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Abstract In the information retrieval process, functions that rank documents according to their

estimated relevance to a query typically regard query terms as being independent. However, it is

often the joint presence of query terms that is of interest to the user, which is overlooked when

matching independent terms. One feature that can be used to express the relatedness of co-

occurring terms is their proximity in text. In past research, models that are trained on the

proximity information in a collection have performed better than models that are not estimated on

data. We analyzed how co-occurring query terms can be used to estimate the relevance of

documents based on their distance in text, which is used to extend a unigram ranking function

with a proximity model that accumulates the scores of all occurring term combinations. This

proximity model is more practical than existing models, since it does not require any co-

occurrence statistics, it obviates the need to tune additional parameters, and has a retrieval speed

close to competing models. We show that this approach is more robust than existing models, on

both Web and newswire corpora, and on average performs equal or better than existing proximity

models across collections.

Keywords Term dependency � Term proximity � Query expansion

1 Introduction

Information retrieval (IR) has changed considerably over the years, due to the expansion of

the World Wide Web and an increased use of the Web as the primary source of information.
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While there are many ways to measure the performance of an IR system, in general, the aim is

to rank documents according to relevance perceived by the user. Retrieving relevant docu-

ments is a challenging task, because there usually exists no ‘‘perfect query’’ that unambig-

uously provides a clean match between the user needs and relevant information. In fact,

queries typically match more irrelevant documents than relevant ones.

The problem of ranking documents for a given query is usually simplified by treating

query terms as being independent, ignoring any user’s interest in the joint co-occurrence of

query terms such as forming a noun phrase. One feature that can be used to express the

relatedness of co-occurring terms is their proximity in text. Intuitively, researchers have

suspected that query terms that appear closer together in documents represent stronger

evidence for relevance (Keen 1991; Croft et al. 1991; Clarke et al. 2000; Metzler and Croft

2005; Tao and Zhai 2007; Zhao and Yun 2009; Lv and Zhai 2009). Early studies used

theoretical assumptions about proximity, which provided occasional rather than substantial

results, e.g. (Fagan 1987; Croft et al. 1991). More recent proximity models make use of

parameters that allow them to fit themselves to the data in the collection and more con-

sistently improve retrieval performance over independent term baselines (Metzler and

Croft 2005; Tao and Zhai 2007). Although these studies show the potential of term

proximity for IR, they provide limited insight into the relation between term proximity and

document relevance. To obtain optimal results, these models often use only a selection of

term combinations and occurrences within some maximum word distance. As a conse-

quence, there is great diversity between studies upon their assumption how relevance is

affected by the distance between query terms (Clarke et al. 2000; Metzler and Croft 2005;

Tao and Zhai 2007; Zhao and Yun 2009; Lv and Zhai 2009).

We hypothesize that the performance of proximity retrieval models can be improved by

removing constraints regarding distance and the selection of term combinations. In this study,

we specifically reexamine the relationship between the distance of co-occurring query terms

and their estimated relevance, to design a cumulative proximity expansions (CPEs) retrieval

model. We show that this model is more robust and performs equal or better to state-of-the-art

proximity models on both Web and newswire collections. This model is also more practical

than existing models, since it does not require any co-occurrence statistics, it obviates the

need to tune additional parameters, and has a retrieval speed close to competing models.

The paper is structured as follows: Sect. 2 discusses related work that is relevant to term

dependency in IR models. In Sect. 3, the effects of promoting proximity are examined.

Based on this analysis, we describe a proximity model in Sect. 4. In Sect. 5, we discuss the

implementation, which is available for download, and compare the retrieval speed of the

proposed model to five baselines over eleven test sets. Section 6 presents the empirical

results of the model over ad-hoc TREC collections and the comparison with state-of-the-art

proximity models. The conclusions are presented in Sect. 7.

2 Related work

This section discusses previous research in the area of term dependencies, specifically: query

operators to match term-dependencies in documents, the selection of term combinations used

in a dependency model, the relation between the proximity of query terms and the likelihood

of being relevant, and how proximity evidence can be used in a function to rank documents.

We first survey, briefly, the literature addressing term proximity for IR models. We then

summarize the key aspects with respect to the question of scoring term proximity. The third

and final subsection details the baseline approaches chosen for our own empirical work.
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2.1 Term dependency

Term dependency is a recurring topic throughout the history of IR research, and it is plain

impossible to do justice to every single contribution in this area. As we will see, many

attempts never materialized in consistent improvements in retrieval performance. How-

ever, with today’s larger corpora, improvements are feasible and there has been a renewed

interest in this topic. We highlight the papers most relevant for our own work in this

section.

An early paper to address the effect of term dependency on text retrieval is Van

Rijsbergen (1977), describing a theoretical basis for the use of co-occurrence data in

ranking documents. For every query term, the most likely dependent other query term is

selected based on the expected mutual information measure computed for the pair of terms.

Van Rijsbergen proposes to use the resulting maximum spanning tree (MST) for retrieval.

Only years later, this idea has been followed up upon when Nallapati and Allan (2002)

presented their approach to select the most significant query term dependencies. To reduce

the runtime required, the MST was build using sentence statistics rather than document

statistics. Results of this study were characterized as ‘‘a slight improvement in perfor-

mance’’, and we are not aware of later follow-up work.

The rather early empirical study of Fagan (1987) discussed a comparison of methods to

select phrases with semantically related terms. Fagan’s most successful attempt matched

pairs of query terms to document contents, but without consistent improvements in

retrieval performance.

Keen (1991) describes results of another early empirical study, using test collection cre-

ated in 1982 from bibliographic summary records. Keen suggested that using information on

term positions can help narrow down search results, by screening out irrelevant results. As far

as we know, he was the first to formulate the intuition that motivated our own exploration of

term proximity, when he suggested the number of intervening terms as the factor determining

the strength of the relation between pairs of query terms: ‘‘the number of non-matching terms

found to lie between the first and last matching terms in the sentence’’. He explored seven

different approaches to make use of the proximity between terms, based on the actual term

distance, query term co-occurrence in sentences, and a combination of these two principles

(e.g. terms in close proximity within a sentence). All seven methods were demonstrated

experimentally to improve retrieval performance over the (by now outdated) baseline, a

system using coordination level ranking. In this study, the most effective results were

obtained with an algorithm that rewards a low distance between query term pairs.

Croft et al. (1991) first explored how to integrate term co-occurrence information

derived from phrases into the inference network retrieval model underlying InQuery (and,

much later, Indri). The noun phrases considered were extracted from the information

request using a stochastic tagger. Croft et al. further suggested the idea of removing

individual query terms with a high collection frequency, and matching these only as

constituents of a phrase, e.g. the word ‘‘system’’ in ‘‘computer system’’ and ‘‘operating

system’’. They obtained improvements in precision at low recall levels, but results at

higher levels of recall were inconclusive. The authors noted that their results suggest a

higher contribution to retrieval performance on larger collections, a finding that has been

confirmed in later work, using a new retrieval model based on Markov random fields

(Metzler and Croft 2005).

Various more recent studies have introduced term dependencies in the language mod-

eling approach to IR. Song and Croft (1999) first considered extending the ‘‘standard’’

unigram models by interpolation with a model for bi-grams. A small scale experiment
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indicated improved retrieval effectiveness by using the word pairs. Gao et al. (2004)

proposed the Dependence Language Model, a joint distribution between a unigram lan-

guage model and a dependency model that promotes the documents that contain co-

occurring query terms (within a sliding window of three words). From a training corpus

they estimated the most likely ‘‘linkage’’ that sequentially connects all query terms using

every query term once. Only term-pairs in this linkage were considered in the dependency

model. Their model consistently improved retrieval performance on smaller TREC col-

lections; however, according to Metzler and Croft (2005) and He et al. (2011), the

requirement to compute the likelihood of all possible link structures for a query may be

prohibitive for application in practical retrieval systems.

A different line of research explored how to integrate term dependencies in the classic

probabilistic retrieval model. For example, Rasolofo and Savoy (2003) proposed to expand

BM25 with a proximity measure, by accumulating a distance score for every co-occurring

term pair within a sliding window of five words. Their accumulated distance function

replaces the term frequency in a BM25-like function, using the lowest weight of the two

terms in the pair. The score of the co-occurring term pairs is then added to the score of the

unigrams. Their experimental results show improvements at the top of the ranking (pre-

cision at five), for all three test sets used, but with mixed results on other metrics. Song

et al. (2008) introduced a different perspective on term proximity, by forming non-over-

lapping spans of multiple query terms (not just query term pairs). Each span (identified

through intuitive heuristic rules) is then assigned a relevance weight, based on the length of

the span and the number of query terms contained. These weights are aggregated per query

term, replacing the original term frequency of the BM25 ranking formula. He et al. (2011)

used a sliding window to count the frequency of n-grams in a document, and modified

BM25 to score n-grams containing multiple query terms in a way similar to unigrams. In

their survival model, they promoted term dependency using the minimal number of words

that separate a sequence that contains all query terms.

Metzler and Croft (2005) introduced the Markov random field (MRF) retrieval model, a

flexible model that is especially suited for modelling term dependencies. The MRF is

constructed from a graph where nodes correspond to query terms, and the edge configu-

ration imposes the independence assumptions made. The authors present three variants,

corresponding to the traditional full independence, a new sequential dependence model

(SDM) where neighboring query terms are connected by an edge, and a fully connected

variant (where every query node is connected to every other query node). Potential

functions defined over the cliques in these graphs determine the final ranking function; that

combines linearly a relevance score for independent query terms with a score for ordered

term pairs (in the sequential dependence case) and one for unordered term combinations (in

the full dependence case). The mixture parameters are tuned by cross-validation [selecting

the highest mean average precision (MAP) for each fold]. Empirical results show signif-

icant improvements by modelling term dependencies explicitly in the MRF. The authors

concluded that the SDM is the best choice on smaller but homogeneous collections, with

longer queries, while the full dependence model (FDM) attained better results for larger,

less homogeneous collections, but using shorter queries.

Metzler and Croft (2007) later expanded the MRF framework with a method to select

the most likely ‘‘latent concepts’’ that the user had in mind, but did not express in the

query. Similar to the relevance model by Lavrenko and Croft (2001) single word concepts

are extracted from (pseudo-) relevance feedback documents, to which they add extracted

multi-word concepts. The expansion with latent concepts improves the performance sig-

nificantly over the original MRF model.
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Shi and Nie (2010) reflected on Metzler and Croft (2005), arguing that it is not rea-

sonable to expect the same fixed value to score unigrams, term sequences and term co-

occurrences within a sliding window. Both Shi and Nie (2010) and Bendersky et al. (2010)

therefore extended Metzler and Croft’s SDM model with separate parameters for each

unigram and each term-pair. This however leads to a huge number of model parameters

that require tuning through n-fold cross-validation, for which both approaches build on a

coordination-ascent search algorithm, while Shi and Nie (2010) combines this with an

approach based on Support Vector Machine regression. Bendersky and Croft (2012) then

proposed a model that is reminiscent to MRF, in which three types of linguistic structures

are considered: the original query terms, adjacent term-pairs and unordered co-occurrences

of selected term combinations within some window size. The ranking function combines

independent scoring of all concepts using a log-linear scoring function, extended with the

score of a ‘‘global hyper edge’’ that considers each concepts contribution to the entire set of

query concepts. A possible advantage of the global hyper edge over the FDM by Metzler

and Croft (2005) is that it can express a dependency between multi-term concepts, rather

than all single terms co-occurring within some distance. A learning-to-rank approach was

used to train the large set of parameters. Unfortunately, the improvements in effectiveness

were only marginal.

Two fairly recent papers aimed to investigate ranking using term proximity, but far less

tightly connected to the derivation of the retrieval model in which the term dependencies

are to be integrated. First, Büttcher et al. (2006) proposed what they called a cumulative

model that calculates separate proximity scores per query term. Their algorithm considered

especially its implementation in the inverted file indexing structure that forms the core

component of virtually all retrieval systems at the time. While traversing the posting lists

considered for a given query, whenever a query term is encountered that is different from

the query term last seen, a distance score is added to their respective accumulators. The

scores per term are eventually computed as separate evidence, by using the proximity score

instead of the term frequency. A similar approach was taken in Tao and Zhai (2007). The

authors compared five proximity measures, each returning an aggregated outcome per

document, which is then converted into a term weight using a convex decay over the

distance function, and added to either the KLD or BM25 retrieval scores. The best per-

forming proximity measure was the minimum distance between any two different query

terms occurring in the text, which consistently improved retrieval performance and was

shown to give results comparable to those obtained in Metzler and Croft (2005).

Building upon this latest work, Zhao and Yun (2009) presented the proximity language

model (PLM). Here, the minimum distance metric of Tao and Zhai (2007) is used between

all the query term pairs. The sum of minimal distances is converted into a score that is

added directly to each unigram’s term frequency in the KLD function. Their results show a

higher mean average precision when compared to those of Tao and Zhai, however, on more

than 50 % of the reported experiments the results did not significantly improve over the

KLD baseline.

A few more approaches should still be mentioned, even if this brief discussion can never

do justice to the complete history of term dependency in IR.

Lv and Zhai (2009) proposed the positional language model, that builds upon the idea to

propagate each occurring term over the word positions in the document (a notion first

introduced in (De Kretser and Moffat 1999). The authors use kernel density estimation, to

essentially create a separate language model for every word position in a document. Their

ranking function therefore initially ranks document positions instead of documents.
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Most learning to rank (LTOR) approaches use features derived from query term co-

occurrences. As an example, Cummins and O’Riordan (2009) used machine learning to

develop term-term proximity functions that optimize mean average precision. They con-

sidered aggregated distance statistics, such as the average and minimal distance between

query terms in the document. In spite of achieving a consistent increase in MAP on the test

collections, the improvements were not always found to be statistically significant. In

general, the retrieval functions resulting from the machine learning process tend to exceed

human comprehension, not really helping us to understand how distance and relevance are

actually related; merely confirming the intuition that such a relationship exists.

So far, we have primarily focused on the way term proximity is integrated in retrieval

models for document retrieval. Term proximity is of course closely related to topics like

passage retrieval, which in general divides documents into passages as the basis for ranking

(Liu and Croft 2002; Tellex et al. 2003). Similar to term proximity, passage retrieval is less

likely to promote documents in which the terms appear further apart, but has been criti-

cized by Tao and Zhai (2007) for being more coarse and limited. Other related approaches

are XML information retrieval and sentence retrieval, that both capture aspects of term

proximity in a similar way to the passage retrieval approaches.

Finally, term proximity can be used in different aspects of a retrieval system, notably by

improving the selection of query expansion terms. E.g. Vechtomova and Wang (2006)

compared distance functions to improve the selection of query expansion terms. Empiri-

cally, the best variant used an inversely proportional function over term distance to rank

candidate expansion terms, which outperformed the use of exponential and logarithmic

distance functions. In recent work, Miao et al. (2012) also used proximity to improve the

selection of expansion terms from feedback documents. They rank candidate terms using

word distance with query terms in the feedback documents, using the hyperspace analogue

to language (HAL) model. The results consistently improved performance over a baseline

of BM25 with Rocchio pseudo-relevance feedback.

2.2 Design aspects of proximity models

A large variety of approaches of dealing with term proximity in IR has been presented

throughout the years. Looking back on all these works, however, the following three

research questions should still be considered as unanswered:

1. What is the range within which co-occurrences of query terms should be considered?

2. How should the distance between co-occurring terms be reflected in their respective

term weights?

3. How should evidence derived from term proximity be integrated in the retrieval

model?

Nearby term co-occurrences have generally been considered to provide stronger evi-

dence of relevance than more distant co-occurrences. The majority of studies has only

considered occurrences within short distance from each other. Given that the relation

between relevance and the co-occurrence of query terms is not obvious, let alone when

these occurrences are far apart, this seems a natural choice. When asking at what range

query term co-occurrences may still influence the relevance estimation process, the liter-

ature does not provide an answer. Studies like (Croft et al. 1991; Rasolofo and Savoy 2003;

Metzler and Croft 2005) have only considered terms that co-occur closely, usually within a

window of size eight to ten. However, Song et al. (2008) reported an improvement in

retrieval effectiveness using a much larger window size of 50. Similarly, Bendersky and
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Croft (2012) observed that the distance between the terms (that together constitute a higher

level concept) may span a much greater distance than the typical sliding window con-

sidered in most of the research.

The second open question concerns how to weigh terms that occur in the document

using proximity information. A few studies have simply used a constant contribution,

irrespective of the distance between the query terms considered (e.g. Fagan 1987; Croft

et al. 1991; Metzler and Croft 2005). Many researchers have however introduced a method

to discount the contribution of co-occurrences based on their distance in text. Table 1

summarizes how the distance between query term co-occurrences has been weighted. Here,

span refers to the number of word positions covered; K a threshold on span size above

which weights are lowered; windowsize the maximum span within which co-occurrences

are scored; terms the number of query terms that make up the co-occurrence; N is the last

position in the document; and, i is the word position for which the weight is estimated. The

weight accumulates the distance ji� jj between the current position i and query term

occurrences j using a Gaussian kernel. For further details, please refer to the original paper

Lv and Zhai (2009). The symbols x, y, a, para and r are free parameters that need to be

tuned on the document collection used. The functions considered have in common that

they are convex and monotonically decreasing. Most studies have assigned a default score

of one to adjacently appearing terms, with the exception of Tao and Zhai (2007), Song

et al. (2008) and Lv and Zhai (2009). Which of these functions would be the preferred

choice has never been answered satisfactory.

The first two questions may be left unanswered, or only answered implicitly, when

relying on a machine learning method to estimate the best choice given training data to

tune model parameters. Then, instead of positing a general assumption on how proximity

relates to relevance, the scoring function can be adjusted to the collection, without the need

to making such choices a priori. Examples include Metzler and Croft (2005), Tao and Zhai

(2007) and Zhao and Yun (2009); SDM for example distinguishes between contiguous and

non-contiguous appearance of terms in a query and document, and estimates the weights to

combine these using cross-validation. Tao and Zhai (2007) use a parameter in a convex

decay over distance function, allowing the model to adapt the function to more optimal

performance.

Table 1 Various functions for determining the weight of a co-occurrence based on the distance between
terms

weight ¼
1 if span\K

K

span
; otherwise:

8
<

:

Clarke et al. (2000)

weight ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
span�1
p Hawking and Thistlewaite (1995)

weight ¼ 1

ðspan�1Þ2
Rasolofo and Savoy (2003)

weight ¼ windowsize� spanþ 1 Miao et al. 2012)

weight ¼ terms
span

� �x

�termsy Song et al. (2008)

weight ¼ log aþ e�minðspan�2Þ� �
Tao and Zhai (2007)

weight ¼ para�minðspan�2Þ Zhao and Yun (2009)

weighti ¼
PN

j¼1 exp
� i�jð Þ2

2r2

h i
Lv and Zhai (2009)
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Instead of following this trend to let the model adapt to training data, this paper does

actually attempt to give an explicit statement of how term co-occurrences is expected to

influence relevance. Assuming the first two questions can be settled, the proximity evidence

still needs to be combined with the other sources of information upon which a document’s

probability of relevance is estimated, and especially the independent query term occurrences.

The two most common design patterns in the literature surveyed have (1) added

proximity evidence directly to the independent query term frequencies, using the original

retrieval model as is (see e.g. Svore et al. 2010; Zhao and Yun 2009), or (2) scored

proximity evidence separately from the other relevance information, mixing the proximity

based score with that of the independent term occurrences (see e.g. Metzler and Croft

2005; Tao and Zhai 2007). Consider the following example. Let query terms ‘‘Albert

Einstein’’ occur once and adjacently in two different documents A and B, but with different

frequencies for the word ‘‘Einstein’’. If proximity evidence is added to the raw unigram

counts, the document with the lowest unigram count will gain the most from adding the co-

occurrence information. When viewed as two separate sources of relevance information,

both documents would receive the same contribution for the evidence of query term co-

occurrences, irrespective of the frequency of the individual query terms.

2.3 Proximity baselines

In this study, we will compare the retrieval performance of four proximity baselines that

can be considered state-of-the-art based on the results presented. The selected baselines

score terms that occur in a document independently using Dirichlet-smoothed language

model functions that are rank equivalent to each other. Therefore, comparing the results of

each model to the independent term baseline, will reveal how effective each model is in

additionally using proximity information.

Zhai and Lafferty (2004) propose to use negative Kullback–Leibler divergence between

a query language model and a Dirichlet smoothed language model of a document (KLD),

which they reformulated by removing the query entropy which does not affect document

ranking. In Eq. (1), documents D are ranked for a query Q; qi is a term in Q; tfqi ;D is the

frequency of qi in D; jDj is the number of terms in D, and l is the Dirichlet smoothing

parameter. In Eq. (2), cfqi
is the frequency of qi in the collection C and jCj is the number of

words in the collection.

KLDðQ;DÞ �
X

qi2Q

log 1þ tfqi;D

l � PðqijCÞ

� �

þ log
l

lþ jDj

	 


ð1Þ

PðqijCÞ ¼
cfqi

jCj ð2Þ

Tao and Zhai (2007) presented a simple baseline for scoring term dependency. Using

Eq. (3), documents are ranked according to the sum of KLD over independent query terms

and a proximity function pðQ;DÞ. In Eq. (4), a is a free parameter and dðQ;DÞ is a distance

function, for which Tao and Zhai experimented with five variants. In Eq. (5), Disðqi; qj; DÞ
is a function that returns the minimum distance in word positions between all occurrences

of query terms qi and qj in D, or, jDj if D does not contain both terms. In other words, d is

defined as the minimum distance between any two occurrences of distinct query terms, the

variant which provided the best results in the retrieval experiments of Tao and Zhai.
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MinDistðQ;DÞ ¼ KLDðQ;DÞ þ pðQ;DÞ ð3Þ

pðQ;DÞ ¼ log aþ e�dðQ;DÞ
� �

ð4Þ

dðQ;DÞ ¼ min
qi ;qj2Q\D;qi 6¼qj

Disðqi; qj; DÞ
� �

ð5Þ

Zhao and Yun (2009) presented the PLM (Eq. 6), in which they re-estimate the seen

word probability PðqijDÞ with respect to the proximity model (Eq. 7), and assign aD �
PðqijCÞ to unseen terms (Eq. 6). In their model, the proximity factor adjusts the seen word

probability in a document by adding a proximity centrality ProxB to the term count in the

document (Eqs. 7, 8). Besides the symbols already defined for KLD and MinDist, in

Eq. (9), Disðqi; qj; DÞ returns the minimal distance between all occurrences of term qi and

qj in D as described by Tao and Zhai (2007), and k and para are free parameters.

PLMðQ;DÞ ¼
X

qi2Q\D

PðqijQÞ � log
PðqijDÞ

aD � PðqijCÞ

þ log aD

ð6Þ

PðqijDÞ ¼
tfqi ;D þ k � ProxBðqi; DÞ þ l � PðqijCÞ

lþ jDj þ k �
P

qi2Q ProxBðqi; DÞ ð7Þ

aD ¼
l

lþ jDj þ k �
P

qi2Q ProxBðqi; DÞ ð8Þ

ProxBðqi; DÞ ¼
X

qj2Q;qi 6¼qj

para�Disðqi;qj;DÞ
ð9Þ

Metzler and Croft (2005) proposed to estimate the relevance of documents using the

Markov random fields framework. A Markov random field is constructed from a graph in

which nodes (random variables) correspond to the document and the query terms, and

edges represent dependencies between these random variables. Due to conditional inde-

pendence, the joint distribution between these variables can be factored by considering

only the cliques in this graph. Therefore, scoring a document boils down to considering

separately the sets T, O, and U, of, respectively, query terms treated as independent (T),

contiguous query terms (O), and otherwise dependent query terms (U).

Metzler and Croft consider two term dependency variants. In the SDM, only adjacent

query terms are considered directly dependent, and O and U will consist of all pairs of

terms that appear adjacently in the query. FDM, all query terms are directly dependent

upon each other, O consisting of all contiguous sequences of two or more query terms and

U of all combinations of two or more query terms. The resulting ranking function in

Eq. (10) combines the scores for these three sets of cliques using the linear mixture

parameters kT ; kO and kU .

The independent query terms T are scored using function fT (Eq. 11), which is a

language modeling estimate smoothed by a Dirichlet prior aD, where tfqi ;D is the fre-

quency of term qi in document D; jDj is the number of terms in D; cfqi
is the frequency of

the term in the collection, and jCj the total number of terms in the collection. Contig-

uously appearing query terms O are scored using fO (Eq. 12), in which tf#1ðqi;...;qjÞ;D
denotes the number of times the sequence of terms qi; . . .; qj appears contiguously in D,

and cf#1ðqi;...;qjÞ in the collection. Combinations of query terms U are scored using fU

(Eq. 13), in which tf#uwNðqi;j...;qjÞ;D is the number of times all query terms in the clique
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appear in any order within a window of N words in D, with N set to four times the

number of terms in the clique, and cf#uwNðqi;...;qjÞ the frequency of that event in the

collection. In Eq. (14), aD is the smoothing parameter also described by Zhai and

Lafferty (2004). By definition, kT ¼ 1� kO � kU leaving kO; kU and l to be trained as

free parameters.

MRFðQ;DÞ ¼ kT

X

ðqi ;DÞ2T

fTðqi;DÞ

þ kO

X

ðqi;...;qj ;DÞ2O

fOðqi; . . .; qj;DÞ

þ kU

X

ðqi ;...;qj ;DÞ2U

fUðqi; . . .; qj;DÞ

ð10Þ

fTðqi;DÞ ¼ log ð1� aDÞ
tfqi;D

jDj þ aD

cfqi

jCj

� �

ð11Þ

fOðqi; . . .; qj;DÞ ¼ log ð1� aDÞ
tf#1ðqi ;...;qjÞ;D

jDj þ aD

cf#1ðqi;...;qjÞ

jCj

� �

ð12Þ

fUðqi; . . .; qj;DÞ ¼ log ð1� aDÞ
tf#uwNðqi ;...;qjÞ;D

jDj þ aD

cf#uwNðqi;...;qjÞ

jCj

� �

ð13Þ

aD ¼
l

lþ jDj ð14Þ

A final remark on the relationship between the scoring of independent terms in the MRF

and KLD baselines. Although the function used to score the independent query term

occurrences has a different form in Eq. (10) than the KLD function described in Eq. (1),

both functions are Dirichlet smoothed language model estimates and are in fact rank

equivalent if used with the same value for l (refer to ‘‘Appendix 1’’ for a derivation of this

equivalence).

3 Analysis

To examine term proximity, we used an oracle system on the TREC-6 ad-hoc topics to

improve the retrieval performance by expanding the queries with proximity operators. We

describe how the oracle system maximizes results, report the reformulation for the most

improved queries and discuss the results. We then continue to analyze how the relevance of

documents can be estimated based on the distance between co-occurring query terms.

3.1 Oracle experiment

Most existing proximity models make limited use of the available proximity information

in documents, considering only a selection of term combination and occurrences within

some maximum word distance. As far as we know, previous studies do not explain why

more distance between co-occurring query terms represent weaker evidence for a doc-

ument being relevant, or whether it is justified to assume that proximity is only useful

within a limited word distance. We hypothesize that words in between query term

occurrences weaken their relatedness. Therefore, proximate terms are more likely to
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appear in relevant documents than distant ones. In Fig. 1, we illustrate this intuition by

sentences that would each match the hypothetical query ‘‘best basketball player’’.

Although in relevant documents these terms do not necessarily appear consecutively,

more distance between the query terms provides more opportunity to divert or weaken

the relation between them, e.g. ‘‘best training exercise for basketball players’’ or ‘‘best

basketball for beginning players’’. Since we expect an increase in the number of inter-

mediate words to increase the likelihood of weakening the relation between query terms,

the relation between proximity and relevance may neither be limited to some distance,

nor only apply to some term combinations.

To analyze the potential of using proximity in ranking documents, we constructed

an oracle system which performed a simple breadth-first search to optimize queries by

adding proximity operators using two or more query terms, evaluating each variant

using known relevance judgments. The system used all possible query-term combi-

nations as potential proximity expansions, and was allowed to independently adjust

each proximity operator by setting a weight 2 f1:0; 0:50; 0:25g and a maximum span 2
f2; 3; 4; 5; 10; 20; 50; 100; 200; 500g. The original query was used as the initial best

query. For this query, all previously unseen single variations were tried, i.e. adding,

removing or modifying only one proximity expansion. The best query was then replaced

by the variant with the highest mean average precision (or set of variants when tied) and

used as input for the next iteration to try new variants. This was repeated until there

were no more untried single variations to the best query, thus converging to a (local)

optimum.

We used the oracle system to improve the TREC-6 queries with proximity expansions,

and list the 10 queries that were improved most in Table 2. Documents were scored

according to Eq. (15), which uses KLD to score the independent terms, and KLDco to score

the proximity expansions M. In Eq. (16), mi is the ith proximity expansion in M; ki is the

weight for mi; tf#uwdiðmiÞ;D is number of occurrences matched by mi in document D,

matching the terms in any order within a window of di word positions. In Eq. (17),

cf#uwdiðmÞ counts the occurrences of mi in the entire collection and jCj is the number of

word in the collection. To explain syntax used in Table 2, ‘‘{air pollution span =

200}#0.5’’ scores all unordered co-occurrences of ‘‘air’’ and ‘‘pollution’’, using d ¼ 200

and k ¼ 0:5. Over the TREC-6 test set, the oracle system improved over the KLD baseline

by 17.8 % and over the SDM baseline by 13.3 %, indicating the potential contribution for

term proximity to estimate document relevance exceeds that of the SDM baseline. We

make three observations: (1) for queries with three or more terms, the best solution often

uses several overlapping proximity operators, e.g. ‘‘undersea fiber cable’’ along with ‘‘fiber

cable’’; (2) using a maximum allowed span of more than 100 words is most effective for

some term combinations; (3) the best expansion often uses lower weights for the co-

occurrences than for the original query terms.

Query: best basketball player
Document 1 : . . . best basketball player . . .
Document 2 : . . . best training exercise for basketball players . . .
Document 3 : . . . best basketball for beginning players . . .

Fig. 1 The query is more likely
to be satisfied by Document 1
than by Document 2 or 3
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ScoreðQ;M;DÞ ¼ KLDðQ;DÞ þ KLDcoðM;DÞ ð15Þ

KLDcoðM;DÞ ¼
XjMj

i¼1

ki � log 1þ
tf#uwdiðmiÞ;D
l � PðmijCÞ

� �

ð16Þ

PðmijCÞ ¼
cf#uwdiðmiÞ
jCj ð17Þ

3.2 The relation between distance and relevance

In Sect. 2.2, we reviewed existing proximity functions and noticed that in general a value

of one is assigned to adjacently appearing terms, occurrences that appear non-contiguously

in text receive a lower value based on a linear-convex function over their span in text, and

Table 2 10 TREC-6 queries that gained most (in AP%) in the Oracle experiment

Topic Original query Oracle expansion KLD SDM Oracle
AP AP AP

303 Hubble telescope
achievements

{Hubble telescope span = 2} 0.205 0.231 0.342

{Hubble achievements span = 5}

308 Implant dentistry {Implant dentistry span = 100}#0.25 0.480 0.479 0.554

310 Radio waves and brain cancer {Radio waves cancer span = 100}#0.25 0.160 0.185 0.242

{Brain cancer span=2}#0.5

311 Industrial espionage {Industrial espionage span = 10}#0.5 0.372 0.576 0.635

320 Undersea fiber optic cable {Undersea fiber span = 2}#0.5 0.023 0.028 0.138

{Undersea optic span = 10}

{Fiber cable span = 2}#0.5

{Undersea fiber cable span = 3}#0.25

{Optic cable span = 20}

{Undersea optic cable span = 5}

{Fiber optic cable span = 3}#0.25

329 Mexican air pollution {Mexican air span = 500} 0.141 0.125 0.304

{Mexican pollution span = 500}

{Air pollution span = 200}#0.5

{Mexican air pollution span = 20}

331 World Bank criticism {World Bank span = 2} 0.213 0.287 0.419

{World criticism span = 200}#0.25

{World Bank criticism span = 20}#0.5

332 Income tax evasion {Income tax span = 2}#0.25 0.126 0.139 0.342

{Income evasion span = 10}

{Tax evasion span = 2}

{Income tax evasion span = 3}

341 Airport security {Airport security span = 50} 0.232 0.282 0.329

350 Health and computer
terminals

{Health computer span = 200}#0.5 0.105 0.116 0.169

{Computer terminals span = 2}

{Health computer terminals
span = 500}
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co-occurrences whose span exceeds a maximum distance are ignored. To design a prox-

imity function that benefits from using co-occurrences over longer distance, we argue that

the score of both distant and nearby occurrences should reflect their probability to occur in

a relevant document. Beeferman et al. (1997) have shown that the co-occurrence frequency

between words decays exponentially over their distance. In this study, we are not interested

in how often terms co-occur, but rather in the likelihood that the document they occur in is

relevant. We analyzed this in a similar experiment, by using all possible combinations of

two or more terms from the TREC 1–3 and 5–8 ad-hoc queries, which were counted

separately for relevant and irrelevant documents in the corresponding corpora using the

TREC qrels. We estimate the likelihood that an occurrence appears in a relevant document

given the number of separating terms using Eq. (18), for which we define d = R as a

predicate to test that document D is relevant for the given query, m is a combination of two

or more terms from query Q as defined by the Power Set P[ 1ðQÞ, and the function

tf#ewdðm;dÞ counts all non-overlapping unordered occurrences of m that are separated by

exactly d terms in D. The obtained frequencies were smoothed using a Gaussian kernel

with a bandwidth of 1þ ðd=2Þ.

Pðd ¼ RjdÞ ¼
P

Q

P
d2C:d¼R

P
m2P[ 1ðQÞ tf#ewdðm;dÞ

P
Q

P
d2C

P
c2P[ 1ðQÞ tf#ewdðm;dÞ

ð18Þ

In Fig. 2, the ‘‘all combinations’’ line is the result of this experiment, which unex-

pectedly increases monotonically after reaching a minimum value. Inspection of the data

revealed that some term combinations exhibit the opposite behavior, such that close

proximity is inversely proportional to the probability of relevance. Ideally, we would like

to be able to a-priori identify term combinations that have this inverse distance/relevance

relationship, but this is not an issue we will resolve in this study. However, we expect that

the undesirable effect of these inverse combinations is partly suppressed by the presence of

other query terms, which provide a context within which the inverse combinations may

behave differently. In order to focus on term combinations that are more relevant at closer

distance, we simply identified inversely related term combinations as having a higher

average probability of relevance at 500–1,000 terms distance than for 200–500 terms

distance. For the set that is labeled ‘‘proportional’’ in Fig. 2, these inversely related term

combinations were removed. For the ‘‘proportional’’ set, the probability of appearing in a

relevant document over the distance between terms can be approximated with an inversely

proportional function, which is drawn as a dotted line in Fig. 2 with a goodness-of-fit of

R2 [ 0:99. From these results, we make two observations: (1) adjacently appearing query

terms are roughly twice as likely to appear in relevant documents than query terms that are

far apart, and (2) the probability of appearing together in a relevant document can be

estimated using the distance between terms using a function of the order 1/distance.

4 Methods

In Sect. 2.2, we reviewed existing proximity functions and concluded that several aspects

have remained unresolved. In Sect. 3.1, we analyzed the potential of proximity operators to

improve retrieval performance and estimated the likelihood that a document is relevant

given the word distance between occurring term co-occurrences. We now continue to

design a proximity retrieval model that uses these aspects. A special variant of this

proximity retrieval model also considers the stop words, which are often ignored by

retrieval models.
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4.1 Cumulative proximity expansions model

The cumulative proximity expansions model (CPE) we propose is a simple and, as we will

show, effective retrieval model. CPE expands the KLD function for independent query terms

with a proximity model that scores every possible combination of two or more query terms.

To identify occurrences of term combinations in a document, a proximity operator is used that

returns the maximum number of the shortest possible non-overlapping text passages that

contain all specified terms in any order. For overlapping occurrence candidates, the shortest or

left most candidate is selected first. Different term combinations are scored independently of

each other, therefore occurrences of different term combinations can have overlapping word

positions, e.g. occurrences of the combination ‘‘dog law enforcement’’ can overlap with

occurrences of the combination ‘‘law enforcement’’, which results in a higher estimated

relevance of a document in which subsets are co-occurring more closely.

Based on the dependency we found between the distance of co-occurring query terms

and the likelihood to appear in a relevant document in Sect. 3.2, we formulate the fol-

lowing requirements to a function to score term co-occurrences: (1) double the score

contribution of query terms occurrences if they appear contiguously in a document, similar

to the observed likelihood in Fig. 2, (2) let the score increment of non-contiguous query

term combinations in documents decay with a function of the order 1/distance, and (3)

assign the same score for occurrences that are relatively separated to the same extent. The

third requirement helps to normalize the scores between term-combinations of different

sizes; to clarify, the relative separation of a 2-term combination separated by 2 other words

should be weighed similar to a 3-term combination separated by 4 other words in text,

having the same ‘density’. In Eq. 19, we score a term combination m for document D, by

using a function similar to the KLD function over the contained terms. We estimate the

frequency tfm;D in Eq. 20 using a proximity operator #uwðm;DÞ to match all occurrences o

of m in D, and aggregate the frequency per term combination using a 1/distance function

based on the number of terms jmj and the span of occurrence o in the document. This score

function therefore satisfies all three requirements.
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d=

R
)

(#separating terms)

all combinations
proportional

fitted function of order 1

Fig. 2 The probability of term combinations to appear in a relevant document given the number of
separating words, estimated from the TREC 1–3, 5–8 ad-hoc topics. The results are compared between ‘‘all
combinations’’ and ‘‘proportional’’ term combinations that are more likely to appear in a relevant document
at close proximity. Fitted to the proportional set is a function of the order 1=d
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PROXðm;DÞ ¼
X

qi2m

log 1þ tfm;D

l � PðqijCÞ

� �

ð19Þ

tfm;D ¼
X

o2#uwðm;DÞ

jmj � 1

joj � 1 ð20Þ

Documents are then ranked according to Eq. (21), which combines the KLD baseline

with all combinations of two or more query terms m as defined by the power set P[ 1ðQÞ
over query Q from which stop words are removed. To balance the score of the term

combinations with respect to the score of independent terms, we introduce a weight

function Z, which is necessary to compensate because an additional query term will lin-

early increase the number of scored independent terms, while the number of scored term

combinations grows exponentially. However, we expect the scoring mass of the term

combinations to grow as a function over jQj rather than to grow exponentially, because

combinations are less likely to occur as they contain more terms. Empirically, we found

that Eq. (22) gives stable and close to optimal results.

CPEðQ;DÞ ¼ KLDðQ;DÞ þ 1

Z

X

m2P[ 1ðQÞ
PROXðm;DÞ ð21Þ

Z ¼ jQj ð22Þ

4.2 Stop words in the proximity model

The default proximity model (Eq. 21) uses the power set P[ 1ðQÞ, where Q is the query

from which stop words are removed. However, in proximity models stop words could be

more useful than in independent term models, promoting multi-word concepts (e.g. ‘‘The

Beatles’’) or passages containing an intended relation nearby targeted terms (e.g. ‘‘boy

likes girl’’, ‘‘parents against education’’). We hypothesize that considering the stop words

in the proximity model may improve retrieval performance. We will test this using a

variant of CPE called CPES, in which we replace the power set in Eq. (21) with a power

set over a query with stop words. The set of term combinations is cleaned by removing

combinations with stop words that are less likely to be relevant. For this, we introduce a

simple heuristic: a combination of query terms is ‘valid’ when the stop words considered

are used in combination with all terms that connect them in the query to a non stop word on

the left and right, or the query boundary if there is no more non-stop-word. For example,

‘‘The Beatles on a zebra crossing’’ would generate besides ‘‘Beatles zebra’’, ‘‘zebra

crossing’’, ‘‘Beatles crossing’’ and ‘‘Beatles zebra crossing’’, the following combinations

containing stop words: ‘‘The Beatles’’, ‘The Beatles zebra’’, ‘‘The Beatles crossing’’, ‘‘The

Beatles zebra crossing’’, ‘‘Beatles on a zebra’’, ‘‘Beatles on a zebra crossing’’, ‘‘The

Beatles on a zebra’’ and ‘‘The Beatles on a zebra crossing’’.

5 Implementation

To improve reproducibility, we carried out all experimental evaluation using a general

purpose retrieval framework, and make all code publicly available, as described in this

section. We then continue to discuss optimizations in the implementation of CPE and

CPES, to achieve acceptable speed while scoring all term combinations.
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5.1 Open source

To facilitate reuse of retrieval components and to improve reproducibility, we have created

a general purpose framework called repository for IR experiments (RepIR), which uses

Hadoop to extract features from a collection and store these in a central repository, which

can then be easily accessed for analysis and retrieval tasks. To compare CPE against

existing models using the same index, all models listed in Table 3 have been implemented

in RepIR according to their specification. To reproduce our results, RepIR can be down-

loaded as open source or as a Maven project from http://repir.github.io/. This repository

also hosts the specific implementations for this paper along with configuration files and

tuned parameter settings.

5.2 Retrieval speed

The CPE model uses all possible query term combinations to compute a relevance score for

documents given a query. Expanding the query with an independent proximity operator for

every term combination, will generate an exponential number of elements to score and thus

is not feasible for long queries. However, in general, terms co-occur far less frequently than

that they occur as independent terms, becoming more rare when more terms are combined.

Given these distributional characteristics, retrieving can be inefficient when each document

is independently inspected and scored for every term combination, even for combinations

that are not present. Since the KLD function assigns a score of zero to terms that are not

present, this simplifies handling term combination that are not present by simply not

scoring these. By simultaneously traversing all term-position lists for a document in one

pass, counting and scoring only co-occurrences that are encountered in the document, the

number of unnecessary operations is reduced, especially for long queries. Instead of using

separate proximity operators, we therefore implemented CPE as one module, which

combines the scoring of all term combinations, to allow document processing as described.

CPES will be considerably less efficient than CPE, not only because it additionally uses

stop words but also because stop words have long postings lists. However, we prune the

processing of stop words using the heuristic we presented in Sect. 4.2, by monitoring if the

document contains all terms needed to score a combination with a stop word and otherwise

stop traversing the positions list of that stop word for that document. For example, the stop

word ‘‘on’’ in term combination ‘‘the Beatles on a Zebra Crossing’’ needs only be used for

documents that also contain the words ‘‘Beatles’’, ‘‘a’’ and ‘‘Zebra’’. Therefore, if we pass

Table 3 Retrieval models implemented in RepIR for this study

Model Java classes in package io.github.repir.Strategy

KLD RetrievalModel, ScoreFunctionKLD

CPE CPERetrievalModel, CPEFeature, ScoreFunctionKLD

CPES CPESRetrievalModel, CPESFeature, ScoreFunctionKLD

MinDist MinDistRetrievalModel, MinDistFeature, MinDistScoreFunction

PLM PLMRetrievalModel, PLMFeature, PLMScoreFunction

SDM SDMRetrievalModel, SDMTerm, SDMOrderedPhrases, SDMUnorderedPhrases,
ScoreFunctionDirichletLM

FDM FDMRetrievalModel, FDMTerm, FDMOrderedPhrases, FDMUnorderedPhrases,
ScoreFunctionDirichletLM
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the last occurrence of the word ‘‘Beatles’’ in a document, we can stop traversing the stop

words ‘‘the’’, ‘‘a’’ and ‘‘on’’. As a consequence, a document is not even scored if it only

contains the stop words in the query but no other terms, for not meeting the criteria for any

scorable unit.

We analyzed the feasibility of using all term combinations on long queries, using the

TREC-4 ad-hoc descriptions (except topic 225, for which time measurement was heavily

affected by excessive garbage collection). The descriptions in TREC-4 on average contain

17 terms (stop words included) and probably contain more stop words and non-discrimi-

native words than real user queries. We must note that our implementation is not well

suited for accurate comparison of retrieval speed; not being optimized for interactive

retrieval, operating on a public Hadoop cluster which makes time measurements inaccu-

rate, and using a single index with positional postings lists for all models, which is slower

than necessary for KLD which does not need term positions. To obtain a reasonable results

given these circumstances, retrieval is executed within a single mapper, measuring the time

within the mapper between the start and end of retrieval to eliminate as much time lost to

Hadoop overhead as possible, and by using the fastest retrieval time per query per model of

100 repeated executions, which is the time that is least likely to be affected by external

delays. The collection statistics for term co-occurrences that are required for SDM were

pre-collected and read into memory, therefore taking no extra time in this test.

In Fig. 3, we compare the relative retrieval speeds of SDM, CPE and CPES, measured

in times slower than KLD. We do not compare against FDM, which we implemented by

simple expansion of the query with proximity operators, and thus not feasible on these long

queries. We sorted the topics on the relative retrieval speed of CPES. On average, SDM is

1.7 times slower than KLD, CPE is 1.9 times slower and CPES is 4.7 times slower. For

example, one of the longest topics in TREC-4 is 211: ‘‘How effective are the driving while

intoxicated (DWI) regulations? Has the number of deaths caused by DWI been signifi-

cantly lowered? Why aren’t penalties as harsh for DWI drivers as for the sober driver’’,

which contains 16 non stop words and 17 stop words. The fastest retrieval times measured

for this topic using KLD was 1.2 s, SDM 3.0 s, CPE 3.0 s and CPES 7.1 s.

6 Results and discussion

In this section, we first describe the test sets, collections and parameter tuning, then

compare the empirical results obtained with all models, discuss the robustness of the

retrieval models, analyze the effects of limiting the span of used co-occurrences, and lastly

present a qualitative analysis.

6.1 Evaluation setup

For this study, the default repository builder in RepIR was used to create separate posi-

tional unigram indexes of the document collections as described by TREC for the TREC

1–3, 5, 6, 7–8 ad-hoc tasks, the English section of ClueWeb09 and ClueWeb12 for the Web

Track ad-hoc tasks. During extraction, Unicode and HTML special codes were converted

to their ASCII equivalents, and all other Unicode and HTML code was removed with the

exception of the contents of ‘‘alt’’ attributes and the meta tags ‘‘keywords’’ and

‘‘description’’. The remaining content was lowercased, tokenized and stemmed with an

English Porter-2 stemmer. The vocabulary size was reduced for ClueWeb09 and Clue-

Web12 by leaving out numbers as well as words with more than 25 characters, and by
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leaving out infrequent words; i.e. that appear \2 times on TREC 1–8, and \10 times on

ClueWeb09 and ClueWeb12. Stop words were indexed thus affecting the positions of non

stop word in documents, however, words that are in the SMART list of stop words were not

scored during retrieval, except for the experiment that used stop words in the proximity

model.

For retrieval, only the titles of the topics were used from the TREC 1, 2, 3, 5, 6, 7, 8 ad-

hoc tasks (TREC sets), and the TREC Web Track 2009, 2011, 2012 and 2013 ad-hoc tasks

(Web Track sets). Two sets were not used: TREC 4 which contains unrealistic long

descriptions as topics for ad-hoc tasks, and Web Track 10, in which 28 out of 50 queries

were not useful for evaluation.1 For the evaluation, all queries in the test sets were used,

including the queries that only contain one term, with the exception of queries with no

relevant documents in the TREC qrels. Retrieval performance was measured in mean

average precision (MAP) for the TREC sets and Statistical Mean Average Precision

(StatMAP) for the Web Track sets (Carterette et al. 2008), using the top-1000 retrieved

documents.

The free parameters of the proximity models we compare against were tuned using grid

search with the following cross-evaluating strategies: leave-a-test-set-out when several test

sets share the same collection (TREC 1–3, 7–8, Web Track 9, 11, 12), and tenfold cross

evaluation if there is only one test set for a collection (TREC 5, 6, and Web Track 13). The

following parameter ranges were scanned to find close to optimal settings:

l ¼ 100; 200; . . .; 5;000, MinDist a ¼ 0:1; 0:2; . . .; 1:5, PLM k ¼ 1; 2; . . .; 10 and

para ¼ 1:1; 1:2; . . .; 2:5, and SDM kO ¼ 0:04; 0:06; . . .; 0:20 and kU ¼ 0:02; 0:03; . . .; 0:80.

Although Metzler and Croft (2005) suggested that the fuzzy matches of unordered window

deal better with the noise inherent in Web documents, we did not expect that kU would

tune to higher settings than kT , but on ClueWeb09 kU ¼ 0:79 provided the highest and

most stable results. Since the presence of stop words in our index increases the distance

between other words, this may have positively affected the importance of matched unor-

dered term combinations. However, it is unclear if this indeed the cause for this anomaly.

0

1

2

3

4

5

6

7

8

9

0 5 10 15 20 25 30 35 40 45 50

tim
es

 s
lo

w
er

 th
an

 K
L

D

TREC 4 topics

KLD
SDM
CPE

CPES

Fig. 3 The relative retrieval speed of SDM, CPE and CPES, measured in times slower than KLD over the
TREC-4 ad-hoc descriptions

1 These queries contained only one non stop word or did not have any relevant documents in the relevance
judgments.
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For KLD, we compared the performance when using l ¼ 2;000 as advocated by Zhai and

Lafferty (2004) to training using cross-evaluation. On average, the advocated setting per-

formed better, specifically Web Track 2012 was an extreme outlier obtaining ?50 % Stat-

MAP for the advocated settings over training using Web Track 2009 and Web Track 2011

combined. Therefore, to obtain a more realistic impression of the benefits of using proximity

models on Web collections, we decided to use l ¼ 2;000 for KLD CPE and CPES.

For the ClueWeb collections, the runtime for tuning was significantly reduced by using

a smaller subset of the collections, consisting of all documents assessed by TREC and all

documents retrieved in the top-10k for all topics and all retrieval models using default

parameters. The indexes created for these subsets used the unigram and co-occurrence

statistics of the entire collection, so that retrieving the top-1k documents on the subset is

near identical to retrieving the top-1k documents on the whole ClueWeb collection. The

ClueWeb09 subset contained 1 % of the documents in the entire collection and the

ClueWeb12 collection 0.1 %. Checking the results of the parameter tuning, more than

99.9 % of the documents retrieved using the tuned parameters for the Web Tracks sets

were contained in the collection used for tuning. Using the tuned parameters, the average

difference in StatMAP between retrieving a query’s results from the subset using the tuned

parameters and from the entire collection corresponded to 0.003 %, caused by a very small

number of documents that were retrieved from the full collection after training, but missing

from the subset.

6.2 Results

Table 4 presents a side-by-side comparison of CPE and CPES to KLD, MinDist, PLM,

SDM and FDM over the TREC sets. On average, FDM and CPE perform better than the

other models. The CPES model scores specifically worse than the other models on TREC 1

and 3. We suspect that the effectiveness of using stop words depends on the function these

stop words have in the query. In some queries, the stop words are vital clues to recognizing

the intended meaning, and thus as a word that should appear in relevant documents. In

early TREC editions, topics appear to be phrased as natural language, in which stop words

often play a more syntactical role than that they are good predictors of relevant documents.

For example, in TREC 3 topic 198: ‘‘Gene therapy and its benefits to humankind‘‘, the

words ‘‘and’’ and ‘‘its’’ may not be here because the user predicts that documents that are

relevant contain these words in greater quantity than documents that are not. Using stop

words is more likely to help for WT09 topic 42: ‘‘the music man’’, more strongly pro-

moting the intended meaning, which is a musical and not ‘‘Music Man’’ which is a

manufacturer of musical instruments.

Table 5 shows a comparison of all models over the Web Track sets. The results show

that SDM, FDM, CPE and CPES are relatively more effective than KLD on the Web Track

sets than on the TREC sets, which was also suggested by Metzler and Croft (2005). We

suspect that the independent term model is negatively affected by the noise and spam that

is present in Web collections resulting in a lower baseline, and that the proximity model is

less affected by noise and spam by using the distance between co-occurring terms. The

results show that FDM performs best on WT09 and WT11, and that CPES outperforms the

other models on WT12 and WT13, mostly significant. The behavior of PLM is less

predictive on the Web Track sets than on the TREC sets. In Sect. 2.2, we mentioned that

PLM adds proximity information to the frequency of seen terms, rather than scoring this as

separate evidence, which may explain why this model does not transfer well to Web

collections, where document length varies, affecting how proximity is scored. WT09 has
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one query in particular on which all proximity models hurt performance: topic 46 ‘‘Alexian

Brothers Hospital’’, for which the KLD baseline retrieves three relevant near-identical

documents ranked 2–4, titled ‘‘Alexian Brothers Health Center: Contact Information’’. All

proximity models rank these three documents lower for not having ‘‘Hospital’’ close to the

other terms. Finally, notice that tuning parameters for SDM on WT13 using tenfold cross

evaluation resulted in settings for kU that vary from 0.13 to 0.46 between the folds, which

could indicate that cross-evaluation may not have resulted in close to optimal parameter

settings being used.

The results that were presented in Sect. 6.2, were also tested on significant improve-

ments between systems. In Table 6, each cell contains the test sets on which the models in

the row label performed significantly better than the model in the column label. As a

reference, ‘‘Appendix 2’’ contains the highest MAP score obtained by a system that par-

ticipated in the TREC ad-hoc tasks, and highest StatMAP obtained by a system that

participated in the Web Track ad-hoc tasks.

6.3 Robustness

In this section, the robustness of the proximity models is compared. Here, robustness of a

model is defined as the number of queries that are improved rather than hurt. Sakai et al.

Table 4 Comparison of CPE and CPES to KLD, MinDist, PLM, SDM and FDM over ad-hoc TREC sets

KLD MinDist PLM SDM FDM CPE CPES

TREC 1 MAP 0.2247 0.2396 0.2432 0.2436 0.2433 0.2425 0.2373

d (%) ?6.6 ?8.2 ?8.4 ?8.3 ?8.0 ?5.6

p value 0.014 0.011 0.026 0.035 0.030 0.103

TREC 2 MAP 0.2065 0.2145 0.2128 0.2125 0.2109 0.2142 0.2141

d (%) ?3.9 ?3.1 ?2.9 ?2.1 ?3.7 ?3.7

p value 0.032 0.071 0.104 0.194 0.026 0.035

TREC 3 MAP 0.2758 0.2872 0.2797 0.2924 0.2925 0.2840 0.2786

d (%) ?4.1 ?1.4 ?6.0 ?6.0 ?3.0 ?1.0

p value 0.007 0.266 0.006 0.004 0.023 0.286

TREC 5 MAP 0.1526 0.1626 0.1790 0.1775 0.1869 0.1815 0.1801

d (%) ?6.5 ?17.3 ?16.3 ?22.5 ?19.0 ?18.0

p value 0.107 0.045 0.076 0.045 0.032 0.039

TREC 6 MAP 0.2280 0.2396 0.2437 0.2384 0.2400 0.2411 0.2418

d (%) ?5.1 ?6.9 ?4.6 ?5.3 ?5.7 ?6.0

p value 0.035 0.007 0.047 0.034 0.020 0.017

TREC 7 MAP 0.1937 0.2073 0.2073 0.2060 0.2071 0.2087 0.2122

d (%) ?7.0 ?7.0 ?6.4 ?6.9 ?7.8 ?9.5

p value 0.024 0.019 0.053 0.042 0.014 0.005

TREC 8 MAP 0.2522 0.2591 0.2567 0.2567 0.2572 0.2621 0.2633

d (%) ?2.8 ?1.8 ?1.8 ?2.0 ?3.9 ?4.4

p value 0.078 0.139 0.205 0.184 0.023 0.014

Average d (%) ?5.0 ?5.8 ?6.1 ?6.8 ?6.6 ?6.1

The percentages represent improvement in MAP over the KLD baseline. These improvements were tested
for significance with a paired Student’s t-test, one tailed, a ¼ 0:05. The highest MAP per test set is in bold
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(2005) introduced the Reliability of Improvement metric (RI), which was later called

Robustness Index by Collins-Thompson and Callan (2007). In Eq. (23), the robustness

index RI is a value between -1 and 1, computed as the difference between the number of

queries improved over the KLD baseline nþ and the number of queries scoring lower than

the KLD baseline n� divided by the total number of queries jQj. The comparison of the

robustness indices in Table 7 shows that CPE is, on average, the most robust model.

RI ¼ nþ � n�

jQj ð23Þ

6.4 Proximity hypothesis

We hypothesized that the usefulness of term proximity for ranking documents is not bound

to a maximum word distance. To test this, we retrieved results with the CPE model on the

test collections, varying the maximum span in the range 10; 20; . . .; 1;000. In Fig. 4, the

results are shown for the TREC sets and the Web Track sets, with a MAP score that was

normalized by dividing by the highest MAP for the sets, so that 1 is the maximum value.

For Web collections, having no constraint on the distance used maximizes results. The

results for the TREC sets reaches is optimal when using co-occurrences within 140 words,

and stabilizes to a level approximately 0.1 % lower over unlimited distance. Inspection

revealed that this decline beyond 140 words is mostly caused by documents from the AP

and WSJ sections of the TREC collections, therefore it may be a collection specific

characteristic. The expected gain of finding an optimum maximum span opposed to simply

using all co-occurrences will be minimal, if any. We therefore conclude that using all co-

occurrences despite of their distance in text is a good principle, provided that the score of

co-occurrences correctly depends on their distance in text.

Table 5 Comparison of CPE and CPES to KLD, MinDist, PLM and SDM over ad-hoc Web Track
collections

KLD MinDist PLM SDM FDM CPE CPES

WT09 MAP 0.0334 0.0358 0.0348 0.0439 0.0460 0.0416 0.0425

d (%) ?7.1 ?4.1 ?31.2 ?37.4 ?24.5 ?27.1

p value 0.192 0.294 0.017 0.014 0.026 0.017

WT11 MAP 0.0775 0.0920 0.0884 0.1306 0.1416 0.1244 0.1381

d (%) ?18.8 ?14.1 ?68.7 ?82.8 ?60.7 ?78.3

p value 0.000 0.011 0.002 0.000 0.000 0.000

WT12 MAP 0.0418 0.0277 0.0304 0.0437 0.0481 0.0495 0.0545

d (%) -33.7 -27.4 ?4.5 ?14.9 ?18.2 ?30.4

p value 0.042 0.048 0.342 0.077 0.001 0.000

WT13 MAP 0.1332 0.1387 0.1344 0.1483 0.1441 0.1556 0.1748

d (%) ?4.1 ?0.9 ?11.3 ?8.2 ?16.8 ?31.2

p value 0.002 0.146 0.003 0.143 0.001 0.000

Average d (%) ?2.9 ?0.7 ?28.2 ?32.8 ?29.8 ?43.4

The percentage represent improvement in MAP over the KLD baseline. These improvements were tested for
significance with a paired Student’s t-test, one tailed, a ¼ 0:05. The highest MAP per test set is in bold
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6.5 Qualitative analysis

The results were analyzed in more detail to gain insight into how the distance between

occurring query terms affects the document scores, what caused relevant documents to be

negatively affected, and how term combinations that have an inversely proportional

relation to being relevant affect the ranking. The intended effect of a proximity model is

illustrated using two cases of documents being re-ranked. On topic 365 of TREC-7: ‘‘El

Nino’’, KLD resulted in 0.73 on average precision, ranking the irrelevant document FBIS4-

11397 in 10th position. CPE ranked this specific document to 43rd position, resulting in an

almost perfect average precision of 0.96. The fragment (from document FBIS4-11397)

shows the part of this irrelevant document where ‘‘El’’ and ‘‘Nino’’ co-occur further apart,

using the words ‘‘El’’ and ‘‘Nino’’ in a different meaning.

Four other members of the gang that killed General Julio Nino Rios, former director

of the defunct Peruvian Republican Guard. (Lima EXPRESO in Spanish 4 Apr 94 p

A17). Seven Tupac Amaru Revolutionary Movement, MRTA, ‘terrorists’ were

Table 6 Comparison of significant improvements between six proximity baselines

Row [ column MinDist PLM SDM FDM CPE CPES

MinDist 9 11 13 3

PLM 5 6 6

SDM 9 11 12 13 3 9 11 12 13 3

FDM 5 9 11 12 3 9 11 12 5 11 3 9 11 3

CPE 5 9 11 12 13 8 9 11 12 13 8 8 13 3

CPES 5 8 9 11 12 13 8 9 11 12 13 8 12 13 8 13 11 12 13

The collection numbers 1–8 for TREC 1–8 and 9–13 for Web Track 2009–2013 indicate that the proximity
model in the row label significantly performed better than the proximity model in the column label.
Improvements were tested for significance with a paired Student’s t-test, one tailed, a ¼ 0:05

Table 7 Robustness Index (RI) of CPE and CPES to KLD, MinDist, PLM and SDM compared to the KLD
baseline over ad-hoc collections

MinDist PLM SDM FDM CPE CPES

TREC 1 0.18 0.22 0.14 0.08 0.18 0.12

TREC 2 0.16 0.10 0.08 0.16 0.20 0.16

TREC 3 0.12 0.28 0.32 0.28 0.22 0.10

TREC 5 0.24 0.36 0.16 0.24 0.34 0.30

TREC 6 0.06 0.26 0.14 0.10 0.16 0.12

TREC 7 0.28 0.06 0.06 0.08 0.18 0.18

TREC 8 0.00 -0.04 0.12 0.20 0.24 0.24

WT09 0.04 0.00 0.33 0.24 0.18 0.24

WT11 0.40 0.12 0.48 0.52 0.50 0.60

WT12 -0.20 -0.14 0.14 0.40 0.48 0.50

WT13 0.16 -0.08 0.48 0.48 0.56 0.54

Average 0.13 0.10 0.22 0.25 0.29 0.28

In bold is the highest RI per test set
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presented to the press at the Fifth Infantry Division unit in El Milagro District, in the

Amazon province of Bagua.

For TREC-7 topic 397: ‘‘Automobile Recalls’’, CPE improved average precision from

0.32 to 0.40. The next fragment (from document LA021390-0016), which was ranked #1

by KLD, discusses safety seats being recalled, not automobiles. CPE re-ranked this doc-

ument to #4, below three relevant documents. Both fragments illustrate that if more

intermediate words are present, it becomes more likely that the relation between co-

occurring query terms is diverted or changed.

Parents often breathe a sigh of relief once they buckle their toddlers into automobile

safety seats. That might be a false sense of security. Since 1968, there have been 39

recalls of various models of child safety seats.

Queries that were negatively affected by the proximity model were also inspected.

Among the worst performing queries was TREC 1 topic 61: ‘‘Israeli Role in Iran-Contra

Affair’’. For some queries, the score of one vital term, in this case ‘‘Israeli’’, cannot

compete with the much higher proximity score of the frequently adjacently occurring ‘‘Iran

Contra Affair’’. Another bad case for proximity models is TREC 7 topic 377: ‘‘Cigar

Smoking’’, for which the distance between terms is inversely related to relevance. In this

case, it is partly a side effect of stemming that causes smoke, smoker and smoking to be

converted to the same stem, thus promoting documents containing ‘‘cigar smoke’’ or ‘‘cigar

smoker’’. Specifically inspecting term combinations with an inverse distance-relevance

relationship, it appears that these occur mostly in queries with more than two terms. The

last example is TREC 6 topic 350: ‘‘Health and Computer Terminals’’, which requests

information about the hazardous effects to individuals who make daily use of computer

terminals. Adjacent occurrences of ‘‘computer health’’ and ‘‘health terminals’’ all appear in

non-relevant documents. For this topic only one of these six documents was promoted into

the top-1000 documents by CPE, specifically to position 429. The occurrences with an

opposite proximity-relevance relationship are possibly restrained by the absence of other

query terms which are less likely to co-occur in irrelevant documents, reducing the neg-

ative impact of these ‘‘opposites’’. Although this side-effect was not studied thoroughly, on

this particular topic CPE improved average precision by approx. 20 % over the KLD
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baseline, illustrating that impact of irrelevant adjacent co-occurrences can be conditioned

by the absence of other terms.

7 Conclusion

We studied the use of term proximity information for ranking documents according to their

estimated relevance, focusing on the question how the distance between co-occurring

query terms may influence relevance weights associated to these terms. We first analyzed

how the distance between query terms in documents is related to their likelihood to appear

in a relevant document, using data from existing test collections. The insights from this

preliminary study were used to design a simple yet effective proximity model [called

cumulative proximity expansions (CPEs)], that aggregates the estimated impact of query

term co-occurrences. This impact is solely derived from the distance between their

respective occurrences, motivated by the intuition that the distance between terms corre-

sponds to the number of intervening terms that each may have modified the semantic

relation between these terms.

CPE distinguishes itself from the state-of-the-art proximity models by requiring no

additional parameters to be tuned, and no collection wide co-occurrence statistics. CPE is

thus easily implemented, by modifying only the scoring function on any inverted index that

contains positional posting lists for unigrams. We optimized retrieval speed by counting

the co-occurrences of all term combinations in a single pass, which we show to be feasible

even in the case of the very long queries of TREC-4. The runtime performance is close to

that of its main competitor SDM, and more feasible in practice than FDM, should we

encounter long queries.

We empirically compared the retrieval performance between our proposed models and

four different state-of-the-art baseline proximity models, over seven TREC ad-hoc and four

TREC Web Track collections. Of all models, the CPE model is the most robust (in terms of

the Robustness Index), while, on average, retrieval effectiveness is comparable to FDM

and outperforms MinDist, PLM and SDM. The CPES variant uses a query’s stop words in

the term combinations considered, and outperforms the other models on the Web collec-

tions. This variant is however less robust on the ad-hoc collections, where the stop words in

queries do not always help predict the documents that are most relevant.

In previous research, the use of proximity information is often limited to selected term

combinations and within a limited word distance. We hypothesized that the likelihood for

query terms to co-occur in a relevant document diminishes with the distance between these

terms, but that the evidence from co-occurrence should not be restricted to a short window

size only. Our experimental results indeed confirm the results of (a large number of)

previous studies, that nearby co-occurrences of query terms provide strong evidence about

a document’s relevance. Scoring distant co-occurrences does however lead to further

improvements in effectiveness. Although we have observed that proximity can be counter-

effective in special cases of query term combinations, we have found that, generally, using

all term combinations outperforms other models and provides more robust results. Nev-

ertheless, an interesting future direction of research would analyze for which queries or

term combinations proximity models are likely to improve results. More insights to predict

the important term combinations (as well as those to ignore) may alleviate the negative

effects of proximity as well as improve the runtime performance of the system.
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Appendix 1: Proof of rank equivalence KLD and QL

The KLD function presented by Zhai and Lafferty (2004) and Eq. (1) and the Query

Likelihood function presented by Metzler and Croft (2005) and Eq. (10) are both Dirichlet

smoothed language model estimates. Although these functions assign different scores to

documents, they are in fact rank equivalent, as we will show here. In this proof, qi is a term

in query Q; l is the Dirichlet prior parameter, jDj is the number of words in document

D; tfqi;D is the number of times qi appears in D; cfqi
is the number of times qi appears in

collection C; jCj is the total number of words in C, and PðqijCÞ is the simple likelihood

estimate that qi appears in C.

QLðQ;DÞ ¼
X

qi2Q

log 1� l
lþ jDj

� �

� tfqi;D

jDj þ
l

lþ jDj �
cfqi

jCj

� �

ð24Þ

(25)

¼
X

qi2Q

log
1

lþ jDj � tfqi;D þ
l � cfqi

jCj

� �� �

ð26Þ

¼
X

qi2Q

log
1

lþ jDj �
1

jCj � tfqi ;D � jCj þ l � cfqi

� �
� �

ð27Þ

¼
X

qi2Q

log
l

lþ jDj �
cfqi

jCj � 1þ tfqi ;D � jCj
l � cfqi

� �� �

ð28Þ

rank
¼

X

qi2Q

log
l

lþ jDj � 1þ tfqi;D � jCj
l � cfqi

� �� �

ð29Þ

rank
¼

X

qi2Q

log 1þ tfqi;D

l � PqijC

� �

þ jQj � log
l

lþ jDj ð30Þ

¼ KLDðQ;DÞ ð31Þ

In Eq. (28), we can eliminate the likelihood that the term appears in the corpus, which is

the same for every document. Equation (29) is thus rank equivalent to Eq. (28). In

Eq. (30), the KLD function is derived by multiplying the document prior with a document

independent constant, thus completing the proof.

Appendix 2: Results of best TREC runs

In Table 8, we present the highest StatMAP obtained by any system that participated at

the TREC ad-hoc tracks. For the 2011 and 2012 Web Tracks, the best scoring systems

outscore the proximity models by a large margin. The best TREC systems are complete

retrieval systems, that filter out spam, use Learning To Rank on a range of features. In

2009 and 2013 there is less difference between the TREC best system and the proximity

models. The first year these Web collections were used, no training data was given to the

participants.
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