ~[5]~ 
where WE zm+n and 

w = zA and 8 = zb 

for some z = (z 1 , ••• , z,) E ~r with O~ z; < 1 for each i = 1, ... , r (if Z; ~ 1 for some 
i, then we could replace zi by z; -1). As there are only finitely many such inequalities, 
the result follows. 

(ii) The proof is again by induction on the dimension of P, the case when this 
is 0 being trivial. If the affine hull of P does not contain x-integral vectors, then, 
as in the proof of Theorem 3, we have P = 0. So we may assume this is not the case. 

Suppose Pi(x> ~ 0. There exists a linear system 

such that D is integral and 

since P1<xl is a polyhedron. Let 

be an inequality in this system. Then it suffices to show that 

for some k, where B = [Am+ 1 , ••• , Am+n], the last n columns of A. Letting 

8 = max { d (;)I(;) E P}, 

we have 
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If [8118 "'" a then we are done, so suppose this is not the case. Let 

F = SPLIT(P, L1 8 ) n {(;)Id(;)= [8]..i8 } • 

If F=0, then 

since the difference between any two distinct rationals p 1/ q1 , p2/ q2 , with 1 ~ q1 , q2 ~ 

Ll8 , is at least (1/ L\ 8 ) 2• If F >6 0, then it is a proper face of SPLIT(P, L1 8 ) and Fi(x) = 0. 
By induction we have 

for some integer I. Thus, by applying Lemma 5 I times, we have 

So 

Thus, repeating this procedure at most 

times we obtain the result. 
Suppose Pi(xJ = 0. As the affine hull of P contains x-integral vectors, we know P 

is not an affine subspace. Furthermore, the dimension of the characteristic cone of 
P is less than the dimension of P (since Pr(xJ = 0 and the affine hull of P contains 
x-integral vectors.) So 

for some nonzero d E zm+n and integers a 1 , a 2 , where for any number t we have 

Thus, proceeding as above (letting 

etc.), we have SPLITk(P, L1 8 ) = 0 for some integer k. D 
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4. Examples 

4.1. Integer programs with circular ones 

Split cuts occur in a natural way in the work of Bartholdi, Orlin and Ratliff [ 4] on 
cyclic scheduling problems, as pointed out to us by Jim Orlin (private communica­
tion). The problems they consider are of the form 

min { wx!Ax ~ b, x ~ 0, x integer} 

where w and b are nonnegative integral vectors and A is a 0-1 matrix with the 
circular l's property, that is, in each row of A the l's occur consecutively, where 
the first and last components are defined to be consecutive. Their work shows that 
if P = {xlAx ~ b, x ~ 0, x integer} then we have: 

The split closure of P is identical to P,. (13) 

Indeed, if wx ~ t is valid for P then it may be obtained by letting c = 1 = 
(1, 1, ... , 1). To see this, let x* be an optimal solution to min{ wxlAx ~ b, x ~ O} and 
let k = l wx* J. Consider the two linear programs 

min{ wxlAx ~ b, Ix~ k, x ~ O} (14) 

and 

min{wxlAx~b, lx~k+l,x~O}. (15) 

By the choice of k, if (14) is feasible then it has an optimal solution x with lx = k 
(by taking a convex combination of x* and any optimal solution to (14)). Thus we 
may subtract lx = k from some of the inequalities in Ax~ b without changing the 
value of (14). We may do this is such a way that we obtain a linear program 

min{wxlAx ~ 6, lx = k, x~ O} (16) 

with A a {O, 1, -1} matrix where each row is either 0, 1 or 0, -1 and the nonzeros 
occur consecutively, where the first and last components are not considered to be 
consecutive. Such a matrix A (together with the row 1 = (1, 1, ... , 1)) is well known 
to be totally unimodular. So (16), and hence (14), has an integral optimal solution. 
Applying the same argument, we have that (15) also has an integral optimal solution. 
It follows that t is at most the minimum of (14), if it is feasible, and (15). Thus 
wx"" t is a split cut for P. 

4.2. Fixed charge problems 

Sets of the form 

Q = { (;) E!Rn+nlitl Yi ~do,O~y; ~ m;X;, X; E{O, l}, i = 1, ... , n} 

arise in a number of models in operations research. The integer variable X; represent 
the decision to make Yi positive, and are used to incorporate fixed costs into the 
objective function. Padberg, van Roy and Wolsey [22) introduced a class of valid 
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inequalities for Q, as a step towards developing an efficient cutting-plane, optimiz­
ation algorithm. This class of inequalities is defined as follows: A set S <;; {1, ... , n} 
is a cover if 

,\=I m;-d0 >0. 
iES 

For a cover Sand a set L<;;{l, ... , n}\S let 

m =max m;, 
iES 

m; = max(m, m;) for all i EL. 

If m ~A, the ( S, L) flow cover inequality 

I y;+ I (m;-.A)+(l-x;)- I (m;-A)x1 ~d0 
iESuL iEL 

is valid for Q, where (m; -A)+= max{O, m; - >..}. 
This can be proven with split cuts by letting 

P={ (;) E~n+n li~l Y;""'do, O""'Y;""' m;X;, O~X;~ 1, i = 1, ... , n} 

and noting that: 

The (S, L) inequality ( 17) is a split cut for P. 

( 17) 

( 18) 

Proof of (18). Let S = {i E Sim;> A}. We will chop P with the inequalities LduL X; ~ 
151 and LduL X;""" 181- L In the first case, write L;duL X; ~ 181 as 

I (1- X;) - L X; ~ 0. (19) 
iES ie L 

Multiplying ( 19) by ( m - A) and taking its sum with 

we obtain 

I Yi+ I ( m - A)( 1 - X;) - I ( fii - }._ )x; ~ do (20) 
iE.SuL iE'S iEL 

as a valid inequality for 

Pn {(x) I. ~ x; ~ lsl}. 
Y 1ESuL 

Now since (mj-A)+=O for all iES\S and (fii-A)""'(fii;-A) for all iEL, (20) 
implies the inequality (17). 
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In the second case, write Le.SuL X; ~ 181-1 as 

- I (1 - X;) + L X; ~ - 1. 
ie§ iEL 

Multiplying (21) by A and taking its sum with 

(m;-m;)X;~O forallieL, 

Y; - m;X; ~ 0 for all i E Su L, 

I m;x;+ I m;(l-x;).,,; Im;, 
ieS ieS iES 

0= d0 +A.- I m;, 
iES 

we obtain 

I y;+ L (m;-A)(l-x;)- L: (m;-A)x;~do 
ieSuL ieS iE L 

as a valid inequality for 

Pn{(x)I. ~ x;.,,;l.Sl-1}. 
Y 1eSuL 
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(21) 

(22) 

Now since (m;-A)+=O for all iES\S, (22) is identical to the (S,L) inequality 
(17). 0 

4.3. Plant location and lot-sizing problems 

A number of results on valid inequalities for mixed integer programming formula­
tions of plant location problems and economic lot-sizing problems have been 
obtained by Barany, van Roy and Wolsey [3], Cho, Johnson, Padberg and Rao [7], 
Leung and Magnanti [19] and others. We do not discuss these inequalities in detail, 
but mention that (a) the validity of the 'residual capacity inequalities' for the 
capacitated plant location problem described in [19] can be established by showing 
they are split cuts for the linear programming relaxation (in fact, this is the way 
they are shown to be valid in [19]); (b) the validity of the '(S, L) inequalities' for 
the uncapacitated economic lot-sizing problem treated in [3] can be proven using 
at most m split cuts, where m is the number of integer variables (this is easy, the 
main point of [3] is that these inequalities completely describe the corresponding 
mixed integer hull); ( c) the inequalities for the uncapacitated plant location problem 
given in (7) do not appear to have short split cut proofs, but this is not surprising 
since a polynomial length split cut proof for these inequalities would imply that 
NP= co-NP, as it would give a good characterization for the set cover problem. 
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