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UC 

NOTATIONS 

lR denotes the field of real numbers. 

I = (a,b), a,b E lR, a < b. 

IT = {xi I a x0 < x1 < < ~ b}. 

1 i (xi-·1,xi); hi xi - xi-1 • 

LP(I), p = 1,2,oo, the Banach space 

norm: I ••o,p; A •D 0 = D •0 0 , 2; 

cf(I), k = 0,1,2, ••• ,oo, the set of· 

of Lebesgue p-integrable functions on I; 

D • D = I • I . 
00 0 ,oo 

real-valued, k times continuously dif-

ferentiable funtions on I. 

c;c1), the set of C00 (I) functions with compact support in I. 

C(Il = CO(I). 

c-1 <1> = {u I 3IT u e c0 c11>, i = 1,2, ••• ,N}, 
restr.Ii 

the set of piecewise continuous functions. 

II• I , p = 1,2 ,oo, pointwise norms (see section 2. 2). 
1T ,p 

ft(I), ~(I), k = 0,1,2, ••• , Sobolev spaces; 

(see section 3.1). 

Hk',r[a,b], k = 0,1,2, ••• , piecewise Sobolev spaces; 

norm: l•Uk,1T (see section 3.2); 
N 

innerproduct: ( • , • ) = l ( • , • ) 
O,,r i=l L2 (Ii) 

Mm,k{II), M~'k{II), k = 0,1,2, ••• , m = -1,0,1,2, ••• , 

piecewise polynomial spaces (see section 3.1). 

Nm,k(IT,a.,r), ~,k(II,a.,r), k = 0,1,2, ••• ,m = 0,1,2, ••• , 

exponentially fitted spaces (see section 3.4). 

if i j 
, Kronecker's delta. 

ifi,f,j 

d• 
D •=di' denotes differentiation with respect to x. 

C and K1, K2 , .•. denote generic constants; that means that they are con

stants of which the value may be different on each appearance. 





CHAPTER I 

ANALYTIC PROPERTIES OF LINEAR, SINGULARLY 

PERTURBED TWO-POINT BOUNDARY-VALUE PROBLEMS 

•rhis chapter gives an exposition of some essential results in the 

theory of singularly perturbed two-point boundary-value problems. In view 

of the many investigations that have been carried out in this field, it 

is not a survey of the literature on the subject. The main aim of this 

chapter is to show the fundamental results in the singular perturbation 

theory that underlie our numerical investigations in the next chapters-

1.1. INTRODUCTION 

In the first three chapters of this monograph we consider a second 

order, linear, singularly perturbed two-point boundary-value porblem. 

One standard form of such a problem is 

Ey"(x) + f(x)y' (x) + g(x)y(x) = s(x), 

(1.1.la) { 
X € (a,b), E > 0, 

(1.1.1b) y(a) a, y(b) = S. 

We assume f,g ands to be sufficiently smooth functions on [a,b]. In parti

cular we are interested in the solution of these problems for small values 

of E. The most striking feature of the differential equation is that its 

order is lower for E = 0 than for E f O. For this lower order equation one 

of the two boundary conditions is superfluous. Indeed, for small values of 

E, it turns out that small regions arise in [a,b], in which the connection 

with the boundary conditions is made. This causes the solution to have a 

multiscale character, i.e. the solution is described by slowly and rapidly 

varying parts. This multiscale character is a characteristic feature of the 

functions that describe the solutions of singular perturbation problems. It 

also means that attempts to seek a solution in the form of an ascending 

series in powers of E will fail, unlike the case of regular perturbation 

problems. 

The multiscale character, where one scale prevails over the other in 
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each region, should be distinguished carefully from the "multiple time-scale" 

as used in the two-variable expansion method, where a solution may depend 

both on a slow and a fast independent variable in the same region, e.g. 

y(t} = t sin(t/£}; cf. COLE [1968]. 

As we want'to solve problems of the type (1.1.1) for small values of 

€, we are interested in the asymptotic behaviour for€+ 0. In a number of 

cases, a treatment of this behaviour can be given by the theory of matched 

asymptotic expansions (cf. e.g. ECKHAUS [1973], COLE [1968]). In other 

cases, however, the Wentzel-Kramer-Brillouin-(WKB-)method seems to be a 

more expedient tool (cf. e.g. SIROVICH [1971], WASOW [1965]}. 

If the coefficient g is negative, the maximum principle can be used 

in order to derive a number of extremely useful a priori bounds. This prin

ciple can also be applied in nonlinear problems (cf. DORR, PARI'ER & SHAMPINE 

[1973]}. 

In section 1.2 we will give a summary of results obtained in the in

vestigations of the asymptotic behaviour of (1.1.1) by e.g. PEARSON [1968a], 

ACKERBERG & O'MALLEY [1970], KREISS & PARI'ER [1974] and ABRAHAMSSON [1975]. 

In section 1.3 some examples are given in which the most striking features 

of singualrly perturbed two-point boundary value problems are demonstrated. 

Although we are able to analyse the behaviour for a certain number of 

special cases, it is rather difficult to compute the solution for more gen

eral functions f,g, ands. For this reason algorithms for its numerical 

approximation are developed in chapters 2 and 3. In chapter 4 these algor

ithms are applied to nonlinear problems. 

In the remaining part of this section we collect some preliminary re

sults. 

An integrating factor 

In many cases it is convenient to write equation (1.1.1.a) in a 

slightly different form; it is obtained by multiplying the equation by an 

integrating factor p(x): 

(1.1.2) € (p y')' +pg y p s, 

where 

X 

(1.1. 3) p(x) exp{ f f~t)dt}. 



The solution as a stationary point of a quadratic functional 

Let$ be a function in C1[a,b] with fixed endpoints $(a) 

$(bl= 8, and consider the functional 

b 

(1.1.4) E[$] = f p(x){e:($' (x)) 2 - g(x)$(x) 2 + 2s(x)$(x)}dx. 

a 

3 

= a, 

By the classical Euler-Lagrange theory, it can be shown that the solution 

of problem (1.1.1) is a stationary point for E[$]. If g(x) < O, E[$] is a 

convex functional which assumes its minimum for$= y, the solution of 

(1.1.1). In particular, the functional in this case is a starting point for 

theoretical considerations; e.g. it can be used to justify the Ritz

Galerkin-method for obtaining approximations to y(x). 

The energy norm 

It is well known that, for g :s; O, an "energy"-norm can be defined on 
1 C [a,b] by 

b 

(1.1. 7) f 2 2 
p (x) {e: ($' (x)) - g (x) $ (x) }dx. 

a 

Here the special role of the integrating factor pis clearly demonstrated: 

it can be considered as a weighting-function. 

Transition points 

By application of the Liou.ville t~ansfo:t'ITlation to the dependent vari

able y: 

(1.1.8) z(x) y(x) exp 

X 

f f(t)dt 
2e: , 

a 

the differential equation (1.1.1.a) can be cast into the form 

(1. 1.9) 

where 

(1.1.10) 

(1.1.11) 

2e: z" + q z r , 

q(x) 

r(x) 

2 
2g(x) - f' (x) - f (x) 2e: , 

X 

2s(x) exp ff~=) dt. 

a 
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I 2 
One observes that y is an oscillating function when 2g - f > f /2E over a 

large enough interval. Asymptotic solutions to equation (1.1.9) for small 

values of E are only valid within a certain sector of the complex plane. 

They are not valid for small values of q(x). In particular they are not 

valid if the solution is changed from a periodic into an exponential func

tion, i.e. in passing through a zero of q. Such a point, where the charac

ter of the solution changes, is called a transition point or "classiaal 

turnir,,g point". 

Turning points 

Zeroes of the function fin equation (1.1.1.a) are also called turning 

points. These turning points do not entirely coincide with "classical turn

ing point&". The relation will be made clear with the aid of the following 

three examples. 

The example of a single (or first order) classical turning point is 

given by the equation 

Ey - xy 0. 

The transition point is x = 0. By the local coordinates 

equation is converted into Airy's equation 

d2y 
2 - sy o. 

ds 

-1/3 
XE this 

The solution, Airy's function Ai(s) or Bi(s), is oscillating for s < 0 and 

non-oscillating for s > 0. 

An example of a double (or second order) transition point is given by 

the equation 

2 2 
E y" + (1-x )y 0 

at X = ±1. 

By the change of independent variables 

1 
2E)y o. 

xl2/E it becomes 

The solutions of this equation are the Weber - or parabolic cylinder 



5 

functions 

D 1 l (s) and D l 1 (-si , 

2E: 2 

which do not oscillate for lxl > 1. 

Another example of a double transition point is given by the equation 

(1.1.12) e:y" + xy' + cy 0. 

Applying the Liouville transformation we get 

z" - 0. 

If c >½,this equation has two turning points in the classical sense, viz. 

for x =·±2/2/41, which both approach x = 0 for E: ➔ O. In the other sense 

it has one turning point for x = 0 since the coefficient of y' in (1.1.12) 

has one zero. 

We will use the word -t;,,wning point (without further indication) only 

for a zero of the coefficient of y'. 

The non-homogeneous equation 

If we investigate the asymptotic behaviour of the problem (1.1.1) for 

E: ➔ 0, the right-hand-side term s(x) frequently is unimportant in the sense 

that the equation is easily reduced to its homogeneous form. If there ex-
2 

ists a solution v1 EC [a,b] of the reduced equation 

(1.1.13) s, 

y - v1 satisfies 

The process can be iterated and the influence of son the solution y of 

(1.1.1) can be expressed in a power series in E:. Truncating the process at 

then-th stage, the non-homogeneous term is 0(e:n) which can usually be dis

carded, leaving the homogeneous equation 



6 

On subintervals (c,d) c [a,b] which do not contain zeroes off, 

X 

(1.1.14) C exp{- f g(t)/f(t)dt} 

is the general solution of equation ( 1.1.13) with s = 0, and 

(1.1.15) v 1 (x) 

X 

[ f s(t) dt + cJl 
y1 (t)f(t) 

is the solution of the full equation (1.1.13). 

1.2. EXPOSITION OF ASYMPTOTIC PROPERTIES 

To obtain an insight into the asymptotic properties of the solution of 

equation (1.1.1.a) for E +Owe first study the homogeneous equation 

(1.2.1) Ey" + fy' + gy 0. 

We are especially interested in the question under what conditions a 

solution of the problem (1.2.1)-(1.1.1.b) satisfies approximately the 

reduced equation 

(1.2.2) fy' + gy o. 

This certainly will be the case in those parts of [a,b] where y"(x;E) is 

uniformly bounded in E and hence it is important to know where these parts 

are (if they exist). 

We do not intend to study the problem in all generality but we shall 

consider a number of characteristic cases. Since f(x) is the coefficient 

in the leading term of the reduced equation, it is natural to consider the 

following three cases: 

A. f is positive (or negative) definite on the whole interval [a,b] , 

i.e. there are no turning points; 

B. f has a simple zero in (a,b), i.e. there is one turning point; 

C. f is identical to zero on [a,b]. 
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A. No turning points 

First we focus on the case where f is positive or negative definite on 

[a,b]. According to the WKB-technique we formally solve equation (1.2.1) by 

writing 

(1.2.3) 
y(x) 

13 (t) 

X 

exp{½ f 13(t)dt}, 

l p (t)En. 
n=0 n 

This leads - to first order - to two approximate solutions 

X 

(1.2.4) yl C { I g(t) } exp - f(t) dt, 

a X X 

(1.2.5) -1 { 1 J f g(t)} y = C f(x) exp - E f(t)dt + f(t) dt 2 
a a 

The solution of eq. (1.2.1) which satisfies the boundary condition (1.1.1.b) 

can be written 

(1.2.6) y(x) 

For f > 0, c2y2 is exponentially small outside a small region of O(e:) 

near x = a. (The region where c2y2 is not exponentially small is called a 

bounda:t>y layeP.) The coefficient c1 is determined by c1y1 (b) = 13 and c2 by 

c2y2 (a) = a - c 1y1 (a). 

For f < 0, c2y2 is exponentially small outside a boundary layer near 

the other end x = b. We see that, away from the boundary layer, the solu

tion is approximately described by c1y1 • This function satisfies the re

duced equation (1.2.2) and the boundary condition at the non-boundary-layer 

end. 

B. One turning point 

For a single zero off, we can take a< 0 <band f(0) 

of generality. The WKB-analysis shows that 

(1.2. 7) 

(1. 2. 8) 

X 

/' exp{- I 
0 

(g (t) + !:_) dt} 
f(t) t 

X X 

x-£-l{f(x)}exp{- ¼ I f(t)dt + J (~\!! + ~ft} 
0 0 

0 without loss 
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where 

(1.2.9) JI, -g(O)/f' (0). 

Since the singularity in the integrand is subtracted, the integrals do ex

ist. 

For arbitrary values of CL and CR, CLyl and CRyl satisfy the homoge

neous reduced equation (1.2.2) on [a,O) and (O,b] respectively. For JI,< O, 

the form (1.2. 7) shows that there are no smooth solutions of (1.2.2) on 

[a,b] except y - O. If JI,~ 0, for any solution y1 E Ck[a,b], k > Jl, it is 

seen that CL 

then CL= CR 

equation. 

CR by the smoothness condition. Moreover, if Jl f 0,1,2, ... 

0, i.e. the homogeneous equation only admits the trivial 

These facts establish the uniqueness of a solution y E Ck[a,b]; k > Jl, 

of the inhomogeneous· reduced equation (1.1.13), if JI, f 0,1,2, .... This 

solution exists and can be written in the form 

y 

(1.2.10) 

where 

~(t) 

-¢(x)f~(x) + ~ ~ + 1 JI, JI, (Jl-1) 
JI, X 

+ x p(x) I 
Jl (Jl-1) ••. (Jl-n) 

0 

X 

exp{- I g(t) + ! dt} 
f(t) t , 

0 

s (:t) t 
¢(t)f(t)' 

(cf. ABRAHAMSSON [1975], lemma 3.2). 

n >Jl -1, 

n ~ -1, 

If Jl = 0,1,2, ... nontrivial solutions y1 of the homogeneous equation 

(1.2.2) on [a,b] are possible; e.g. y1 = C xis a solution of xy' - y = O. 

On [a,-o] and [o,b], o > 0, the WKB-solution of the homogeneous equa

tion can be written as 

(1.2.11) y(x) ~Cy (x) +Cy (x). 
1 1 2 2 
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Near the turning point both solutions, y 1 and y2 are not in general valid. 

Hence it is expected that the coefficients c1 and c2 differ on either side 

of the turning point. 

For the description of the qualitative behaviour of the solution of 

equation (1.2.1) we have to distinguish between f'{0) > 0 and f'(0) < 0. 

Case I: f' (0) > 0 

Similar to the above remarks about y1; y2 € ck[a,b], k > -1-1, im

plies either y2 e 0 or 1 = -1,-2,-3, •••• 

If 1 = -1,-2,-3, ••• the solutions of (1.2.1) may explode exponentially 

over the whole interval [a,b]; e.g. 

2 
y = y2 = exp( (1-x )/2e:) 

is a solution for the problem 

e:y" + xy' + y = 0, 

y(-1) = y(l) = 1. 

For l # -1,-2, ••• , any nontrivial y2 is not a smooth solution on [a,b] 

and we consider the WI<B-approximation on the intervals [a,-oJ and [o,b], 

o > 0, separately. Since - ¼ f~ f(t)dt s 0 on [a,b], the influence of y2 
is exponentially small outside a region near x = 0. 

By analogy to the results obtained without a turning point we see that the 

approximate solution of (1.2.1)-(1.1.1.b) is described by 

a 
y(x) ~ Y1 (a) Y1 (x) on [a,-()] 

and by 

a y(x) ~ y(b) y1 (x) 
1 

on [o ,b] 

for some o > 0. 

In this case there is a boundary layer neither at x 

is rigorously stated in the following 

a nor at x b. This 

'THEOREM 1.2.1. (cf. ABRAHAMSSON [1975]) Let there be one turning point at 

x = 0, Zet f' (0) > 0 and t = -g(0)/f' (0) # -1,-2, •.• and Zet v be the 
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solution on [a,O) U (O,b] of the reduced equation (1.1.13) with the bound

ary conditions 

v(a) a a:nd v(b) B, 

then there are constants o,K and £0 independent of£, such that the soZu

Uon of prob"lem (1 • 1. 1) satisfies 

(1.2.12) max ly(x;E) - v(x) I s KE 
O<oSlxlsl 

The behaviour in the turning point region strongly depends on the sign 

of£. If£> 0, y(O) converges to zero. If£< 0 both limits y(+O) and 

y(-0) are unbounded and a complicated behaviour may be expected in the 

turning point region. If£= 0 a shock layer is expected (cf. fig. 1.3.3). 

Case II: f' (0) < 0 

In this case - ¼ fx f(t)dt ~ 0 and therefore the influence of y2 grows 

exponentially for incregsing values of lxl. Thus y2 can serve as a bound

ary layer function both near x = a and x b. Outside these possible bound

ary layers, y2 is exponentially small. 

In order to investigate the contribution from y1 to the solution of 

(1.2.1)-(1.1.1.b), a link has to be made between the NKB-approximations for 

x < 0 and x > 0. To this end equation (1.2.1) is approximated in the neigh

bourhood of x = 0 by 

(1.2.13) Ey" + f' (0) X y' + g(O)y o. 

The solution in the turning point region can now be expressed in terms of 

parabolic cylinder functions n1 (z). Introducing the local coordinate 

s = x✓-f' (0)/£, we approximate the solution of eq. (1.2.1) near x = 0 by 

(1.2.14) 

D1 (s) and n1 (-s) yield two independent solutions when£ f 0,1,2, ••• , other

wise an independent solution is given by n_1_1 (is). For£= 0,1,2, ••• , we 

have 



(1.2.15) -z2;4 e He,Q, (z) , 

where He,Q, is the Hermite polynomial of degree£ (cf. ABRAMOWITZ & STEGUN 

[1965]). 

11 

The asymptotic behaviour for lzl + 00 of the function o1 (z) is given by 

(1.2.16) 

and 

(1.2.17) 

if ~TT.< arg(z) < ~TT. 

if larg(z) I < ~TT, 
4 

12n" hi 
- f(-£) e 

(WHITTAKER & WATSON [1946], p.348.) 

-£-1 z 

Since all exponentially large terms in y 3 must be absent for~+ ±00 , 

when matching the local solution (1.2.14) with c1y 1 + c2y2 , we have to 

choose A= B = O, unless£= 0,1,2, .... So we have y(x) ~ 0 in the turn

ing-point region if£ f 0,1,2, ..•. This is rigorously stated in the fol

lowing 

THEOREM 1.2.2. If f' (0) < o, £ f 0,1,2, ... then there exists an s0 > O suah 

that for all O < £ ~ e0 there is a unique solution y(x;E) of (1.2.1)

(1.1.1.b), which is uniformly bounded on [a,b]. 

Moreover, for any fixed o > O, 

(1.2.18) lim max ly(x;E) I = 0. 
£+0 a+o<x<b-o 

PROOF. See KREISS & PARTER [1974]. 

In the cases when£= -g(O)/f' (0) 

point solution is possible: 

0,1,2, ... , a non-trivial turning 

(1.2.19) He1 (x/-f' (0)/£). 

The appearance of non-zero limit-solutions for£+ O, which can occur for 

discrete values of£, is called the resonance phenomenon. The condition 

£ = 0,1,2, ••• is necessary for resonance, however, it is not a sufficient 

condition. The class of functions f and g for which there are non-zero 
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interior limit-solutions appears to be rather small (cf. KREISS & PARTER 

[1974]). 

In the case of a turning point with f' (0) < 0 the effect of the right

hand side s(x) in eq. (1.1.1) is not immediately clear. ABRAHAMSSON [1975] 

shows that the smoothness of s(x) is a prerequisite for the solution y(x;E) 

to be uniformly bounded in E. Compiling some of his results we state the 

following 

THEOREM 1.2.3. Let y be the solution of (1.1.1), let there be one turning 

point at x O with f' (0) < O and let JI,= -g(Ol/f' (0) then there exist 

K,o and E0 > O, independent of E, such that 

if JI,< O then 

max ly(x;E)I s Kmax(la.l,181, max ls(x)I), 
asxsb asxsb 

if JI, > o, JI, t, O, 1, 2,... , then 

max ly(x;E) I s K max(la.l,181, max ls(x) I, 
asxSb asxsb 

where k is the nonnegative integer such that JI,< k < Jl,+1. 

max 
lxl<o 

Is (kl I l, 

Ifs is not smooth enough, then y is possibly not bounded for E + O. 

E.g. if y is the solution of 

then 

Ey" - xy I + Jl,y = ~ xod X 2: 0 
l X $ 0 1 

d = 0,1,2, .•. ; JI,> 0, JI, t, 0,1,2, ... , 

y(a) = a., y(b) = B, 

max ly(x;E) I 
asxsb 

If JI,= 0,1,2, ... the solution may grow exponentially even for smooth 

functions s. E.g. let y be the solution of 

Ey" - xy• + Jl,y 

y(-1) = y(l) = 0, 

0,1,2, ••. , 



then 

y(x) for x E (a,b). 

REMARK. When some numerical method for the problem (1.1.1) is used which 

approximates the right-hand sides by a functions that is not smooth 

then we may not expect the corresponding approximation of y to be uni

formly bounded for E ➔ 0. E.g. if equation 

Ey" - xy' + R,y = s 

13 

is solved numerically by a method which approximates the data s bys, such 

thats has a discontinuous derivative at x = 0, then - if no further ap

proximations are made - the approximate solution y satisfies 

Ey'' - xy' + R,y = s 

1-R, 

and we may have y 0 (E2 ). 
Hence we can guarantee that y(x;E) is uniformly bounded only if R, < 1. 

Similarly, ifs is discontinuous at x = 0 (e.g. ifs is approximated by a 

step-function), then y = O(ER,/2) ana y will be uniformly bounded only for 

R, < o. 

REMARK. For both f' (0) > 0 and f' (0) < 0 we notice that, by introducing 

the local coordinate~ x//s in the turning point region, we can remove 

the singular perturbation character of equation (1.2.1). It is then con

verted into 

(1.2.20) o. 

For numerical purposes this implies that in a turning-point region of 

0(/s) no special methods for the problem are needed, provided that the mesh 

is sufficiently refined. 

This approach may solve the problem for linear equations when an appropri

ate mesh can be generated after an a priori analysis, which locates the 

turning points and boundary layers. However, in general this will be a 

laborious process, especially when nonlinear equations are considered. 
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C. f identical to zero 

In the case f = 0, standard WKB-analysis of eq. (1.2.1) yields the 

approximation (cf. e.g. SIROVICH [1971]) 

(1.2.21) 

1 
-4 

y(x) ~ g(x) 

X 

exp(± f ✓-g(t)/E dt). 

The character of the solution depends on the sign of g, If g < 0 the solu

tion is exponential. There are boundary layers at either end of the inter

val [a,b]. Outside both boundary layers, which extend over a region O( ✓E), 

the solution is exponentially small. 

If g > 0 the solution is oscillating with a period 2TI/E/g. For the latter 

case it is evident that numerical approximation by means of piecewise ap

proximation of the solution is not feasible for small values of E. 

1.3. EXAMPLES 

In this section we collect a number of special cases of problem 

(1.1.1). They illustrate the exposition given in section 1.2. A number of 

these examples allow an explicit solution and, hence, are appropriate for 

use as model problems for numerical methods. 

Equations without a turning point. 

(1.3.1) 

(1.3.2) 

EY0 - y' 

EY0 + y' O; 

y 

y 

A+ B exp(+x/s). 

A+ B exp(-x/E). 

Equations with one turning point, f' (0) > O. 

(1.3.3) 

(1.3.4) 

(1.3.5) 

(1.3.6) 

(1.3. 7) 

(1.3.8) 

Ey" + xy' =0;2= O; y=A+Berf(x/v'2E). 

1 1 
Ey"+xy' + 2y=O; 2= - 2• 

Ey"+xy'+ y =0;2= -1;y=exp(-x2/2E) [A+BJ: exp(t2/2E)dt]. 

1 1 
Ey" + xy' - 2y = 0; 2 = 2• 

Ey" + xy' - y : 0; 2 = 1; 

Ey" + xy' -2y•= O; 2 = 2; 

2 XIX 2 y= Ax+ B[exp(-x /2E) + - exp(-t /2E)dt]. 
E 0 

2 
y=A[xE exp(-x /2E) + 

2 Ix 2 + (x +E) (B+ O exp(-t /2E)dt]. 
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Equations with one turning point, f' (0) < 0. 

(1.3.9) £y" - xy' = O; R, = 0; 

(1.3.10) sy" - xy' + y=O; R, = 1; 

y=A +Br exp(t2/2E:)dt. 

y=Ax + B[~xp(x2/2E) _: Jx exp(t2/2£)dt]. 
£ 0 

(1.3.11) e:y" - xy' - y= O; 1=-1; 2 Jx 2 y=exp(x /2£)[1\ +B
O 

exp(-t /2£)dt]. 

Equations with f "' 0. 

(1.3.12) £y" - y = 0 

(1.3.13) £y" + y = 0 

y = A exp(-x/lE) + B exp(x/1£). 

y = A sin( x/1£) + B cos(x/1£). 

Equation with a classical turning point. 

(1.3.14) £Y" - xy = 0 
-1/3 -1/3 

; y = A Ai(x£ ) + B Bi(x£ ). 

a(£> 1-----~f 
Fig. 1.3.1 £y"-y'=O 

Fig. 1.3.3 £y"+xy'=0 
Shock layer 

Ji'ig. 1.3.5 £y"+xy 1+y = O 

Fig. 1.3.2 £y"+y'= 0 

Fig. 1.3.4 £y"+xy'+0.5y= 0 

Fig. 1.3.6 £y"+xy'-0.5y= 0 
Cusp layer 
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Fig. 1.3. 7 e:y"+xy'-y= 0 
Corner layer 

Fig. 1.3.9a 
e:y"-xy' = O, lal = lbl 

r 
Fig. 1.3.9c 
e:y"-xy' = O, lal > lbl 

~l ~-:JI-- O(E) 

Fig. 1.3.11 e:y"-xy'-y= 0 

Fig. 1 • 3 .13 e:y"+y = 0 

Fig. 1.3.8 e:y"+xy'-2y= 0 

Fig. 1.3.9b 
e:y"-xy'=O, lal < lbl 

Fig. 1.3.10 e:y"-xy'+y= 0 
Resonance 

l f 
Fig. 1.3.12 e:y"-y= 0 

Oce:1/3) 

y(-l)L:1 y(l) 

-2 -1 0 1 

Fig. 1.3.15 
e:y"-x(2+x)y'+xy = 0 
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The general solution of the differential equation 

(1.3.15) E y" - cxy• + cJl,y = 0 

with constant coefficients JI, and c (c=+l or c=-1) is described by the par

abolic cylinder function DJl,(z); 

if JI,# 0,1,2, ••• 

( i.3.16) 

if JI,= 0,1,2, ••• DJl,(x{c/E) and DJl,(-x{c/E) are linearly dependent and an 

independent solution is given by D -Jl,-l (x/.-c/E). In this case we can also 

write 

(1.3.17) y (x) = A Hh (x✓-c/g) + B Hh (-x/-c/E), 
n n 

where Hh is the "probability" function (ABRAMOWITZ & STEGUN [1965]) 
n 

z 

When y is subjected to the boundary conditions y(-1) = a, y(l) = 6, 

with the aid of the asymptotic expressions (1.2.16) and (1.2.17), the fol

lowing asymptotic approximations toy are obtained (O'MALLEY [1970]). 

If·c < 0, JI,# -1,-2, ••• , 

(1.3.18) y(x;E) ~ y(sign(x)) lxi\ 

y(O;E) = O(EJl,/2 ). 

If c < 0, JI, -1,-2, ••• , 

(1.3.19) y(x;E) 

y(O;E) 

6+(-)Jl,a JI, 6-(-)Jl,a 
~ 2 X + 2 

-Jl,-1 
X 

2 -c(l-x ) /2€ 
e I 

= O(exp(-c/2g)). 

If c > 0, JI, f 0,1,2, ••• , 

(1.3.20) 
2 

y(x;E) ~ y(sign(x)) lxl-Jl,-le-c(l-x )/28 , 

y(O;g) is exponentially small. 
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If c > 0, .I', = 0, 1 , 2, ... , the asymptotic behaviour is alsc, given by 

eq. (1.3.19) and y(0;E) = 0([t/2), unless a= (-l)t-lS or t = 1,3,5, ... 

The class of equations for which the resonance phenomemon can occur is 

very small. However, the condition that the equation can be reduced to 

Ey" - xy' + ny 0 

is overly restrictive. This is demonstrated by the following two examples. 

EXAMPLE. The equation (cf. DORR .[1970b]) 

(l.3.21) Ey" - XC (x) y' 0, c(x) > 0 on [a,b], 

is easily integrated to obtain 

X 

y(x) A + B J exp 

0 0 

Thus, there exists a constant C such that 

lim max ly(x;E)-cl o, o > 0. 
E+0 a+o <x<b-o 

EXAMPLE. The equation 

(1.3.22) Ey" - x(2+x)y' + xy 0 on [-1,1] 

has a solution (fig. 3"1.15) 

y(x;E) G(2+x), 

which is also a solution of the reduced problem. In this case the following 

statement holds 

max ly(x;E) - G(2+x) I o. 
-l+o<x<l-o 

According to KREISS & PARTER [1974, thm.2.2] there may exist a boundary 

layer at the righthand end and a is determined by a= y(-1). 



CHAPTER II 

DIFFERENCE METHODS 

In this second chapter we treat topics that are basic for the study of 

the numerical solution of singular perturbation problems. In section 1 we 

discuss the effect of some analytical transformations and the trouble when 

standard type discretizations are used. We also briefly consider the appli

cation of shooting. In section 2 we discuss methods for representing the 

numerical approximation of the solution of problem (1.1.1) and we formulate 

a number of properties that are desirable for methods for solving such prob

lems. In section 3 we give a concise review of the numerical methods that 

have been used already to solve singular perturbation problems. In section 

4 we concentrate on finite difference methods that use exponential fitting 

and we discuss the features that make these methods interesting for the 

solution of stiff boundary-value problems. 

2.1. INITIAL CONSIDERATIONS 

Before we treat new finite difference methods that are specially de

signed for solving singular perturbation problems, we will show how a num

ber of commonly used discretization methods (forward, backward and central 

differences) behave when applied with a uniform mesh. This will demonstrate 

what the problems are and what we should strive for. We also explain why 

analytical transformations (the integrating factor and the Liouville 

transformations) are of little use. Finally we show the defects of the 

shooting technique when applied to problem (1.1.1). 

Simple finite difference methods 

With the help of a classical example we demonstrate what difficulties 

may arise when singular perturbation problems are solved by methods that 

are commonly used. Let us consider the boundary-value problem 

Ey" + y' = 0 
(2.1.1) 

y(O) = 0, y(l) 1. 
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In order to compare the solution of this boundary-value problem with the 

treatment given below we cast it into the form 

(2.1.2) 

where h > 0 and v = exp(-h/E). This solution has a boundary layer of thick

ness 0(£) near x = 0 and the limit-solution for E + 0 is 

(2.1.3) 

for o > 0. 

lim y(x;E) 
E+0 

on [o,1], 

We compute the numerical approximation on a set of equally spaced 

mesh-points {x1.} 1. = defined by 
0, ••• ,N ' 

xi= ih = i/N, i 0,1, •.. ,N. 

On this mesh we seek an approximation yi to y(xi) by three distinct differ

ence methods. Successively we use the i) central difference, ii) bac"/o.,Jard 

difference and iii) forward difference approximation for representing the 

first derivative. In particular, we are interested in the approximate sol

utions for small values of E, i.e. E << h. 

1. Central differences 

Here we replace the differential equation (2.1.1) by the difference 

equation 

(2.1.4) 

With the additional conditions 

(2.1.5) Yo= 0, 1, 

the solution reads 

(2.1.6) 2E-h 
2E+h 

o, i 1,2, ... ,N-1. 
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We notice that this solution has the same form as (2.1.2), where 'V has been 

1 db Iµ -vi = 0((!!.} 3) for ~->- 0, it is clear that rep ace y µ0• Because O 8 8 

(2.1.6) is a reasonably close approximation to (2.1.2) if h << E. However, 

the approximation fails completely for E < h. In particular, for h fixed 

and E->- 0 there is no resemblance at all between y(xi) and yi, since 

l;i.m Yi 0 if i even, Nodd; i 1, ••• ,N-1; 
E"tO 1 if i odd, Nodd; 

(2.1. 7) 
i/N if i even, N even; 

00 if i odd, N even. 

2. Backward differences 

Now we replace (2.1.1) by the difference equation 

(2.1.8) 

The solution of the equations (2.1.8) and (2.1.5) is 

(2.1.9) 
1-µi 

1 
y, = --N-, 

1 1-µ 
1 

i 1,2, •.• ,N-1. 

For small values of i this approximation is less accurate than (2.1.6) 

since 1µ1-vl = 0((~) 2) for~->-- O. Here again, the approximation complete

ly breaks down for E < h. For a fixed h > O, 

(2.1.10) limy, 
E->--0 1 

0 for i 1,2, ••• ,N-1. 

This is not at all an approximation to the limit-solution of the original 

equation. 

3. Forward differences 

If the equation (2.1.1) is replaced by 

(2.1.11) o, i 1,2, ••• ,N-1, 

the solution of the difference equation is 
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(2.1.12) 

i 
1-µ2 

Yi = --N-, 
1-µ2 

Again, for small values of%, yi approximates y(i/N) and 1µ2-vl = 0((%) 2) 
h 

for E ➔ 0. However, in this case, for E ➔ 0 the asymptotic behaviour of 

(2.1.2) is reflected in the approximation, since for fixed h 

(2.1.13) lim Yi 
s+O 

for i 1,2, .•. ,N-1. 

We conclude that for h << E central differences are the most accurate, 

but forward differences have the property that for E ➔ 0 the discrete lim

it-solution approximates the exact limit-solution. Clearly, this is 

an important feature if we want to solve the equations with E << h. Never-

.theless, we note that the rate of decay in the boundary-layer is not very 

well represented since exp(-h/E) << Eh if E << h. 
€+ 

Another equation 

Let us consider the boundary-value problem 

Ey" - y = 0 

y(0) = y(l) 1. 

What happens to this differential equation, in which no first derivative is 

present, when it is discretized by the common 3-point difference formula? 

For any h > 0, the analytical solution of the boundary-value problem can be 

written 

(2.1.14) 

where 

y(x) 
v(-2x+1)/2h + v(2x-1)/2h 

1/2h V.:..1/2h 
V + 

v exp(h/t"E). 

The limit solution for E ➔ 0 is 

for o > 0. 

lim y(x;E) 
€➔0 

0 on [o, 1-o] 



If we replace the differential equation by the difference equation 

o, i 1 , 2, ••• , N-1, 

with the additional conditions 

Yo = 1, 1, 

the solution reads 

(2.1.15) 
µ-i+N/2 + µi-N/2 

N/2 -N/2 ' 
µ + µ 

where 

µ 
h2 / -h2 2 

(1 + 2E:) + VO + 2E: ) - 1. 

Again we see that both solutions (2.1.14) and (2.1.15) are of the same 

form. If h <</ea good approximation is o~tained: 

lµ-vl = O((h/1€) 3) for .E_ + o. 
IE 

h2 E: 
If his fixed and E: ➔ 0 thenµ= - + 2 - - + .•• and 

E: h2 

lim y. = 0, 
E:➔0 l. 

i 1,2, .•. ,N-1. 

In other words, for E: ➔ 0, the limit-solution of the discrete problem is 

similar to that of the continuous problem; but, again, the rate of decay 

in the boundary-layers is not accurately represented. 

The use of analytic transformations 

23 

In the preceding examples we started with the differential equation 

in its canonical form (1.1.1). But also, if we use other forms such as 

(1.1.2) or (1.1.9), it turns out that these cannot be of great help in 

removing the problems related to the smallness of E:. For instance, if we 

apply the integrating faator (1.1.3), equation (2.1.1) is transformed into 
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(2.1.16) ( exp(x/£)y')' o. 

Replacing u' by the central difference (ui+l/2-ui-l/2)/h, we obtain the 

discrete form of (2.1.16) 

(2.1.17) exp(xi-1/2/E)yi-1 - (exp(xi-1/2/£) + exp(xi+l/2/£)) Yi+ 

+ exp(xi+l/2/s)yi+l = 0, i = 1,2, •.. ,N-1. 

With the boundary conditions (2.1.5), this yields exactly the analytic 

solution at the mesh-points, i.e. 

(2.1.18) 
i 1-µ --N-, 

1-µ 
µ exp(-h/£) 

This seems an excellent discretization method; however (2.1.17) cannot be 

used in practice since the value exp(xi±l/2/s) will cause overflow, even 

for values of£ that are not extremely small. Moreover, for equations 

(1.1.2) with g ~ 0 ors~ 0 the discrete equations are 

where f. = f(xl._), gl.. = g(xl..) ands. = s(x.). This shows that, for small 
hfi £ l. l. l. 

!hf I , the terms g. y. and s. are cancelled by the large 
. l. l. l. term £ exp ( 'u'). 
i Also the LiouviZZe transfo!'171ation (eq. (1.1.8)) is not very useful 

for computational purposes. The boundary conditions for z and y are related 

by 

b 

(2.1.20) z(b) y(b) J f(t) dt 
z (a) = y(a) exp ~ • 

a 

This means that the boundary conditions (and equally the right hand side of 

the equation) are exponentially enlarged by the transformation and hence 

overflow problems arise. More generally, we can say that by the transform

ation of the original problem, the (assumed) smooth coefficients f,g and 

s are replaced by rapidly varying coefficients. This is frequently a dis

advantage for numerical purposes. 

The shooting method 

For the shooting method, a boundary-value problem is rewritten as an 
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initial-value problem (i.v.p.). For the most elementary form of shooting, 

the homogeneous problem (1.2.1)-(1.1.1.b) is written 

(2.1.21) {
y' 

v' 

y(a) 

v(a) 

a., 

p, 

where the initial value p = v(a) is an unknown parameter. This parameter 

has to be determined such that the solution (y,v) satisfies the boundary 

condition at the other end x = b. Variants of the shooting method are pos

sible, such as 

- starting with the boundary condition at x =band solving the initial

value problem fr.om b .to a; 

- starting from both ends and matching the solution at an intermediate 

point in (a,b); 
N 

introducing a partition U [x. 1 ,x.J of 
i=l 1.- 1. 

subinterval and matching the continuity 

(rrrultiple shooting). 

[a,b], solving the i.v.p. on each 

conditions at each point xi 

Thus, the method essentially consists of two parts: A. the solution of the 

initial value problem(s); B. the determination of the unknown parameter(s). 

(See also K.G. GUDERLEY [1975].) 

Both parts introduce numerical trouble when the problem (1.1.1) is 

solved for small£. 

A. The solution of the initial value problem. 

Let us consider problems of type (1.2.1), with g < O. These problems are 

called stable, because the solution is bounded by the data. For these prob

lems the Jacobian matrix of the i.v.p. (2.1.21) has two eigenvalues, which 

are approximately -f/£ and -g/f. By switching the direction of the i.v.p. 

both eigenvalues change sign. In both cases we have to solve an i.v.p. with 

a positive and a negative eigenvalue. The stable boundary-value problem has 

been converted into an unstable i.v.p .. Moreover, if the i.v.p. is solved 

in the direction in which the reduced problem has to be solved, the eigen

value with larger absolute value is positive, i.e. an exponentially large 

erroneous component is introduced in (y,v). 

B. The determination of the parameters. 

The erroneous component of the system makes the equations that have to be 

solved for the determination of the parameters, very ill-conditioned. We 
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show this by means of example (1.3.3) on the interval [-1,+1]. 

we apply shooting, starting from -1 and +1 and matching at x 

initial conditions are 

y(-1) =a, 

v(-1) = P1, 

O. The 

We assume that the integration method yields an exact solution (1.3.3) to 

the i.v.p.'s both from -1 to -0 and from +1 to +o. 

Then 

(
y(-0)) = (1 
v(-0) 0 

and 

(y(+O)) = (1 
\vc+o) \o 

For small values of€, 

1 

1 « exp(21€) I 
0 

2 
exp(-t /2E)dt. 

Therefore, since we require, 

y(-0) y(+O), v(-0) v(+O), 

the numerical solution of p 1 and p2 yields 

and the shooting process does not converge. 

The same problems arise when symmetric problems (i.e. with f=O) are 

solved. E.g, consider example (1.3.12) on [a,b]. When shooting from a to b 

is'applied, because of the large eigenvalue €-l/2 , a negligible alteration 
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o of y' (a) will cause the exponentially large deviation ov'E sinh( (b-a) /Ji.) 
in the computed value of y(b). Multiple shooting over a partition suffers 

from the same defect: each deviation o in the guess of y' (xi) causes a dif

ference oR sinh ( (x. 1-x.) //e:J in the computed value y (x. 1) • Even this dif-
1+ J. 2 J.+ 

ference will be unmanageably large if E << (~i+l-xi) . Since the problem is 

symmetric, reverse shooting does not help. This is the reason why we con

clude that (multiple) shooting is an inadequate technique for solving sing

ular perturbation problems of the form (1.1.1). 

2.2. REPRESENTATION OF A SOLUTION AND ERROR NORMS FOR AN APPROXIMATION 

In this section we discuss what criteria can be applied in order to 

judge the qualities of a numerical solution of 

(2.2.1) Ly= Ey" + fy' + gy = s, 

y(a) = a, y(b) = S, 

and we formulate requirements that can be imposed on methods suitable for 

singular perturbation problems. The choice of criteria for an approximation 

is a general question which, in fact, forms part of the proper statement of 

most numerical problems. However, when singular perturbation problems are 

solved, this deserves our special attention because of their multiscale 

character. 

Representation of a solution 

Since the solution of the two-point boundary-value problem (2.2.1) is 

a function of a real variable, its numerical approximation is given by only 

a finite number of real numbers. So we are faced with the problem of how we 

should represent the numerical solution. Generally, this is done in one of 

the following ways: 

1. Given a finite set of knots (or gridpoints) {x.}N1 0 , a~ x. ~ b, the val-
J. = J. 

ue of the solution at each of these points is approximated (pointuJise 

approximation). If an approximation is required at other points, it can 

be obtained by interpolation. 

2. Given a set of functions {¢1}:=l' defined on [a,b], the solution is ap

proximated by a linear combination of functions ¢1 (global approximation). 
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In both cases we have to define a suitable measure to quantify the 

error between the true solution and its numerical approximation. 

The norm in which the error is measured may differ from case to case 

and it should be chosen in accordance with the particular requirements im

posed on the approximation. These requirements form part of the proper de

finition of a numerical problem. For some applications it will be neces

sary to obtain a solution that is accurate at a number of points specified 

in advance, for other applications one has to obtain a solution whose 

error is bounded by a small amount over the whole interval. Also other cri

teria for a good approximation are possible. All these different criteria 

lead to the introduction of different norms in which the error between the 

solution and the approximation can be expressed quantitatively. 

Norms for the approximation 

We introduce norms both for pointwise and global approximations. Let 

IT= {a=x0<x1< .•• <xN=b} be a given partition of the interval [a,b]. Norms 

for the pointwise error on IT are directly related to vector norms. 

We define 

(2. 2. 2) lly - y II }: IY. - y(xil l, app 7f, 1 
x.E!I 

l. 

l. 

(2. 2. 3) lly - y II = { }: <Yi _ y(xi))2}1/2 1 
app 7f,2 

X. EIT 
l. 

(2. 2. 4) lly - y II max I y. - y (x. l I . app 7f,OO 
x.d! 

l. l. 

l. 

Here y is the exact solution and yi denotes the value of the pointwise ap-

proximation y to the value y(x1._). The pointwise error norms depend 
app 

crucially on the choice of the knots i.n II. This set is not necessarily the 

set of all points for which an approximate value is available after the 

computational process; it may be only a subset. 

DEFINITION 

A numerical approximation yapp is called pointwise exact on a grid IT, 

iflly-y II 1 =0. 
app 7f, 

Norms for the global error are related to the norms in the function 

spaces L2 (a,b) and L00 (a,b). 
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b 

(2.2.5) ly - yapp10,2 = {J (y(z)-yapp(z))2dz}1/2, 

a 

(2.2.6) ly - yapp1o,oo max I y (x) - y (x) I . 
aSxSb app 

Using global approximation, it is also possible to measure the norm of the 

residual 

(2.2.7) 

b 

BLyapp - sD0,2 = { J (Lyapp-s)2dx}1/2_ 

a 

If Lis a positive definite, self-adjoint operator, then the energy-norm 

can also be used 

b 

(2.2.8) ly - y H = { J app E 
} 1/2 (y -y)L(y -y)dx • app app 

a 

In particular, in the case of a singular perturbation problem, where 

the solution is a smooth function which locally may change rapidly, the 

choice of an appropriate error-norm demands care. Here we meet the question 

whether or not a solution should be accurately represented in all regions. 

The global norm 0•0 0 , 00 is appropriate if a good representation of the rap

idly varying part is required, and the norm l•D 0 , 2 if the rapidly varying 

part of the solution may be roughly represented as long as this does not 

affect the global behaviour. ~evertheless, to approximate an almost discon

tinuous solution by a smooth approximation, all global norms require a fine 

mesh in the neighbourhood of the discontinuity. 

For our purposes, here and in the following chapters, we will mainly 

concentrate on the pointwise error-norm lly - y D , for some arbitrary, app 7T ,oo 
but a priori specified, finite set of knots IT. Here we emphasize again 

that the choice of IT forms part of the proper definition of the numerical 

problem. By the choice of IT, we decide whether or not we are interested in 

accurate approximation in particular parts of Ca,b]. This corresponds to 

the fact that a large number of gridpoints is required if an accurate ap

proximation in the non-smooth part of the solution is required. 

In accordance with this choice of error-nol'/71 we represent the computed 

solution l;y a sequence of discrete function-values {y.}, corresponding to a 
l. 

given sequence of grid-points IT. 
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Desirable features in methods for solving singular perturbation problems 

At this point we have to discuss what the desirable features are for 

a method that is used for singular perturbation problems. In the first 

place we require that the approximation is - to a certain extent - accurate 

for an arbitrary choice of IT, provided that the global character of the 

solution can be represented by some interpolation between the gridpoints. 

In particular we want to obtain a reasonable accuracy with any equidistant 

mesh which is fine enough to represent the slowly varying parts of the sol

ution. Apart from this, IT may be chosen in such a way that there are parts 

of the mesh where xi - x1_1 << e:, x1 - x1_1 F::I e:, xi - xi-i F::I e: 112 , 

xi - xi-l >> e: etc .. However, if some local, rapidly varying behaviour 

(say, between two neighbouring points of IT) is completely missed by the 

numerical representation on IT, the global numerical solution should be dis

turbed as little as possible to obtain a small error lly - y II • In gen-app 7f ,oo 
eral, interpolation fails in the rapidly varying parts. If an accurate re-

presentation is wanted in these parts, the set of gridpoints IT should be 

chosen appropriately. 

In order to discuss methods for singular perturbations more rigorous

ly, we formulate some useful properties in the following definitions. We 

consider the two-point boundary-value problem (2.2.1). We assume that a 

unique solution ye: exists for all e:, 0 < e: S e:0 , and also a solution y0 of 

the reduoed problem on [c,d] c [a,b] such that 

uniformly on [c,d]. 

For each e: we consider a family of discrete solutions {y } for dif-
7f, e: 

ferent partitions IT= {a=x0<x1<x2< ... <xN=b} of the interval [a,b]. To each 

IT we associate a 

times write y 
h, e: 

DEFINITION 

meshwidth h = i=lmax (xi-x1_ 1). Less accurately we some-
, ... ,N 

instead of y . 
7f, e: 

A family of discrete functions {uh} has a limit-funotion for h ➔ O, 

U(x), defined on an interval [c,d] c:;: [a,b] and denoted by 

u lim uh, 
h+0 



if there exists a continuous function U(x) on [c,d] that satisfies 

lim '1Jr (x) = U(x) 
i-+<X> i 

uniformly for all x € [c,d] n U Il., for 
i=l 1 

tions of [a,b] with the properties lim hi 
i-+<X> 

any sequence {Ili};=l of parti

= 0 and i > j • Il. ~ Il .• 
l. J 

We assume that, for a particular problem and a particular method, a 

discrete·solution Yh,E exists for all h arid E, 0 < h s b0 , 0 <Es E0 • We 

want to show, that for particular methods, the asymptotic behaviour of the 

finite difference solution for small E ciosely approximates that of the 

continuous solution even without h ~ O. To this end we introduce the fol

lowing definitions. 

DEFINITION 

A method is unifo'l'111Zy E-convePgent of order p (for some class of prob

lems) if there exist constants EO and K, independent of E, such that 

DEFINITION 

sup 0yh 
,E 

O<ESEO 
-yll SKhp 

E 1T ,"" 

A method is unifo'l'111Zy E-stabZe (for some class of operators L) if 

there exists a constant K, independent of E, s, a and S, such that 

Uy L SKmax(lal,ISI, h,E 1T, 00 

for all O <Es EO' 0 < h s ho· 

DEFINITION 

max c Is Cxl I ll 
aSxSb 

For some class of numerical problems, a method has a discPete limit 

soZution Yh,O if there exists a discrete function Yh,O such that 

lim yh 
E~ ,E 

DEFINITION 

For some class of problems a method is called consistent !JJith the Pe

du.ced pPoblem on an interval [c,d] c [a,b] if 
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on [c,d], 

where y0 denotes the solution of the reduced problem on [c,d]. 

As we saw in the examples of section 2.1, it is very useful to be able 

to fix IT and let£+ 0 and then to have some assurance that the asymptotic 

behaviour of the continuous solution is reflected in the discrete solution. 

If a method is consistent with the solution of the reduced problem, this 

implies that even in the case where rapidly varying solutions cannot be 

represented at all on IT, the solution can be accurate in the norm 

lly - y II asymptotically for£+ 0. This includes the possibility of 
app 1r,oo 

solutions that improve rather than degrade when£->- 0. 

2.3. EXISTING ALGORITHMS FOR THE SOLUTION OF SINGULAR PERTURBATION PROBLEMS 

Only a few papers are concerned with the numerical solution of singu

lar perturbation problems, although it seems to be a field of increasing 

interest. PEARSON [1968a] uses central differences on a non-uniform mesh. 

He gives the numerical solution of a great variety of singular perturbation 

problems of the type (1.1.1). IL'IIJ [1969] introduces the idea of widening 

the boundary-layer. He uses an equidistant mesh and attains £-uniform con

vergence and stability for a limited class of problems. DORR [1970a] uses 

directional one-sided differences for a particular system of two nonlinear 

equations and he also gives an extensive discussion for some turning point 

problems. KREISS [1973,1974] and ABRAHAMSSON et al. [1974] discuss a system 

of linear equations, without turning points. They use directional one-sided 

differences or widen the boundary layer. They also prove £-uniform stability 

on a uniform net. In this section we treat the essential facts from the 

above-mentioned papers. 

Pearson's algorithm 

PEARSON [1968a] gives the first description of a method for the numer

ical solution of the two-point boundary-value problem (1.1.1). His method 

is based on the classical 3-point finite difference formula for a non-uni

form mesh. Given a partition of the interval [a,b], a= x < x < ••• < x = b 
0 1 N ' 

this leads to the difference equations 



(2.3.1) 

where pj = xj+l - xj, qj = xj - xj-l" 

s(x.), 
J 
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j 1, ••• ,N-1, 

In order that the solution of the difference equation approximates the 

solution of the differential equation, the mesh should be properly chosen. 

To this end the mesh spacing is iteratively adjusted such that there is a 

high density of meshpoints in the regions where y(x) is changing rapidly. 

Several thousands of meshpoints are used and some simple criterion is 

chosen for the distribution of the meshpoints, e.g. 

Occasionally, meshpoints had to be added according to a criterion involv

ing steepness in y' rather than steepness in y to obtain accurate solutions. 

In addition, a mesh smoothing was necessary to ensure that there was no 

abrupt change in mesh interval size. 

Since we saw in section 2.1 that the 3-point scheme may fail complete

ly on a uniform mesh if E << h, it is quite clear that the adjustment of 

the mesh, to take into account the effects of small E, is essential when 

using this scheme. In order to ensure that the meshpoint set is dense in 

the right places, the whole process is executed in €-steps. The process is 

started with a uniform mesh and with a modest value of E. The meshpoint set 

used at the completion of the preceding E-step forms the initial set for the 

new step with a smaller E. 

REMARK. This strategy is an application of the Da.videnko-p~incipZe: for 

modest values of E, the problem is readily solved. Using the information 

about this solution, the problem is solved for other values of E, for which 

the problem could not be solved before. 

Pearson reports that a large number of problems have been solved by 

his method on a CDC 6600 computer and problems with values of E as small 
-10 

as 10 could be solved using single precision arithmetic. The results 

were found to be accurate to 3 or 4 significant digits. However, the use 

of the Davidenko principle, together with the iterative adjustment of the 
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mesh in each £-step, makes the method quite laborious, even for linear prob

lems. Moreover, the large number of meshpoints and the relatively low accu

racy gives rise to the question of whether it is possible to make use of the 

known analytical properties of singular perturbation problems, in order to 

design an algorithm which is more accurate and less sensitive to the dis

tribution of the meshpoints. 

The method of directional differences 

DORR [1970a] gives an extensive discussion of the method of upstream 

one-sided (or directional) differences on a uniform mesh. In fact, heap

plies this method to special cases of the nonlinear system 

u" (x) = f(x,u,v), u(O) = u(l) = 0, 

(2. 3. 2) £v"(x) + g(x,u,u')v' - c(x,u,u')v 0, 

c(x,u,u') ~ 0, v(O) = v0 , v(l) 

Here we shall confine ourselves to the treatment of the two-point 

boundary-value problem (2.2.1) with g(x) $ 0. The upstream one-sided dif

ference approximates the first order term of eq. (2.2.1) by 

(2.3. 3 .a) iff(xi)~O, 

if f (x.) < 0 
J. 

Hence, the difference equation used reads 

(2. 3.3.b) £(y. 1-2y,+y. 1J/h2 + [fy'.J" + g(x.)y, = s(x.). 
J.+ J. i- J. J. J. J. 

The primary rec;son for using these one-sided differences is to ensure 

that the equations are of positive type and, hence, that there is a unique 

solution for each set of data and for each£> 0, h > 0. Moreover, for the 

discrete equation a discrete analogue of the maximum principle (cf. PROTTER 

& WEINBERGER [1967]) holds. Before we state this in lemma 2.3.1, we first 

need the following 

DEFINITION 

A difference operator Lh of the form 

(2.3.4) 
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is of positive type if 

(2.3.5) 
a + b. + c. $ 0, 

j J J 
aj > O, cj > O 

Writing down the difference equations corresponding to equation 

(2.2.1), using the directional difference (2.3.3), it is illDDediately seen 

that it yields a difference operator of positive type, whenever g $ O. The 

following lel!DDa shows that a discrete maximum principle holds for a differ

ence operator of positive type. 

LEMMA 2.3.1. (The discrete maximum principle) Let~ be a differenae ope:ro

ator of positive type and let ~(yj) ~ O for j = 1,2, ••• ,N-1; let further 

y0 = a, yN = e. If yj assumes a nonnegative ma:r:imum value M for some j, 

O < j < N then y. = M for all j, j = 0,1, ••• ,N. 
J 

REMARK-. This lel!DDa is easily verified by a straightforward calculation, and 

analogously it can be proved that yh cannot take a non-positive minimum val

ue if ~Yh $ O. 

The following theorem states that meaningful approximations to asymp

totic solutions for£+ 0 of the continuous problem can be obtained, by 

letting first£+ 0 and then-h + 0 in the discrete problem, if the method 

of direction.al differences is used. 

THEOREM 2.3.1. Given a uniform partition of [a,b] and a i;IJ)o-point boundary

value problem (1.1.1) with g < o, then the method of direational differ

enaes has a disarete Zimit-solution for£+ o. Moreover, the method is aon

sistent with the reduaed problem on eaah alosed interval whiah e~aludes a 
turning point. 

REMARK. The theorem still holds if g $ 0, provided that g < 0 in each turn

ing point region [x* - h, x* + h] where f(x*) = O, f'(x*) $ 0. 

PROOF. Let the mesh-function Yh,O be determined by 

{f(xi) (yi+l-yi)/h + g(xi) = s(xi) if f(xi) ~ 0 

t2.3.6) f(x.) (yi-y. 1)/h + g(xi) s(x.) if f(xi) < 0 
]. J.- ]. 

Yo Cl., YN e, 
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then Yh,O is the (unique) solution of the matrix problem 

-1 
where IIB II < 00 (Gershgorin). 

(Here ll•U denotes the matrix-norm associated with 11•11 2 .) 
7T, 

The finite difference solutions, yh are determined by a matrix prob
,£ 

lem 

(E:A+B)yh c, 
, £ 

1 -1 
where IIAII < 00 • If E:0 is chosen such that O < E: 0IIAIIIIB- II< 1, then (E:A+B) 

exists for all O < £ s 

II (E:A+B)-lll 

Hence Yh,£ 
-1 (E:A+B) c exists for all 0 < £ $ £0, and 

dAIIIIB-lll dAII IIB-1 11 2llcll 
2 llyh -y 0 11 $ lly II $ 

7T 

1-E:IIAII IIB- 1 11 
-'1 ,£ h, 7T, 2 h,O 7T,2 1-dAII IIB II 

Thus, for all x. E II, limy (x.) = y 0 (x.). 
1. c--+O h,£ 1. h, 1. 

On each closed interval which excludes a turning point, the system 

(2.3.6) integrates the reduced equation 

fy' + gy = s 

in the down-stream direction, by the backward Euler method for initial val

ue problems. Hence (cf. HENRICI [1962]), the method is consistent with the 

reduced problem. D 

Il'in's method 

Although theorem 2.3.1 reveals the advantages of the directional dif

ference (2.3.3) there are disadvantages too: 

i) by the one-sided difference only approximation to first order is at

tained; 

ii) the method is not uniformly £-convergent on [a,b], even for the sim-
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plest case: constant coefficients and g = 0. 

The latter can be seen by comparing eqs. (2.1.2) and (2.1.12). The differ

ence between the approximation and the exact solution, y, is 
£ 

As 

lly - y II 
h,£ £ ,r,oo 

uniform £-convergence 

lim 
h+O 

sup 
0<£<£0 

max 
i 

lly 

is 

h, £ 

max 
i 

investigated 

y II . > £ 1T ,oo 

we can take h £, which yields 

1-2-i 1-e -i 
lim max 1-- ~I 
N~ i 1-2-N 1-e 

This proves the absence of uniform e:-convergence. Clearly this is caused by 

the defective representation of the rate of decay from the boundary-layer 

into the interior. Further, eqs. (2.1.2} and (2.1.12} show that equation 

(2.1.11) is an approximation to the differential equation 

(2.3.7) [ h/£ ] " 
£ log(l+h/£) y + y' 0 

rather than to the original equation (2.1.1). For values h of the same or

der of magnitude as£ this is approximately 

(2.3.8) 0. 

Equally, if the directional difference method is applied to the equation 

(2.3.9) E:y" + fy' o, 

the solution of the discrete problem will correspond rather to the equation 

(2.3.10) e:(1+ 1~:j)y" + fy' o. 

We see that the boundary layer shows up as "diffused". In order to over

come this effect, which disturbs the representation tn the boundary layer, 

IL'IN [1969] constructs a difference scheme which represents the rate of 

decay in the boundary layer correctly for the homogeneous case with g = 0 

and constant coefficients. 
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He applies this scheme more generally, to the differential equation 

(2.3.11) Ey" (x) + f(x)y' (x) s(x) 

and for a uniform net he proposes the following difference scheme 

(2.3.12) 

where yi is selected in accordance with the requirement indicated above. 

Hence he puts 

(2.3.13) 

(Note: x coth xis a nice computable function.) 

Therefore, the difference operator becomes 

(2.3.14) 

This difference operator is of positive type. Il'in proves the following 

errorbound for this operator when applied to (2.3.11). 

LEMMA 2.3.2. The errorbound for the differenae method (2.3.12)-(2.3.13) 

when applied to a differential equation (2.3.11) withe:> o, f € '(!2[a,b], 

s € C2[a,b], f(x) ,/, O on [a,b], is given by 

(2.3.15) Uy - y U s K(E)h2 • 
h,E E 7T, 00 

Moreover, for this alass of equations the method is unifomly e:-aonvergent 
of order 1. 

PROOF. see IL'IN [1969]. 

Some aspects of the work of Abrahamsson, Keller and Kreiss 

KREISS [1973] and ABRAHAMSSON et. al. [1974] consider the system of 

differential equations 



(2.3.16) 
e:y" + Ay' + By s, 

y(a) = a, y(b) = 8, 
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where y ands are smooth nth order vector-functions and A and Bare smooth 

n x n matrix functions. The matrix A is symmetrical and block-diagonal, 

consisting of two blocks, one with all eigenvalues greater than n > 0, the 

other with all eigenvalues smaller than -n. Under these circumstances no 

problems arise with turning points; the reduced problem is defined by equa-

tion (2.3.16) withe: 0 and the boundary conditions at x = b (resp. x = a) 

for the functions of y that correspond to the positive (resp. negative) 

definite part of A. 

We will confine ourselves to the treatment of the scalar equation 

(2.2.1) only. For the discretization, a uniform mesh is used and a finite 

difference scheme is proposed of the form 

(2.3.17) 

2 
(e:+hai) (yi+1-2Yi+yi-1)/h + ai(yi+1-yi-1)/C 2h> + bl,iYi+l + 

+ bo,iYi + b-1,iyi~l = clsi-1/2 + COSi + c_lsi-1/2" 

Here a. is a positive scalar. The coefficients a.,b. i and cJ. are chosen 
l. l. J, 

to give an accurate approximation for the reduced problem. To determine the 

coefficients we have to distinguish between f > 0 and f < 0. 

If f < 0, then 

1 
ai = 2 lf(xi-1/2) I, ai = f(xi-1/2), 

(2.3.lBa} bl . ,J. 

1 
O, bO,i = r1<xi-1/2), b-1,i 

1 
= r1<xi-1/2), 

o, co 0 1. 

If f > 0, then 

1 . 
= 2 lf(xi+l/2) I, a = 

i 

(2.3.18b) 1 
= 2 g(xi+l/2) , bO . 

,J. 

f(xi+l/2)' 
1 

= 2g (xi+l/2) ' bl . = 0, 
- ,J. 

= 1 0 o. 

This difference equation can also be written in the form 
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(2.3.19) 

where 

•= {f(xi+l/2) (yi+l-yi)/h if f (x.) > o, 
[fyi] 

1. 

f(xi-1/2) (yi-yi-1)/h f (x.) 
< 

if o, 
1. 

[gyi]RI = {g(xi+l/2) (yi+l+yi)/2 if f (x.) > 0, 
1. 

g(xi-1/2) (yi+yi-1)/2 if f(x.) < o, 
1. 

~ {5(xi+1/2) 
if f(x.) > 0, 

[s.J 1. 

1. 
s(xi-1/2) if f (x.) < o. 

1. 

We see that this difference approximation can be considered as a refinement 

of the method of directional differences. Both methods agree as far as the 

discretization of the 2nd order term is concerned. For the discretization 

of the terms with y', y and the right-hand side of the equation, midpoint 

approximations are used. 

Provided that the homogeneous reduced problem only has the trivial 

solution, ABRAHAMSSON et al. [1974] show that the method (2.3.17)-(2.3.18) 

is uniformly £-stable. Analogous to the asymptotic expansions as£+ 0 for 

the continuous problem, asymptotic expansions in powers of£, hand £/h 

can be given for the discrete problem. 

For the reduced problem, the scheme (2.3.17)-(2.3.18) corresponds to 

the well-known midpoint-rule (cf. KELLER [1974]) and, hence, it gives an 

approximation which is accurate to second order. However, the refinement 

also causes the discrete operator to be no longer of positive type for all 

g < 0. 

If the matrix A in equation (2.3.16) is not block-diagonal with defi

nite blocks or if the problem is nonlinear, another scheme of type (2.3.17) 

is proposed, namely 

2 
(E:+Gh) (yi+1-2yi+yi-1)/h + f(xi) (yi+1-yi-1)/( 2h) + 

(2.3.20) 

1 
where cr > 2 lfl. 

+ g(xi)yi = s(xi), 
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We see that the boundary layer is artificially widened to O(h). The resem

blance between equations (2.3.10) and (2.3.20) is clear. Let us consider 

this in more detail. By equation (2.1.12} we see that the rate of decay in 

the boundary layer is not correctly represented if the directional differ

ence approximation (2.3.3) is used. The boundary layer shows up as diffused 

but oscillations in the numerical solution are suppressed. Consider the 

scheme (2.3.20) applied to the example 

(2.3.21) Ey" + fy' 0, 

with constant coefficient f. 

The difference equations are 

(2.3.22) 

Yo= 0, 

The solution reads 

(2.3.23) 

y(O) 0, y(l) 

fh E+Oh - 2 
fh 0 

E+Oh + 2 

1, 

0 

If cr = 0 this is equivalent to central differences; if a= f/2 to forward 

differences and if cr lf/21 to directional differences. Oscillations will 

be absent if cr ~ ifl - f. To avoid all erroneous oscillatory behaviour, ir

respective of the smallness of E, cr should be chosen such that cr ~ ifl. 

This is the motivation for scheme (2.3.20). As the correct rate of decay 

is given byµ= exp(-fh/E), we see that it is badly represented by (2.3.20), 

but the numerical boundary-layer is essentially confined to one mesh-width. 

In contrast with the scheme (2.3.17)-(2.3.18), the accuracy of scheme 

(2.3.20) is only O(h). 

In order to clarify its relationship with the difference approxima

tions mentioned earlier, scheme (2.3.20) also can be regarded as approxi

mating the first order term fy' of the differential equation (2.2.1) by 

(2.3.24) [(f(x.)+2cr)y, 1 - 4cry, + (-f(x.)+2cr)y. 1J/(2h). 
1 1+ 1 1 1-
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2.4. EXPONENTIALLY FITI'ED METHODS 

In this section we consider the problem (1.1.1) again and we show that 

a unifying approach is possible for the methods for the discretization of 

fy'. Moreover, this new approach enables us to construct a simple method 

that inherits most of the benefits of the other ones. Refinements, which 

include the discretization of gy, are also studied. For simplicity, we re

strict our investigations to difference schemes on a uniform grid. Exten

sions and adaptions to non-uniform partitions of [a,b] appear in a natural 

way when the difference schemes are generated in a more systematic way in 

chapter 3. 

The method of weighted differences 

We introduce a new difference approximation to the first order deriva

tive y' in equation (1.1.1) 

(2. 4.1) y~ = ((l+a.) (y.+1-y.) + (1-a.) (y.-y. 1))/(2h), 
X 1 1 1 1 1 1-

where a. is a free parameter, la. I s 1. This approximation is a weighted 
1 1 

combination of the forward- and backward- difference approximation. Hence, 

forward, backward and central differences arise as special cases with ai 

fixed, and equal to +1, -1 and 0 respectively. For our purposes we take ai 

depending on E,h and f(xi). Referring to eq. (2.3.14) we see that Il'in's 

method is a special case. Also Kreiss' method, eq. (2.3.20), can be cast 
20 

into the new form by taking ai = f(x.)· We note that ABRAHAMSSON et al. 

[1974] also permit la. I > 1. An advaiitage of our approach, in particular 
1 

for Il'in's and Kreiss' method is, that it is clearly seen how the methods 

behave for E + 0. 

Having introduced ai as a free parameter, we can choose it in such a 

way that a number of requirements are fulfilled. In order to study the prop

erties of the difference quotient (2.4.1), we construct a difference oper

ator Lh, corresponding to the operator Lin eq. (2.2.1). We use the diff

erence (2.4.1) and the common 2nd order difference quotient for approximat

ing the 2nd derivative. Thus, we obtain 

( E 
(l+a,)f(x.) \ ( -2E 2a.f (x.) 

g(xi)) Lh (y i) 
1 1 1 1 

' h2 
+ ) yi+l + -;;- + Yi + 

\ 2h 
\ 2h 

(2.4.2) (E (1-a.) f (x.) \ 1 1 + 1--
2h J yi-1° \h2 
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The following lemma is immediate. 

LEMMA 2.4.1. Suffiaient a:nd necessary aanditions for the difference oper

ator (2.4.2) to be of positive type, are 

(2.4.3) 

and 

(2. 4.4) 
_1.. fix. )h 1 < __ J._ < 

l+a. - 2£ - 1-a.' 
J. J. 

for i 1, 2, ..• ,N-1. 

COROLLARY. For an operator Lh of positive type, the values of ai must be 

restricted to a subdomain of [-1,+1]. This domain depends on the value of 

f(xi)h. In order to yield an operator of positive type, the parameter a 1 
2£ 

shouid satisfy 

€ [-1,- 1 2£ f (x.) (2.4.Sa) a. + lf(x.lhl J if 
J. J. 

J. 

€ [1 2£ + .. 1] (2.4.Sb) a. - If (x. )h I, if f (x.) 
J. J. 

The do!llain of permitted 

J. 

values a. 
J. 

1 
1-a 

is indicated in 

a 

-1 E=====~==~~;1 +1 

Fig. 2.4.1 

< -£/h 

> £/h. 

Fig. 2.3.1. 

The domain of ai for which Lh, defined by equation (2.4.2) is of positive 

type. 
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COROLLARY. It is possible to find continuous functions m: lR + [-1,+1] such 

that the operator Lh (eq. (2.4.2)), with 

f(x. )h 
(2.4.6) a. 

J. 

J. 
m(~), 

is of positive type, for all £,h > 0 and all f and g with g(x) ~ O. 

Exponential fitting of the difference operator (2.4.2) 

First we restrict ourselves to the differential equation 

(2 .4. 7) Ey" + fy' o, 

with a constant coefficient ff 0. 

For this equation we can construct the parameter ai in such a way that the 

rate of decay in the boundary layer is correctly represented. 

LEMMA 2.4.2. With 

(2.4.8) 
f(x.)h 

a = m(--1-) 
i 2£ 

f (x.) h 
coth (--1-) - 2£ 

2£ f(xi)h' 

the difference operator Lh (eq. (2.4.2)) yields a point:wise exact solution 

to the t:wo-point boundary-value problem (2.4.7)-(1.1.1.b). 

PROOF. Without loss of generality we restrict ourselves to the boundary 

conditions (2.1.1). The solution of the difference equation (2.4.2) with 

these boundary conditions is 

•i 
1-µ 

y i = --N-, where µ 
1--µ 

2£+a.fh-fh 
J. 

2£+a.fh+fh 
J. 

The solution of the differential equation is given by eq. (2.1.2) with 

V = exp(-fh/£). Settingµ equal to V yields (2.4.8). D 

+1 

0 

-1 

Fig. 2.4.2. 

The function m(s) defined by eq. (2.4.8). 
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REMARK. Them(~), defined by equation (2.4.8), is a smooth function lR + 

[-1,+l], see fig. 2.4.2. With this m(~) the difference operator Lh (2.4.2) 

defines a smooth transition from forward to backward differences. For ex-
f (x.) h 

treme values~, backward and forward differences are used, just as was 

the case in the method of directional differences, where the change-over is 

discontinuous. 

THEOREM 2.4.1. If f is positive or negative definite and if a1 is defined 

by (2.4.8), then the operator Lh in eq. (2.4.2) has the following proper

ties: 

i) Lh is of positive type if g(x) ~ O. 

ii) For small E (i.e. leg!< lfl 2), the solution of L (y.) = s(x.) repre-
h J. J. 

sents the rate of change in the boundary layer with a relative accuracy 
of 0<8g • .2!!.) + 0 ( (gh) 2 ) for (gh) + 0 t2 f f f • 

iii) If g < O, the difference method described by Lh(y1) = s(xi) is conver

gent of order 2 and it is unifo1'111ly £-convergent of order 1. 

PROOF. 

i) A straightforward calculation yields 

-1 1 
1 + m(~) < ~ < 1 - m(~)· 

Now lemma 2.4.1 asserts part i) of the present lemma. 

ii) In the boundary layer we approximate the homogeneous differential 

equation (1.2.1) by the differential equation with constant coeffi

cients 

Ey" + fy' + gy 0. 

The solution is 

\hi >.2hi 
c1e + c2e 

where >. 1 ,>.2 are the roots of 

2 
EA + f A+ g 0. 
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The solution of the difference equation Lh(yi) 0 is 

where µ1,µ2 are the roots of 

(2.4.9) 0. 

For a correct representation in the boundary layer, µ 1 should corres

pond to exp(hA1) and µ2 to exp(hA2). A simple calculation shows that, 

with our particular choice of a, the relation 

(2.4.10) 

holds exactly for all values of E, ·h, f and g. We seek an asymptotic 

l2fhl. expression for µ1 for small values of For convenience, we set 

o = ~ + ~f; then we can write eq. (2.4.9), simplifying our notation, 

<2a+fJµ 2 - <4o-2ghJµ + <20-fl o. 

One root is given by 

A 4o gh gh 2 2o-gh+f 1-- (-)+(-) 
f f f 

20+£ 

2 gh 
Therefore, for small E such that !Egl < f and for !fl+ O, the slow-

ly varying component, exp(hA1) is represented by µ1 with a relative 

0 .2E_ Eg O gh 2 . error of order ( f • -2 ) + ( (f) ) , uniformly for all small E. It 

follows from (2.4.10) that the rapidly varying component, exp(hA2), 

is also accurately approximated by µ2 , with the same relative accuracy 

and uniformly in E. 

iii) Substituting a Taylor series expansion of y(xi+l), y(xi) and y(xi_1l 

for Yi+l' Yi resp. yi-l in eq. (2.4.2), we obtain 
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Hence, 

uniformly for O < E ~ E0 • Since lf(x) I > 0 the same technique as was 

used in theorem 2.3.1 can be used to show that IIL~111 is bounded, uni

formly in E; hence we see also that 

II y. - y(x.) II 
l. l. 

0 (h), 

uniformly for O < E ~ E0 . Moreover, for 

f(llt.)h f(x.)h 
= m(--1-)= --1- + 0( 1~1 2>. ai 2E 6E ~ 

This yields 

or 

f (x. )h 

l--1 -I ➔ 0, we have 
E 

Hence the method is convergent of order 2, if lfhl << E. D 

Asymptotic behaviour for E-+- 0 of the exponentially fitted operator ½i 
2E 

For f ~ 0 and small values of lfhl, we have 

(2.4.11) coth(~:) = sign(f) + O(exp(-lfEhl). 

If we neglect the exponentially small term, we get 

m(z) = coth(z) - .!._RI sign(z) - .!.. for lzl-+- 00 • Thus, the difference operator 
z z 

(2.4.2) becomes 

f. -f. 
RI 2hl.(l+sign(f.))y. 1+( hi sign(f.)+g.)y. + 

l. i+ l. l. l. 
(2.4.12) f. 

+ ..2:.(sign(f.)-1)v. 1 2h i - 1-
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We note that the discrete equivalent of the 2nd order term of the differen

tial equation, EY", is completely annihilated by the second term of m(~). 

Hence, if exp(-lfhl) << 1, our method solves the reduced equation as an in-
E 

itial value problem, from the right to the left if f > 0 and from the left 

to the right if f < 0. This is exactly the way the analytical solution be

haves for small E. We note that degeneration to the solution of an initial 

value problem also happens with the method of directional differences. In 

that case, the condition reads lf:I << 1 instead of exp(-lf:I) << 1. As 

is easily seen from lemma 2.4.2, the latter condition is the more real

istic one. 

REMARK. In this chapter, the discussion of the exponentially fitted finite 

difference method (2.4.8) -is restricted to uniform partitions of [a,b] on

ly. In chapter 3 it will be generalized to non-uniform partitions (eq. 

(3.5.12)) and in chapter 4 some numerical results are given. More numerical 

results, for linear problems, can be found in HEMKER [1974]. 

A new discretization for g(x)y(x) 

Since favourable results have been obtained by introducing a parameter 

a in the difference Y~ (HEMKER, [1974]), we are in a position to ask the 
i X 

question if it is expedient to introduce parameters in the discretization 

of the term g(x)y(x) in equation (1.1.1). In the case of constant coef

ficients, it certainly should be possible to find a discretization of 

g(x)y(x) which yields a pointwise exact solution for the homogeneous equa

tion. To find this, we consider the discretization 

(2.4.13) 

and we introduce the discrete operator 

(2.4.14) 

For this operator~ we have to determine the parameters ai, ei and Yi. The 

results are given in the following lemma. Since we have restricted our

selves to non-oscillating solutions, we assume f 2 - 4Eg > O. 



LEMMA 2.4.3. Suppose we are given the differential equation 

(2.4.15) Ey" + fy' + gy 0, 

2 that 4£g < f. 
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with aonstant aoeffiaients suah 

Let Lh, yx and y0 be defined by 

and let 

(2.4.14), (2.4.1) and (2.4.13) respeatively, 

(2.4.16a) 

(2.4.16b) 

(2.4.16c) 

a.. 
1 

fh 
Si= Yi coth(2£), 

_ .=.!..f 2f + hA.1 hA.2 l 
y i - 4 L gh coth (2) + coth (-2-) r 

2 where >.. 1 ,>..2 are the roots of £A + fA + g = o. 
Then the solution {y,} of the differenae equation r._ (y,) 

1 h 1 

wise exaat solution to eq. (2.4.15). 

o yields a point-

REMARK. The lemma holds for any set of boundary conditions (1.1.1.b). Hence 

it follows that, if y1 = y(xi) holds for two distinct points xi, it holds 

for all points. 

PROOF. In order to deal with the case g O correctly, ai should be as de

fined in (2.4.16a); see lemma 2.4.2. 

The solution of (2.4.15) reads 

The solution of the difference equation Lh(yi) = 0 is 

where µ 1 and µ2 are the roots of 

+ [-2£ _ af + 
h2 h 

[ £ 1-a f ] 
+ h2 - -2-h + ($-y)g = o. 



so 

By setting µ 1 = exp(hA1) and µ2 = exp(hA2) we obtain the expressions 

(2.4.16b) and (2.4.16c) for Bandy. D 

The parameters Si and yi are not well suited for implementation in a 

realistic algorithm. Nevertheless it is interesting to see how the para

meters Bandy behave for small values of€. Since y can be expressed as a 

function.of Bin a straightforward way we concentrate on S. 
. I 2 We first consider leg<< f; then 

Hence 

(2.4.17) 

\ = -f/e - A2 

A = - 2-[1 + §5J.. + 0 ((eg2/» J. 
2 f i f 

If, in addition, exp(-1~:I)<< 1, then 

(2.4.18) 

_ 2f] 
gh. 

-1 
Note: we already met the function coth(z) -·z in equation (2.4.8). 

fh 
If we consider 12€1 << 1, then 

(2.4.19) ~
2f -fh B = - coth(--) + gh 2€ 

(2.4.20) 

In particular, if f O then y = 0 and 

(2.4.21) -€ [ 
B = gh2 - 2 

1 ]2 
sinh~ 

-4€ 

We note that here (as with equation (2.4.12)) the first term in B 

exactly annihilates the discrete equivalent of the term ey". Thus, the dif

ference equation =responding to ey" + gy = O reads 
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(2.4.22) 2 R1 
wyi+l - (4+2w)yi + wyi-l = 0, where w = csch (/ ~). 

Summarizing, we find for small E: 

i) if f ~ 0, exp(-lf2 1) << 1 and exp(-lfhll << 1, 
Eg 2E 

(2.4.23) 

(2.4.24) 
1 

+ sgf)yi+l + 2 (1 - z sgf)yi 

+ ¼<1-z) (1 - sgf)yi-l, 

where z = coth(~) - 2! and sgf = sign(f). 
g r,;J' 

ii) if f = 0, g ~ 0 and exp(-/~) << 1 
- E , 

where 

(2.4.25) 
-E 1 r;t 

13 ,,., - - - exp c-✓ !E_) • 
2 4 -E 

gh 

If we combine the results obtained in (2.4.12) and (2.4.24), we find 

the asymptotic behaviour for E + 0 of the exponentially fitted operator, 

that discretizes the differential equation (2.4.15). 
fh f 2 

If f ~ 0, exp(-1-2 ll << 1 and exp(-1-ll << 1, then 
E Eg 

(2.4.26) ½i(yi),,., (sg~+l) cf+ g(z2+1))yi+1 + [f- sgf(f + g2zl ]Yi+ 

Here we see, again, that the problem is solved from the left to the right 

if f < 0 and from the right to the left if f > 0. Thus, the operator can 

be regarded as the one-step operator 

(2.4.27) 

for i 

for i 

f 1-z 
(-ii+ g -2-> 

Yi+l = - cf+ l+z) Yi 
h gT 

0,1, ••• ,N-1 if f < 0, or 

1,2, ••. ,N if f > 0. 



CHAPTER III 

GLOBAL METHODS 

In contrast to the difference methods treated in chapter 2, global 

methods yield approximate solutions yh(x) that are not grid-functions, but 

functions defined over the whole interval [a,b]. Such an approximate solu

tion is selected from a given finite-dimensional subspace of the linear 

space of all admissible functions. ·By the proper choice of a basis in this 

subspace, the global methods can be made to deliver immediately a sequence 

of discrete function values {yh(x1)}, corresponding to a particular grid IT. 

Therefore, we can still say that difference schemes are generated by these 

global methods. 

In the first section we describe the general principles of weighted 

residual methods and we treat the construction of discrete operators. In 

particular a new, efficient implementation of the Galerkin method is given. 

In the second section we derive error estimates for weighted residual meth

ods. To this end we introduce the function space Hk'~[a,b] and we discuss 

the discrete Green's function. In section 3, we show why standard weighted 

residual methods fail, when they are applied to singular perturbation prob

lems. We treat: Galerkin's method, Ritz-Galerkin, collocation, least squares 

and reduction to a system of· first order equations. In section 4 we introd

uce exponentially fitted spaces and we show how they can be used for the 

construction of weighted residual methods. In section 5 we construct dis

crete operators by means of exponentially fitted spaces and we also point 

out the relation to the finite difference methods treated 0in chapter 2. In 

the 6th section we describe how exponentially fitted weighted residual meth

ods behave when~~ 0 and in section 7 we give some numerical results ob

tained by the new methods. 

3.1. INTRODUCTION TO WEIGHTED RESIDUAL METHODS AND THE CONSTRUCTION OF 

DISCRETE OPERATORS 

In this section we discuss global methods of generating difference 

schemes in a systematic way. A special advantage of global methods is that 

for non-uniform meshes also the construction of difference schemes follows 

in a natural way and that the treatment is not essentially more complicated 
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than for uniform meshes. 

All methods studied in this chapter provide a way of finding a numerical 

solution of the form 

(3.1.1) l a,cp, (x); 
j J J 

where {cp,} is a set of piecewise polynomials. 
J 

An extensive literature exists on various methods of this kind. We 

give an outline of some parts of the theory here, in order to provide the 

notation and a conceptual framework that will be expanded in the following 

sections, when exponentially fitted methods are treated. In this section we 

shall also describe a new, efficient implementation of Galerkin's method. 

Generalized solutions 

In order to introduce the notation we describe briefly Sobolev spaces 

and generalized solutions to differential equations. For a comprehensive 

treatment the reader is referred to YOSIDA [1965]. 

For any integer k ~ 0 we denote by ff(a,b) the Sobolev space of 

(classes of) real-valued functions which, together with their destributio.n

al derivatives of order :s;k, belong to L2 (a,b). These spaces are Hilbert 

spaces when provided with the innerproduct 

k 

L 
.Q, .Q, 

(D u,D v) , 
R-=O 

b 

(u, 11) (u,v)o f u(x)v(x)dx 

a 

and norm 

D denotes the differential operator. 
OQ 

The closure of the set of C0 (a,b)-functions with respect to the norm ll•llk 
k is denoted by H0 (a,b). 

Consider the equation 

(3.1.2) s, 
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1 0 0 
where c0 EC [a,b], c 1 ,c2 EC [a,b], c0 ~ E > 0, s EH (a,b). 

In the classical sense a solution to equation (3.1.2) is a function y, 
2 y EC [a,b], such that 

Ly(x) s (x) for all x E [a,b]. 

However, it is often convenient to choose y from a larger space S of admis

sible functions and to define a solution to (3.1.2) as that function y ES 

whicJa satisfies the Va:r>iational equation 

b 

(3.1.3) I {Ly(x) - s(x)} v(x) dx = O for all v EV. 

a 

The trial spaae s, and the test spaae V have to be chosen such that for all 

u E $, v EV the integrals 

exist. 

b I Lu(x) v(x) dx 

a 

b 

and I s(x) v(x) dx 

a 

The sense in which a soi-ution is obtained is characterized by Sand V. E.g. 

the equation is said to hold in the strong sense if V = H0 (a,b) and in the 

weak sense if s = V = H1 (a,bl; i.e. after integration by parts. 

DEFINITION 

The continuous bilinear functional B: H1 (a,b) x H1 (a,b) ➔ JR, defined 

by 

(3. 1.4) 

is called the bilinea:r> form assoaiated with L. 

DEFINITION 
-1 2 

By C [a,b] we denote the subset of functions in L (a,b) that are de-

fined and continuous on [a,b], except for a finite number of discontinui

ties in (a,b). 

DEFINITION 

Let f(x) be a continuous function on (x0-o,x0) and on (x0 ,x0+o) for 



some o > 0, then jmp f(x0 ) is defined by 

jmp f(x0 J = lim f(x+z) - f(x-z). 
z+o 

The following lemma follows immediately by means of integration by parts. 
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1 -1 
LEMMA 3.1.1. Let u,v € H (a,b), a:nd let Du€ C [a,b] be continuous except at 

the set of points TI= {xi I a< x 1 < x2 < ... < xn-l < b}; set a= x0 and 
b = x, then 

n 

(3.1.5) B(u,v) = (Lu,v) 0 + [c0vDu] , ,'IT 1T 

where (•,•>o,'IT and [•J'IT are defined by 

(3.1.6) 

n 
(u,v) 0 = l (u,v)L2( ) and 

,'IT i=l xi-l'xi 

[w] = w(b) -
1T 

n-1 
l jmp w(x.) - w(a). 

i=l i 

COROLLARY. Immediate consequences are 

(3.1.7) B(u,vl = (Lu,v) 0 ,'IT 
2 1 

for all u € H (a,b), v € H0 (a,b), 

and each function that satisfies {3.1.2) also satisfies 

(3. LB) B(y,cj>) ( s, cj>) 

REMARK. Since there is no 2nd derivative in equation (3.1.8), this equation 

can be defined under less restrictive conditions with respect to the func

tion y than equation (3.1.2). 

DEFINITION 

The formal adjoint of the operator Lis defined by 

(3.1.9) 

By integration by parts, one easily obtains Green's formula 

(3.1.10) (Lu,vJ 0 - (u,LTv) = [c0 (uDv-vDu) + c 1uv]1T 
, 1T 0, 1T 

anc in particular, using Sobolev's lemma, the equality 
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(3.1.11) for all~,¢ E ~(a,b). 

DEFINITION 
1 1 

The bilinear operator B: H0 (a,b) x H0 (a,b) ➔ lR is called strictly 

coercive if 

3cr > o 1 
Vv E Ho (a,b) 

2 
crllvll 1 ~ IB(v,v) I. 

DEFINITION 

Let Sand V be two Hilbert-spaces. A bilinear operator B: S x V ➔ lR 

is called strictly coercive with respeat to sand v, if 

3D(S,V) > 0 Vs ES 

DEFINITION 

3v EV 
#0 

Let Sand V be two Hilbert-spaces. A bilinear operator. B: S x V ➔ lR 

is called bounded if 

3C E lR Vs E S , v E V 

Weighted residual methods 

IB(s,v) I ~ dsll llvU • 
S V 

The discretization of the differential equation by a weighted residual 

method is done by starting from the variational equation (3.1.3) and by 

computing yh Esh, such that 

(disaretization of the strong form), or 

(disaretization of the weak form). 

Here Sh and Vh are finite dimensional subspaces of Sand V respectively. 

Thus, corresponding to the different kinds of generalized solutions, we 

can distinguish between different types of discretization. We will show 

that discretization of the strong form leads to the collocation method and 

the weak form to Galerkin-type methods. 
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In sections 3.4 to 3.6 we shall treat new methods of Galerkin type. 

For the problem 

Ly son [a,b], y(a) a, y(b) B, 

the classical Galerkin method is obtained by choosing a basis{¢.}~ 0 in 
1 ~1 1 ~ 

the space sh c H (a,b), such that {¢i}i=l is a basis in Vh = sh n H6(a,b). 

This leads to an approximate solution yh E Sh of the form (3.1.1) and the 

vector of coefficients (aj) is dewrmined by the linear system 

M 

I a. B(¢j,¢i) (s,¢i), i 1,2, •.• ,M-1, 
j=O J 

(3.1.12) I a. ¢j(a) a, 
j J 

I a. ¢j(b) s. 
j J 

In general, full polynomial bases{¢.} on [a,b] lead to dense and ill
J 

conditioned matrices B(¢.,¢.) and so they are of little use for large M. 
J 1 

The practical use of weighted residual methods hinges on the ease with 

which systems such as (3.1.12) are generated and solved. The revival of 

global methods is due to the fact that the resulting linear systems are 

sparse and that the entries are easily calculated. To this end the func

tions {¢i} have to be chosen such that they vanish on [a,b], except for a 

small subinterval. Here piecewise polynomials turn out to be useful tools. 

Definition of piecewise polynomial spaces 

In order to characterize piecewise polynomial spaces Sh we introduce 

the following notation. Let IT {a= x0 < x 1 < ••• < xN = b} be a partition 

of [a,b] and set Ii= (xi_ 1 ,xi) and hi= xi-xi-l" Let Pk(E) denote the 

class of all polynomials of degree less than k+l, defined on the set E. 

DEFINITION 

Form~ k the space of Cm-piecewise polynomials of degree ~k is de

fined by 

(3.1.13) 1,2, ... ,N}. 

Similarly, 
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(3.1.14) Mm,k (IT) 
0 

v(b) o} 

denotes the subspace of Mm,k(IT) of all functions that satisfy homogeneous 

boundary conditions. 

REMARK. By this definition, the space of discontinuous piecewise polynomials 

of degree k on IT is denoted by M-l,k(IT). 

i) 

Important sub-families of piecewise polynomials are 

O,k 
the Lagrange spaces: M (IT); 

. m 2m+1 
ii) the Herrn~te spaces: M' (IT); 

~. ~ . m,m+1 IT iii) the space of spv~ne Junct~ons: M ( ). 

The space of piecewise linear functions, M0' 1 (IT), belongs to all three sub-· 

families. 

In contrast to the spaces of spline functions Mm,m+l(IT), m > O, both 

Lagrange and Hermite spaces have bases{¢.} such that the support of each 
J 

¢. contains at most two neighbouring intervals I .• This is an expedient 
] i 

feature for computational purposes, since it leads to discrete operators 

that have a narrow band-matrix structure. To use this property we introd

uce natural bases. 

0 k m 2m+1 Natural bases for M ' (IT) and M ' (IT) 

In Lagrange and Hermite spaces we introduce natural bases; these bases 

consist of functions that have minimal support on [a,b]. 

i) The natural basis for a Lagrange space. 

* * * Let there be given a set {O = 1;0 < 1; 1 < ••• < i;k = 1}. As a natural basis 

{¢} in MO,k(IT) the Nk+1 functions¢. are chosen, such that 
j j=O, 1, ••. ,Nk J 

(3.1.15) 

for all (i,Jl), i = 0,1, •.• ,N-1 and Jl = 0,1, •.• ,k. 

ii) The natural basis for a Hermite space. 

_Jn 2m+1 
In M ' (IT) the (N+l) (m+1) natural basis-functions { ¢ } 

j j=0,1, ••. ,m+N(m+1) 
are chosen such that 
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(3.1.16) 

for al 1 ( i, .R,) , i = 0, 1 , 2 , ... , N and .R, = 0, 1 , ••• , m. 

An additional advantage of the choices (3.1.15) and (3.1.16) is, that 

a proper selection of the coefficients (a.) in expression (3.1.1) yields 
J 

directly the pointwise approximation toy on the grid IT. 

Discretization of the differential ·equation 

Having at our disposal bases {¢j} in Sh and {wi} in vh, we can write 

the discrete equivalents to the weak and the strong form of the equations 

respectively as 

(3.1.17) 
M 

l a]. B(¢J.,wi) = (s,wi) 
j=O 

i = 1 , 2 , ••. , M-1 , 

1 
vh c H (a,b), 

1 
sh c H (a,b), 

and 

(3.1.18) 
M 

l aj (L¢j,wi) = (s,wi) 
j=O 

i = 1,2, ... ,M-1, 

0 
vh c H (a,b), 

2 
sh c H (a,b). 

In addition to either set of equations, the boundary conditions are given by 

M 

I a. ¢j (a) a, 
j=O J 

(3.1.19) 
M 

I a. ¢j (b) = s. 
j=O J 

THE DISCRETIZATION OF THE WEAK FORM 

In this subsection we show how the system (3.1.17) can be described 

explicitly by means of the discrete equations over a single interval only. 

For brevity, we introduce the notation 

b .. (x) = c0 (x) ¢ '. (x) W: (x) + c 1 (x) ¢ '. (x) W. (x) + c 2 (x) ¢. (x) w. (x) . 
1J J 1 J 1 J 1 

The (i,j)-th entry of the discrete operator is 
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(3.1.20) 

b 

I b .. (xi dx 
l.J 

a 

N 

L 
i=l 

b .. (x) dx 
l.J 

whe:r;e B 0 (</> ,ljJ.) denotes the contribution to B(</>.,ljJ.) from the interval 1_0 • 
,{, j l. J l. ~ 

By their definition, all the natural basis functions, </>. and ljJ1.., can 
. J 

easily be put into the form 

(3.1.21) 
</> (11,-1) z+j (xi-1 +hit;) 

1jJ (i-1) z+ i (xt .. 1 +htt;) 
i,j 0,1, ••. ,k 

k+l 
(Where z = k for the Lagrange, and z = - 2- for the Herrni te spaces.) 

To rescale all functions to local coordinates on It' we introduce a local 

notation for the coefficients ci(x) on Ii: 

co,t (s) c 0 (xt_1+sht)/hi' 

(3.1. 22) 
cl,t(s) cl (xi-l+shi(,) 

c2,t <s> c2(xt-l+sht) hi' 

c3,t(s) s (xt-l+sht) ht" 

If no confusion is possible we shall omit the index t. 

By (3.1.22) a single term B0 (¢.,1jJ.) from equation (3.1.20) is brought into 
JC J l. 

the form 

(3.1.23) 

1 

- Bi(</>(2-l)z+j'ljJ(t-l)z+2 = I c0,i(t)¢j(s)'l'i (s) + 

0 
def 

c 1 n(s)¢'. (t;)'l'. (s) + c 2 0 (s)¢. (t;)'l'. Cs) dt; = 8(¢J,,'l'1..). 
,JC J l. ,,., J l. 

Thus, the discrete operator is composed of the N square matrices of order 

k+l, one for each interval It' t = 1,2, .•• ,N, 

(3.1.24) i,j 0, 1, .•. ,k. 



Analogously, the discretization of the right-hand side of the equation is 

characterized by a (k+l)-vector 

(3.1. 25) 

61 

0 i=O,1, ... ,k. 

Evaluation of the entries of the discrete operator 

The entries of the discrete operator and right-hand side are all in

tegrals and so their evaluation forms an essential part of the method. The 

evaluation should be efficient, but also accurate enough to guarantee that 

the order of accuracy, that can be obtained by the discretization, is 

indeed achieved. We treat two methods: 

(1) evaluation by a quadrature rule, and 

(2) evaluation by an interpolation rule. 

Although the first method is the more efficient when it is properly applied, 

we shall treat both methods because we need a combination of both when ex

ponentially fitted methods are considered. 

1. Evaluation by a quadrature rule. 

Let at-th degree quadrature rule be characterized by a set of 

nodal points Os s 0 < s 1 < ••. <Sr,$ 1 and a set of positive weights 

{w.}. such that 
1. 1. O, ••• ,L 

(3.1.26) 

1 

J p(x).dx = 
0 

L 

1 P<si>wi, 
i=O 

for all polynomials p(x) of degree st. 

The entries B(¢j,~i) and S(~i) of the discrete equation are approximated 

by 

(3.1.27) 

(3.1.28) s* <~. > 
l. 

1 {co(sk) (wk¢~~~) (sk) 
k=O J 1. 

+ C2 (sk) (wk¢/ i) (sk)}' 

L 

l c3 (skl (wk~ i) <skl. 
k=O 

2. Evaluation by an interpolation rule. 

Let a set of L+l Lagrange interpolation polynomials {xk}k=O 1 
I I ••• ,L 

of degree L be based on the nodal points O $ s O < s 1 < ••• < sL $ 1. The 



62 

coefficient functions c. (s), i = 0,1,2,3, are replaced by their Lagrange 
1. 

interpolants and the resulting integrands in (3.1.17) are integrated ex-

actly. Thus, the entries B(@j,fi) and S(fi) of the discrete equation are 

approximated by 

1 1 

B*(@.,l.) = t {co (sk) f ~@jlids + c 1 (sk) f Xk@'.l.ds + 
J 1. k=O J 1. 

(3.1.29) 
0 0 

1 

+ C2(sk) J Xk@jlids}, 

0 

(3.1.30) 

REMARK. For each particular method, (w @'.f'.) (sk) etc. in (3.1.27-28) or 
_J_l__ kJ1. 

0 xk@jlids etc. in (3.1.29-30) are simple real coefficients that can be 

computed beforehand. 

An efficient implementation of Galerkin's method 
* k We can use the freedom in the choice of a set of base-points {s.}. 0 , 
J J= 

(see eq. (3.1.15)) to minimize the amount of computational work. To this 

end we chose {s~} in agreement with the quadrature rule (3.1.26). Such an 
1. 

(L+l)-point quadrature rule is characterized by a set of nodal points 

0 S s 0 < s 1 < ••• < s S 1, whereas the set {s~} contains k+l distinct val-
r::* r::* L* J * * ues 'O < 'l < ••• < sk with the additional property s0 = 0, sk = 1. The 

corresponding quadrature rule with L = k, s0 = O, sk = 1 and optimal accu

racy is the Lobatto k+l-point rule, which is accurate of degree t = 2k - 1 

(cf. DAVIS & RABINOWITZ [1967]). If we sets~= s., 0 $ i $ k, an effi-
1. 1. 

cient evaluation of (3.1.27) and (3.1.28) is possible, viz. 

k 

(3.1.31) 

l {co(s) (w @'.@'.)(s )}+C1(s.) wl..@J'.(sl..) + 
p=O P P Ji p i 

+ c2 (sl..) w. o. . , 1. 1.J 

(3.1.32) 

Since w0 = wk, each i-th row can be divided by wi. Thus, the amount of com

putational work is reduced considerably. This is even more true if c 0 (s) is 

a constant function. 



An operations count for the equation 

shows that the construction of the discrete system using a (k+ 1 l -·point 

Lobatto method needs 

k evaluations of c 1,c2 and c 3 

2(k+1) 2 + k + 1 multiplications 

(k+1) 2 + 2 additions 

for each interval [xt-l'xt]. 
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These numbers can be compared with those given in RUSSELL [1975] for finite 

differences and collocation methods. 

In the following section we shall show that (k+l)-point Lobatto quad

rature is sufficiently accurate to guarantee the optimal error bounds for 

the discretization with piecewise k-th degree polynomials; that is, the 

global error is O(hk+l) and the pointwise error on IT is O(h2k). 

The advantage of the Galerkin method over the collocation method is 

that for the Galerkin method the continuity conditions for yh(x) are less 

severe and that a symmetric operator L leads to a symmetric discrete opera

tor. An additional advantage of the efficient implementation (3.1.31-32) is 

that the term c 2 (x)y in the continuous operator L contributes to the en

tries of the discrete operator on the main diagonal only. In particular, 

this property is useful when problems with non-linear terms in y are con

sidered. 

EXAMPLE. To illustrate the Lobatto quadrature method, we give the contrib

ution to the discrete equation from a single interval It of length h, for 

k = 2 and for the equation 

-y" + fy' + gy = s 

with constant coefficients: 

-16 

32 

-16 

2) (-3 
-16 + ¾ -4 

14 \ 1 

4 

0 

-4 

0 

4 

0 
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The structure of the weak discrete operator 

The use of natural basis functions in MO,k(Il), k = 1,2, ••• , or 

M(k-l)/2 ,k(Il), k = 1,3,5, ... , yields square matrices of order k+1 for the 

discretization of the operator Bon each interval r 1 of the partition II. 

The operator over the whole interval [a,b] is composed of N of these ma

trices (3.1.24). 

In the case of rl ,k (II) , we have z = k and the discrete operator con

sists of N elementary matrices with one entry overlap on the main diagonal 

for each pair of neighboring intervals. The overlap element B(~iz'~2z) is 

the sum of two overlapping elements: 

(3.1.33) 

Fig. 3.1.1 

The structure of a discrete operator 
. . h O,k(Il) for Galerkin's method wit Sh= M • 

k 3 

N 3 

The particular structure of this discrete operator can be used to re

duce the matrix to tridiagonal form during its construction. In this pro

cess, called static condensation, the intermediate unknown variables are 

eliminated and only the variables corresponding to y(xi), xi E II, are com

puted by solving the resulting tridiagonal system. 
m,2m+1 

In the case of M (II), m 0,1, ••. , we have z = (k+l)/2 = m+1 and 

the discrete operator consists of N square (k+1)-th order matrices with an 

overlap of a square (m+1)-th order matrix for each two neighbouring inter-
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vals. The overlap elements BC~n .,Wn +·), i,j, 
JCZ+J JCZ l. 

0,1, ••. ,m, are the sum 

of the entries of two overlapping matrices 

(3.1.34) 

Fig. 3.1.2 

i, j = 0, 1, ••. ,m. 

m 1 

N 3 

The structure of a discrete operator 

· ' h d ·th s = Mm, 2m+l(IT). for Galerkin s met o wi - h 

THE DISCRETIZATION OF THE STRONG FORM 

As we did for the weak form of the differential equation, we now go 

through the same process of constructing discrete operators for the strong 

form (3.1.18). Here, it turns out that a proper choice of the quadrature 

rule leads to collocation methods; i.e. we obtain methods that satisfy the 

original differential equation exactly at a number of specified points. 

Let us consider eqs. (3.1.18)-(3.1.19). By application of a quadrature 

rule 

such that the matrix (wkwi(sk)) is square and nonsingular, equation (3.1.18) 

is equivalent to 

M-1 
(3.1.35) l a. -L~j Csk) = s(sk) I si € [a,b], 

j=l J 
1 

i = 1,2, .•• ,M-1 ~j € C [a,b]. 
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Here, L¢j(sk) should exist and hence necessary conditions with respect to 

continuity of M'1 1 k(IT) are m ~ 1 and k ~ 2. The order of accuracy of these 

collocation methods is determined by the choice of Mm,k(Il) and by the de

gree of accuracy of the quadrature rule. (see: RUSSELL & SHAMPINE [1972], 

DE BOOR & SCHWARTZ [1973]). We see that in discretizations of the strong 

form no evaluation of integrals is required, but the continuity conditions 

an the numerical solution yh(x) are stronger. 

The structure of the strong discrete operator 

Collocation by means of functions from Mm,k(IT) yields k-m degrees of 

freedom an each subinterval of TI. Since, on each subinterval, an element of 

Mm,k(TI) is determined by k+1 coefficients, the elementary matrix for each 

interval is of order k+1, but it has only k-m nonzero rows. The overlap be

tween two matrices on the main diagonal of the discrete operator is (l+m)/2 

entries. Thus, the matrix L¢j(si) is a combination of disjoint rectangular 

submatrices. 

k 
m 

3 

k+l 
B.C, (boundary condition) 

Fig. 3.1.3 

The structure of a discrete operator 

far a collocation method. 

Hence, in the case of collocation aver the space Mm,k(TI), the discrete 

operator is composed of N characteristic (k-m)X(k+l) matrices that are the 

same for each interval, except far the values of the coefficients c0 , ... ,c3 . 

Examples of discretization 

As an illustration we give four simple difference schemes for equation 

(1.1.1). The schemes all use sh= M0' 1 (TI), Vh = Mg' 1 (TI), i.e. Galerkin's 

method with piecewise linear functions. Only the way in which the integrals 

(3.1.23) and (3.1.25) are approximated is different. We apply successively 
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the midpoint and trapezoidal rule for quadrature (3.1.27-28) and piece

wise constant and piecewise linear functions for interpolation (3.1.29-30). 

The schemes are described by their summand matrix B*c~ .• ~.) and vec-
* J J. 

tor S {~i). We consider a characteristic interval [x1 ,x1+1J and we set 

(3.1.36) 
h = xi+l- xi' 

f = f(x ), 
p p 

;s = s(x ), 
p p 

p = i,m,i+l. 

The matrix B*(~.,~.) and the vector S*(~.) are reopectively 
J J. J. 

i) by the midpoint quadrature rule: 

(3.l.37) 

£ + .!.f 
h 2 m 

_.f. + .!.f 
h 2 m 

ii) by piecewise constant interpolation: 

(3.1.38) 

£ + .!.f 
h 2 m 

_.f.+.!.f 
h 2 m 

iii) by the trapezoidal quadrature rule: 

(3.1. 39) 

iv) by piecewise linear interpolation: 

l h 
- 6(2ft+fi+l) + 12<39:t+gi+l) 

l h 
- 6{ft+2ft+l) + 12(gi+gi+l) 

(3.1.40) 
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We note that {3.1.39) is similar to, but not identical with, the 

common 3-point discretization for non-equidistant grids, as used e.g. by 
2 

Pearson (cf. eq. (2.3.1)). For, multiplied by h+k and written in the usual 

notation, (3.1.39) reads 

(3.1.41) 

where 

k h 

3.2. ERROR ESTIMATES 

In this section we give lemmas for approximation by piecewise poly

nomials and treat the error of a weighted residual solution. Some of the 

results can be carried over ~o the strong form of the differential equation, 

but here we confine ourselves to the discretization of the weak form. Thus, 

* we compare the functions y, yh and yh that satisfy the boundary conditions 

(1.1.1.b) and one of the variational equations 

(3.2.1) 1 
ye S = ff (a,b~ B(y,v) = (s,v) VveV 

(3.2.2) 

or 

(3.2.3) 

* * Here B (•,•)and(•,•) denote approximations to B(•,•) and(•,•) obtained 

by quadrature as described in the preceding section. 

Approximation in Hk,TI[a,b] 

First we introduce the linear space of functions that, together with 

their derivatives up to order k, are Lebesgue integrable over all subinter

vals of a partition of [a,b]. Thereafter we give lemmas with respect to 

approximation in these spaces. 
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DEFINITION 

Let IT= {a= x0 < x1 < ••• < xN = b} be a partition of [a,b], then we 

introduce the norm U•Dk , defined by 
, 1T 

N 
(3.2.4) I 

i=l 

for all functions that have finite norms 1,2, ••• ,N. 

It is easily verified that n.n is indeed a norm. k,,r 

DEFINITION 

By Hk,,r[a,b] we denote the linear space of functions, y, that have a 

finite norm Bylk • k ,,r ,,rl k,,r2 k,11"1 
If Ill c n2 then H [a,b] c H [a,b] and if v EH [a,b] then 

lvDk = lvDk • 
,11"1 ,1r2 

Since ffca,b) c Hk,1r[a,b] for all IT, we have 

(3.2.5) Dvl . = Dvl j, 
J ,11" 

j 0,1, ..• ,k, for all v E ff(a,b). 

In the following lemmas we consider only quasi-unifol'TTI partitions of 

[a,b] with a mesrauidth h; i.e. we consider partitions IT for which there is 

a ;\ > 0 such .. that 

Often, we use sequences of quasi-uniform partitions {Ili};=O such that 

ni+l ::::i ni and hi+l ~ hi. For a sequence of partitions such that IT ::>IT if 
m n 

sometimes use the notation m > n and lim hi= O, we 
i-+oo 

lim U • I 

h-+o 
k,11" 

instead of 

lim I • D . 
i-+oo k,1ri 

.K.-t-1 110 .t'.. LEMMA 3.2.1. Let l = O or l = 1 a:nd Zet u EH ' [a,b] n H (a,b), k ~ l, 
l-1 k then for ati IT~ n0 there exists a wh e M ' (IT) suah that 
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(3.2.6) llu-w II :s; KIIDk+lull hk+l-m, 
h m,TI 0,TI 

0 $ m :s; k+l, 

where K is a constant independent of u and h. 

PROOF. 

i) Jl = 0. Restricted to a subinterval I. = [x. 1,x.], x. E IT, i > 0, we 
k+l 1 i- 1 1 

know that u EH (xi-l'xi) and, therefore, by Sobolev's lemma, 
k u EC [x. 1,x.J. We take a k-th degree piecewise polynomial 

-1 1 k J_ 

wh EM ' (IT), interpolating u·at k+l points in each subinterval Ii. 

Now a standard error estimate for the interpolants (cf. e.g. DAVIS 

[1963] Chapter 3 or CIARLET & RAVIART [1972] p.196 thm. 5) immediately 

yields (3.2.6). 

ii) Jl = 1. The same arguments hold for Jl = 1, exc~pt that wh E MO,k(IT) 

should interpolate u at the gridpoints xi E IT and at k-1 gridpoints in-

side each interval Ii. D 

The following lemma is also frequently used in the computation of 

error estimates. 

LEMMA 3.2.2. Let Jl = o or Jl 1 and let h0 > O, then there exists a K such 
that for all v E Mt-l,k(IT), k ~ Jl, 

(3.2.7) llvll hk-9, 
k,TI :s; K DvH l, 

provided that h < h0 ; K depends on k, land h0 , but is independent of v or 

h. 

PROOF. 

i) Jl = 0. We first prove that 

+1 

I f d j ] 2 
L <di;:> w di;; s c 

-1 

+1 I w2 di;;, 

-1 

for all polynomials w of degree Sk. 

0 $ j :,; k, 

Let Pi (x) =/¥Pi (x), Pi (x) the Legendre polynomial of degree i, 

then 



w{~) 
k 
}: a.pi<~>; 

i=O 1. 

+1 2 +1 

J [ {d~) j w] d~ = J 
-1 -1 

+1 

= J 
-1 

+1 

s J 
-1 

2 k m-j 

il ai m=lO { l c ·R, P {~))2 d~ 
R.=O mJ R, 

Therefore, there exists a K > 0, independent of hand w E M-l,k{Il), 

such that 

j1 
xi 

{{!)j w) 2 dx h2k S K J 

for i = 1,2, ••• ,N and j = 0,1, ••• ,k. 

2 w dx, 

SUDDDation over j = 0,1, ••• ,k and i = 1,2, ••• ,N yields 

2 2k 2 
Owlk,~ h s {k+l)K OwD 0 , 

which proves the lemma fort= O. 
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ii) t = 1. Following the same lines as in the proof fort= 0, but substit

uting w = Dv, we obtain 

Also 

if h is small eno.ugh, and hence 
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2 
k K llvll 1, 

which proves the lemma fort 1. □ 

Global error estimates for weighted residual methods 

A comprehensive literature exists on error estimates for Ritz-Galerkin 

methods. An extension to more general weighted residual methods based on 

eq. (3.1.17) is found in BABU~KA & AZIZ [1972]. We quote two essential the

rems, the proofs of which can be found in the paper mentioned. The proofs 

are recommended for reading because of their charming simplicity. 

The first theorem is a generalization of the well-known Lax-Milgram 

theorem. 

THEOREM 3.2.1. Lets and v be two real Hilbert spaaes with saalar produat 

(•,•)sand (•,•)v respeatively. Let B(u,v) be a bilinear forms xv ➔ JR 

suah that 

(3 .2 .8) 

(3.2.9) 

Vu Es, VE V IB(u,v)I 

3 v EV IB(u,v) I 
v*0 

$ c1 !lull llvll , 
S V 

~ c2 !lull llvll , 
S V 

(3.2.10) V v E v, v * 0 3 U E S IB(u,v) I > 0, 

then 

V f EV' 

where V' denotes the linear spaae of bounded linear funationals on v. 
( 3! denotes: there exists a unique •.. ) 

V 
PROOF. See BABUSKA & AZIZ [1972] pp.113-115. 

The second theorem states that under certain conditions the weighted 

residual solution to a problem, found in a finite dimensional trial space, 

is essentially as good as the best possible approximation in that space, 

except for a certain factor that depends on the norm of the bilinear form 

Band on D(Sh,Vh), the aoeraivity of B(•,•) with respeat to sh and vh (see 
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page 56). 

THEOREM 3.2.2. Let the hypotheses of theorem 3,2, 1 hoZd and Zet sh and vh 

be Zinear subspaces of sand v respeativeZy, suah that 

(3.2.11) 

(3.2.12) V v E vh, v + 0 3 u Esh IB(u,v) I> O. 

Let, for a given f E v•, u0 E s denote the unique eZement suah that 
B(u0 ,v) = f(v), V v EV; and Zet 

cS = inf D u0 -wl s • 
WESh 

Let ~0 Esh denote the.unique eZement suah that B(~0 ,v) = f(v) V v E vh, 

then 

(3.2.13) 

V 
PROOF. See BABUSKA & AZIZ [1972] p.187-188. 

EXAMPLE 3.2.1. Let us consider the Galerkin method applied to equation 
1 1 

(3.1.2) with homogeneous boundary conditions, then B: H0 (a,b) x H0 (a,b) ~ lR 

is given by (3.1.4) and sh= vh. Therefore, 

D(S v ) i f IB(u,v) I ~ inf IB(u,u) I 
h, h = n sup lui11vh1 lul21 = Cf, 

UESh VEVh UESh 
u+o v+o 

where Cf is the coercivity constant of B(•,•), see page 56, and thus 

(3.2.14) Du0-~0U1s [1 + ;] inf llu0-s0 1• 

SESh 

We derive the following lemma 3.2.4 in order to show how the asymmetry 

of B, caused by c 1 (x), gives rise to the requirement of a fine enouqh mesh 

in the Galerkin method. First we need a definition and a lemma to deter

mine the relation between Dy-yhDO and Dy-yhl 1• 
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DEFINITION 

Let B be a bilinear form H x H ➔ lR, then the symmetric pa:r>t of B is 

defined by 

LEMMA 3.2.3. Let B be the bilinea:r> form (3.1.4), let y be the solution of 

(3.2.1) a:nd yh the solution of (3.2.2). Furthermore, let vh be such tha.t 

for any <PE H2 (a,b) n H~(a,b) 

(3.2.15) 

where 

lim M(h) o, 
h➔O 

then 

(3.2.16) lly-yhll 0 $ lly-yhll l M(h) 
( II colloo 

max--E , lie II +llc2U ). 1 00 00 

PROOF. Set Z:: = y - yh and let¢ denote the solution of 

T 
L </J = s, 

then <P satisfies 

B(v,¢) (v,Z::) 
1 

for all v E H0 (a,b). 

0 and, hence, 

llz;:11~ = B(s,</l) = B(s,</l-vh) 

s I (cos' ,¢'-vii) I + I (cl Z::' ,<P-vh) I + I (c2Z::,¢-vh) I 

s llcoUooUz;:•lloll<P•-vhllO + llclilooDz;:•lloll<P-vhllO + llc211)z::lloll¢-vhll0 

s llz;:U {UcoUoo d¢•-v•II + (llc1U +lie II )R¢-v II } 
1 E hO 00 2 00 hO 

$ llz;:U max( 11 c 01100,llc II +lie II ) • {E:11"' 1 •II +II"' II } 1 E 1 00 2 00 'i' -v h O ,y-V h 0 



for all vh E vh. 

Hence, 

which proves the lemma. 0 
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COROLLARY. It is known by the regularity of the solution that there is a 
T constant K, depending on L, such that 1~1 2 :;; KIL ~0 0 1 now, by lemma 3.2.1 

0 1 
it is clear that, if Vh ~ M' (Il), 

So we obtain, by lemma 3.2.3, 

:;; (l+e:) inf l~-vll 1 $ K1h 0~1 2 $ 

Ve:Vh 

where C depends on the operator L, but is independent of y and h. 

LEMMA 3.2.4. Let the aonditions of Zerruna 3.2.3 be satisfied and Zet sh and 

vh be finite dimensional, subspaaes of H~(a,b) suah that 

(3.2.17) inf1 
se:H0 (a,b),s;a!O 

B(s,w)=O Vwe:Vh 

sup1 
ve:H0 (a,b) ,v;a!O 

B(v,u)=O Vue:Sh 

then, if h is smaU enough, 

(3.2.18) 

I coU co 
c4 = max(-e:-,Uc1 U00+Uc2D00), 

c5 = Uc1 U00 + ~lei 100 • 



76 

PROOF. Sets= y-yh, then there exists a WE V such that W * 0, B(W,sh) 

for all sh Esh, and 

o*(s ,v l llsll 1 Hwll 1 s: IB <s,W) I s: 
h h sym 

s ½IB<s,w> - B<w,s> 1 + IB<w,s> I 

s: cs HsHo llwlll 

s: cs Hsllo llwHl 

+ IB(W,s-sh) I 

+ IB(W,y-sh) I 

s: CSC4M(h) llsll 1 llwll 1 + c 1 llwll 1 Hy-shill 

o*(sh,Vh) llsll 1 s: c 4cSM(h) llsff 1 + c 1 inf lly-shlll 
ShESh 

* Thus, if c 4c 5M(h) < D (Sh,Vh), we have 

c 1 ~~~ II y-sll 1 
□ 

REMARK. We see that, for a symmetric problem (i.e. c 1 (x) = 0), we have 

* 

0 

CS= 0 and the requirement c 4cSM(h) < D (Sh,Vh) is automatically satisfied. 

EXAMPLE 3.2.2. Let us again consider the Galerkin method applied to equa-
l 

tion (3.1.2) with homogeneous boundary conditions, then S = V = H0 (a,b) and 

sh= vh. 

Therefore, 

(3.2.19) 

* 

inf1 
sEH0 (a,b) ,s*0 

sup1 
vEH0 (a,b),v*0 

B(s,w)=0 'v'wESh B(v,u)=0 'v'uESh 

:?: inf1 
sEH0 (a,b),s*0 

B(s,v)=0 'v'vESh 

IB (s,s) I 
:?: inf __ s=ym __ _ 

s*0 llsll~ 

IB (s,s) I sym 

II sll ~ 

* a ; 

IB (s,v) I 
sym 

O is the coercivity constant of the symmetric part of the operator Band, 

hence, is independent of c 1 (x). Large values of lc1 (x) I are represented in 

c4 , CS and M(h) and, in applying the estimate, must be compensated by small 

values of h. 
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Green's function and the discrete Green's function 

Green's function G{x,~) with respect to operator L {eq. {3.1.2)) and 

homogeneous boundary conditions on the interval [a,b], is the function de

fined on the closed square as x,~ s b by 

1. 
1 2 G{x, •) € H0 {a,b) n C ( {a,x) U (x,b)), 

{3.2.20) 2. LTG{x,•) a O on (a,x) U (x,b), 

3. 
a 1 

jmp a~ G{x,~) = + -- • 
~=x ~ co{x) 

The following two properties of Green's function are classical {cf. 

e.g. YOSIDA [1960]). 

i) The solution of the two-point boundary-value problem 

(3.2.21) Ly= s 2 on [a,b], s € L (a,b), 

with homogeneous boundary conditions is given by 

b 

(3.2.22) y(x) I G(x,~) s(~) d~. 

a 

ii) Green's function can be constructed from two fixed solutions $1 and $2 
of LT$= 0. Let $1, $2 be defined on [a,b] by 

then 

{3.2.23) G{x,~) 

$1 (a) 0, fi(a) 

$2 {b) = 0, $2{b) 

1, 

1, 

.!!_ ~<X ~ $ 1 m$2{X) ~ fl {X)$2 m 

c0 (x) {$1 (x)$2{xJ - fi(x)$2 (x)) 

Note that the denominator z{x) = c0 {x) {$1 {x)$2(x) - fi {x)$2 (x)) sat

isfies the differential equation 

Therefore, either z 5 0 or lzl > 0 on [a,b]. If z a O then $1 and $2 are 

linearly dependent, the homogeneous problem LT$ O, $(a) =$(bl= O, has 
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a nontrivial solution and Green's function is not defined. Otherwise L¢ = s 

has a unique solution given by 

¢(x) -(G(x,•),s). 

LEMMA 3.2.5. Let there exist a unique solution yh to the problem (3.2.2), 

then there exists a disarete Green's funation Gh(x,~) relative to the oper

ator Band to the spaaes sh and vh, suah that yh is given by 

b 

(3.2.24) yh(x) = - I Gh(x,~) s(~) d~. 

a 

PROOF. Let {¢j} and {~i} be bases in Sh and Vh respectively, then 

y =la.¢. is determined by 
h J J j 

Since the matrix B(¢.,~.) is non-singular, it has a unique inverse, the en-
J J. -1 

tries of which are denoted by B ..• It follows that 
J.,J 

yh(x) I ¢. (x) I -1 
(s,~i) B. 

j J i 
J.,j 

b 

I s (t) I ¢. (x) 
-1 

~- (t) dt. B, . 
ij J J., J J. 

a 

Thus, we obtain the form (3.2.24), with 

□ 

Pointwise error estimates 

In theorem 3.2.2 it was shown that interpolating properties of the 

space Sh carry over to the global error of a weighted residual approxima

tion; in this subsection we show that properties of Vh can produce addi

tional pointwise accuracy. This phenomenon, called superaonvergenae, has 

been studied by DOUGLAS & DUPONT [1974] for Galerkin methods. 

THEOREM 3.2.3. Let B(•,•) be the bilinear form assoaiated with L 

(eq. (3.1.2)) and let y Es= H1 (a,b) be the unique solution to the varia-
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tional problem (3.2.1). Let vh c.v = H~(a,b) be suah that the aonditions of 

theorem 3.2.2 are satisfied and let yh Esh c. s be the solution of the 

aorresponding disarete variational problem (3.2.2), then a pointwise error

bound is given by 

(3.2.25) l(y-yh) (x) I !, KDy-yhlll inf llG(x,•)-v11 1 , 
vEVh 

where G(x,~) is Green's funation. 

PROOF. Set I';; 
1 0 

y - yh. Now r;; E H0 (a,b) and by Sobolev's lemma, r;; EC [a,b]. 

Moreover, 

B (1';;,v) 0 for all VE vh. 

We know that G~(x,•) has a discontinuity at~ x; therefore, by (3.1.5) 

and (3.1.10) 

r;; (x) -[c0 r;;G~(x,•) + c 1~G(x,•)]1T 

-B(l';;,G(x,•))+(1;;,L G) 0 ,1T 
-B(l';;,G(x,•)) = -B(l';;,G(x,•)-v) 

for all V E vh. 

Therefore, 

lr;;(x) I IB(l';;,G(x,•)-v) I !, K llr;ll 1 IIG(x,•) - vll 1 

for all v E vh. D 

COROLLARY. Applying lemma 3.2.1 and the estimate (3.2.25) we obtain, if 

Hk+l,1T[a,b], the y E pointwise error estimate 

(3.2.26) lly - y II = O(hk+pl 
h 1T ,co 

for h + 0 

if Sh~ MO,k(IT), Vh ~ MO,p(IT) and G(xi 1 •) E Hp+l,1T[a,b] for all xi E IT. 

Application of the corollary of lemma 3.2.3 yields the global estimate in 

the L2-norm 

(3. 2. 27) lly - y II O(hk+ll. 
h 0 
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THEOREM 3. 2. 4. Let B ( • , •) be the bi 'linear fom associated with L 

(eq. (3.1.2)) and iet y Es= H1 (a,b) be the unique soiution to the varia

tionai pPobZem (3.2 •. 1), uJhe:l"e v = H~(a,b). Let the conditions of theo:l'em 

3.2.2 be satisfied and Let yh Esh cs be the soiution of the ao:l':l'esponding 

disa:l"ete variationai p:l'obZem (3.2.2). 

Let lj)i E vh be suah that 

1 1 
1/Ji E H0 (a,b) n C ((a,xi) U (xi,b)) 

jmp lj)i(xi) ,f, 0, 

then 

T 
(y-yh,L lj)i) 0 1T 

c0 (xi) jmp lj)i (xi) 

1 PROOF. Set~= y - yh then~€ Ho(a,b) and B(~,v) 
0 

O for all v E vh. 

Hence,~€ C [a,b] and by (3.1.5) arid (3.1.10) 

Consequently, 

□ 

COROLLARY. The above expression for y(xi) - yh(xi) lead& immediately to the 

following pointwise error bound for the discretization (3.2.2), 

(3.2.28) 

T IIL lj),1 0 l. , 1T 

REMARK. The estimate (3.2.28) can also be derived for the solution obtained 

by discretization of the strong form. 

~- If there exists a non-trivial lj)i E Vh that satisfies LTlj)i = O on 

(a,xi) U (xi,b) then y(xi) = yh(xi). Since each 1/Ji that satisfies this con

dition is a scalar multiple of G(xi,•), this conclusion could also be de

rived from theorem 3.2.3. 
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Quadrature and error estimates 

In the following theorem we prove that, when k-th degree piecewise 

polynomials are used for Sh and Vh, a (2k)-th order quadrature rule is suf

ficiently accurate to guarantee the same order of accuracy for y~ as for 

yh. Thus the theorem gives a justification for the use of (k+1)-point 

Lobatto quadrature as described in (3.1.31)-(3.1.32). 

THEOREM 3.2.5. Let IT be a quasiunifoI'/11 partition. Let y ES= H1 (a,b), the 

soiution of equation (3.2.1) withs E H2k,TI[a,b], be approrimated by 

y: Esh= MO,k(Il), which is deteI'l1lined 'by (3.2.3) where vh = M~'k(Il) and 

iet the operator B be such that the hypotheses of theorem 3.2.2 hoZd. Let 

* * B (•,•) and(•,•) be computed by a (2k)-th order quadrature ruie, then 

the el'!'or estimates 

(3.2.29) Hy - y:a 1 

and 

(3.2.30) 

hoid if h is sufficientiy smaU. 

PROOF. For all V € vh 

(3.2.31) 

s c llsO UvU h 2k + c lly*II Hvll h 2k 
2k,TI k,TI h k,TI k,TI • 

Bis such that there exist a D(Sh,Vh) > 0 and av€ Vh such that 

Hence, by lemma 3.2.2, if his small enough, 



82 

{3.2.32) 
k+l k+l * k+l 

s C[llsll 2k,1T+UyDk,1T]h + cUy-yhDk,1T h + cllyh-yhnk,1T h 

s c[lsU 2k,1T+DyDk,1T]hk+l + cUylk+l,1T hk+2 + cllyh-y:ff 1 h2 • 

So, if his small enough, 

(3.2.33) 

k+l k+2 
c[Hs~2k,1T+lylk,1T]h +O(h ) 

2 
D(Sh,Vh)-Ch 

Combination of this inequality with the results of lelllllla 3.2.l and theorem 

3.2.2 yields the estimate (3.2.29). 

Now let G(x,~) be Green's function corresponding to L; let Gi denote 

G(xi,•), then for all v € M~'k(Il) 

(3.2.34) 

s Kllyh-yh*ll 1 11Gi-vll 1 + cllsll 2 llvll h2k + ell/II llvll h2k 
k,1T k,1T h k,1T k 11T 

If his small enough, v can be selected such that 

These inequalities, together with (3.2.34), (3.2.29) and the application 

of lelllllla 3.2.2 yield (3.2.30). 0 

3.3. STANDARD GLOBAL METHODS APPLIED TO SINGULAR PERTURBATION PROBLEMS 

At first sight, it might be expected that none of the global methods 

mentioned this far, will be able to handle singular perturbation problems 

properly. Indeed; in all discrete operators, the contribution due to the 
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second derivative is insignificant as compared with contributions from the 

other terms of the differential operator. Still both boundary conditions 

are imposed with the same strength. Thus, in the actual discrete operator 

no information remains to determine which boundary condition has to be 

respected. Nevertheless, it is meaningful to study to what extent the var

ious methods may succeed. To this end we investigate their behaviour for 

the model problem 

(3.3.1) Ey" + y' = 0, 

y(O) = O, y(1) 1, 

on a uniform mesh. 

We consider respectively Galerkin's method, collocation, reduction to a 

system of first order equations, least squares and the Ritz-Galerkin method. 

Galerkin's method 

First we consider Galerkin methods. If we take Sh= M0' 1 (IT), 

Vh = Mg' 1 (IT), it follows from (3.1.38) that the discrete operator coincides 

with the one obtained with central differences. This operator was studied 

thoroughly in section 2.1. Discrete operators obtained by means of higher 

order Lagrange spaces MO,k(IT) will give better error bounds. This is a con

sequence of (3.2.14) and of the relation 

if k ~ i, 

whence 

Uy - vis inf Uy - vU. 

VEMO,i(IT) 

Nevertheless, small values of Estill yield bad estimates since, in equa

tion (3.2.14), cr = O(E). 

Whereas a Galerkin method improves when Lagrange spaces of higher 

order are used, it may degrade with the use of the higher order Hermite 

spaces Hm, 2m+l(IT). For the latter type, lower order spaces are not sub

spaces of the higher order ones. Thus the approximation in the higher 

order spaces may be worse. In particular this will be the case if an approx-
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imand is not sufficiently smooth. As was shown in chapter 1,y(x) is not in 

general smooth for small E:. Hence the factor lly - yhlll in the error bounds 

(3.2.14) and (3.2.25) can be larger for larger m. This is even more likely 

to occur for the factor IIG(xi,•) - vhll in (3.2.25), since G(xi 1 •) has a 

discontinuous derivative at x = xi. Of course, a larger error bound does 

not imply that the error will in fact be larger. However, an actual com

putation for the problem (3.3.1) shows that for M2 ' 5 (IT) the error is 
1 3 

larger than for M' (IT), if E:/h is small. This is illustrated in the tables 

3.3.1 and 3.3.2. 

N = 1/h 4 8 16 32 64 

Sh E: 

MO, 1 ( IT) 1.0 6. 2 ( -4) 1.6( -4) 3. 9 ( -5) 9.8( -6) 2.5( -:6) 
1.0 (-2) 2.9 8. 7 ( -1) 5.2( -1) 2 .6 ( -1) 8.7( -2) 
1.0(-4) 3.1 ( +2) 7.8( +1) 1. 9 ( +1) 4.9 1.5 
1.0 (-6) 3.1 ( +4) 7.8( +3) 2. 0 ( +3) 4. 9 ( +2) 1.2 ( +2) 

M1,3(Il) 1.0 5.3( -6) 4.0 ( -7) 2.9( -8) 1. 9 ( -9) 1.2(-10) 
1.0(-2) 2. 3 ( -1) 7. 9 ( -2) 3. 9 ( -2) 1. 1 ( -2) 1. 7 ( -3) 
1.0(-4) 5.2( -1) 5.1( -1) 4.8 ( -1) 3.7( -1) 1.2 ( -1) 
1.0 (-6) 5.2 ( -1) 5.2( -1) 5. 2 ( -1) 5.2( -1) 5.2( -1) 

M2,5 (IT) 1.0 4.5(-10) 7.9(-12) 8.5(-14) 6.4(-14) 4.8(-13) · 
1.0(-2) 1.5( -1) 3.5( -2) 3.8( -3) 1.8( -4) 6.1( -6) 
1.0 (-4) 4.6( +1) 1.6( +1) 4.8 1.3 4.2( -1) 
1.0(-6) 4.7( +3) 1.7( +3) 5.2( +2) 1.5( +2) 4.0( +1) 

M0,3 (IT) 1.0 2.9(-10) 3.8(-12) 1.1(-12) 3.8(-12) 1.6(-11) 
1.0 (-2) 4.1(-1) 1.5( -1) 2.7( -2) 1.8( -3) 5.2 ( -5) 
1.0(-4) 5.2( +1) 1.3 ( +1) 3.3 1.1 8.6( -1) 
1.0(-6) 5.2( +3) 1.3( +3) 3.3( +2) 8 .1 ( +1) 2.0( +1) 

Mo,5 (ITJ 1.0 4.2(-10) 2.5( ~9) 1. 7 ( -8) 8.3( -8) 3.6( -7) 
1.0(-2) 9.4( -2) 1.0( -2) 2.6 ( -4) 1.5( -6) 1.6 ( -9) 
1.0(-4) 2.1 ( +1) 5.1 1.4 8.3( -1) 6.8 ( -1) 
1.0(-6) 2.1( +3) 5. 2 ( +2) 1.3( +2) 3.3( +1) 8.2 

Table 3. 3. 1. Pointwise errors II y - y II for problem ( 3. 3. 1) . The Galer kin 
h n,oo k 

method (3.1.12) has been used for various spaces Mrril, (IT) on a uniform mesh IT. 
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N = 1/h 3 7 15 31 63 

Sh e: 

MO, 1 (JI) 1.0 1.1( -3) 2.1 ( -4) 4.5( -5) 1.0( -5) 2.5( -6) 
1.0(-2) 8.7( -1) 6.2( -1) 5.4( -1) 2. 7 ( -1) 8.9( -2) 
1.0(-4) 1.0 1.0 9.9( -1) 9.9( -1) 9.6( -1) 
1.0(-6) 1.0 1.0 1.0 1.0 1.0 

Ml, 3 (II) 1.0 1.5( -5) 6.7( -7) 3.8( -8) 2.2( -9) 1.3(-10) 
1.0(-2) 3.2( -1) 9.3( -2) 4.3( -2) 1.1 ( -2) 1.7( -3) 
1.0(-4) 5.2 ( -1) 5.1 ( -1) 4.9( -1) 3.8( -1) 1.3( -1) 
1.0(-6) 5.2 ( -1) 5.2( -1) 5.2( -1) 5.2( -1) 5.2( -1) 

M2,5(JI) 1.0 2.4( -9) 1. 7 (-11) 1.2(-13) 1.2(-13) 5.6(-13) 
1.0(-2) 2.7( -1) s.oc -2> 4.9( -3) 2.1( -4) 6.6( -6) 
1.0(-4) 7.4( -1) 7.3( -1) 7.0( -1) 6.0( -1) 4.2( -1) 
1.0(-6) 7.5( -1) 7.5( -1) 7.5( -1) 7.5( -1) 7.5( -1) 

M0,3 (JI) 1.0 1.6( -9) 9.6(-12) 1.3(-12) 9.9(-13) 4.2(-11) 
1.0(-2) 3.3( -1) 1.9( -1) 3.3( -2) 2.1( -3) 5. 7( -5) 
1. 0 (-4) 9.9( -1) 9.8( -1) 9.6( -1) 8. 7( -1) 8.6( -1) 
1. 0 ( ... 6) 1.0 1.0 1.0 1.0 1.0 

M0,5 (II) 1.0 5.9(-10) 1.6( -9) 1.5( -8) 7. 7 ( -8) 3.5( -7) 
1.0(-2) 1.6( -1) 1.8( -2) 3.9( -4) 2.0( -6) 2 .1 ( -9) 
1.0(-4) 9.8( -1) 9.5( -1) 8.7( -1) 8.2( -1) 6.9( -1) 
1.0(-6) 1.0 1.0 1.0 1.0 1.0 

Table 3.3.2 Numerical results as in Table 3.3.1. However, for this table 

an odd number of subintervals has been used. 

Collocation 

The same model problem (3.3.1) is used to show how collocation fails 

£or e:/h + O. We consider the simplest function space that can be used for 
1 3 

collocation: Sh = M ' (II) • On each interval Ii, we take the two collocation 
. . . . . . - .1 

points at x = x. 1 + ch. and at x = x. - ch., 0-S c < -2 • Then the charac-
i- i i i 

teristic rectangular submatrix for the discretization of Ly= e:y" + y' is 
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6c(1-c) + - ( 1-c) ( 1-3c) h+ -6c(1-c) - c (2-3c) h+ 

£ £ -6 cf.) ( 1-2c) £ 

-1 
+6 chi o-2ci +2 (h) (2-3c)h h 

+2 (h) ( 1-3c) h 

(3.3.2) 
h 

6c(1-c)- c (2-3c) h- -6c (1-c) + -(1-c) (1-3c)h-

-6 (f.) (1-2c) -2 (f_) (1-3c)h £ -2 (f_) (2-3c) h 
h h +6Ch> c1-2cJ h 

With the boundary conditions(3.3.1) the discrete problem, for £/h ➔ O, re

duces to 

1 

1 

. 
" 

(3.3.3) 

I 

\o 

3c-1 
where A=~• 

0 

Ah1 -1 Bh1 

Bhl -1 Ah1 

---- --

0 1 

1 

B 3c-2 
= 6 (c-1) 

The solution of this linear system is 

y, = 
J. 

i 

I 
j=1 

h. 
J. 

0 Yo 0 

y' 
0 

0 

0 Y1 0 

y' 
1 

~ -1 BhN 0 

BhN -1 AhN YN 0 

0 1 0 y' 
N 

1 

Thus, {y,} yields a pointwise (but not a global) approximation to a straight 
J. 

line, irrespective of the choice of the mesh TI. Sad to say, y(x) ~ x. is 
i J. 

not at all an approximation to a solution of our boundary-value problem. We 

may conclude that, in general, the result obtained by collocation - for any 

grid TI with £ « min (h.) - is not a good approximation to y (x) . 
i=1, ... 1,N 

Reduction to ·a system of two first order equations 

The second order equation (1.1.1.a) can also be reduced to a system of 

two first order equations. Then the problem (1.1.1) is written as 

(3. 3. 4) 

y(a) = a, y(b) = S, 



T T 
where Y is the vector Y = (y,v) = (y,Ey') . 

In general, global methods are well suited for the solution of two-point 

boundary-value problems written in this form and it is known (cf. WEISS 

[1974]) that collocation schemes for systems of first order equations, 
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based on piecewise polynomials MO' k (II) , are equivalent to implicit Runge

Kutta methods based on interpolatory quadrature formulas. Since integration 

by parts is out of the question for first order systems, collocation is also 

·equivalent to a Galerkin.,method, for which the quadrature is effected by 

means of a k-point quadrature rule.· As was shown by WEISS_ [1974] and HULME 

[1972 a,b], the pointwise error for these methods is O(ht+l), where t de

notes the degree of precision of the related quadrature rule. Thus the 

pointwise error is 0(h2k) if k Gaussian base-points are used for colloca

tion (cf. DE BOOR & SCHWARTZ [1974]). The pointwise error is O(h2k-l) if 

Radau and 0(~2k-2) if Lobatto points are chosen as collocation points on 

each subinterval of the mesh. This theory holds when Eis kept fixed and 

h ~ O; however, if E << h we may not expect the approximation to be accu

rate. This is shown by the following argument. 

Let us consider the analogue of equation (3.1.18) for the system 

(3.3.4) of first order equations. We write 

(3.3.5) 

where {$j} is a basis in MO,k(Il). The Galerkin equations now read 

I (Eyh-vh)$idx = O i 0, •.• ,N, 

(3.3.6) 

I fs$idx, (fyh+vh+gyh)$idx i 1, .•• ,N-1, 

with the boundary conditions 

Here the coefficients {a.} and {b.} are to be determined. 
J J 

The discrete system of equations is 

(3 .3. 7) o, i O, ••• ,N; 
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(3. 3. 8) l aj[ f f¢j¢idx + h J g¢j¢id(~)] + l bj[ J ¢j¢idx] = h J s¢id(~), 

i = 1, .•• ,N-1. 

If{¢.} are such that 
J 

1, 

1, 

0, 

0, 

i 

i 

1, •.. ,N; 

0, •.. ,N-1; 

then a0 =a,~= B. 
Now keep h fixed and let E + 0. Since the matrix J ¢.¢.dx is nonsingular 

J l. 
the system (3.3.7)-(3.3.8) becomes 

(3. 3. 9) 

i = 1, .•• ,N-1, 

This linear system is exactly the same as the one obtained if the Galerkin 

discretization is directly applied to the second order differential equa

tion and we let E + 0. Therefore, for singular perturbation problems, . 

there is no advantage in setting up the larger system (3.3.7)-(3.3.8). 

Least squares 

We will briefly show that again no success can be expected if we try 

to find a numerical solution to our problem by the least squares method, 

i.e. when we seek a function yh of the form (3.1.1.) that minimizes the 

functional 

b 

(3.3.10) Q[y] J [E y"(x) + f(x)y'(x) + g(x)y(x) - s(x)J2 dx 

a 

and satisfies the boundary conditions. 

Minimization of (3.3.10) yields the linear system t_ A .. a 
lJ l.J j 

b 

(3.3.11) I (E ¢ 1:+f ¢'.+g¢,) (E ¢'.'+f ~'.+g ¢.)dx 
J J J l. .l. l. 

a 

and 

Si, where 



(3.3.12) 

a 
2 

F 1 Values Of lfh I or lgh I · t 1 i · · or arge 8 8 we approxima e y m nimize 

(3.3.13) 

b I (f(x)y' (x)+g(x)y(x)-s(x)) 2 dx, 

a 
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where y is subjected to both boundary conditions. The functional (3.3.13) 

corresponds to the residual of the reduced equation, but as the sign of 

f/€ plays no role in (3.3.13), essential information is lost. Thus the min

imization of (3.3.10) scarcely has any relationship to the original problem. 

This is illustrated by the problem 

(3.3.14) Zy"(x) + f(x)y' (x) = 0, 

y(a) = a, y(b) = B. 

For large lfh/£1, the function that minimizes Q[y] approximately minimizes 

the functional 

I i (x) (y' (x)) 2 dx. 

Hence, y is an approximation to the solution of the boundary-value problem 

(3.3.15) fy" + 2f'y' = o, 
y(a) = a, y(b) = B, 

rather than to the original problem (3.3.14). 

The Ritz-Galerkin method 

In the positive definite case (i.e. if g $ 0), it makes sense to 

search for a global approximation (3. 1.1) which is optimal in the energy 

norm D•UE, see eq. (1.1.7). Such an approximation is obtained by solving 

the linear system 

where 

M 
l A •. a. 

j=O iJ J 
i 1, ••• ,M-1, 
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b X 

(3.3.16) Aij J (-e:cf> '. cf> '. +gcf> . cf> . ) exp( f f(t) dt) dx 
l. J l. J e: 

a a 

and 

b X 

(3.3.17) bi J s(x)cf>i (x) exp( J f~t) dt) dx. 

a a 

In contrast to the previous methods, in the present method f/e: plays a very 

important role for small values of e:. In fact, the factor Ix f Ct) 
p(x) = exp( a -e:-dt lays a heavier weight on the side of the more re-

levant boundary condition. In the limit, for e:/(fh) + 0, the boundary con

dition at the end where the boundary layer occurs, is completely neglected. 

This directional dependence is a great advantage but, because of the expon

ential magnitude of p(x), practical problems arise in setting up the linear 

system. If the entries of the symmetric matrix A are calculated in a 

straightforward manner, overflow problems arise in the computation of p(x). 

Even if this is circumvented by introducing row-scaling (which disturbs the 

symmetry), p(x) remains an unmanageable, rapidly varying function. Indeed, 

for extreme values of hf/e:, asymptotic expressions can be developed for A .. 
l.J 

and bi, but the approach using the integrating factor p(x) remains cumber-

some. Another approach, which shares the benefit of directional preference 

and which overcomes to a certain extent the inconveniences induced by the 

exponential function p(x), is the exponentially fitted weighted residual 

method that will be treated in the following sections. 

3.4. EXPONENTIALLY FITl'ED SPACES AND THEIR USE 

In section 3.2 we saw that the pointwise error bound on a mesh IT is re

lated to the capacity of the space Vh to represent solutions of the adjoint 

equation. In this section we investigate how this knowledge and the freedom 

in the choice of a space Vh can be exploited to obtain better methods for 

the solution of singular perturbation problems. First, we have to study the 

properties of the solutions of the adjoint equation, especially the form of 

Green's function for this kind of problem. Then we construct a space vh in 

which these functions are well approximated. This Vh is used to construct 

methods in which the requirement of a small enough h/e: ratio is relaxed 

and in which a certain given order of accuracy is attained. 

It will become apparent that piecewise exponentials have to be included 
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in vh and as a result a sense of directional preference, which is also pre

sent in the differential operator, is carried over to the corresponding 

discrete operator. In the extreme case when€<< fh, our particular choice 

of Vh will mean that essentially an initial value problem is solved, using 

the correct boundary condition. 

Green's function for a singular perturbation problem 

In theorem 3.2.3 it was shown that Green's function plays an important 

role in the determination of pointwise error bounds. Therefore, in studying 

the numerical solution of the equation 

(3.4.1) Ly a €y" + fy' + gy = s, 0 < € << 1, 

we require information concerning the properties of its Green's function for 

€ + O. To this end we first consider the case lfl ~ f 0 > O. The asymptotic 

behaviour of Green's function for€+ 0 is formulated in the following 

lemma and its corollaries. 

LEMMA 3.4.1. Let L be the differential operotor defined on the intewal 
1 0 

[a,b] by (3.4.1), ~here f € C [a,b], g € C [a,b] and lf(xl I ~ fo > o. Let 

the function 1j) € H~ (a,bl n C2((a,x) ll (x,bl) be the solution of LTlj) = O on 

(a,x) and on (x,b) and let jmp(lj)' (xl) = -1. Then, the asymptotic approwima

tion of 1j) for€+ O is given by 

(3.4.2) 

(3.4.3) 

lj)(~) = kl lj)R(~) + k2 lj)BL(~) 

lj)(~) = k3 lj)R(~) + k4 lj)BL(~) 

for ~ € [a,x], 

for ~ € [x,b], 

lj)Rm = exp f (g-f')/f dt, 

lj)BL(~) = exp;¼ f fdt - f g/f dt]. 

a a 

The constants k1, k2 , k3 , k4 are determined by 

(3.4.4) lj)(a) = lj)(b) o, and 
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(3.4.5) 

where 

(3.4.6) 

(3.4. 7) 

-E (E (a) -E (x) ) (E (x) -E (b) ) 
1/J (x) = F (x) E (x) (E (a) -E (b) ) 

F(x) 

E(x) 

f' (x) g(x) 
f(x) + E f(x) - 2E f(x), 

X 

exp[¼ f F(x)dt]. 

a 

PROOF. Application of the WKB-technique to the differential equation 

Ey" - (fy) ' + gy 0 

yields, to first order in E, the two approximate general solutions ~Rand 

1/JBL. Hence, the solution 1/J(s) is given by (3.4.2) and k 1, ~2 , k3 , k4 are 

determined by the boundary conditions at s = a, s =bands= x. From 

these conditions 1/J(x) is determined 

1/J (x) k11/JR (x) + k2~JBL (x) = 

-Ef [1/JR (a) 1/JBL (x) -i/;BL (a) 1/JR (x) ] [1/JR (b) 1/JBL (x) -1/JBL (b) 1/JR (x) ] 

-(-f2,,....+_E_f_'_-2_E_g_) 1/JR(a)ljJBL(b)-1/JBL(a)ljJR(b) 

Introducing F by eq. (3.4.6) and Eby E(s) 

putation yields (3.4.5) and (3.4. 7). D 

COROLLARY. The function 1/J(s) has two boundary layers: 

if f < 0 then at s = a and at s = x + 0, or, 

if f > 0 then at s =band at s = x - O. 

This boundary layer behaviour is described by 1/JBL(s). Outside the boundary 

layer regions, we obtain the limit-behaviour of 1/J(s) for E +Oby neglect

ing the exponentially small terms: 

(3.4.8.a) 1/J(sl rai O 

s 
fl:j 1/J(x) exp I g-ff' dt 

X 

(s<x) 

if f > 0, 
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or 

(3.4.8.b) ~2.::£. 
1/J(I;) R$ 1/J(x) exp J f dt 

X 

R$ 0 (l;>x) if f < o. 

COROLLARY. An asymptotic approximation for E ➔ 0, of the Green's function 

corresponding to the operator L, eq. (3.4.1), is given by 

(3.4.9) 

EXAMPLE 3.4.1. Green's function corresponding to equation 

(1.3.1) Ly Ey" - y' 0 on [0,1] 

reads 

0 X 1 

P'ig. 3.4.1 

Green's function for equation (1.3.1) on [0,1]. 

Exponentially fitted spaces 

In view of the error bound given in theorem 3.2.3 it is expedient to 

have at one's disposal a space of test functions Vh, in which the func

tions G(xi,•), i = 1,2, ••• ,N, can be closely approximated. From 

lemma 3.4.1 and its corollaries we know that, for large values of f/E, ex

ponential boundary layers appear in G(xi 1 •) at I;= xi. The exponentials 

cannot be closely approximated in a piecewise polynomial space Vh if fh/E 

is large. Hence we introduce function spaces that not only contain piece

wise polynomials, but also piecewise exponentials. 
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DEFINITION 

For each subinterval Ii c [a,b], let ai E lR and let K(Ii,ai) denote 

the (one-dimensional) linear space of scalar multiples of the function 

exp (xai), restricted to I .. 
l. 

Furthermore , let fork= 1,2, ... , 

(3.4.11) I\ (Ii,ai) = span (Pk-1 (Ii)' K(I.,a,)), 
l. l. 

(3.4.12) Nm,k (II,a7f) {v E c111[a,b] V 
restr.I. E !\(I. ,a.), 

l. l. 
i 1,2, ... ,N}, 

l. 

(3 .4.13) N~,k (II,a7f) {v E Nm,k(II,a ) 
7f I v(a) v(b) o}. 

In eqs. (3.4.12) and (3.4.13), a7f denotes a mapping which gives an ai E lR 

for each interval I. of the partition IT. The spaces Nm,k(IT,a) and 
l. 7f 

N~'k(IT,a7f) are called exponentiaZZy fitted spaces. 

Since a proper test space should be able to represent the discontin-

uity in the derivative of G(x.,•) all interesting exponentially fitted 
1 0 k spaces have m = 0. As we did for the Lagrange spaces M' (IT), we select 

basis functions {w.} in NO,k(IT,a) such that the support of each WJ. is con-
J 7f 

tained in at most two neighbouring intervals I .. 
l. 

The most obvious way to construct such a set of basis functions in 
O,k(IT l . 0,k-1 IT N ,a , k > 1, is to take a set of natural basis functions in M ( ), 

7f * * based on a set {o = , 0 < , 1 < < ~:-l = 1}, (cf. eq. (3.1.15)), and to 
EF* 1 add for each Ii a function Wi E H0 (a,b) such that 

0 

(3.4.14) 

where¢: E MO,k-l(IT) is such that 

Fork 

EF* * W. (x. 1+, 0 h. l 
J. J.- Jv J. 

o, 0,1, ... ,k-1. 

2,3,4 these functions W~F* are illustrated in figure 3.4.2. 
l. 
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k "' 4 

Fig. 3.4.2 

Exponentially fitted basis functions W~F* in NO,k(IT,a ); k > 1. 
i 7f 

Th · ,,,EF* ' · bl t' l b ' f t' ' NO' k (IT ) f is ~i is a possi e exponen ia asis unc ion in ,a7f or 

aihi ~ O; however, it vanishes on Ii for aihi + O. Therefore, it should be 
EF* normalized e.g. by di vision by max j I W. (x) I . When we consider the nor-

XE[ a,b i 

malized function as depending on the parameter ai, it is easy to see that, 

for continuity reasons, only a unique choice can be made for a. = 0, viz. 
* i 

the k-th degree polynomial which vanishes for x = xi-l + ~thi, 

t = 0,1, ••. ,k-1. Fork> 1, this suggests the construction of another, more 

practical, set of basis functions that will be considered in the next subsec

tion. First we consider the case k = 1. 

If k = 1, a function W~F* cannot be found, but a basis in NO,l(IT,a) 
i 7f 

is readily constructed by a linear combination of a piecewise constant and 

a piecewise exponential function, see fig. 3.4.3. Thus, fork 1, a single 

exponential basis function extends over two intervals and so it has to be 

described by two exponential coefficients: ai and ai+l" Introducing the 

function 

(3.4.15) 
e-a~-e-a 

1-e-a 

we describe the basis functions in N0' 1 (IT,a7f) by 

(3.4.16) ,1,!F (x) 
i 

if XE Ii+l' 

if X E I., 
i 

i=l,2, .•. ,N-1. 
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Ii 

Fig. 3.4.3 

Exponentially fitted basis functions in N°' 1 (IT,a~). 

This basis {$~}~=O in N0' 1 (IT,aw) can be used for computational pur

poses and it is easily seen that $~F reduces to the piecewise linear basis 

function in M0' 1 (IT), if both aih. and a. 1h. 1 vanish. Hence, N0' 1 (IT,aw) 
0 1 i J.+ J.+ 

reduces to M' (IT) if aihi + 0 for all i. We denote this by 

(3.4.17) 

where 

(3.4.18) la I= 
~ 

max ( laihi I). 
i=1, ••• ,N 

0 k Analogously, because the exponential basis functions in N' (IT,a) degen
TI 

erate to k-th degree piecewise polynomials if law!+ O, we have, also for 

k > 1, 

(3.4.19) 

We shall not give a more formal description of this property, which can be 

given by means of the concept of "the aperture of subspaces of a Hilbert

space" as introduced by KRASNOSEL'SKII et. al.[1972], Chap. 4, section 13.5. 

0 k Natural bases in N' (IT,¾) 
,1,EF* The exponential basis function o/i (eq. (3.4.14)) is not convenient 

for computational purposes, since, for large values of -a.h. it is equal 
* l. l. 

to-$. in the interior of I., except for an exponentially small term, and 
l. l. 

therefore, it leads to an extremely ill-conditioned basis (cf. VARAH [1974]). 

For this reason we use a more practical basis in NO,k(IT,a )', which will be 
~ 

called the natur>aZ basis. This basis, related to the natural basis of 
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MO,k(II) rather than to that of MO,k-l (II), is formed in the following way. 

Let the natural basis functions of MO,k(Il) be constructed by means of 

{o = 1:* < * * } "o ~1 < ••• < ~k=l , (cf. eq. (3.1.15)). 

a.h. 
l. l. 

O, we use the basis functions of MO,k(IT) 

On each interval I., where 
0 k 1. 

also for N' (IT,arr); if 

aihi < 0, the basis functions are defined on Ii by 

and 

* EF <P. · (x. 1)1/J. 1 (x. 1) 
l.J 1.- l.-:- 1.-

where~*€ M-l,k-l(Il) is such that 
't'ij 

j 

j 1,2, ... ,k, 

1,2, .•. ,k. 

If aihi > O, then the basis functions on Ii are 

where <P~. E M-l,k-l(Il) is such that 
l.J 

j 

j 

* Thns, given a set of nodal points {O ~ ~O 

acteristic set of natural basis functions 

is described as follows: 

if a< O, then 

'¥(~,ah), 

~~(~) ~~(0)'¥(~,ah), 
J J 

0,1, ••. ,k-1, 

0,1, ..• ,k-1. 

* < •.• < ~k ~ 1}, the char-

on an interval of length h 

j 1,2, ... ,k, 

where the (k-1)-th degree polynomial~~ is defined by 
J 

j ,m 1,2, ... ,k; 

if a> O, then 
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j 0,1, •.• ,k-1, 
(3.4.20.b) 

* where the (k-1)-th degree polynomial ~j is defined by 

8. 
Jm 

j,m 0,1, ••• ,k-1. 

EXAMPLE 3.4.2. We consider the restriction-to I, = [x. 1,x.J of the basis 
0 2 J. J.- 1. * 

functions in 
1 

N' (Il,a ), see fig. 3.4.4. As the set of nodal points{~} we TI m 
use {0,2, 1}. 

First we assume a. < O. The characteristic basis functions for M-l,l(Il) are 
l. 

2E; - 1.. 

The basis functions in N0' 2 (Il,aTI) on Ii+l become 

1/J2i (x) 

1/J2i+1 (x) 

1/J2i+2 (x) 

'¥(~,aihi), 

~;(~) 2 '¥(~,aihi), 

~;(~) + '¥(~,aihi), 

where.t = (x-xi_1)/h. 

If ai > O, then the characteristic basis functions for M-l,l(Il) are 

2~ + 1, 

The basis functions in N0' 2 (Il,a) on I become 
TI i+l 

1/J2i (x) 

1jJ2i+1 (x) 

1/J2i+2 (x) 

* ~o<~l + '¥(1-~,-aihil, 

~;m - 2 '¥(1-~,-aihi), 

'¥(1-~,-aihi). 



Cl, <0 
1. 

Cl .>0 
1. 

;J2i+l 

Fig. 3.4.4 

Natural basis functions in N0' 2 (IT,a.TT). 

The use of exponentially fitted spaces 
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Exponentially fitted spaces have been designed to approximate func

tions that exhibit an exponential behaviour with a large exponential fac

tor (exponential rate) that must be known in advance. Since the exponen

tial rate of the exponential boundary layers that appear in singular per

turbation problems can be determined, we can seek a numerical solution yh 

in an exponentially fitted trial space Sh and/ or we can use an exponen

tially fitted test space Vh, in which case we fit Green's function. 

Exponential fitting of Sh can be applied in two ways: 

1. it can be used throughout the whole interval [a,b] (complete fitting). 

or 

2. it can be applied only in a region where a boundary layer is expected, 

( pa:r>tia l fitting) . 

In the first case, the disadvantage is that the exponentials can introduce 

spurious internal boundary layers in the numerical approximation; either 

the contribution of the exponentially fitted component is negligible or 

the numerical approximation behaves almost discontinuously, even where 

the analytical solution behaves smoothly. 
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a 

Fig. 3.4.5 

A numerical approximation in an exponentially fitted space Sh. 

On the other hand, when exponential fitting is applied only in the boundary 

layers, a priori knowledge about the solution is assumed. This information 

may be easily available for homogeneous linear problems, but one will meet 

serious difficulties in non-linear problems. Moreover, even when the dif

ferential operator is discretized with the help of a priori knowledge about 

the solution of the homogeneous equation, the inhomogeneous problem will 

not fully share in the profit of exponential fitting. This is illustrated 

by the following argument. 

Let the operator L, eq. (3.1.2), be given and lets E L2 (a,b). Con-
1 

sider the following problem: find an approximation toy E H0 (a,b), the sol-

ution of 

Ly= s on [a,b]. 

1 
Given a particular choice of a trial space Sh c H0 (a,b) and test space 

1 
Vh c H0 (a,b), the approximation yh is given by 

yh = - j Gh(x,~)s(~) d~, 

a 

while the solution y is given by 

So we obtain 

(3.4.21) 

y(x) j G(x,~)s(~) d~. 

a 

b 

I (y-yh) (x) = I {G(x,t) -

a 

s DG(x, •) - I 
ij 

I -1 
ij,.(t)} s(t) 4>j(x)Bi,j 

ij J. 

-1 
ipi (•) 10 UsP 0 • 4>. (x) Bi . 

J ,J 

dtl 
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To minimize the error independently of s we have to seek Sh and Vb such 

that the first norm is minimal. It is seen that exponential fitting of the 

functions $j E Sh cannot be of help except for particular choices of s, 

whereas fitting of the {$i} in such a way that G(x,•) is closely approxi

mated in Vb, always will result in a small pointwise error at x. 

Thus we have obtained an argument in favor of the exponential fitting 

of Vb instead of the exponential fitting of Sh. In Vb exponential functions 

can be included that fit the boundary layers of G(xi,•). As a result small 

pointwise errors are obtained at the nodal points xi. Therefore, we shall 

consider only exponential fitting of Vb, except in the following examples, 

where exponential fitting of Vh and sh are compared for two simple prob

lems. The examples show that exponential fitting of Vh is indeed better 

than exponential fitting of Sh. 

EXAMPLE 3.4.3. In this example we show with an inhomogeneous equation that 

exponential fitting has different effects when it is applied to Sh and to 

Vh. We consider the problem 

(3.4.22) e:y" + y' = -1 on [0,2], 

with homogeneous boundary conditions. The solution is 

(3.4.23) y(x) 2 1-exp(-x/e:) 
1-exp(-2/e:) - X • 

The discretization is executed on the mesh TI= {0,1,2}; thus, sh is spanned 

by a single function$ and Vh by a single function$. The discrete opera

tor and right hand side are 

2 

(3.4.24) B($,$) = f (-e:$'$'+$'$)dt, 

and 0 

2 

(3.4.25) (s,$) f (-$)dt, 

0 

and the approximate solution .at x .1 is given by 

(3.4.26) $(1) (s,$)/B($,$). 
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Now we consider complete and partial exponential fitting, both for Sh and 

for vh. 

A. Complete exponential fitting of sh. 

Here we use sh= N° 11 (IT,aTI), Vh = M011 (IT). The exponential rate of the 

boundary layer can directly be derived from the equation (cf. section 1.2), 

so we take a 1 = a2 = -1/£. Hence¢ and~ are given by 

{ exa(-x/el 
· exp(-1/£) 

{3.4.27) ¢(x) 
exE (-x/£) 
exp(-1/£) 

and 

(3.4.28) iJ, (x) 

0 

- 1 
- 1 

- exE ( -2/ £) 
- exp(-2/£) 

I 

2 

Fig. 3.4.6 

0 

if X E [0,1], 

if X E [1,2], 

if XE [0,1], 

if XE [1,2]. 

1 

The functions¢ and~ when complete exponential 

fitting of sh is applied. 

Evaluation of (3.4.24) and (3.4.25) yields 

(3.4.29) 

and 

(3.4.30) -1. 

Hence, the approximate solution at the point x = 1 is 

(3.4.31) 

which is the exact solution. 

2 

In example 3.4.4 we will show that this result is due to the particular 
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choice of the right hand side which is a constant. The global approximation 

to the solution is 

1 - exp(~l/E) ~(x). 
1 + exp(-1/E) 

y(x) 

0 1 

Fig. 3.4.7 

2 

The solution y of eq. (3.4.22) and the approximation 

yh with complete exponential fitting of Sh. 

B. Partial exponential fitting of sh. 
0 1 0 1 

We use again Sh= N' (Il,a~) and Vh = M' (Il), but we apply exponential 

fitting in the boundary-layer region only, i.e. on [0,1]. So, we take 

- .!_ a = O· al= E' 2 ' 
~ is still given by (3.4.28), but now~ is given by 

(3.4.32) 

exp(-x/E) - 1 
exp(-1/E) - 1 

2 - X 

if X € [0,1], 

if X € [1,2]. 

Li 
0 2 

Fig. 3.4.8 

The trial function~. when partial exponential fitting 

is applied to sh. 

Evaluation of yh(l) now yields 
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1 exp(-1/£) 
2 + £ + 1 - exp(-1/£) 

-1/£ 2 
If e << 1, then yh(l) R$ l+2£ and the global approximation is given by 

2 
yh(x) R$ 1+2£ <j)(x) 

Fig. 3.4.9 

The solution y of eq. (3.4.22) and the approximation yh 

with partial exponential fitting of Sh. 

C. Complete exponential fitting of vh. 

Now we use Sh= M0' 1 (n), vh N0' 1 (TI,aTI). The exponential rate a 

corresponds to the exponential rate of G(xi 1 •)1 hence a1 = a2 = 1/£. 

Now <P and 1jJ are 

(3.4.33) 

(3.4.34) 

<P (x) 

0 

exp(x/£) - 1 
exp(l/£) - 1 

exp(x/£) - exp(2/£) 
exp (1/£) - exp (2/£) 

2 

Fig. 3.4.10 

ifXE[0,1], 

if XE [1,2], 

if XE [0,1], 

if X E [1;2]. 

0 2 

The functions <P and 1jJ when complete exponential fitting 

of Vh is applied. 
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In this case evaluation of (3.4.26) again yields the pointwise exact solu

tion at x = 1 and the global solution is 

= ~ = 1 - exp(-1/£) ~(x). 
yh(x) B(<j),~) 1 + exp(-1/£) ~ 

D. Partial exponential fitting of Vh. 

To complete our exposition we find the approximate solution when Vh is 

partially exponentially fitted. Using Sh= M0 ' 1 (II), Vh = N°' 1 (II,a.7T), 

a.1 = 1/£, a.2 = O, we obtain 

1 1 
£ 

_ ~ _ ..:cex""p.....,_(1..:../...::£.,_) ___ "'--_ 
yh(l) - B(<j),~) - -1 

1 
- 2--

1 
exp(l/£) - 1 2 

For small values of£, yh(l) I'::! 1 and the global solution is yh(x) I'::! <j)(x); 

see figure 3.4.11. 

y(x) 
'--t-

0 2 

Fig. 3.4.11 

The solution y of eq. (3.4.22) and the approximation yh 

with complete or partial exponential fitting of Vh. 

This example demonstrates that fitting of Sh is inferior to fitting of Vh 

in the following sense. When Sh is fitted to the behaviour of the solution 

y, the error caused by the boundary layers also effects the smooth part of 

the solution, whereas the error due to the boundary layer is restricted to 

the boundary layer region when Vh is fitted. 

EXAMPLE 3.4.4. In this example we show how exponential fitting of Sh has a 

different effect when we take another right hand sides in the equation of 

example 3.4.3. We consider the problem 

(3.4.35) £Y" + y' 1 - £ - X on [0,2], 
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with homogeneous boundary conditions. 

The solution is 

1 
y(x) = 2 x(2-x). 

A. Complete exponential fitting of sh. 

The discretization is executed as in example 3.4.3.A, i.e. 

sh= NO,l(TI,aTI), a 1 = a 2 = -1/£, Vh = M0' 1 (TI); the functions¢ and~ are 

given by (3.4.27) and (3.4.28). Now 

and so 

2 

(s,~) f (1-£-x)~(x) -£ 

0 

_ ~ _ 1 - exp ( -1 / £) 
yh(l) - B(¢,~) - £ 1 + exp(-1/£) 0 

Thus, for small values of£, yh(l) is a poor approximation to y(l) and so 

is the global approximation. 

yh(x~(x) 

0 1 2 

Fig. 3.4.12 

The solution of eq. (3.4.35) and the approximation yh 

with exponential fitting of Sh. 

B. Complete exponential fitting of vh. 

The discretization is done as in example 3.4.3.C, ¢and~ are given 

by (3.4.33) and (3.4.34). Now 

2 

(s, ~) f (1-£-x)~(x)dx 
1 1 - exp(-1/£) 

- 2 1 + exp(-1/£) 
0 

and 



Fig. 3.4.13 

The solution of eq. (3.4.35) and the approximation with 

exponential fitting of Vh. 
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In view of equation (3.4.21), it is clear that by complete exponential fit

ting of Vh, yh(1) = y(1) for any functions since 

ijl(•) = -B(<f>,1jl)G(1, •)/<f>(1). 

3.5. EXPONENTIALLY FITTED DISCRETE OPERATORS 

In this section we discretize the weak form of the differential equa

tion (1.1.1), using piecewise polynomial trial spaces and exponentially 

fitted test spaces. Thus we construct difference schemes that are espec

ially designed to solve the singular perturbation problem (1.1.1) in the 

case of a large lhf/EI ratio. The schemes aim at a pointwise accurate ap

proximation on a given mesh IT and good interpolatory properties in the 

smooth part of the solution. 

The choice of sh and Vh 

The following lemma gives an indication of what kind of functions of 

a limited support should be included in a trial space Vh in order to ob

tain pointwise accurate approximations on a given mesh IT. 

LEMMA 3.5.1. Let there ewist a unique soZution to equation (3.2.1), Zet IT 

be a p~tition of [a,b] and Zet Gi(•,•) denote Green's funation with res

peat to the intervai [xi_1,xi+1J. Let the funations {Gi (xi,•>}::! form a 
subset of vh c H~(a,b) and Zet there exist a unique soZution 

yh Esh c H~(a,b) of the equation 
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then yh is a pointwise exaat solution on IT. 

PROOF. By theorem 3.2.3 

Since B(~.,~.) is nonsingular, yh is bounded for all i 
J J. 

0, 1, •.. ,N and so 

is II y - yhll l. Let the function u be defined by 

u 
N-1 G(x. ,x.) 

t J. J ) 
L G ( ) GJ.(xJ.,• 

j=l j xi,xj 

then u E vh. 

On each interval [xm-l'xm], G(xi 1 •) - u satisfies the equation 

LT (G(x., •)-u) 
J. 

and the boundary conditions 

j 

0 

m-1,m. 

Thus we have u = G(x.,•) on each interval [x 1 ,x ]. 
J. ~ m 

Hence inf IIG(xi, •) - vii 1 0 and 
VEVh 

which proves the lemma. 0 

In contrast to the functions G(xi 1 •), the functions Gi(xi 1 •) have a 

support of only two intervals. This property makes the latter appropriate 

as basis functions in Vh when discrete operators are constructed. Of course, 

accurate computation of each Gi (xi,•) would require the same effort as the 

solution of the original boundary-value problem, but a space in which they 

are sufficiently approximated is readily found in most cases. For smooth 

problems the space MO,k(IT) suffices. For singular perturbation problems of 

the form (1.1.1) with a large ratio jf/sl we found in lemma 3.4.1 that a 

boundary layer appears with a known exponential rate and so NO' k (TI ,a ) 
'TT 

be used. 

can 

As far as the pointwise accuracy of the approximation is concerned, 



109 

the choice of a trial space Sh should be such that lly - yhlll can take small 

values. Further, Sh should be selected with a view to computational con

venience and good interpolatory properties (global accuracy). Since the sol

ution of a singular perturbation problem may behave almost discontinuously 

in some parts of the interval [a,b], we use a space Mm,k(TI) with the low

est possible number of continuity constraints: m = O; the degree k of the 

piecewise polynomials depends on the accuracy required. 

The choice of the parameters ai 

The parameters ai represent the exponential rate of the local Green's 

functions G.(x.,~) on the interval I. = (x. 1 ,x.). The WKB approximation of 
J J l. J.- l. 

the fast component of the adjoint equation 

Ey 11 - (fy) I + gy 0 

is 

X 

exp J {f(t) - g(t) + O(E)}dt. 
E f (t) 

Thus, the exponential rate, which depends on x, is given by 

f(x)/E - g(x)/f(x) + O(E). The local Green's functions G.(x.,~), j = i-1,i, 
J J 

have boundary layers at xi-l if f/E < 0 or at xi if f/E > 0. The fast com-

ponent dominates in the boundary layer and so we take 

(3. 5.1) a.= 
l. 

f(x.) g(x.) 
--1. - __.J_ 

E f(x,) ' 
J 

. {i-1 J = 
i 

if f/E S 0, 

if f/E > 0. 

If f is not a constant function, then the effective difference ~a between 

ai and the exponential rate in the boundary layer will be of order 

f' (x.)~/E + O(E), here~ is the length of the region where the fast com
J 

ponent is significant. This boundary layer extends over an interval of 

O(E), and so ~a is of order O(f' (x.)) + O(E). 
l. 

The WKB method yields an approximation that is asymptotically correct 

for E/f + O. On the other hand, for small values of f/E, the first order 

term fy' does not play the dominant role which is characteristic of non

symmetric singular perturbation problems. Small values of h correspond 
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to small values of la I, and as we saw in section 3.4 
7T 

This means that, with this choice of a7T, exponentially fitted operators re

duce to ordinary Galerkin operators for small values of aihi. Leth be the 

meshwidth of the (quasi uniform) grid IT, then la I ➔ 0 ash ➔ 0 and the 
7T 

following consequence is immediate: 

For a fixed E > O and h + o, all convergence results for the classical 

Galerkin method (3.1.12) carry over to our exponentially fitted methods. 

The evaluation of the entries of the discrete equation 

An important problem that arises is the efficient evaluation of the 

integrals B(¢.,~.) and (s,~.). Because of the possibly, rapidly varying 
J l. l. 

components in ~i E Vh, a simple quadrature rule cannot be used. We may pro-

ceed in two ways. We may use either 

(1) an interpolation rule. 

The coefficients of the differential equation are approximated by 

Lagrangian approximation, whereupon the quadrature is executed exactly 

(analog of the interpolation rule in section 3.1); or 

(2) a combination of an interpolation and a quadrature rule. 

The part due to the polynomial components in NO,k(IT,a) is computed by 
7T 

a quadrature rule and only the part involving the exponential component is 

computed by an interpolation rule. 

We illustrate both approaches by showing the discretization of the 

term c2y in the differential equation (3.1.2). We use the natural basis 

(3.4.20) in the space NO,k(IT,a7T). Without loss of generality we assume 

a·< o. The contribution from c 2y to B(w.,1.) is 
J l. 

(3.5.2) 

where z = ha.and A. = W~(O). 
l. l. 

Let the Lagrangian interpolation be based on the nodes {nm}:=l and 

let the corresponding polynomials be {x}:=l' then the integral is approxi

mated by 



(3.5.3) 

Here g X ~-~~d~ are real constants independent of z and 
m J l. 

1 

J X ~.IJl(•,z)d~ 
m J 

0 

depend on z. 
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Using a quadrature rule for the polynomial parts we approximate the 

integral by 

(3.5.4) 

1 M 

J c2~.IJl.d~ I'd l c2 <n l {w ~- <n J~~<n l 
J 1. m=l m m J m 1. m 

0 

In (3.5.4) the coefficients depending on z are the same as in (3.5.3) and, 

in general, the amount of computational work is the same in both cases. 

However, if {n} and{~.} are properly selected, (3.5.4) can be computed 
m J 

more efficiently. 

In both cases we need to evaluate int~grals of the form 

1 

J P(x)IJl(x,z)dx 

0 

where P(x) is a polynomial. Introducing the notation 

(3. 5. 5) 

and 

(3.5.6) 

w (z) 
n 

-z 1 
T(z) = ..::!:,__ = 2(1-coth(z/2)), 

1-e-z 

we can calculate the integral wn(z), z # 0, by recursion from 

(3.5.7) 

Moreover, we 

(3. 5.8) 

1 w0 (z) = T(z) +; 

- T(z) n -
wn(z) = n+1 + ~ wn-1 (z). 

have the relations 

Ji n d -
x dx IJl(x,-z) dx = -nwn-l (z) 

0 
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and 

1 

(3.5.9) f P(x) ! W(x,-z) dx = -z f P(x)l(x,-z)dx 

O +z T(z) f P(x)dx. 

We notice also the relation between ; 0 (z) and the function mas defined by 

(2.4.8), namely 

(3.5.10) 

The use of an interpolation rule 

We illustrate discretization with exponential fitting by generating 

two finite difference schemes which yield piecewise linear approximations 

to the solution of (1.1.1). In both examples we use the natural basis in 

M0' 1 (IT) and in NO,l(IT) and we compute the integrals using formula (3.5.3). 

EXAMPLE 3.5.1. We take M = 1 and x 1 = 1. The coefficients of the differ

ential equation are thus approximated by piecewise constants on the grid 

IT. The evaluation of the matrix 

B 0 (</>J. ,t/J1.) = J {-e:<f>'.1/J'. + f</>~t/J. + g<f>,t/J,} dx 
,., I Jl. JJ. JJ. 

and the vector 

yield respectively 

(3.5.11) 

and 

where h 

R, 

w0f + (w0-w1)gh 

(1-w0)f + (½ -w0+w1)gh 

o, 1. 
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EXAMPLE 3.5.2. Now we use (3.5.3) and take M = 2, x1 (~) = 1 - ~, x2 (~) = ~; 

thus, approximating f, g ands by piecewise linear functions, we obtain 

~
b00 b01) 

Bn(</J.,1/J.) = b b , (s,1/J.) 
,., J 1 10 11 1 

where 

b01 
_f, + (wO-wl)fO + wlfl + g0h(wl-w2) + glhw2, h 

- ..!.. f - ..!.. f 1 1 
- boo' b10 2 0 2 1 + 3 gOh + 6 glh 

bll 
1 

+ 2 fo 
1 

+ 2 fl 
1 

+ 6 gOh 
1 

+ 3 glh - bOl' 

dO (w0-w1) s0h + w1 s 1h, 

dl =..!_sh+ ..!_sh - d0 • 
2 0 2 1 

Here, the subscripts O and 1 in f 0 , f 1 , g0 , g 1 , s0 , s 1 denote function val

ues off, g ands at x = xR,-l and x = xR, respectively; h = xR, - xR--l and 

w. = w.(-ha 0 ), j = 0,1,2. 
J J ,., 

Relationship to other difference methods 

In example 3.5.1 the discretizations of the terms Ey" and fy' are 

identical with those obtained by the method of exponentially fitted differ

ences (2.4.2)-(2.4.8). This follows directly from (3.5.10). Moreover, scheme 

(3.5.11) suggests the adaptation of the exponentially fitted finite differ

ence scheme for a non-uniform mesh, which can be written as 

(3.5.12) 

2E 
f(l+w) + gh(l+w) h + f(l+w) 

f(l-w) 

) (
h(l+w)~ 

f(l-w) + gh(l-w sh(l-w/ 

fh 
where w = m( 2E), mis defined by (2.4.8). This scheme has been implemented 

in ALGOL 68. The program and some of its results are listed in chapter 4. 
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For a 2h2 + 0, the method (3.5.11) reduces to the one described by 

(3.1.38). In the limit for a 2h2 + 00 (a2h2 + - 00), y' is discretized by back

ward (forward) differences and y by the trapezoidal rule on the backward 

(forward) interval. If the interpolants off and g on r 2 are taken equal to 

the midpoint values in this subinterval, then, in the limit for la2h2 1 + 00 , 

the discretization of fy' + gy is the same as given by eq. (2.3.19). Thus, 

for lfh/EI ➔ 00 , eq. (3.5.11) yields exactly the scheme as proposed by 

ABRAHAMSSON et al. [1974] for linear problems without a turning point. 

The use of a quadrature rule 

In this subsection we describe the discretization of the differential 

equation 

(3.5.13) (E(x)y' (x))' + f(x)y' (x) + g(x)y(x) s (x), 

where we allow E(x) to be a slowly varying positive definite function of x. 

We use a quadrature rule and we select this quadrature rule and the func

tions{¢.} and{'¥.} so as to minimize the amount of computational work. 
J l. 

The description is given for a characteristic interval r 2 with a 2 < 0. 

On this interval we introduce 

E(s) E(x)/h, 

(3.5.14) F (s) f(x) h (x2-x2-1) 

G(s) g(x)h s (x-x2_1) /h 

K(s) s(x)h z = -ha2 

We select a (k+l)-point symmetrical quadrature rule, characterized by its 

nodes O =so< S1 < < sk = 1, Si+ sk-i = 1. The natural basis func-

tions {"' }k in S = MO,k(ID and {'¥ }k 1.·n V 
"'j i=O h i i=O h 

= NO,k(IT,a) are chosen in 
1T 

agreement with the nodes of this rule, i.e. the set 

struction of both W. and'¥. is taken to be the same 
J l. 

{s.} used in the con-
1. * 

as the set {s.} of no-
1. 

dal points. The entries of the discrete operator, for a 2 < O, are 

(3.5.15) B(¢.,'¥.l 
J l. i 1,2, •.. ,k, 



where 

(3.5.16) 

(3.5.17) 

= B(<I>.,'1'(•,a 0 h)) = B(<I>,,'l'(•,-z)) = 
] N ] 

1 1 

= - zT(z) f E<I>jd~ + f (zE+F)<I>j'l'(•,-z)d~ 

0 0 

1 

k 

+ [ G<I>j'l'(•,-z)d~ 

Rj - z T (z) l {E ( ~ ) [ w <I>'. ( ~ ) J } 
m m J m m=O 

k 1 

+ l {(zE+F) (~) f <I> <I>'.'l'(•,-z)d~} 
m=O m mJ 

k 
+ L fo<~ ) 

m=O m 

0 

1 

J <I> <I>.'l'(•,-z)d0 
m J 

0 
def * = B < <I> . , 'I' ( • , -z l l • 

J 
1 

B(<I>.,<I>~) = f {-E<I>'.<I>> + F<I>'.<I>~ + G<I>.<I>~}d~ 
J]. Jl. Jl. Jl. 

k 0 

RJ }:{-E(E;) [w<I>'.(~)<I>>(~)J} 
m=O m m J m i m 

] + G(~1.) [w.8 .. 
]. l.J 

J 

The right hand side of the equation is 

(3.5.18) {
S('l'o) , 

s ('I'.) = 
]. * * S(<I>.) - <I>. (O)S('!'0J, 

]. ]. 

i = o, 

i = 1,2, ... ,k, 

115 



1i6 

(3.5.19) 

(3.5.20) 

1 

J K'¥(• ,-z)d!; 

0 

0 

def * 
<I> '¥(•,-z)d!;} = S ('¥(•,-z)). 

m 

* def * * F::i K ( 0) [ w0<I> 1. ( 0) J + K ( !; . ) [ w. ] = S ( <P. ) 
l. l. l. 

REMARK. The coefficients between square brackets all denote real constants 

depending only on the choice of the set 

If E: is independent of x, then summation over E(!;) can be avoided in 
m 

(3.5.17) and in (3.5.16) where 

k r/h if j o, 
(3.5.21) I E (!;m) [w <P'. (!; ) ] = 0 if j 1,2, ... ,k-1, 

m=O m J m 
e:/h if j k. 

An algorithm based on formulas (3.5.15)-(3.5.20) has been written in ALGOL 

60 and, in order to demonstrate the effect of exponential fitting, numeri

cal results are given in section 3.7. 

Further approximation of the ai-dependent entries 

Since a. is determined in (3.5.1) with a relative accuracy of only 
2 l. 

O(a~ ),we can approximate (3.5.16) and (3.5.19) further to 
l. ' 

(3.5.22) 

k 
3 

{-z T(z) I {E(!; )[w <P'.(!; )]} 
m m J m m=O 

+ l (zE+F) (!; )q . 
m m mJ 

m 
-3 -z 

+ O(z ) + O(e ), 
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(3.5.23) 

k 

S*('I'( • ,-z)) = {zK(f,:0) + mIO K(f,:m)pm1}/z2 

-3 -z + O(z ) + O(e ), 

where pjl <P'.(0), 
J 

pj2 <JJ•: (0) , 
J 

~j Pmlpjl + 0moPj2 

The algorithm obtained from (3.5.22)-(3.5.23) by truncation of the expon

entially small and 0(z~3) terms is more efficient than the one given by 

(3.5.15)-(3.5.20), but it is less accurate for small values of laihil- An 

algorithm that uses a classical Galerkin method for small values of la~hil 

and the formulas (3.5.22)-(3.5.23) for larger values of la1h~I, combines 

the advantages of both. A program that uses such a combination of both 

methods has been written in ALGOL 68. It is listed in chapter 4, where 

some of its results are also reported. 

EXAMPLE 3.5.3. If we use a quadrature rule fork 

entially fitted difference scheme 

where 

s* <'I'. l 
J. 

1, we obtain the expon-

and where b00 , b01 , d0 , d1 , f 0 , f 1 , g0 , g 1 are defined as in example 3.5.2. 
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3.6. THE ASYMPTOTIC BEHAVIOUR OF EXPONENTIALLY FITTED METHODS 

In this section we study the behaviour of the exponentially fitted 

weighted residual (EFWR) method (3.5.15)-(3.5.20) as E-+ 0. In the preced

ing section we saw that exponentially fitted global methods lead to linear 

systems of type (3.1.17), where the operator B(¢j,$i) as well as the right 

hand side (s,$i) can be split into a polynomial and an exponential part: 

(3.6.1) B(¢j,$i) = 

(s,$i) = 

B(¢. ,¢~) 
J J. 

* (s,¢i) 

. * 
+ B(¢j,$i), 

* + (s,$i). 

For the EFWRmethod this splitting was explicitly given for each interval 

Ii by eqs. (3.5.15) and (3.5.18). By letting z-+ 00 in the exponential parts 

(3.5.16) and (3.5.19), we see that these parts vanish as laihil-+ 00 and, 

therefore, a one-sided coupling remains in B(¢.,¢~). We now derive a suf-
J J. 

ficient condition on E to allow us to neglect the down-stream influence. 

We then study how exponentially fitted methods degenerate to one-step 

methods for initial-value problems. 

Asymptotic behaviour for small values of E 

We assume that Eis independent of x, f ~ p 0 < 0 and lgl < M. On an 

interval Ii we consider the exponential part of the discrete operator, 

B(<Pi,'l'O), and of the right-hand side, S('1'0). Using equations (3.5.16) ·and 

(3.5.19) we obtain asymptotic expressions for E-+ O, namely 

(3.6.2) G(O)<P. (O)_!. + [F' (O)<P'. (0) 
J z J 

+ G'(O)<P.(0)]..!__2. + 
J . 

z 

+ O(z-3) + O(e-z), 

(3 .6. 3) 

where z -F(O)h/E + G(O)F(O). 

Similar expressions are obtained for B* ands* if F'(O) is replaced by 

l F(i; )<P' (0) and if analogous ,.substitutions are made for G' (0) and K' (0). 
m m 

m Since <I>. (0) = o0 . , the elementary parts B (;- 111 ) d S cw ) f th J ,J , "'j''i an 'i , o e 
discrete equation have the structure 



0 (e:) 

0(1) 

' ' ' 

and 
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0 (e:) 

0(1) 

This means that only a one-way coupling remains in the system if the entries 

of order O(e:2) can be neglected. In that case the method degenerates to a 

one-step method, which integrates the differential equation from one end to 

the other, starting with the relevant boundary condition. Under these cir

cumstances we distinguish between two possibilities: whether or not the 

terms O(e:) can be neglected. 

EXAMPLE 3.6.1. The EFWR scheme given in example 3.5.3 reads, for f < 0 and 
-1 

e: + 0, written as a power series in z (except for exponentially small 

terms and O(e:3) terms) 

where z 

off, g 

cs* C':I'. » "" 
J 

f 0h g0h 
- -e:- + f; f 0 , f 1 , g0 , g1 , s 0 and s 1 denote 

ands at x 2 x 1 and x = x respectively. 
i- i 

the function values 

EXAMPLE 3.6.2. Another scheme, which is not of the form (3.5.22)-(3.5.23), 

is given in example 3.5.1. Because the splitting (3.6.1) is still valid, we 

can give an asymptotic expression similar to (3.6.2) and (3.6.3). When 

f < O, we take the piecewise constant approximations to f, g ands equal to 

f 0 = f(xi_1>, g0 = g(xi_1) and s 0 = s(xi_1). We thus obtain, neglecting 

O(e:3) and O(exp(-1/e:)) terms, 
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( o o) 'o + C o) go+ / 1 

:) (B(<P.,'l',)) ~ [ ( gOh 
J ], --, 

-1 -1 1 1 \-1 z 
2 2 

(S('l'.)) ~ 
(:) s 0h + c:) s 0h 

], z' 
where z 

f 0h g0h 
---+--. 

e: fo 

EXAMPLE 3.6.3. If, in example 3.6.2, we take for the exponential rate the 

cruder approximation z = -f0h/e:, then we obtain 

(B(cI>.,'l'.))~ [ ( o 
J ], -1 z 

2 O(e:) terms are neglected, O(e:) terms are not 

In each step of the integration process, the initial value yh(x1_1) is 

given and the value yh(x1) is computed from 

tt ao yh (xi-1) 

(3.6.4) Be:(cI>.,'l'.Ja. s ('!',) i 1,2, ••. ,k, 
J ], J e: ], 

yh(xi) ak. 

Here, B (<P.,'l'.) and S ('l',) are equal to B(<P.,'l'.) and S('l'.), except that the 
E:Jl. E:l. Jl. ], 

contributions of O(e:) that originate from the interval Ii+l have been added. 

In order to study the influence of this contribution, we consider the 

problem 

The weak form of this problem reads: 
1 

find y EH (x1_1,x1) such that y(x1_1) 

ys(x ). 



B(y,~) + (ygyijl) (xi) - (s,~) - (ys~) (x2) 0 

for all~ E {¢ I ¢ E H1 (xi_1 ,x2), ¢(x2) O}. 

The discretization of this problem is given by 

i = 1,2, ..• ,k, 
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This system is identical with (3.6.4) when y = -E/(f(x2)h). It follows that 

the EFWR method computes y(x2) step by step, for i = 1,2, ... ,N-1, by dis

cretization of the weak form of the boundary problem 

(3.6.5.a) 

(3.6.5.b) 

{ Ey" + fy 1 + gy = s 

using the starting condition y(x0) = a. 

Thus, we have formQlated the influence due to the interval Ii+l' in 

terms of the mixed boundary condition (3.6.5.b) at xi. 

Terms of order O(E) are neglected 

If all terms of O(E) are neglected in (3.6.4), the exponential part 

of the discrete operator is neglected completely. In each step of the in

tegration process the initial value yh(x2_1) is given and yh(x2) is com

puted by 

{ 
aO = yh (xi··l)' 

k 
(3.6.6) I a. B (cJ>. ,cJ>~) = S(cJ>~) i 1, ... ,k, 

j=O J J l. l. 

yh(xi) = ak 

* Also the terms of O(E) in B(cJ>i,cJ>j) vanish and the reduced equation (1.1.13) 

is solved on each I 2 by a weighted residual method with Sh= MO,k(Il) and 

Vh = M-1,k-l(Il). 

When the quadrature described by eqs. (3.5.17) and (3.5.20) is ap

plied, the discrete equations satisfied by the solution in Ii are 
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(3 .6. 7) 
k k 

a. l w <!>~(/;) {F(~ )<!>~(~) + G(~ )o.} 
J p=O .P 1 P p J p .P JP 

l w <!>~(~ )K(~ ). 
p=O P i P P 

Thus, the value yh(xt) = ak is determined by yh(xt_1), F(~p), G(~p) and 

K(~). This one-step method (3.6.7), to which the exponentially fitted 
p E 

global method (3.5.15)-(3.5.20) reduces for fh + 0, will be called the 

reduaed EFWR method. 

The following is an immediate conclusion: 

In the limit for :h + O, the exponentially fitted global method (3.5.15)

(3.5.20) solves the reduced problem by the reduaed EPWR metJzod. 

The accuracy of the reduced EFWR method 

Since the matrix (w <!>~(~ )) is not square, the one-step method (3.6.7) 
p 1 p 

is not equivalent to the collocation method for the reduced equation based 

on the nodes {~i}i=l, •.. ,k· However, using the following lemma, we show 

that it collocates at k points that are not known in advance. 

LEMMA 3.6.1. Let be given a set {x0 < x 1 < ••• < xk} and a set 

{w I w > O, p = 0,1, .•. ,k}. Let f be a continuous function on 
p p 

[x0 ,xk] suah that 

k 
l w <l> (x ) f (x ) O 

p=Op pp 

for any polynomial <l>(x) of degree <k, then f has at least k distinct zeros 

on [x0 ,xk]. 

PROOF. This lemma is easily verified by a standard technique; see e.g. 

DAVIS [1963], thms. 10.1.3 and 10.1.4. 0 

COROLLARY. Let the solution obtained with the reduced EFWR method be de-

* * noted by yh, then yh is determined on each interval It by 
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Applying the lemma, we conclude that 

* has at least k distinct zeros on each [xl-l'xt]; i.e. yh(x) collocates the 

reduced equation at k (unknown) points in each closed interval It. 

The relation between implicit Runge-Kutta and collocation methods was 

established by HULME [1972a, 1972bJ and WEISS [1974]. Direct application of 

theorems 2.2. and 5.1 of WEISS [1974] yields the following result. 
k+1 

If f,g EC [a,b], lfl ~ p > o, lgl < M then the reduced EFWR method 
0 

yields a unique solution if the partition is sufficiently refined and the 

truncation error of this one-step method is at least of order hk+l_ This 

result also holds for quasilinear problems, provided that g/f is Lipschitz-

continuous with respect toy. 

Better error estimates are derived in the following two theorems. 

These theorems show that, using EFWR methods, we can obtain accurate approx

imations to asymptotic solutions for£+ 0 of the continuous problem, by 

letting first£+ 0 and then h + 0. In theorem 3.6.1 we give error bounds 

for the reduced exponentially fitted method, assuming exact evaluation of 

the integrals involved. In theorem 3.6.2 we show that a quadrature rule of 

order~ 2k is required to realize the bounds given in theorem 3.6.1. 

THEOREM 3.6.1. Let y be the solution of problem (1.1.1) with f,g,s E Ck[a,b], 
£ 

lfl > O. Let yh be the approximation toy obtained by the weighted re-
,£ £ 0 k 

sidual method ( 3. 1. 17.l , that is characterized by sh = M ' (II) , 

vh = NO,k(II,a'IT), a.TI bei.ng det.e:f'!Tlined by eq. (3.5.1). Let R denote a subin

terval of [ii,,b], containing at least the mesh-interval at the boundary

layer end of [a,b], then the method is consistent with the reduced problem 

on [a,b]\R. Moreover, we can find constants c and h0 such that for all 

h < hO 

(3. 6. 8) llyo - y II 
h,O H0 ca,b)\R 

,,; C hk+1 lly II 
O Hk+l (a,b) \R 

(3.6.9) llyo - y II 
h,O H1 (a,b)\R 

,,; C hk lly II , 
O Hk+l(a,b)\R 

(3.6.10) I (yO-yh,O) (xi) I ,,; C h2k lly II 
O Hk+l(a,b)\R 
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PROOF. \hthout loss of generality we give the proof for f < O; then yO is 

the solution of the reduced problem 

LoYo E fyo + gyo = s 
y0 (a) = a. 

on [a,b]\R 

In view of eq. (3.5.1) and the definition of NO,k(IT a) the discrete limit 
I 'If I 

solution Yh,O e MO,k(IT) is determined by 

(L0yh,O'v) = (s,v) 

Yh,O(a) = a. 

Vv e V = M-l,k-l(Il) 
h O ' 

In the remaining part of this proof we shall consider only the interval 

[a,b]\R and for convenience we denote L0 , y0 and Yh,O by L, y and yh. De

fining eh= yh-y, we have eh(a) = 0 and 

Since 

for all v e vh, we have by lemma 3.2.1 

:5: K1 II yll + Kl D e D • 
k,'IT h k,'IT 

By lemma 3.2.1 there also exists a zh e MO,k(IT) such that 

C hk+l U k+l II 
D y O' 

0 :5: m :5: k+l. 



Hence, using lemma 3.2.2, we obtain 

hk lie II s hk llzhllk,7T + hk lie - z II h k,7T h h k,7T 

(3.6.11) s C h llz II + C hk+l IIDk+lyllo 
h 1,7T 

s Ch llehU l,1r + C hk+l 11Dk+lyll 0 • 

-1 0 1 
Since f s f 0 < 0, the inverse operator L : H (a,b)\R ➔ H (a,b)\R is 

bounded and 

Ci llehUl s IILehllO s C hk 11Dksll 0 + c hkUyllk 

+Ch llehlll + C hk+l IIDk+lyU 0 

Hence, if h < h0 = cr/c, 

(3.6.12) 
C hkllyllk+l 

llehlll s cr-hC 
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which proves (3.6.9). Notice that h0 = cr/c depends on f and g, but is in

dependent of£. 
1 

Let x,e. E II, x,e. f a, x,e. f b and let cj> E C [a,x ,e.J be defined by 

T 1 0 
then L: H (a,xt) ➔ H (a,xt) has a bounded inverse, 

and 

Hence 

(cj>,Leh) = inf (cj>-v,Leh) 
VEVh 

inf llcj>-vll 0 sch 11Dcj>ll 0 s Ch llcpll 1 sch Uehll 0 . 
VEVh 

Ch lie II 
h 1 

C hk+lll II 
y k+l s ____ .;;.;;..._ 

Ci-he 
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which proves (3.6.8). 

Green's function with respect to the operator Lon [a,xi] is 

(3.6.13) 

Hence 

exp 

G(x,!;) 

u(x) -(G(x,•) ,Lu) 

!; 

J g(t) dt if!;< x, 
f (t) 

X 

if !; > x. 

leh(xi) I = I (Leh,G(xi,•)) I = inf I (Leh,G{xi,•)-v) I 
VEVh 

:;; DLehllO inf IIG(xi,•l - vll 0 . 
V€Vh 

For all x. E IT the functions v EV = M-l,k-l(IT) can represent the discon-
i h 

tinuity of G(xi,!;) at!; xi. Therefore, 

(3.6.14) 

which proves (3.6.10). D 

In order to study the influence of quadrature on the accuracy of the 

reduced EFWR method and in order to determine its stability, we need the 

following two lemmas. 

LEMMA 3.6.2. Let the hypotheses of theorem 3.6.1 hoZd and Zet eh yh - y, 

then, if h is smaZZ enough, 

II e U :;; c llyll 1 
h Hk,n(a,b)\R k+ 
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and 

PROOF. Following the same lines as used for the proof of (3.6.12), we see 

that 

hkDehllk,1T $ C hkll k+l II 
D y O,1T +Ch llehlll 

C hk+lll II 
C hk llnk+lyllo + 

y k+l 
$ 

cr-hC 

Hence 

and 

IIDkLe 11 0 :s; IIDksll + C lly Ilk l 
h ,TI h + ,1T 

:s; llnksll + c llyllk + c De Ilk 
h , 1T 

LEMMA 3.6.3. The trunaation ePPOP of the one-step aaiePkin method (3.6.6), 

whePe sh= MO,k(Il) and vh = M-l,k-l(Il), is 0(h2k+l). 

PROOF. To determine the truncation error, we consider the error in a single 

step in the solution of an initial-value problem, assuming correct initial 

values. Without loss of generality we can consider the first step of the 

integration process over [a,b]. The same arguments as were used in the proof 

of theorem 3.6.1 yield, for h small enough, 

inf i(Leh,G(x1 ,•)-v)I $ 

ve:Vh 

IILeh-vll 2 
L (x0 ,x1) 

inf 0G(x1,•)-vll 2 
ve:Vh L (x0 ,x1) 
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s inf 
vEVh 

h2k+1; 

s C II k 112 h2k+l 
DLehO,'IT . 

By lemma 3.6.2 we know that IIDkLe 11 0 is bounded, independently of h, so 
h ,'IT 

that 

which was to be proved. D 

THEOREM 3.6.2. Let the aonditions of theorem 3.6.1 be satisfied and let 

f,g,s E Ht+l,'IT[a,b] with t ~ k. If at-th degree quadrature rule is used 

for the evaluation of the integrals B*<~-,~~) and s*c~~), then the pointwise 
J 1 1 0 k 

error lly0 - yh 0 11 00 of the reduaed EFWR method, aharaaterized by sh= M ' (TI) 
-1 k!.1 'IT' · and Vh=M ' (TI), w of order p; p = min (2k,t+1). 

PROOF. We use the same notation as in the proof of theorem 3.6.1, i.e. we 

consider the reduced operator L (Ly= fy' +gy) on [a,b]\R, where R denotes 

* the meshinterval containing the boundary layer. Furthermore, (v,w) denotes 

the approximation to (v,w) computed by application of the quadrature rule on 

* each interval Ii and yh E Sh denotes the solution of 

(3.6.15) 

* (s,v) for all v E vh. 

By eqs. (3.6.11) and (3.6.12) it follows that, if his small enough, 

llehllk,'IT s chllyllk+l and, therefore, 

(3.6.16) 
s Chli eh*II l + Chkll yll 

k+l 
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* By the corollary to lemma 3.6.1, Lyh - s has at least k distinct zeros on 

each IJI,, so that 

By theorem 3.6.1, if his small enough, 

(3.6.17) 

* k s c0 eh II 1 h + cl yB k+1 h 

s ~ DLe:•o h + cUy8k+1 hk; 

k 
crcll yU k+1 h k 

s cr-hc < cUyUk+1 h • 

Let G(•,.•) be defined by (3.6.13), then by lemma 3.2.1 we can select a 

v e: Vh such that 

llvll 1 s c. 
k- ,1f 

Therefore, by repeated use of (3.6.15)-(3.6.17), we obtain 

s llG(x.,•) -vll 11Leh*11 0 + (K1llsll 1 +K2llyh*llk ) ht+l 
i O t+ ,TI ,TI 

2k U g t+1 
s ch llyllk+l + (CllsUt+l +Cy k+l) h • 

Combination of this result with inequality (3.6.10) proves the theorem. O 

COROLLARY. If a (k+1 l -point Lobatto T'Ule is used for' the evaluation of 

* * B (~j'~il and S (~il, then the o1:'de1:' of the 1:'esulting 1:'eduaed EFWR method 

is 2k. If a (k+1) -point Newton-Cotes T'Ule is used3 the o1:'de1:' equals k + 1 

if k is odd and k+ 2 if k is even. 
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Stability of the reduced EFWR method as an initial-value problem method 

As a consequence of the maximum principle, the boundary-value problem 

(1.1.1) withs= 0 is stable with respect to the boundary conditions if 

g ~ 0; i.e. for two solutions y 1 ,y2 of equation (1.1.1) 

for all x E [a,b]. 

We will show that this property is preserved at meshpoints by the EFWR meth

od in the limit for E/f + 0. Since the EFWR method reduces to a one-step 

method in the down-stream direction, we have to show that the reduced EFWR 

method is a stable method for the solution of the reduced problem. 

DEFINITION 

A method for the solution of an initial value problem is called A

stable in the sense of Dahlquist, if lyi+ll < lyil when the method is ap

pl~ed with a positive step-length h to any differential equation of the 

form y' = Ay, where A is a complex constant with negative real part. 

THEOREM 3.6.3. If a (2k-1)-th degree quadrature rule is applied for the 

evaluation of s*c~.,~.l and s*c,.l, then the reduced EF~W method, char-
Joi i -1 k-1 

acterized by sh= M' (IT) and vh = M ' (IT), is A-stable. 

PROOF. We apply the method to the equation y' = Ay and we consider a single 

step in the integration process. We set z = A(xi+l-xi) and yi = a 0 1; 

then yi+l ak is determined by 

k k 

J
. __ }:1 aj [ }: 

p=O 
w ~~(~) {~'.(~) + zo, }] 

p i p J P JP 

Writing down the stability function, 

F(z) 

by means of Cramer's rule, we observe that F(z) has the form 
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F(z) 

where Q1 and Q2 are polynomials of degree k. Since we know that the trunca

tion error of the one-step method is of order 2k+l, 

2k+l 
F(z) = exp(z) + O(z ) for z-+ 0. 

This relation determines Q1 and Q2 completely: 

F(z) = Pk,k(z), the Pade approximant to exp(z) with in fact the denominator 

and the numerator both of degree k. A-stability follows from the fact that 

IPkk(z) I < 1 for Re(z) < O; cf. EHLE [1968] and AXELSSON [1969]. D 

REMARK. By direct computation of F(z) for all real z < 0, it is also readily 

verified that the reduced EFWR-method is stable if a (k+l)-point Newton-

* * Cotes quadrature rule is used for the evaluation of B (~j,fi) and S (fi), 

k = 1,2, •.• ,6. 

REMARK. For each quadrature rule having the properties s 0 

si + sk-i = 1, i = 0,1, .•• ,k, 

lim 
z+-oo 

1. 

O and 

This means that the reduced EFWR method is weakly stable as lgh/fl -+ 00 • How

ever, the reduced EFWR method is only applied if !E/(fh) I-+ 0. This means 

that the condition to suffer from the weak stability is 

(3.6.18) ~ << !fl << -gh. 
h 

REMARK. We can also construct methods that are consistent with the reduced 

equation and strongly A-stable as E ➔ O. To this end we use spaces Vh with 

incomplete sets of polynomials. These spaces contain, for each subinterval 

Ii, an exponential basis function and k k-th degree polynomials. However, 

these methods show no superconvergence of the pointwise error. Such a method 

fork= 1 is shown in the following example. 

EXAMPLE 3.6.4. Let a basis in Vh be defined by (cf. equation (3.4.20)) 
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'¥(;,ah) and '¥ 1 (s) 

s and '111 (s) 

1 - s if a~ O, 

1 - '¥(;,ah) if a> O; 

then the discrete equation is described by 

where 

** E 1 
b10 h 2 fl - boo' 

** E: 1 1 
- bOl' bll - h + 2 fl + 2 glh 

** 1 
dl 2 

s 1h - do; 

f 1 , g 1 , s 1 , b00 , b01 , d0 being defined as in example 3.5.2. 

As E ➔ O, this method reduces to the backward Euler method. This is 

in contrast to the method in example 3.5.2, which reduces to the trape

zoidal rule. 

3.7. NUMERICAL RESULTS 

In this section we show the effect of exponential fitting of Galerkin

type methods. Some results obtained with exponentially fitted weighted-re

sidual (EFWR) methods are compared with those obtained with the correspond

ing classical Galerkin (GAL) methods. In this section, linear problems of 

the form (1.1.1) are solved. In chapter 4, nonlinear problems are treated 

and results are given which were obtained with the exponentially fitted 

finite-difference method (3.5.12). 

The GAL methods used in this section all have Sh= MO,k{IT). The EFWR 

methods are of type (3.5.15)-(3.5.20), without further approximation of 

the exponential terms. The methods are somewhat less efficient than those 

based on (3.5.22)-(3.5.23), but they show more clearly the effect of ex

ponential fitting. Compared to the more efficient ones, the methods used 

show essentially the same behaviour; they are only slightly more accurate 

for intermediate values of E. 

The various EFWR and GAL methods used in this section differ only in 
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the number and the choice of the nodal points {O = ~O < ~l < ••• < ~k = 1}. 

These points are chosen in agreement with the (k+1)-point Lobatto or 

Newton-Cotes quadrature rules. We identify these methods as LOBk and NCk 

methods respectively. We notice that the LOBl and NCl methods are identi

cal, since both are characterized by ~O = 0, ~l = 1 (trapezoidal rule). 

Also the LOB2 and NC2 methods are identical (Simpson's rule). Fork> 2 the 

LOBk and NCk methods are different. 

Five problems have been selected. For each problem and for various 

values of£ and h, we give the error of approximation and the computed 

order of convergence. The programs were written in ALGOL 60 and were run 

on a CDC CYBER 73/28 computer. The machine precision is about 14 .decimal 

digits. 

The error of approximation is given bye= lly - yh II . , where rr0 is 
i 1To, 00 

a fixed, equidistant grid. The computation of the approximate solution Yh. 
l. 

is made on equidistant grids IIi ::> rr0 . The order of convergence r is com-

puted as 

log(lly-yh II /lly-yh II ) , 
i 1To,00 i+l 1T0'00 

(3. 7 .1) r = 

where h. denotes the meshwidth of the grid II .• 
J J 

EXAMPLE 3 • 7 • 1. 

Problem: 

£Y" + (2+cos('ll'x))y' - y 

(3.7.2) 
y(-1) y( 1) -1. 

Solution: y(x) COS (1TX) • 

- ( 1+£1T2) cos (11'.x) - (2+cos ('ll'x)) sin (1T.x) 

on [-1,+1], 

Characteristics: the problem has neither turning points nor boundary layers. 

Using five different quadrature rules, the corresponding EFWR and GAL 

methods were applied to this problem. The results are shown in tables 3.7.1 

and 3. 7 • 2. In this case, where the solution is smooth over the whole interval, 

both methods yield acceptable approximations, the EFWR methods being more 

accurate. 
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METHOD E h = 1/4 h = 1/8 h = 1/16 

e r e r e 

LOBl. 10-1 7.47(-2) 1.6 2.41( -2) 1.2 1.04 ( -2) 

EFWR 10-3 7.15(-2) 2.0 1. 74( -2) 2.0 4.33( -3) 

10-5 7.15(-2) 2.0 1. 74 ( -2) 2.0 4.33( -3) 

10-10 7.15(-2) 2.0 1. 74 ( -2) 2.0 4.33( -3) 

LOB2 10-1 1.02(-3) 2.5 1. 82 ( -4) 2.5 3.25( -5) 

EFWR 10-3 8. 72 (-4) 4.0 5.30( -5) 4.0 3.28( -6) 

10-5 8.75(-4) 4.0 5.32( -5) 4.0 3.31( -6) 

10-10 8.75(-4) 4.0 5. 32 ( -5) 4.0 3.31( -6) 

LOB3 10-1 5.07 (-5) 5.5 1.16 ( -6) 3.3 1.21 ( -7) 

EFWR 10-3 4.83(-6) 6.0 7.55( -8) 5.5 1. 72 ( -9) 

10-5 4.70(-6) 6.2 6.56( -8) 6.0 1.01( -9) 

10-10 4.70(-6) 6.2 6.56( -8) 6.0 1.01( -9) 

LOB4 10-1 1.20(-6) 7.2 8.09( -9) 6.4 9.44(-11) 

EFWR 10-3 3.92(-8) 4.7 1.56( -9) 4.3 7.78(-11) 

10-5 1.32(-8) 7.7 6.16(-11) 5.3 1. 55 (-12) 

10-10 1.32 (-8) 7.7 6.16(-11) 5.3 1.54(-12) 

NC4 10-1 5. 96 (-6) 3.1 6.82( -7) 2.9 9.43( ~8) 

EFWR 10-3 4.48(-7) 5.9 7.45( -9) 5.5 1. 68 (-10) 

10-5 4.49(-7) 6.0 6.95( -9) 6.0 1.09(-10) 

10-10 4.49 (-7) 6.0 6.95( -9) 6.0 1.10 (-10) 

Table 3.7.1 

The error and order of convergence when problem (3.7.2) is solved by EFWR 

methods. The error e = II y - yhll 00 was measured on the equidistant 
. ¾' 

grid rr0 = {-1 = x0 < x1 < ••• < x8 = +1}. 
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METHOD £ h = 1/4 h "' 1/8 h = 1/16 

e r e r e 

LOBl 10-1 1.76(-1) 2.1 4.20(-2) 2.0 1. 04 ( -2) 

GAL 10-3 2.02(-1) 2.1 4.74(-2) 2 .1 1.13 ( -2) 

10-5 2.03(-1) 2.1 4.80(-2) 2.0 1.18 ( -2) 

10-10 2.03(-1) 2.1 4.80(-2) 2.0 1.18 ( -2) 

LOB2 10-1 8.98(-3) 4.0 5.44(-4) 4.1 3.25( -5) 

GAL 10-3 4.95(-2) 2.1 1.15(-2) 2.5 2.05( -3) 

10-5 5.04(-2) 2.0 1.24(-2) 2.0 3.09( -3) 

10-10 5.04(-2) 2.0 1.24(-2) 2.0 3.10( -3) 

LOB3 1-
-1 2.70(-4) 5.3 6.65(-6) 5.8 1.21 ( -7) 

GAL 10-3 1.07(-3) 4.1 5.88(-5) 4.2 3.24( -6) 

10-5 1.10(-3) 4.1 6.53(-5) 4.0 4.02 ( -6) 

10-10 1.10(-3) 4.1 6.54(-5) 4.0 4.04 ( -6) 

-

LOB4 10-1 3.45(-6) 7.4 2.11(-8) 7.8 9.44(-11) 

GAL 10-3 1.07 (-4) 4.4 5.09(-6) 5.2 1. 36 ( -7) 

10-5 1.13(-4) 4.0 6.98(-6) 4.0 4.32( -7) 

10-10 1.13 (-4) 4.0 6.99(-6) 4.0 4.36( -7) 

NC4 10-1 2.02(-4) 5.3 5.12(-6) 5.8 9.43( -8) 

GAL 10-3 2.57(-4) 3.1 2.94(-5) 3.7 2.21( -6) 

10-5 2. 31 (-4) 4.0 1.41 (-5) 4.0 8.61 ( -7) 

10-10 2.32(-4) 4.0 1.43 (-5) 4.0 8.89( -7) 

Table 3.7.2 

The error and order of convergence when problem (3.7.2) is solved by GAL 

methods. The error lly - yhll was measured on the equidistant grid 
. TIO,oo 

rr0 = {-1 = x0 < x 1 < ••• < x8 = +1}. 



136 

The results in table 3.7.1 show that the orders of convergence determined 

in theorems 3.2.5 and 3.6.2 are strictly attained. This means that they 

cannot be improved. 

EXAMPLE 3.7.2. 

Problem: 

e:y" + y' - (l+e:)y = 0 on [-1,+1], 

(3.7.3) y(-1) 1 + exp(-2) 

y(+l) + exp(-2(1+e:)/e:) 

Solution: 

(3.7.4) y(x) x-1 -(1+e:) (l+x)/e: 
e + e 

Characteristics: the equation has no turning points; the solution has a 

boundary layer near x = -1. 

The results are shown in table 3.7.3. In this case, where a boundary 

layer is present, the GAL methods fail, whereas the EFWR methods are able 

to represent the smooth part of the solution with a certain order of accu

racy. 

-1 +1 

Fig. 3.7.1 

The solution of problem (3.7.3). 
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METHOD e: h = 1/4 h = 1/8 h = 1/16 

e r e r e 

LOBl 10-1 1.94( -3) -3.5 2.18 ( -2) 2. 1 5. 13 ( -3) 

EFWR 10-3 1.93( -3) 2.0 4.80( -4) 2.0 1. 20 ( -4) 

10-5 1. 93 ( -3) 2.0 4.80( -4) 2.0 1.20( -4) 
10-10 1.93( -3) 2.0 4.80( -4) 2.0 1. 20 ( -4) 

LOB2 10-1 1.41 ( -4) -2.4 7.65( -4) 4 .1 4.43( -5) 

··EFWR 10-3 2.00( -6) 4.0 1.25 ( -7) 4.0 7.80( -9) 

10-5 2.00( -6) 4.0 1. 25 ( -7) 4.0 7.80( -9) 
10-10 2.00( -6) 4.0 1. 25 ( -7) 4.0 7.80( -9) 

LOB3 10-1 7.47( -6) -0.4 1. 02 ( -5) 6.1 1.51 ( -7) 

EFWR 10-3 1.00( -8) 9.5 1.37(-11) 10.1 1. 24 (-14) 

10-5 8.93(-10) 6.0 1.39(-11) 7.9 5.86(-14) 
. , 

10-10 8.93(-10) 6.0 1.39(-11) 11. 3 5.33(-15) 

LOB1 10-1 1. 48 ( -1) 2.8 2.18( -2) 2.1 5.13 ( -3) 

GAL 10-3 7.98( -1) 0.1 7.25( -1) 0.3 6.01 ( -1) 

10-5 8.15( -1) 0.0 7.70( -1) 0.0 7.67( -1) 
10-10 8.15 ( -1) 0.0 7.70( -1) 0.0 7.70( -1) 

LOB2 10-1 1. 61 ( -2) 4.4 7.65( -4) 4.1 4.43( -5) 

GAL 10-3 8.26 ( -1) 0.2 7. 22 ( -1) 0.8 4.09 ( -1) 

10-5 8.61( -1) 0.0 8.60( -1) 0.0 8.55( -1) 
1010 8.62( -1) 0.0 8.61( -1) o.o 8.61( -1) 

LOB3 10-1 7.94( -4) 6.3 1.02 ( -5) 6.1 1. 51 ( -7) 

-GAL 10-3 9.07( -1) 0.5 6.25 ( -1) 1. 7 1. 98 ( -1) 

10-5 1.08( +0) 0.3 8.90( -1) 0.0 8.81 ( -1) 
10-10 1.08( +0) 0.3 8.93( -1) o.o 8. 93 ( -1) 

Table 3.7.3 

The error and order of convergence for problem (3.7.3). The error 

e = Uy - y II 00 was measured on the equid;i.stant mesh 
h TIO' 

IT0 = {-1 = x0 < x 1 < ••• < x8 = +1}. 
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EXAMPLE 3.7.3. 

Problem (cf. eq. ( 1. 3 • 11 ) ) : 

(3.7.5) E:y" - xy' - y 2 
-(l+E:TI) cos(Tix) + TIX sin(Tix) on [-1,+1], 

y(-1) = y(+l) -1. 

Solution: y(x) cos(Tix). 

Characteristics: the equation has ·a turning point at x 

has no rapidly varying behaviour. 

O; the solution 

The results are shown in table 3.7.4. The GAL methods are able to 

yield a meaningful approximation, however, the EFWR methods are more accurate. 

Analogously to example 3.7.1, we see that, as E: + O, the order of convergence 

of the GAL methods reduces to C(hk) fork even and O(hk+l) fork odd. 

EXAMPLE 3.7.4. 

Problem (cf. equation (1.3.3)): 

(3. 7. 6) 2 
E:y" + xy I = -E:TT cos (TIX) - (TIX) sin (TIX) on [-1,+1], 

y(-1) = -2, y(+l) = 0. 

Solution: 

(3.7.7) y(x) cos(Tix) + erf(x/v'2E)/erf(l/v'2E) 

Characteristics: the solution has a shock layer in the turning-point re

gion near x = O. 

+2 

0 

-2 

-1 0 +1 

Fig. 3.7.2 

The solution of problem (3.7.6). 
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METHOD e: h = 1/4 h = 1/8 h = 1/16 

e r e r e 

LOBl 10-1 9.81(-2) 2.1 2.23 (-2) 2.0 5.45( - 3) 

EFWR 10-3 1.30(-1) 2.0 3.20(-2) 2.0 7.98( -3) 

10-5 1.31 (-1) 2.0 3.24(-2) 2.0 8.06 ( -3) 

10-10 1.31 (-1) 2.0 3.24(-2) 2.0 8.06( -3) 

LOB2 10-1 1.85 (-3) 3.9 1.20(-4) 4.0 7.54( -6) 

EFWR 10-3 1.06(-3) 2.8 1.53(-4) 3.8 1. 07 ( -5) 

10-5 5.84(-4) 4.0 3.58(-5) 4.0 2.23( -6) 

10-10 5.84(-4) 4.0 3.58(-5) 4.0 2.23( -6) 

LOB3 10-1 1.06(-5) 6.1 1.57(-7) 6.0 2.43( -9) 

10-3 2.45(-4) 3.7 1.94(-5) 5.4 4. 58 ( -7) 
EFWR 

10-5 4.54(-6) 1.9 1.20(-6) 2.1 2.81( -7) 
10-10 9.74(-7) 6.0 1.49(-8) 6.0 2.32(-10) 

LOB! 10-1 9.81(-2) 2.1 2.23(-2) 2.0 5.45( -3) 

GAL 10-3 1.87(-1) 4.5 8.12(-3) 1.5 2.90( -3) 

10-5 1. 89 (-1) 4.8 6.74(-3) 2.0 1.67 ( -3) 

10-10 1.89(-1) 4.8 6.72(-3) 2.0 1.66( -3) 

LOB2 10-1 1. 85 (-3) 3.9 1.20(-4) 4.0 7.54( -6) 

GAL 10-3 2.69(-2) 2.5 4.65(-3) 2.8 6.70( -4) 

10-5 3.08(-2) 2.0 7.63(-3) 2.0 1. 88 ( -3) 
10-10 3.08(-2) 2.0 7.67(-3) 2.0 1.92( -3) 

' 

LOB3 10-1 1.06(-5) 6.1 1.57(-7) 6.0 2.43( -9) 

GAL 10-3 8.63(-4) 5.3 2.21 (-5) 4.3 1.13 ( -6) 

10-5 9.16 (-4) 4.4 4.37(-5) 4.0 2.65( -6) 
10-10 9.17 (-4) 4.4 4.42(-5) 4.0 2.76( -6) 

Table 3.7.4 

The error and order of convergence for problem (3.7.5). The error 

e = II y - yhll was measured on the equidistant grid 
7f o,oo 

no= {-1 =XO< xl < ••• < x7 = +1}. 



140 

METHOD E h = 1/7 h = 1/14 h = 1/28 

e r e r e 

LOBl 10-1 6.32(-2) 2.0 1.57(-2) 2.0 3.91( -3) 

EFWR 10-3 7.80(-2) 1.6 2.62(-2) -2.1 1.12 ( -1) 

10-5 7.90(-2) 1.5 2.87(-2) 1.6 9.37( -3) 
10-10 7.90(-2) 1.5 2.87(-2) 1.6 9.37( -3) 

LOB2 10-1 2.64(-4) 3.9 1.80(-5) 4.0 1.14 ( -6) 

EFWR 10-3 1.18(-3) 3.7 8.93 (-5) -1. 7 2.98( -4) 

10-5 1.23(-3) 3.8 8.88(-5) 0.7 5.35( -5) 
10-10 1. 23 (-3) 3.8 8.95(-5) 3.8 6.36( -6) 

LOB3 10-1 2.89(-6) 6.0 4.65(-8) 6.0 7.31(-10) 

EFWR 10-3 4.46(-5) -2.6 2.68(-4) 1.6 8.53( -5) 

10-5 1.09(-4) 4.0 6.74(-6) -2.6 4.20( -5) 
10-10 1.11(-4) 4.0 7.13(-6) 4.0 4.49 ( -7) 

LOBl 10-1 6.32(-2) 2.0 1. 57 (-2) 2.0 3.91( -3) 

GAL 10-3 8.49(-1) 0.8 4.82(-1) 2.3 9.60 ( -2) 

10-5 1.05 -5.9 6.50(+1) 2.3 1. 36 ( +1) 
10-10 1.05 -22.6 6.52(+6) 2.2 1. 39 ( +6) 

LOB2 10-1 2.64(-4) 3.9 1.80(-5) 4.0 1.14 ( -6) 

GAL 10-3 2.77(-1) 2.9 3.85(-2) 3.6 3.25( -3) 

10-5 5.02(-1) -0.2 5. 58 (-1) -0.0 5. 70 ( -1) 
10-10 5.05(-1) -0.2 5.70(-1) -0.1 6.23( -1) 

LOB3 10-1 2.89(-6) 6.0 4.65(-8) 6.0 7. 31 (-10) 

GAL 10-3 5.83(-2) 4.4 2.77(-3) 5.0 8.95( -5) 

10-5 9.80(-1) -2.9 7.45 2.4 1.39 
10-10 1.00 -19.6 7.90(+5) 2.2 1. 75 ( +5) 

Table 3.7.5 

Problem (3.7.6). The error in the shock-layer region, e = lly - yhll1T ,oo' 

was measured over the whole equidistant grid of respectively 

14,28 and 56 subintervals. 
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METHOD E h = 1/7 h = 1/14 h = 1/28 

e r e r e 

LOB1 10-1 6.32 (-2) 2.0 1.56(-2) 2.0 3.88( -3) 

EFWR 10-3 4.00(-2) 2.0 9.93(-3) 2.0 2.48 ( -3) 
10-5 4.00(-2) 2.0 9.94(-3) 2.0 2.48( -3) 
10-10 4.00(-2) 2.0 9.94(-3) 2.0 2.48( -3) 

LOB2 10-1 2.64(-4) 3.9 1. 74 (-5) 4.0 1.10( -6) 

EFWR 10-3 1.18(-3) 4.7 4.43(-5) 4.7 1.68 ( -6) 
10-5 3.94(-4) 4.0 2.48(-5) 4.0 1. 55 ( -6) 
10-10 3.94(-4) 4.0 2.48(-5) 4.0 1.55( -6) 

LOB3 10-1 2.76(-6) 6.0 4.40(-8) 6.0 6.92(-10) 

EFWR 10-3 4.30(-5) 3.1 4.89(-6) 4.4 2.28( -7) 

10-5 1. 72 (-6) 6.0 2.73(-8) 5.9 4.51(-10) 
10-10 1.50(-6) 5.8 2.73(-8) 5.9 4.47(-10) 

LOB1 10-1 6.32(-2) 2.0 1.56(-2) 2.0 3.88( -3) 

GAL 10-3 2.16(-1) 0.0 2.04(-1) 5.1 6.03( -3) 

10-5 6.71(-2) -2.9 5.01(-1) 0.3 4.08( -1) 
10-10 6.53(-2) -2.9 5.05(-1) 0.2 4. 25 ( -1) 

LOB2 10-1 2.64(-4) 3.9 1.74(-5) 4.0 1.10 ( -6) 

GAL 10-3 2. 77(-1) 4.2 1.52 (-2) 6.2 2.10( -4) 

10-5 5.02(-1) 0.3 4.13(-1) 0.4 3.15( -1) 
10-10 5.05(-1) 0.2 4.25(-1) 0.2 3.68( -1) 

LOB3 10-1 2.76(-6) 6.0 4.40(-8) 6.0 6.92(-10) 

GAL 10-3 5.83(-2) 5.4 1.42(-3) 7.7 7.04( -6) 

10-5 1.14(-2) -4.9 3.35(-1) 0.6 2.15( -1) 
10-10 1.10(-4) -11. 7 3.61 (-1) 0.2 3.20( -1) 

Table 3.7.6 

Problem (3. 7.6). The error, outside the shock-layer region, e = lly - y II , 
h 7f0,oo 

was measured on the equidistant grid rr0 = {-1 = x0 < x1 < ••• < x7 = 1}. 



142 

Because of the almost discontinuous character of the solution in the 

turning point region, the solution is badly approximated by any global 

approximation on a coarse mesh. Also the pointwise approximation at the 

gridpoints near the turning point is not very accurate when the EFWR meth

ods are used for this problem, but the EFWR methods are not sensitive to 

these errors in the down-stream direction. 

If we measure the error over all points of the grid ITi (i.e. the same 

grid as was used for the construction of the difference scheme), then the 

error II y - yh. 11 n. ,co shows the pointwise behaviour of the approximate solution in 
]. ]. 

the shock-layer region (table 3.7.5). IfwetakeIT0 ={i/7 J i=-7,-5, ••• ,+7} 

then the grid points in the shock layer are not included when the error 

lly - yhlln co is measured (table 3.7.6). o, 

EXAMPLE 3.7.5. 

Problem (cf. equation (1.3. 7)): 

(3.7.8) Ey" + xy' - y = -(1+sn2) cos(nx) - (7fx) sin(7fx) on [-1,+1 ], 

Solution: 

(3. 7. 9) 

y(-1) = -1, y(+l) = +1. 

y(x) 
2 

cos (nx) + x + x erf (x/12£) + ./2VTI exp(-x /2E) 

erf(l/&) + /2s/7f exp(-1/2E) 

Characteristics: the equation has a turning point at x 

has a corner layer in the turning-point region. 

01 the solution 

For this problem, the results obtained outside the turning point re-

gion are shown in table 3.7.7. 

+1 

0 

-1 

-1 0 +1 

Fig. 3. 7. 3 

The solution of problem (3.7.8). 
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METHOD £ h = 1/7 h = 1/14 h = 1/28 

e r e r e 

LOB! 10-1 1.88(-2} 2.0 4.63 (-3) 2.0 1.15 ( -3) 

EFWR 10-3 2.50(-2) 2.0 6.15(-3) 2.0 1. 53 ( -3) 

10-5 2.51(-2) 2.0 6.17(-3) 2.0 1.53( -3) 

10-10 2.51 (-2) 2.0 6.17(-3) 2.0 1. 54 ( -3) 

LOB2 10-1 1.90(-4} 3.9 1.26(-5) 4.0 7.95( -7) 

EFWR 10-3 3.59(-4) 4.0 2.25(-5) 4.2 1.23 ( -6) 

10-5 4.19 (-4) 4.0 2.65(-5) 4.0 1.66 ( -6) 

10-10 4.20(-4) 4.0 2.65(-5) 4.0 1. 66 ( -6) 

LOB3 10-1 1.13 (-6) 5.9 1.83(-8) 6.0 2.89(-10) 

EFWR 10-3 5.44(-6) 4.9 1.85(-7) 4.5 7.96( -9) 

10-5 3.01(-6} 5.7 5.90(-8) 5.9 9.92(-10) 
10-10 3.01(-6) 5.7 5.91 (-8) 5.9 9.92(-10) 

LOBl 10-1 1.88(-2} 2.0 4.63(-3) 2.0 1.15 ( -3) 

GAL 10-3 2.73(-2} 1.8 8.10(-3} 2.2 1. 96 ( -3) 

10-5 2.98(-2) 2.0 7.28(-3) 2.0 1. 83 ( -3) 
10-10 2.99(-2} 2.0 7.24(-3) 2.0 1.80( -3) 

LOB2 10-1 1.90(-4) 3.9 1.26(-5) 4.0 7.95( -7) 

GAL 10-3 1.12(-2) 4.2 6.04(-4) 3.2 6.70( -5) 

10-5 1.97(-3) 1.4 7.47(-4) 0.3 5.95( -4) 
10-10 2.04(-3) 2.0 5.10(-4) 2.0 1. 28 ( -4) 

LOB3 10-1 1.13 (-6) 5.9 1.83(-8) 6.0 2.89(-10) 

GAL 10-3 4.31(-3} 7.6 2.29(-5) 6.8 2. 02 ( -7) 

10-5 8.17 (-4) -0.2 9.71(-4) 0.4 7 .52 ( -4) 
10-10 8.65(-5) 5.1 2.47(-6) 4.0 1. 50 ( -7) 

Table 3.7.7 

Problem (3.7.8). The error outside the turning-point region, 

e = lly - y II , was measured on the equidistant grid 
h 7To,"' 

IT0 = {-1 = x0 < x 1 < ••• < x7 = 1}. 
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CONCLUSIONS 

Examining the numerical results given in this section we arrive at the 

following observations: 

1. In almost all cases EFWR methods yield more accurate results than GAL 

methods. This is also the case when the solutions are smooth over the 

whole interval (examples 3.7.1 and 3.7.3). 

2. For large £/h ratios (say £/h > f), EFWR methods yield about the same 

results as GAL methods. 

3. The order of convergence for EFWR methods, as determined in section 3.1 

and 3.6, is strictly attained; this means that no better estimates can 

be found. 

4. For problems with a turning point no uniform £-convergence is obtained by 

EFWR methods. 

5. For problems with smooth solutions, the order of convergence of the 

GAL methods decreases for small values of£. The pointwise error then 

appears to be O(hk) for even k and O(hk+l) for odd k. 



CHAPTER IV 

NONLINEAR PROBLEMS 

In this chapter the methods developed in the previous chapters are 

applied to nonlinear problems. These problems are of interest since they 

cover more practical situations. They also give us the opportunity to show 

the advantages of exponentially fitted methods, because (in contrast to 

linear problems) the region where the solution may vary rapidly, not only 

depends on the equation but also on the boundary conditions. This means 

that, if a classical numerical method is to be used, a careful analysis is 

required for each particular problem, in order to determine where the mesh 

should be refined. 

In section 1 some basic facts and definitions are given. In section 2 

a convergence theorem is derived and the techniques used to solve the non

linear problems are explained. In the third section some numerical experi

ments are treated and in section 4 we give an ALGOL 68 prelude which con

tains routines for the solution of singularly perturbed two-point boundary

value problems. 

4.1. INTRODUCTION 

We consider the nonlinear problem 

(4.1.1.a) 

(4.1.1.b) 

Ny= -Ey" - F(x,y,y') 0 on I = [a,b], 

y(a) = a, y(bl = B, o < E $ E0 • 

For this type of problem a rich variety of phenomena is possible in the 

limit as E + 0. This is illustrated in WASOW [1970] who pointed out the 

"capriciousness" of these problems. 

In general the existence of a solution of (4.1.1) cannot be guaran

teed. It is well known, for example, that the problem 

3 
Ey" + y' + (y') = 0 

(4.1.2) 
y(O) = a, y(l) = B, a f B, 
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has no solution for£ sufficiently small, even though the solution exists 

for large£ (O'MALLEY [1974], p.116). This shows that asymptotic solutions 

for£+ 0 are available only for restricted classes of problems (4.1.1) and 

that possibilities for obtaining numerical approximations to solutions of 

problems like (4.1.1) are also limited. 

Thus we can consider only a restricted subclass of problems (4.1.1). 

In particular, for the problems that we solve numerically, we make the fol

lowing assumptions: 

Al. F(x,y,y') is such that there exists an isolated solution y0 of 

F(x,y,y') = 0. 

A2. There exists an £0 > O and a family of isolated solutions {y(x;E)}O<E~EO 

to the problem (4.1.1). 

A3. The functions y0 (x) and y(x;E) are such that 

lim max ly(x;£)-y0 (x) I = O 
£+0 xEI\R 

lim max IY' (x;E)-yo(x, I= 0 
£+0 XEI\R 

uniformly in£, 

where Risa closed subinterval of I, independent of£. 

This subinterval R will contain the boundary-layer or turning-point regions. 

For£< h we strive for an accurate approximation to y(x;E) on I\R only. 

CODDINGTON & LEVINSON [1952] proved that the assumptions A2-A3 hold if 

the following conditions are satisfied: 

Bl. Equation (4.1.1) is quasilinear; i.e. it can bewritteh.in the form 

B2. F 1 ( • ,y), F 2 ( • ,y) E C1 [a,b] for yin a neighbourhood of y0 which includes 

the points (a,a) and (b,S). 
B3. IF1 (x,y) I ,!: K > O. 

B4. Assumption Al holds with 

Yo(a) 

y0 (b) 

a if F1 (x,y) < 0, or, 

S if F 1 (x,y) > 0. 

Since 1952, progress had been made by many people (see HOWES [1976] and 

references therein) in refining the conditions for problem (4.1.1) to satisfy 

the assumptions Al-A3. However, we shall mention only a result by DORR, 



PARTER & SHAMPINE [1973] which complements that of CODDINGTON & LEVINSON 

[1952]. This result is: 

If the following conditions azae satisfied: Bl, IF2 (x,y) I < M, B3 end A2, 
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then the assumptions A1 and A3 hold; moreover, y0 is such that B4 also holds. 

We note that under condition B3, the region R is restricted to a single 

boundary layer. 

In order to apply the exponentially fitted methods that were discussed 

in chapter 3, to the nonlinear problem, we consider (4.1.1) in its varia

tional form. A function y € H1(a,b) is called a solution of (4.1.1) in the 

weak sense, if it satisfies the variational equation 

(4.1. 3) 
f (Ny, v) = E(y' , v') - (F ( •, y, y') , v) 

lY(a) = a, y(b) = 8. 

0 
1 

Vv € H0 (a,b) 

1 -1 
Denoting the dual space of H0 (a,b) by H (a,b), we assume that Fis such 

-1 1 that F(•,y,y') € H (a,b) for y € H (a,b). Now, by eq. (4.1.3), we may 
1 -1 extend the meaning of N, considering N as an operator N: H (a,b) +H (a,b). 

Thus we write (Ny,v) for the nonlinear analogue of B(y,v) in eq. (3.1.4). 

We introduce the following property of N (cf. CIARLET et al. [1969]): 

DEFINITION 
1 -1 The operator N: H (a,b) + H (a,b), defined by (4.1.3) is called 

strictly monotone if there is a c >Osuch that 

2 
cliy-zll 1 :;; (Ny-Nz,y-z) 

1 
Vy,z € H0 (a,b). 

It is obvious that, if a solution of the variational equation (4.1.3) 

exists, then it is unique if N is strictly monotone. 

LEMMA 4.1.1. The operator N: H1 (a,b) + H-1 (a,b) associated with (4.1.1) is 

strictly monotone if 

(4.1.4) 
_ .i_F 1 d cl 'TT 2 

cly + 2 dx cly' F ;:,, y > -E (b-a) · 

PROOF. See BAKKER [1976], p.22. 

EXAMPLE 4.1.1. Applying the preceding lemma to the linear operator defined 

in (1.1.1), we see that this operator is strictly monotone, independently 

of the value of E, if 



148 

(4.1.5) 1 -g(x) + 2f 1 (x) ~ 0. 

Substituting, for example, the coefficients of equation (1.1.12) into this 

inequality, we obtain 

1 We see that Nc is strictly monotone if c < 2. Comparing this with the result 

from section 1.1, we see that, for equation (1.1.12), condition (4.1.5) is 

equivalent to the absence of classical turning points. 

Strict monotonicity can be used to establish convergence for classical 

Galerkin methods. However, for weighted residual methods, where not Vh c sh, 

we have to introduce the more general concept of strict coercivity with 

respect to the two subspaces. 

DEFINITION 

Let S and V be two Banach spaces with norms II • IIS and II -11 V and let V' denote 

the dual space of V. The (nonlinear) operator N: S-+ V' is striatZy aoePaiVe 

with Pespeat to sand v if there is a c > 0, such that 

Vy,z € s 3v€V v,'0 cUy-zU UvD $ (Ny-Nz,v). 
S V 

It is obvious that any solution y € S (if it exists) of the variational 

problem 

(Ny,v) (f,v) Vv € V 

is unique if N is strictly coercive with respect to Sand v. 

1 ~- If S = V = H0 (a,b), then strict monotonicity implies strict coer-

civity with respect to Sand V. 

4.2. APPROXIMATION OF NONLINEAR PROBLEMS 

we solve the nonlinear equation (4.1.1) by a variant of the Newton

Kantorovich method. Referring to RALL [1969] or KRASNOSEL'SKII et al. 

[1972] for details about this method, we construct a sequence {y} of ap
· m 
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proximate solutions to (4.1.1) as follows. It is assumed that F(x,y,y') is 

continuous in x, a~ x ~ b, and ~wice continuously differentiable with 

respect toy and y', so that N is a twice continuously differentiable oper

ator from c? [a,b] into C[a,b ]. The first two Frechet derivatives of N aty are 
m 

(4.2.1) - E(i!_,2 - F (x,y ,y')I - F ,(x,y ,y')(dd) 
dx y m m y m m x 

and 

(4.2.2) 
d 

- F (x,y ,y') II - 2 F , (x,y ,y') (dx)I -
yy m m yy m m 

- Fy'y' (x,ym,yi:i) (!) (!), 
where I is the identity operator. Setting 

(4.2.3) 

where ym and ym+l satisfy the boundary conditions of (4.1.1.b), we arrive 

at the linear bounda.ry value problem for Newton-Kantorovich iteration 

(4.2.4) 
u (a) 

m 
u (b) = 0. 

m 

For the generation of the Newton sequence {ym(x)}, we add N'(ym)ym to both 

sides of the equation and we solve the sequence of linear problems 

def 
(4.2.5) N'(ym)ym+l = F(x,ym,ym') - F (x,y ,y')y - F ,(x,y ,y')y' R(ym), y mmm y mmm 

Each problem is exactly of the type treated in chapters 2 and 3. Generally, 

the exact solution of these equations is impossible and we must resort to 

the approximate solution. In effect, therefore, the successive approximations 

actually employed are not those of the Newton-Kantorovich method. The only 

thing we can do is to derive a "better" approximation y 1 from an approxi-
m+ 

mation ym via the discretization of N' (ym). Applying any of the methods 

developed in the previous chapters to equation (4.2.5), we get the iterative 

process 
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(4 •. 2.6) 

where {Ni:J is a sequence of discrete operators approximating N' and Ym+l 

is the solution of the discretized problem. 

Let Ym+l be the exact solution of 

(4.2. 7) 

then we shall first assume that 

(4.2.8) 

where O s q \.< 1. 

It is clear from the previous chapters that {N 1 } can be constructed in such 
m 

a way that q is arbitrarily small. Such a sequence, for which the discrete 

operators {N 1 } should be of increasing accuracy, is obtained by refining 
m 

the partition Il during the iteration process or by taking higher order 

methods. 

Practical rules for the convergence of the Newton sequence {y} to 
m 

the solution of problem (4.1.1) are hard to give. In fact, it depends on 

the problem as well as on the choice of the initial estimate y0 (x). How

ever, in certain cases the following modified Kantorovich theorem can be 

applied to obtain a convergence criterion. 

THEOREM 4.2.1. Let 8(q) be the smaiier root of the qua,d:l'atic equation 

2(1-8) 2 = (1+q)8 + 2q. 

Starting from y0 it is asswned that [N' (y0 ) J-1 e:cists and constants B and 

H can be caiauiated such that 

II [N' (y0 ) J-1 11 s B , 

U[N'(yo)J-1 NyoD s H. 

If DN" Cy) U s K in some ciosed ban s ('y0 ,R) around y0 with radius R, and if 
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BK H 

~ 
l3(q) H ~ R, 

then the successive approximations {y} _ defined by (4.2.6) converge 
m m-0,1, ••• 

to a solution y of (4.1.1) which exists in S(y0 ,R). 

PROOF. See KRASNOSEL'SKII et al. [1972] pp.157-160. 

1 REMARK. Since O ~ q < 1 we see that 2 ~ 13 > O. In particular, for q 0 
--1-
(13=2> this theorem is identical with the Kantorovich theorem. 

If we keep the discretization method and the partition fixed, then N~ 

is independent of m, which we denote by Nh(•) 

Thus 
m 0,1,2, ••• , 

N~ ( • ) for m = 0, 1 , • • • • 

depends only on Ym· We have then to solve the sequence of linear problems 

(4.2.9) R(y) 
m 

rather than (4.2.6). In this case (4.2.8) is not true and we obtain a Newton-
RI RI 

sequence {ym} such that~ ym = yh, where yh Esh, if it exists, is the 

solution of the nonlinear problem 

(4.2.10) 

THEOREM 4.2.2. Let the error estimates of a weighted residual method 

(3.2.2), for any linear problem of the form (3.2.1), be 

(4.2.11) and 2k II y-y II = 0 (h ) • 
h 7T ,co 

Let N be strictly coercive with respect to sh and vh and let Nh satisfy the 

conditions of theorem 4.2.1, then the iterative process (4.2.9) converges to 

a solution yh, and the error estimates (4.2.11) also hold for the nonlinear 

problem (4 .1. 3) • 

~- By the weighted residual method and the Newton-Kantorovich iteration, 
1 

yh Esh c H (a,b) is determined such that 
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The solution y of (4.1.3) satisfies 

(N' (y)y,v) (R(y) ,v) Vv Ev. 

We introduce ',i E Sh, an auxiliary approximate solution, that satisfies 

This ',i is the approximate solution of a linear problem, so that 

k Uy - u II = O(h ) • 
h 1 

By the strict coercivity of N with respect of Sh and Vh, there exist a 

v E Vh c Vanda o > O, such that 

and 

crUu. - y II llvD s I (Nu. -Ny ,v) I n h 1 V n h 

* 

l(Nuh,v) I= l(N'(1,il1,i-R(uh),v) I 

l([N'(1,il-N'(y)J1,i - [R(1,i) - R(y)],v) I 

I (N' (y)y-N' (y)1,i-Ny+N1,i,vl I 

I (N' (y)eh-N' (y+0eh)e11 ,v) I 

I ([ N' (y) -N' (y+0eh) J eh ,v) I 

* 2 I (N"(y+0 eh)0eheh 1 v) I s KllehD 1 11vUV, 

where O s 0(x) , 0 (x) s 1 and eh = y - uh. 

Hence 

Therefore 



153 

(4.2.12) 

and 

By Poincare's inequality it follows that lluh - yhllO,oo < C h2k, and so we 

also obtain 

lly - y II 
h 0 

k+l 0 (h l and II y - y II 
h 7T ,oo □ 

Replacing N by Nh, we can apply theorem 4.2.1 to the process (4.2.9). 

Now q = O and equation (4.2.9) describes a genuine Newton-Kantorovich process. 

Hence convergence is quadratic (see e.g. KRASNOSEL'SKII [1972] p.144). The 

quadratic convergence suggests a strategy for choosing the order of a 

method during the integration process. We first iterate by a first order 

method until convergence is obtained; then lly - yhll = O(h). Assuming 
7T ,oo 

that 1/y - yhlll is small enough, we need only a single iteration step by a 

second order method to obtain lly - yhll = O(h2) and 
7T ,oo 

more by a fourth order method to obtain lly - yhll 
7T ,oo 

one iteration step 

O(h4). 

To start the Newton-Kantorovich series of approximations, it is im

portant to have available a sufficiently accurate initial approximation. 

However, in particular for small values of c, it may be difficult to 

determine the global character of a solution beforehand. A convenient 

way to solve this problem is by the Davidenko principle. We assume that 

there exists an c0 for which the problem (4.1.1) has a smooth solution. 

For this (rather large) c0 an initial guess at the solution is made and 

the problem is solved approximately. The approximation thus obtained can 

be used as an initial guess for the solution with a smaller value of c. 

'If this process is executed with successively smaller values of c we call 

it a Ne:wton-Kantorovich-Davidenko process. 

In general, for a fixed partition TI, this process still does not 

guarantee convergence to a solution of (4.2.10) as c ➔ 0. The possible 

lack of a good representation in a turning-point region can mean that 

no function in Sh can be found, which is close enough to the solution y to 

be a feasible initial estimate for the Newton-Kantorovich process. In this 
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case, inevitably, a proper mesh-refinement is required. However, exponen

tially fitted weighted residual methods are not sensitive to errors in the 

down-stream direction. This means that often convergence outside the turning

point region can still be achieved, even without an accurate representation 

in the turning-point region. 

4.3. NUMERICAL RESULTS. 

In this section we show four examples of nonlinear problems of type 

(4.1.1) and we comment on their numerical solution. We use three different 

methods of discretization: the exponentially fitted finite difference meth

od (3.5.12), method "A", and the exponentially fitted weighted residual 

methods (3.5.15)-(3.5.23) with k = 1 (method "B") and k = 2 (method "C"). 

Asymptotically for E + 0, the pointwise convergence rates of these methods 

are 1,2 and 4 respectively. The approximate solutions are compared with either 

the exact solution, or the asymptotic solution or a numerical solution 

on a much finer mesh. 

The programs were written in ALGOL 68 and executed on a CDC CYBER 

73/28, using the CDC ALGOL 68-compiler version 1.0.9. The main routines are 
-14 

listed in section 4.4 •. The machine precision is approximately 10 . 

EXAMPLE 4.3.1. We consider the boundary-value problem 

(4. 3 .1) Ey" + eyy' - !. sin(1TX) e 2Y 
2 2 

0, 0:Sx:Sl, 

y(O) = a, y(l) = 0. 

The asymptotic solution for E + 0 of this problem is (O'MALLEY [1974] 

p.123) 

(4.3.2) y(x) 1 [( 1 (,rx))(l -x/(2E) 1 -a -x/(2E)J + O(s). - og +cos 2 -e +2e e 

The problem is quasilinear and it satisfies the conditions B1-B4 of section 

4.1. Hence, the methods described in section 4.2 can be used to obtain a 

numerical approximation. With a= 0, the solution exhibits a simple bound

ary layer near x = 0. For this value of a, the problem was solved 

numerically for various equidistant partitions of [0,1], viz. for N = 128, 

64, 32, 16 and 8 subintervals. The solution with 128 subintervals was 
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been used as a reference solution and compared with the asymptotic solution. 
-1 -2 -4 -8 -12 The numerical solution is computed for E = 10 , 10 , 10 , 10 , 10 ; 

the same E- sequence was used for the Newton-Kantorovich-Davidenko process. 

Each solution was obtained by iteration with method A until convergence was 

obtained; thereafter the methods Band C were applied once. The initial 

approximation was ya 0. To perform the whole iteration process, at most 31 

iteration steps were necessary. 

E 10-1 10-2 10-4 10-8 10-12 

e 6.63(-2) 1.72(-2) 9.04(-4) 2.01(-8) 8. 74 (-11) 

Table 4.3.1 

The difference between the numerical reference solution y 11128 and the 

asymptotic approximation (4.3.2). 

e = Uy - y U , 
1/128 asymp n, 00 

{i/12s I i = o,1,2, .•• ,12s}. 

The smoothly varying behaviour of the solution outside the boundary 

layer allows us to check the order of accuracy of methods A, Band c. 
The results are listed in table 4.3.2.a and 4.3.2.b. We see that method A 

shows almost uniform convergence of order 1 and convergence of order 2 for 

h/E + 0 (cf. theorem 2.4.1). Methods Band Care not uniformly conver-

gent, but, in general, they are more accurate than method A. Moreover they 

show convergence of order 2 (respectively 4) both for E <<hand for h << E. 
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lmethodl e: ea 8r16 e16 16r32 e32 32r64 e64 

A 10-1 8.26(-3) 1.87 2.26(-3) 1.96 5.82(-4) 1.99 1.47(-4) 

10-2 4.98(-2) 1.17 2.22(-2) 0.58 1.49(-2) 0.84 8.35(-3) 

10-4 6.68(-2) 0.90 3.58(-2) 0.96 1.84(-2) 0.99 9.28(-3) 

10-a 6.70(-2) 0.90 3.60(-2) 0.95 1.86(-2) 0.97 9.48(-3) 

B 10-1 6.10(-3) 2.12 1.40(-3) 2.04 3.41(-4) 2.00 8.53(-5) 

10-2 3;97(-3) -1.17 8.91 (-3) -2.31 4.45(-2) 2.02 1.10(-2) 

10-4 2.78(-3) 2.04 6.77(-4) 1.98 1. 72 (-4) 0.74 1.03 (-4) 

10-a 2.78(-3) 2.04 6.76(-4) 1.99 1. 71 (-4) 1.99 4.30(-5) 

C 10-1 2.28(-4) 2.58 1. 73 (-5) 3.99 1.09(-6) 4.09 6.43(-8) 

10-2 2.05(-2) -1.58 6.11 (-2) 4.05 3.69(-3) 3.09 4.32(-4) 

-4 
9.34(-6) 10 -0.26 1.12 (-5) -2.01 4.52(-5) -1.99 1. 78 (-4) 

10-a 9.38(-6) 4.05 5.67(-7) 4.69 2.22(-8) 4.26 1.26 (-9) 

Table 4.3.2.a 

The pointwise errors and observed convergence rates associated with problem 

(4.,3.1). 

II= {i/N Ii= 0,1, ••• ,N}, 
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method! e: ea 8r16 e16 16r32 e32 32r64 e64 

A 10-1 8.26(-3) 1.87 2.26(-3) 1.96 5.82(-4) 1.99 1.47(-4) 

10-2 4.98(-2) 1.45 1. 82 (-2) 1. 75 5.42(-3) 1.91 1.44(-3) 

10-4 6.68(-2) 0.99 3.36(-2) 1.00 1.68(-2) 1.01 8.32(-3) 

10-8 6. 70(-2) 0.99 3.37(-2) 0.99 1.69(-2) 0.99 8.49(-3) 

B 10-1 6.10(-3) 2.12 1.40(-3) 2.04 3.41(-4) 2.01 8.48(-5) 

10-2 3.97(-3) 1. 73 1.20(-3) -1.16 2.69(-3) 3.66 2.13(-4) 

10-4 2.78(-3) 2.06 6.65(-4) 1.96 1.71(-4) 1.98 4.34(-5) 

10-a 2. 78 (-3) 2.07 6.63(-4) 1.96 1. 71 (-4) 1.99 4.29(-5) 

C 10-1 2.28(-4) 3.96 1.47(-5) 3.98 9.30(-7) 4.10 5.42 (-8) 

10-2 2:05(-2) 2.98 2.59(-3) 0.65 1.65 (-3) 8.67 4.04(-6) 

10-4 9.34(-6) 4.17 5.21(-7) 5.03 1. 59 (-8) 4.25 8.35(-10) 

10-a 9.38(-6) 4.16 5.26(-7) 5.03 1.61 (-8) 4.15 9.04(-10) 

Table 4.3.2.b. 

The pointwise errors and convergence rates, observed on a fixed mesh rr0 , 

which avoids the boundary layer. 

e = lly - y II 
N 1/N 1/128 ~o, 00 ' 

rr0 ={i/al i=0,1, ... ,a}, 
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EXAMPLE 4.3.2. We consider the equation 

(4.3.3) 
2 

Ey" + (y') = 1; 

the general solution of which is 

(4.3.4) y A+ E log cosh (x-B). 
E 

The limit solution as E + 0 is 

y =A+ Ix - Bl. 
0 

The problem originates from PEARSON [1968b] and is also discussed by WASOW 

[1970]. The problem exhibits a corner layer at x =Band satisfies con

ditions A1-A3 of section 4.1. Therefore, we can apply the methods described 

in section 4.2 to obtain a numerical solution outside the corner layer. For 

the non-quasilinear equation (4.3.3), method A requires some difference 

approximation of y' to construct a linearized problem (4.2.9). Since all 

possible difference quotients show their own particular properties, we do 

not use method A. We start iteration with method B until convergence is 

attained, thereafter method Chad to be applied once or twice. A straight 

line between the boundary values is used as an initial approximation. 

With A= 1.0 and B = 0.745 and for E = 10-1 , 10-2 , 10-4 and 10-8 , the 

problem was solved on [0,1], the boundary conditions being prescribed by 

(4.3.4). The errors in the corner layer and in the smooth part of the sol-

ution were measured separately by use of the norms II • II and II • II , 
1r ,oo 1r0 ,oo 

where IT denotes the equidistant partition of N intervals and 

IT0 = {x E IT I x < 0.7 v x > 0.8}. The results are listed in table 4.3.3. 

It appears that outside the corner layer an accurate approximation is 

obtained on a mesh that is not at all adapted to the particular properties 

of the solution. Since the limit solution outside the corner layer consists 

of linear pieces only, method C did not yield essentially better results 

than method B. 



lly - y II h 7f ,oo 
Dy - y II 

h TIO ,oo 

~ 15 30 45 15 30 45 

10-1 1.81 (-3) 4.39(-4) 1.84(-4) 1.07 (-3) 2.52(-4) 1.35(-4) 

10-2 6.87(-3) 5.88(-3) 2.24(-3) 5.27(-4) 8.53(-7) 2.21(-5) 

10-4 1.52(-2) 2.16(-2) 1.20(-2) 7.15(-6) 9.75(-6) 1.40(-9) 

10-8 1.53(-2) 1.45 (-2) 3.25(-2) 7.22(-10) 4.62(-10) 7.18(-13) 

Table 4.3.3 

The errors observed inside and outside the turning-point region. 

IT {i/N j i = 0,1,2, ••. ,N}, 

ITO {xE IT j x< 0.7} U {x E IT j x> 0.8}. 

EXAMPLE 4.3.3. We consider the problem 

(4.3.5) e:y" + yy I - y = 0 I 

y(O) = a, y(l) = 8. 
0 S XS 1, 
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Various aspects of this classical problem have been treated by e.g. COLE 

[1968, pp.29-38], O'MALLEY [1968, pp.389-390], PEARSON [1968b, p.356], 

DORR [1970a, p.307], WASOW [1970] and DORR et al. [1973, pp.57-63]. 

Asymptotic expressions for E ➔ 0 are derived for the solution in COLE [1968]. 

The character of the solution depends on a and 8 and it may involve 

boundary layers, corner layers or a shock layer. For various values of a 

and 8 a sketch of the solution is given in figure 4.3.1. 
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Fig. 4.3.1 

The behaviour of the solution of 4.3.5 for small values of E and for dif

ferent values of a and 6. 

For various values of Ethe solution was computed with the following 

boundary conditions: 

problem number a 6 Remarks 

1. -1/3 1/3 corner layers at x 1/3 and X 2/3. 

2. 1 -1/3 boundary layers at X = 0 and X 1. 

3. 1 1/3 boundary layer at x = 0i corner layer at 
X = 2/3. 

4. 1 3/2 boundary layer at X = 0. 

5. 0 3/2 boundary layer at X 0. 

6. -7/6 3/2 shock layer at X = 1/3. 

The Newton-Kantorovich-Davidenko process was started with the linear 

function between the boundary values as an initial guess. The E- sequence 

used was {10-l, 10-2 , 10-3 , 10-4 , 10-8 , 10-12 }. All different kinds of 

global behaviour, known from the asymptotic analysis, were recovered by the 

numerical method on an equidistant mesh of 16 or 32 subintervals. The dev-
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iation from the limit solution for£+ 0 is given in the table 4.3.4. The 

difference from a reference solution, computed on a mesh of 48 subintervals, 

is shown in table 4.3.5. 

llyl/32 - y u 
lim 7T, 00 

problem~ 10-2 10-4 10-8 10-12 

1 4. 77 (-2) 2.00(-3) 7.73( -3) 7. 74 ( -3) 

2 3.46(-1) 5.05(-3) 5.06( -5) 1.81 ( -5) 

3 3.46(-1) 5.04(-3) 7.73( -3) 7. 74 ( -3) 

4 6.99(-2) 4.31(-5) 2.13(-11) 2.24(-13) 

5 1.50(-1) 1. 30 (-4) 1. 82 ( -4) 5.01( -5) 

6 3.00(-1) 2.07 3.41 3.18 

llyl/32 - y II lim 1r0 , 00 

problem~ 10-2 10-4 10-8 10-12 

1 1. 53 (-2) 1.17( -7) 1.78(-14) 1.42(-14) 

2 7.60(-2) 5.99( -7) 1.17(-14) 2.34(-21) 

3 7.63(-2) 6.49 ( -7) 1.87(-14) 1.87 (-14) 

4 1.34(-3) 1.85(-13) 2.31 (-13) 1. 99 (-13) 

5 1.34(-3) 1. 74(-13) 1. 88 (-13) 2.27(-13) 

6 1. 38 (-3) 1.07(-10) 1.21(-13) 9. 24 (-14) 

Table 4.3.4 

The difference between the numerical solution and exact limit solution 

for£+ 0. The pointwise error has been observed on IT (the whole interval) 

and on IT0 (the smooth part of the solution). 

IT {i/32 i 0,1,2, ••. ,32}; 

IT0 {i/32 i 2,3,7,8,9,13,14}. 



162 

problem ~ 10-1 10-2 10-3 10-4 10-8 

1 16 9.75(-8) 4.95(-5) 9.03(-4) 4.44( -5) 1.78( -8) 

32 4.93(-9) 5.51(-7) 5.95(-4) 6.40( -8) 1.60(-14) 

2 16 5.63(-6) 1.22(-3) 1.37(-3) 9.90( -6) 1. 35 (-12) 

32 4.82(-7) 1.49(-4) 4.98(-4) 2.65( -7) 1.17(-14) 

3 16 6.29(-6) 1.22 (-3) 1.17(-3) 4.44( -5) 1. 78 (-12) 

32 4.87(-7) 1.49(-4) 5.95(-4) 2.90( -7) 1.57 (-14) 

4 16 1. 30 (-5) 1.77(-3) 5.29(-8) 1. 24 {-'11) 6.39(-14) 

32 5.89(-7) 2.28(-3) 4.61(-8) 7.11(-14) 9.95(-14) 

5 16 5.06(-6) 1.86(-3) 1.53(-7) 4.86(-10) 1. 56 (-13) 

32 2.51 (-7) 2.28(-3) 6.05(-8) 3.59(-13) 1.56(-13) 

6 16 5.58(-5) 1.09(-1) 1.69(-3) 1.66 < =5> 4.89( -1,) 

32 2.99(-6) 2.16(-3) 1.10 (-8) 1.07 (-10) 9.59(-14) 

Table 4.3.5 

The difference between the solution on an equidistant mesh of 48 points 

(reference solution) and equidistant meshes of 16 or 32 points, measured 

outside the rapidly varying regions: 

llyl/48 - yl/ND'!T ,oo' 
0 

ITO= {i/16 I i = 2,3,7,8,9,13,14}. 

EXAMPLE 4.3.4. This problem describes the shock wave in a one-dimensional 

nozzle flow (PEARSON [1968b]). The Navier-Stokes equations reduce to the 

single equation 

(4.3.8) fl+v ] v' A' v-1 2 
£Ayy" - L2 - £A' yy' +~+A (1- 2 y ) = o, 

where y = 1.4 the ratio of specific heats, 

£ = 4y/3Re, 

Re= Reynolds number. 

0:Sx:Sl, 



163 

We use the same additional data as mentioned in PEARSON [1968b], viz. 

y(O) 0.9129, 

(4.3.9) y(l) 0.375, 

A 1 + x2 , 
-8 

e: 4.792 10 • 

The linearized form of the problem reads 

(4.3.10) 

The location of the turning point is that value of x for which 

y(x;e:) = 1//i:2 and depends on the value of e:. Numerical computations indi

cate that, fore:= 0.5, the solution is a monotonic decreasing function; 

fore:= 0.1 it has a maximum near x = 0.25 and a turning point near x = 0.4. 

Ase:+ O, both the turning point and the maximum move to the right. Both 
-6 points approach x = 0.63 as e: + 10 (fig. 4.3.2). Because of the moving 

turning point, condition A2 of section 4.1 is not satisfied unless a rather 

large region R is assumed. 
-8 Fore:= 4.792 10 , the problem was solved by Newton-Kantorovich-

Davidenko iteration. A straight line between the boundary values was used 

as an initial approximation. The e:-sequence chosen was 

{o.5, 0.1, 0.05, 0.01, 5.0(-3l, 1.oc-3>, 5.0(-4l, 

1.0(-4), 1.0(-6), 4.792(-8)}. 

The problem was solved on an equidistant grid IT of 120 points and on a non-
1 

equidistant grid rr2 of 210 points (see fig. 4.3.2). For rr2 , the smallest 

mesh size was still considerably larger than the final shock layer (whose 
-7 width is approx. 10 (PEARSON [1968b])). 

As a convergence criterion, the condition Dy -y I < 1.0(-7) was n+l n 1r,oo 

used, where IT c IT. is 
J 

an arbitrary subset of gridpoints, which contains at 

least 2/3 of the gridpoints in Ilj (j = 1,2). The Newton-Kantorovich-Davidenko 

process appeared to be sensitive to the convergence criterion; to obtain 

convergence in the case of the coarser grid rr1, additional e:-values were in

serted by an automatic device, viz. e: = 0.03, 0.02, 0.015, 0.0125, 0.01125. 
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Fig. 4.3.2 
The solution of the problem (4.3.8-9) for various values of£. Below: the 

number of mesh-intervals in the different subregions of [0,1] for the non

equidistant partition IT2 : 

h 1/120 if o.oo < x < 0.50 or 0.75 < x < 1.00, 

h 1/240 if 0.50 < x < 0.55 or 0.70 < x < 0.75, 

h 1/480 if 0.55 < x < 0.60 or 0.65 < x < 0.70, 

h 1/960 if 0.60 < x < 0.65. 

To obtain convergence on the grid rr2 , however, the given £-sequence was suf

ficient and the number of iteration steps was 36 (for method A) + 

3 (method B) + 2 (method C). The location of the shock layer was determined 

to within an interval of length approx. 0.006 (i.e. 5 mesh-intervals). 

Furthermore, the methods gave an accurate approximation of both smooth parts 

of the solution. Inside the turning-point region the approximation failed 

and a properly adapted mesh would have been required to obtain an accurate 

representation in this region. The accuracy of the numerical approximation 

of the smooth parts was determined by comparing it with an approximation on 

a finer mesh. Outside the region (0.6250, 0.6375) the pointwise error on rr2 
-3 5 -7 was approximately 10 for method A, 10- for method Band 10 for method C. 
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4.4. ALGOL 68 ROUTINES 

In this section we give the basic ALGOL 68 routines that were used to 

obtain the results in section 4.3. The main routines are WOSD and EFGAL. 

These routines solve a linear problem of the form 

(4. 4.1) (-coy')' + c1y' + c2y 

y(a) = a, y(b) = $. 

on a :5 x :5 b, 

They can also be used to perform one step in the Newton-Kantorovich process 

for a nonlinear problem. The approximate solution is computed on a partition 

that is specified by the user. To define the problem, the headings of WOSD 

and EFGAL contain 

ref [ J real XX,YY, 

proc (real, real, real) [ J real EQTN. 

xx[O: upb XX] should contain the partition of [a,b], i.e. 

a = xx[OJ < xx[l] < ••• < xx[upb xx] b. 

Upon entry YY[O] and YY[~ xx] should specify the boundary conditions 

YY[O] a, YY[upb XX] s. 

The other elements YY[i], 1 :5 i :5 upb XX - 1, should contain an initial es

timate of y(xi). (These values are irrelevant in the case of a linear prob

lem.) Upon exit YY[i] contains the approximate solution at x XX[i]; 

i = 0,1,2, •.. , upb XX. The coefficients c0 , c 1 , c2 , c3 , that may depend on 

x, y and y', are communicated to WOSD or EFGAL by the ALGOL 68 routine EQTN. 

This routine should deliver the [1:4] real: 

For the computation of this [ J ~, the values of x, y and y' are communi

cated to EQTN by its 3 parameters respectively. 

WOSD applies the exponentially fitted finite difference method (3.5.12) 

on a possibly non-uniform partition. EFGAL applies a classical Galerkin 
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method or the exponentially fitted weighted residual method as described in 

section 3.5. The particular method used by EFGAL depends on the parameter 

METHOD. This parameter refers to a set of method-defining coefficients that 

are calculated beforehand by the procedure METHOD. The coefficients computed 

by the procedure METHOD depend on the integer parameter CODE. 

METHOD (CODE), CODE= +1, +2, +3, +4, delivers the coefficients for the ex

ponentially fitted method described in eqs. (3.5.15)-(3.5.23), where 

k =CODE.This set of coefficients causes EFGAL to solve the problem by this 

method, or (if z in (3.5.22-23) is small, i.e. 2loglzl 2 < k+l) by the class

ical Galerkin method. 

METHOD (0) delivers an empty set of coefficients and causes EFGAL to reduce 

to WOSD. 

METHOD (CODE), CODE= -1, -2, -3, -4, causes EFGAL to solve the problem by 

the classical Galerkin method (i.e. without exponential fitting), using the 

efficient implementation given by (3.1.31-32), where k = -CODE. 

Some auxiliary modes, operators and procedures are used: the modes 

vector, matrix, tridiamat (a tridiagonal matrix) and~ (a structure 

with references to method-defining coefficients) are introduced. The opera

tors* and ich are introduced; both operators work on two vectors: * computes 

the scalar product of the two vectorsi ich interchanges the corresponding 

elements of two vectors. The procedure TRIDSOL solves a linear system with 

a tridiagonal coefficient matrixi for a description of the Gaussian elimin

ation process and a discussion of its stability properties for two-point 

boundary-value problems see BABU~KA [1972]. 



IF 
EFGAL: 
'BEGIN' # WOSD AND EFGAL # 

'MODE' 'VECTOR' = 'REF' [ ] 'REAL'; 
'MODE' 'MATRIX' = 'REF' [,] 'REAL'; 
'MODE' 'TRIDIAMAT' = 'STRUCT' ('VECTOR' SUB,DIA,SUP); 
'MODE' 'METHOD'= 'STRUCT'('VECTOR' SUBN,W,SPW,PHI, 

'MATRIX' WCOF,CSPW,COEF,COEI,CWWI,PHID); 
'PRIO' 'ICH' = 4; 

#SCALAR PRODUCT# 
'OP' * = ('VECTOR' A,B) 'REAL': 
( 'REAL ' S: = 0 ; 

'FOR' I 'FROM' 'LWB' A 'TO' 'UPB' A 
'DO' S +:= A[I]*B[I] 'OD'; S); 

iHNTERCHANGEif 
'op' 'ICH' = ( 'VECTOR' A,B) 'VOID': 
'FOR' I 'FROM' 'LWB' A 'TO' 'UPB' A 
'DO' 'REAL' S = A[I]; A[I]:= B[I]; B[I]:: S 'OD'; 

#SOLUTION TRIDIAGONAL SYSTEM# 
'PROC' TRIDSOL :: ('TRIDIAMAT' MAT, 'VECTOR' F) 'VECTOR' 
'BEGIN' #FOR A MATRIX OF POSITIVE TYPE# 

'VECTOR' A #[1:N ]#=DIA 'OF' MAT, 
B #[1:N-1]# = SUP 'OF' MAT, 
C #[1:N-1]# = SUB 'OF' MAT; 

'INT' N = 'UPB' F; 'INT' I:= 1; 
'REAL' P,G:= F[1]; 

'FOR' J 'FROM' 2 'TO' N 
'DO' A[J]-:= B[I] * (P:: C[I]/A[I]); 

G:: F[I::J] -:= G * P 
'OD'; 
F[N]:= G /:= A[N]; 
'FOR' J 'FROM' N-1 'BY' -1 'TO' 1 
'Do' G:= (F[J]-:: B[J]*G) /:: A[J] 'on'; 
F 

'END'# TRIDSOL #; 
IF 
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# 

'PROC' WOSD = ('VECTOR' XX,YY, 'PROC'('REAL','REAL','REAL') 
[ )'REAL' EQTN) 'VOID': 

'BEGIN' 'INT' N = 'UPB' XX; 
(1:4) 'REAL' EVAL, 
[O:N] 'REAL' SUB,DIA,SUP; 
'VECTOR' RHS = YY; 
'REF' 'REAL' EE = EVAL[1], FF: EVAL[2], 

GG = EVAL[3], RR: EVAL[4]; 

#THE FUNCTION M, DEFINED BY EQ.(2.4.8)# 
'PROC' M = ('REAL' A) 'REAL': 
'IF' 'REAL' X, W:: 'ABS' A; W < 0.2 
'THEN' W*:= W; (((( W - 9.9) * W + 99.0) * W 

- 1039.5) * W + 15592.5) *A/ 46777.5 
'ELSE' X:: (W-1.0)/W; 

(W < 18.0 IX+:= 2.0/(EXP(W + W)-1.0)); 
(A> O.O I XI -X) 

'FI' # M #; 

'REAL' XK,H,K,EH,EK,KH,MM,YK, 
XH::XX[1],YH::YY[1],YM:=YY[O]; 

H:: XH - XX[O]; 
DIA[O]:: DIA[N]:= 1; 
SUB[N]:= SUP[O]:= O; 

'FOR' I 'TO' N - 1 
'DO' XK:= XX[I+1]; YK:= YY[I+1]; 

K :: XK - XH; KH:= K + H; 
EVAL:: EQTN(XH,YH,(YK-YM)/KH); 
EE*:= 2.0; EH:= EE/H; EK:= EE/K; 
MM :: M(( FF*EE<O I FF/EH I FF/EK)); 
KH +:= (K-H)*MM; MM*:= FF; 
SUB[I]:= EH - FF+ MM; 
DIA[I]::-EH - EK - MM - MM+ GG * KH; 
SUP[I]:: EK+ FF+ MM; 
RHS[I]:= RR* KH; 
XH:= XK; H:= K; YM:: YH; YH:: YK 

'OD'; 
TRIDSOL((SUB,DIA['AT'1],SUP['AT'1]),RHS['AT'1]) 

'END'# WOSD #; 



I 

'PROC' METHOD= ('INT' CODE) 'METHOD': 
'IF' CODE = 0 
'THEN' ('NIL', 'NIL', 'NIL', 'NIL', 'NIL', 'NIL', 'NIL', 'NIL', 'NIL', 'NIL') 
'ELSE' 

'INT' AC: 'ABS' CODE; 
'INT' NC= AC+ 1; 
'HEAP' [1:NC,1:NC] 'REAL' WCOF,CSPW,COEF,COEI,CWWI,PHID, 
'HEAP' [1:NC] 'REAL' SUBN,W ,SPW ,PHI; 

[,] 'REAL' PHIS= 
#THE COEFFICIENTS OF THE POLYNOMIALS CAPITAL PHI,EQ.(3.1.21)# 
'CASE' AC 
'IN' 'BEGIN' SUBN: = ( 

(( 1, -1, 
( 0, 1, 

o, 1); 
0), 
O)) 

'END', 
'BEGIN' SUBN: = ( 

(( 1, -3, 
( 0, 4, 
( 0, -1, 

o, .5, 
2), 

-4)' 
2)) 

1); 

'END', 
'BEGIN' 

'END', 
'BEGIN' 

'REAL' A,B,C::SQRT(5); 
B:: (5+C)/10; A:: 0.2/B; 
SUBN:: ( O, A, B, 1); 
C*:= 5; B:: (C+5)/2; A:= 25/B; 

(( 1, -6, 10, -5), 
( 0 , B, -B-C , C) , 
( O, -A, A+C, -C), 
( o, 1, -5, 5)) 

'REAL' A, B:: 
P:= -3/49, Q:: 
SUBN:: ( O, A, 

1/7, D:: (7+SQRT(21))/14, 
3/112; A:: B/D; 
.5, D, 1 ) ; 
30 , -35 ,14 ), (( 1, -10 , 

( O, -D/P, 
( O, -B/Q, 
( 0, -A/P, 
( 0, -1 

(1+3*D)/P, (-3-2*D)/P, 2/P), 
(1+ B)/Q, -2/Q , 1/Q), 
(1+3*A)/P, (-3-2*A)/P, 2/P), 

9 -21 , 14 )) 
'END' 

'ESAC' I PHIS#; 
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41 

#CONSTRUCTION OF METHOD-DEFINING COEFFICIENTS# 
'FOR' I 'TO' NC 
'DO' SPW[I]:= SUBN[I] *( PHI[!]:= PHIS[I,2] ); 

W[ I] • -
('REAL'S:=0; 'FOR' J 'TO' NC 'DO' S+::PHIS[I,J]/J 'QD';S); 
'FOR' K 'TO' NC 
'DO' COEF[K,I]:= ('REAL' S:= AC*PHIS[I,NC], SK::SUBN[K]; 

'FOR' J 'FROM' AC-1 'BY' -1 'TO' 1 
'DO'( S *::SK)+:= J*PHIS[I,J+1] 'OD'; S 

) ; 
CWWI[K,I]:= 'IF' K " 1 

'THEN' SUBN[I]*PHIS[I,3] 
'ELSE' COEF[K,I]*SUBN[I]/SUBN[K] 
'FI'; 

PHID[K,I]:= 2*PHIS[I,3]*PHIS[K,1]+PHIS[I,2]*PHIS[K,2] 
'OD'; 
'IF' I I= 1 'THEN' CWWI[I,I] -:= 1/SUBN[I] 'FI' 

'OD'; 

'FOR' I 'TO' NC 
'DO' SPW[I] *:= W[1]/W[I]; 

'FOR' K 'TO' NC 
'DO' 'REAL' C = 

WCOF[K,I] :: 

'OD' 

COEI[K,I] := 
CWWI[K, I]/:= 
CSPW[I,K] :: 

COEF[K,I]; 
C*W[K]; 
C/W[I]; 

W[I]; 
COEF[1,K]*SPW[I] 

'OD' #CONSTRUCTION COEFFICIENTS#; 

'IF' CODE > 0 
'THEN' (SUBN,W, SPW, PHI, WCOF, CSPW,COEF,COEI, CWWI, PHID) 
'ELSE' (SUBN, W, 'NIL', 'NIL', WCOF, 'NIL', COEF, COE!, 'NIL', 'NIL') 
'FI' 

'FI' #PROC METHOD# ; 
fl 



ft 

'PROC' EFGAL = ('METHOD'METHOD, 'VECTOR' XX,YY, 
'PROC' ('REAL', 'REAL', 'REAL') [) 'REAL 'EQTN) 'VOID': 

'IF' SUBN 'OF' METHOD : =: 'VECTOR' ('NIL') 
'THEN' WOSD(XX, YY, EQTN) 
'ELSE' 'VECTOR' SUBN = SUBN'OF'METHOD, W = W 'OF'METHOD, 

ft 

SPW = SPW 'OF'METHOD, PHI = PHI 'OF'METHOD, 
'MATRIX' WCOF = WCOF'OF'METHOD, CSPW = CSPW'OF'METHOD, 

COEF = COEF'OF'METHOD, COEI = COEI'OF'METHOD, 
CWWI = CWWI'OF'METHOD, PHID = PHID'OF'METHOD; 

~ 'BOOL' EF = (PHID'OF'METHOD:/::'MATRIXV('NIL')); 
'INT' NC= 'UPB' SUBN, NR = 'UPB' XX; 
'INT' AC = NC - 1 ; 

[1:NC, 1:4)'REAL'EVALS, 
[1: 4,1:NC)'REAL' WW, 
[1: NR+1]'REAL' SUB,DIA,SUP, 
[1:NC,O:NC]'REAL' A; 

'PROC' 
'IF' 
'THEN' 
'ELIF' 
'THEN' 
'ELSE' 
'FI'; 

( 'INT' , 'INT ' ) 'REAL' CC = 
AC> 2 
('INT' I,J)'REAL': A[I,J] - A[I,2:AC)*A[2:AC,J) 
AC= 2 
('INT' I,J)'REAL': A[I,J) - A[I,2) *A[2,J) 
('INT' I,J)'REAL': A[I,J) 

'VECTOR' RHS = YY['AT'1], 
EVALL=EVALS[1,], EVALR:EVALS[NC,), 
WA=WW[1,], WB:WW[2,], WC:WW[3,), WD:WW[4,); 

'REF' 'REAL' WA1=WA[1], WB1:WB[1], WC1:WC[1], WD1:WD[1], 
EVALL1:EVALL[1], EVALL2=EVALL[2], EVALL3=EVALL[3), 
EVALR1:EVALR[1], EVALR2=EVALR[2), EVALR3=EVALR[3]; 

'BOOL' POST:='FALSE',PRE::'FALSE',TWO::'FALSE'; 
'INT' 11 ,IN; 
'REAL' X := XX[O], Y :: YY[O], 

XH:= XX[1], YH:= YY[1]; 
'REAL' H := XH-X, Y1::(YH-Y)/H, 

HH,XHH,YHH,Y1H,PE,PO,PW, 
ALPHA:= 0.0, RHS1:= Y, 
DIAR .- O.O, RHSR:: 0.0, 
GRIT:= SQRT('REAL':(2**NC)); 
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ii 

II 

'FOR' N 'TO' NR 
'DO' 'IF' N = 1 

'THEN' EVALL:: 
( EF I 

'ELSE' X .-
XH ·
H ·
EVALL:: 

EQTN(X,Y,Y1); 
PO:: EVALL2*H/EVALL1 
XH; Y : = YH; 
XHH; YH :: YHH; 
HH; Y1 :: Y1H; 
(TWO TWO::'FALSE'; 

:: EQTN(XH,YH, 
N = NR 
Y1 

EQTN(X,Y,Y1) I EVALR) 
'FI'; 
EVALR 
'IF' 
'THEN' 
'ELSE' XHH := XX[N+1]; YHH:: YY[N+l]; 

HH :: XHH -XH; Y1H::(YHH-YH)/HH; 
(TWO:: 'ABS'(Y1H-Y1)>0.1 I Y1 I 0,5*(Y1H+Y1) 

) ; 

'FOR' I 'FROM' 2 'TO' AC 
'DO' EVALS[I,]:=('REAL' C = H*SUBN[I]; 

EQTN(X+C,Y+C*Y1,Y1) 

'IF' EF 
'THEN' PRE·- CRIT < -( PE:= PO); 

POST:: CRIT < ( PO:: EVALR2*H/EVALR1); 

ALPHA:: 
'IF' POST 'EQ' PRE 
'THEN' 0,0 
'ELIF' POST 
'THEN' ((PW:: EVALR3*H/EVALR2)<-CRIT O.O I PO-PW 
'ELSE' ((PW:= EVALL3*H/EVALL2)> CRIT 0.0 I PW-PE 
'FI'; 

PRE:: ALPHA>CRIT I 'SKIP' I POST:: 'FALSE' ) 
'FI'; 

'FOR' I 'TO' NC 
'DO' 'REF'[]'REAL' EVAL= EVALS[(POSTINC+l-III),]; 

WW[ ,I] :: 
(EVAL[1]/H,(POSTI-EVAL[2]1EVAL[2]),EVAL[3]*H,EVAL[4]*H) 

'OD'; 



#CONSTRUCTION OF ELEMENT MATRIX (3.1.24) AND VECTOR (3.1.25)# 
'IF' PRE 
'THEN' 'REAL' AW:: ALPHA* ALPHA; 

'REAL' MU::(ALPHA > 50.0 I O.O 
I ALPHA* AW* ('REAL' C:EXP(-ALPHA); C/(1.0-C))); 

'REAL' ZZ:: (A[1,0]:: ( ALPHA*WD1+PHI*WD )/ 
(AW*:= W[1] )); 

'FOR' I 'FROM' 2 'TO' NC 
'DO' A[I,O]:: WD[I] - SPW[I]*(ZZ-WD1) 'OD'; 

'FOR' J 'TO' NC 
'DO' 'REAL' ZZ:= (J:1 I ALPHA*WC1 + PHI*WC I o.o); 

'FOR' K 'TO' NC 

'OD' 

'DO' ZZ +:= MU*WCOF[K,J]*WA[K] 
+ PHID[K,J]*(ALPHA*WA[K]+WB[K]) 

'OD'; 
A[1,J]:: (ZZ /:: AW); 

'FOR' I 'FROM' 2 'TO' NC 
'DO' 'REAL' Z:: COEF[I,J]*WB[I] + CSPW[I,J]*WB1; 

'FOR' K 'TO' NC 
'DO' Z -:= WCOF[K,J]*CWWI[K,I]*WA[K] 'OD'; 
A[I,J]:: (J:I I Z+WC[I] I Z) - SPW[I] * 

(J:1 I ZZ- WC1 I ZZ) 

'ELSE' 'FOR' I 'TO' NC 
'DO' 'FOR' J 'TO' NC 

'OD' 

'DO' 'REAL' Z:= COEF[I,J]*WB[I]; 
'FOR' K 'TO' NC 

'OD'; 

'DO' Z -:= WCOF[K,J]*COEI[K,I]*WA[K] 'OD'; 
A[I,J]:= (J:I I Z+WC[I] I Z) 

A[I,O]:: WD[I] 

'FI' #ELEMENT MATRIX AND VECTOR CONSTRUCTION#; 
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II 

'on'; 

#STATIC CONDENSATION# 
'IF' AC>2 
'THEN' 'FOR' J 'FROM' 2 'TO' AC 

'DO' 'INT' JP1: J+1; 'REAL' SI,S:: 'ABS' A[J,J]; 
'INT' PJ:= J; 

'OD'; 

'FOR' I 'FROM' JP1 'TO' AC 
'DO' ((SI::'ABS'A[I,J]) >SI S::SI; PJ::I) 'OD'; 
'IF'J /: PJ 'THEN' A[PJ,] 'ICH' A[J,]'FI'; S:: A[J,J']; 
'FOR' I 'FROM' JP1 'TO' AC 
'DO' SI:= A[I,J]/S; 

'FOR' K 'FROM' 0 'TO' NC 
'no' A[I,K] -:= A[J,K]*SI 'OD' 

'FOR' J 'FROM' AC 'BY' -1 'TO' 2 
'DO' 'REAL' SI = A[J,J]; 'REAL' AJO = A[J, 0)/::SI, 

AJ1 = A[J,1)/:= SI, AJNC = A[J,NC]/::SI; 
'FOR' I 'FROM' J-1 'BY' -1 'TO' 2 

'OD' 
'ELIF' AC:2 

'DO' 'REAL' SI: A[I,J]; A[I, 0)-:= AJO *SI; 
A[I,1] -:= AJ1*SI; A[I,NC]-:= AJNC*SI 

'THEN' 'REAL' SI= A[2,2]; 
'FOR' K 'FROM' 0 'TO' NC 'DO' A[2,K] /:= SI 'OD' 

'FI' #STATIC CONDENSATION#; 

(POST I 11::NC; IN::1 I 11:= 1; IN::NC); 
DIA[N]:= CC(I1,I1) + DIAR; SUP[N]:= CC(I1,IN); 
SUB[N]:: CC(IN,11); DIAR ,- CC(IN,IN); 
RHS[N]:= CC(I1, 0) + RHSR; RHSR := CC(IN, 0) 

RHS [ 1 ] : = RHS 1 ; 
DIA[1]:: DIA[NR+1]::1.0; 
SUP[1]:: SUB[NR' ]::O.O; 
TRIDSOL((SUB,DIA,SUP),RHS) 

'FI' # EFGAL II; 

'PR' PROG 'PR' 
'SKIP' 
'END' 

,If,-
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