
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. 9, SEPTEMBER 2014 2281

Runtime Optimizations for Tree-based
Machine Learning Models

Nima Asadi, Jimmy Lin, and Arjen P. de Vries

Abstract—Tree-based models have proven to be an effective solution for web ranking as well as other machine learning problems in
diverse domains. This paper focuses on optimizing the runtime performance of applying such models to make predictions, specifically
using gradient-boosted regression trees for learning to rank. Although exceedingly simple conceptually, most implementations of
tree-based models do not efficiently utilize modern superscalar processors. By laying out data structures in memory in a more
cache-conscious fashion, removing branches from the execution flow using a technique called predication, and micro-batching
predictions using a technique called vectorization, we are able to better exploit modern processor architectures. Experiments on
synthetic data and on three standard learning-to-rank datasets show that our approach is significantly faster than standard
implementations.

Index Terms—Web search, general information storage and retrieval, information technology and systems, scalability and efficiency,
learning to rank, regression trees

1 INTRODUCTION

RECENT studies have shown that machine-learned
tree-based models, combined with ensemble tech-

niques, are highly effective for building web ranking algo-
rithms [1]–[3] within the “learning to rank” framework [4].
Beyond document retrieval, tree-based models have also
been proven effective for tackling problems in diverse
domains such as online advertising [5], medical diagno-
sis [6], genomic analysis [7], and computer vision [8]. This
paper focuses on runtime optimizations of tree-based mod-
els that take advantage of modern processor architectures:
we assume that a model has already been trained, and now
we wish to make predictions on new data as quickly as pos-
sible. Although exceedingly simple, standard implementa-
tions of tree-based models do not efficiently utilize modern
processor architectures due to the prodigious amount of
branches and non-local memory references. By laying out
data structures in memory in a more cache-conscious fash-
ion, removing branches from the execution flow using a
technique called predication, and micro-batching predic-
tions using a technique called vectorization, we are able
to better exploit modern processor architectures and sig-
nificantly improve the speed of tree-based models over
hard-coded if-else blocks and alternative implementations.

• N. Asadi is with the Department of Computer Science, University of
Maryland, College Park, MD 20742 USA. E-mail: nima@cs.umd.edu.

• J. Lin is with the College of Information Studies, University of Maryland,
College Park, MD 20742 USA. E-mail: jimmylin@umd.edu.

• A. P. de Vries is with the Centrum Wiskunde and Informatica (CWI),
Amsterdam 1098 XG, Netherlands. E-mail: arjen@acm.org.

Manuscript received 18 July 2012; revised 18 Apr. 2013; accepted 19 Apr.
2013. Date of publication 2 May 2013; date of current version 31 July 2014.
Recommended for acceptance by B. Cooper.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier 10.1109/TKDE.2013.73

Our experimental results are measured in nanoseconds
for individual trees and microseconds for complete ensem-
bles. A natural starting question is: do such low-level
optimizations actually matter? Does shaving microseconds
off an algorithm have substantive impact on a real-world
task? We argue that the answer is yes, with two different
motivating examples: First, in our primary application of
learning to rank for web search, prediction by tree-based
models forms the inner loop of a search engine. Since
commercial search engines receive billions of queries per
day, improving this tight inner loop (executed many bil-
lions of times) can have a noticeable effect on the bottom
line. Faster prediction translates into fewer servers for the
same query load, reducing datacenter footprint, electricity
and cooling costs, etc. Second, in the domain of financial
engineering, every nanosecond counts in high frequency
trading. Orders on NASDAQ are fulfilled in less than 40
microseconds.1 Firms fight over the length of cables due to
speed-of-light propagation delays, both within an individ-
ual datacenter and across oceans [9].2 Thus, for machine
learning in financial engineering, models that shave even a
few microseconds off prediction times present an edge.

The contribution of this work lies in novel imple-
mentations of tree-based models that are highly-tuned to
modern processor architectures, taking advantage of cache
hierarchies and superscalar processors. We illustrate our
techniques on three separate learning-to-rank datasets and
show significant performance improvements over standard
implementations. Although our interest lies primarily in
machine learning for web search ranking, there is noth-
ing in this paper that is domain-specific. To the extent that
tree-based models represent effective solutions, we expect

1. http://www.nasdaqtrader.com/Trader.aspx?id=colo
2. http://spectrum.ieee.org/computing/it/financial-trading-at-

the-speed-of-light

1041-4347 c© 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301645214?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2282 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. 9, SEPTEMBER 2014

our results to generalize to machine learning applications
in other domains.

More generally, our work enriches the literature on
architecture-conscious optimizations for machine learning
algorithms. Although database researchers have long real-
ized the importance of designing algorithms that match
the characteristics of processor architectures [10]–[14], this
topic has not received much attention by the information
retrieval, machine learning, and data mining communities.
Although we are not the first to examine the problem of
architecture-conscious algorithms for machine learning, the
literature is sparsely populated and we contribute to the
field’s understanding of performance optimizations for an
important class of applications.

2 BACKGROUND AND RELATED WORK

2.1 Processor Architectures
We begin with an overview of modern processor architec-
tures and recap advances over the past few decades. The
broadest trend is perhaps the multi-core revolution [15]:
the relentless march of Moore’s Law continues to increase
the number of transistors on a chip exponentially, but com-
puter architects widely agree that we are long past the point
of diminishing returns in extracting instruction-level par-
allelism in hardware. Instead, adding more cores appears
to be a better use of increased transistor density. Since
prediction is an embarrassingly parallel problem, our tech-
niques can ride the wave of increasing core counts (but see
discussion in Section 6).

A less-discussed, but just as important trend over the
past two decades is the so-called “memory wall” [14],
where increases in processor speed have far outpaced
decreases in memory latency. This means that, relatively,
RAM is becoming slower. In the 1980s, memory latencies
were on the order of a few clock cycles; today, it could be
several hundred clock cycles. To hide this latency, computer
architects have introduced hierarchical cache memories:
a typical server today will have L1, L2, and L3 caches
between the processor and main memory. Cache architec-
tures are built on the assumption of reference locality—that
at any given time, the processor repeatedly accesses only
a (relatively) small amount of data, and these fit into
cache. The fraction of memory accesses that can be ful-
filled directly from the cache is called the cache hit rate,
and data not found in cache are said to cause a cache miss.
Cache misses cascade down the hierarchy—if a datum is
not found in L1, the processor tries to look for it in L2, then
in L3, and finally in main memory (paying an increasing
latency cost each level down).

Managing cache content is a complex challenge, but
there are two main principles that are relevant for a soft-
ware developer. First, caches are organized into cache lines
(typically 64 bytes), which is the smallest unit of transfer
between cache levels. That is, when a program accesses a
particular memory location, the entire cache line is brought
into (L1) cache. This means that subsequent references
to nearby memory locations are very fast, i.e., a cache
hit. Therefore, in software it is worthwhile to organize
data structures to take advantage of this fact. Second, if
a program accesses memory in a predictable sequential

pattern (called striding), the processor will prefetch mem-
ory blocks and move them into cache, before the program
has explicitly requested them (and in certain architectures,
it is possible to explicitly control prefetch in software).
There is, of course, much more complexity beyond this
short description; see [16] for an overview.

Another salient property of modern CPUs is pipelining,
where instruction execution is split between several stages
(modern processors have between one and two dozen
stages). At each clock cycle, all instructions “in flight”
advance one stage in the pipeline; new instructions enter
the pipeline and instructions that leave the pipeline are
“retired”. Pipeline stages allow faster clock rates since there
is less to do per stage. Modern superscalar CPUs add the
ability to dispatch multiple instructions per clock cycle (and
out of order) provided that they are independent.

Pipelining suffers from two dangers, known as “haz-
ards” in VLSI design terminology. Data hazards occur when
one instruction requires the result of another (that is, a
data dependency). This happens frequently when derefer-
encing pointers, where we must first compute the memory
location to access. Subsequent instructions cannot pro-
ceed until we actually know what memory address we
are requesting—the processor simply stalls waiting for the
result (unless there is another independent instruction that
can be executed). Control hazards are instruction depen-
dencies introduced by if-then clauses (which compile to
conditional jumps in assembly). To cope with this, modern
processors use branch prediction techniques—in short, try-
ing to predict which code path will be taken. However,
if the guess is not correct, the processor must “undo” the
instructions that occurred after the branch point (“flushing”
the pipeline). With trees, one would naturally expect many
branch mispredicts.

The database community has explored in depth the con-
sequences of modern processor architectures for relational
data processing [10]–[14]. For example, researchers discov-
ered over a decade ago that data and control hazards
can have a substantial impact on performance: an influen-
tial paper in 1999 concluded that in commercial RDBMSes
at the time, almost half of the execution time was spent
on stalls [10]. Since then, researchers have productively
tackled this and related issues by designing architecture-
conscious algorithms for relational data processing. In con-
trast, this topic has not received much attention by the
information retrieval, machine learning, and data mining
communities.

The two optimization techniques central to our approach
borrow from previous work. Using a technique called pred-
ication [17], [18], originally from compilers, we can convert
control dependencies into data dependencies. However,
as compiler researchers know well, predication does not
always help—under what circumstances it is worthwhile
for our machine learning application is an empirical ques-
tion we examine.

Another optimization that we adopt, vectorization, was
pioneered by database researchers [13], [19]: the basic idea
is that instead of processing a tuple at a time, a relational
query engine should process a vector (i.e., batch) of tuples
at a time to take advantage of pipelining and to mask
memory latencies. We apply this idea to prediction with

ASADI ET AL.: RUNTIME OPTIMIZATIONS FOR TREE-BASED MACHINE LEARNING MODELS 2283

tree-based models and are able to obtain many of the same
benefits.

Although there is much work on scaling the training
of tree-based models to massive datasets [5], [20], it is
orthogonal to the focus of this paper, which is architecture-
conscious runtime optimizations. We are aware of a few
papers that have explored this topic. Ulmer et al. [21]
described techniques for accelerating text-similarity clas-
sifiers using FPGAs. Sharp [22] explored decision tree
implementations on GPUs for image processing applica-
tions. Other than the obvious GPU vs. CPU differences:
although his approach also takes advantage of predication,
we describe a slightly more optimized implementation.
Similarly, Essen et al. [23] compared multi-core, GPU, and
FPGA implementations of compact random forests. They
also take advantage of predication, but there are minor dif-
ferences that make our implementation more optimized.
Furthermore, neither of these two papers take advantage
of vectorization, although it is unclear how vectorization
applies to GPUs, since they are organized using very dif-
ferent architectural principles. We will detail the differences
between these and our implementations in Section 3.

2.2 Learning to Rank and LambdaMART
The particular problem we focus on in this paper is learn-
ing to rank—the application of machine learning techniques
to document ranking in text retrieval. Following the stan-
dard formulation [4], we are given a document collection
D and a training set S = {(xi, yi)}m

i=1, where xi is an input
feature vector and yi is a relevance label (in the simplest
case, relevant or not-relevant, but more commonly, labels
drawn from a graded relevance scale). Each input feature
vector xi is created from φ(qi, di,j), where qi represents a
sample query and di,1 . . . di,j represent documents for which
we have some relevance information, on which the fea-
ture function φ is applied to extract features. Given this,
the learning to rank task is to induce a function f (q, D)

that assigns scores to query–document pairs (or equiva-
lently, feature vectors) such that the ranking induced by the
document scores maximizes a metric such as NDCG [24].

Our work takes advantage of gradient-boosted regres-
sion trees (GBRTs) [1]–[3], [25], a state-of-the-art ensemble
method. Specifically, we use LambdaMART [1], which is the
combination of LambdaRank [26] and MART [27], a class of
boosting algorithms that performs gradient descent using
regression trees.

LambdaMART learns a ranking model by sequentially
adding new trees to an ensemble that best account for
the remaining regression error (i.e., the residuals) of the
training samples. More specifically, LambdaMART learns a
linear predictor Hβ(x) = βᵀh(x) that minimizes a given loss
function �(Hβ), where the base learners are limited-depth
regression trees [28]: h(x) = [h1(x), . . . , hT(x)], where ht ∈ H,
and H is the set of all possible regression trees.

Assuming we have constructed t − 1 regression trees in
the ensemble, LambdaMART adds the t-th tree that greedily
minimizes the loss function, given the current pseudo-
responses. CART [28] is used to generate a regression tree
with J terminal nodes, which works by recursively split-
ting the training data. At each step, CART computes the
best split (a feature and a threshold) for all terminal nodes,

and then applies the split that results in the highest gain,
thereby growing the tree one node at a time. Consider the
following cost function:

C(N, 〈f , θ〉N) =
∑

xi∈L

(yi − ȳL)2 +
∑

xi∈R

(yi − ȳR)2, (1)

where L and R are the left and right sets containing the
instances that fall to the left and right of node N after
the split is applied, respectively; N denotes a node in
the tree; 〈f , θ〉N is a pair consisting of a feature and a
threshold; xi and yi denote an instance and its associated
pseudo-response. Minimizing Equation (1) is equivalent to
maximizing the difference in C(·) before and after a split
is applied to node N. This difference can be computed as
follows:

G(N, 〈f , θ〉N) =
∑

xi∈N

(yi − ȳN)2 − C(N, 〈f , θ〉N), (2)

where xi ∈ N denotes the set of instances that are present
in node N.

The final LambdaMART model has low bias but is prone
to overfitting the training data (i.e., model has a high
variance). In order to reduce the variance of an ensem-
ble model, bagging [29] and randomization can be utilized
during the training. Friedman [27] introduces the following
randomization techniques:

• A weak learner is fit on a sub-sample of the training
set drawn at random without replacement.

• Similar to Random Forests [30], to determine the
best tree split, the algorithm picks the best feature
from a random subset of all features (as opposed to
choosing the best overall feature).

Ganjisaffar et al. [2] take randomization one step further and
construct multiple ensembles, each built using a random
bootstrap of the training data (i.e., bagging multiple boosted
ensembles). In this work, we limit our experiments to the
two randomization techniques discussed above and do not
explore bagging the boosted ensembles—primarily because
bagging is embarrassingly-parallel from the runtime execu-
tion perspective and hence not particularly interesting.

Related to our work, there is an emerging thread of
research, dubbed “learning to efficiently rank”, whose goal
is to train models that deliver both high-quality results
and are fast in ranking documents [31]–[33]. For exam-
ple, Wang et al. [32] explored a cascade of linear rankers
and Xu et al. [33] focused on training tree-based models
that minimize feature-extraction costs. This line of research
is complementary to our work since it focuses on training
models that better balance effectiveness and efficiency; in
contrast, we develop optimizations for executing tree-based
models. In other words, our techniques can provide the
execution framework for models delivered by Xu et al.

A final piece of relevant work is that of Cambazoglu
et al. [34]: in the context of additive ensembles (of which
boosted trees are an example) for learning to rank, they
explored early-exit optimizations for top k ranking. The
authors empirically showed that, using a number of heuris-
tics, it is possible to skip evaluation of many stages in
an ensemble (thereby increasing the performance of the
ranker) with only minimal loss in result quality. While

2284 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. 9, SEPTEMBER 2014

this approach has the same overall goals as our work, it
is orthogonal since we are focusing on a different aspect
of the problem—efficient execution of the individual tree-
based models that comprise an additive ensemble. There is
no reason why the optimizations of Cambazoglu et al. [34]
cannot be applied on top of our work. Finally, we note that
our optimizations are more general, since their work is only
applicable to top k retrieval problems and sacrifices some
quality.

3 TREE IMPLEMENTATIONS

In this section, we describe various implementations of
tree-based models, progressively introducing architecture-
conscious optimizations. We focus on an individual tree, the
runtime execution of which involves checking a predicate in
an interior node, following the left or right branch depend-
ing on the result of the predicate, and repeating until a
leaf node is reached. We assume that the predicate at each
node involves a feature and a threshold: if the feature value
is less than the threshold, the left branch is taken; other-
wise, the right branch is taken. Of course, trees with greater
branching factors and more complex predicate checks can
be converted into an equivalent binary tree, so our formula-
tion is entirely general. Note that our discussion is agnostic
with respect to the prediction at the leaf node.

We assume that the input feature vector is densely-
packed in a floating-point array (as opposed to a sparse,
map-based representation). This means that checking the
predicate at each tree node is simply an array access, based
on a unique consecutively-numbered id associated with
each feature.

OBJECT: As a naïve baseline, we consider an implemen-
tation of trees with nodes and associated left and right
pointers in C++. Each tree node is represented by an object,
and contains the feature id to be examined as well as the
decision threshold. For convenience, we refer to this as the
OBJECT implementation.

This implementation has two advantages: simplicity and
flexibility. However, we have no control over the physical
layout of the tree nodes in memory, and hence no guaran-
tee that the data structures exhibit good reference locality.
Prediction with this implementation essentially boils down
to pointer chasing across the heap: when following either
the left or the right pointer to the next tree node, the
processor is likely to be stalled by a cache miss.

STRUCT: The OBJECT approach has two downsides: poor
memory layout (i.e., no reference locality and hence cache
misses) and rather inefficient memory utilization (due to
object overhead). To address the second point, the solu-
tion is to avoid objects and implement each node as a
struct (comprising feature id, threshold, left and right
pointers). We construct a tree by allocating memory for each
node (malloc) and assigning the pointers appropriately.
Prediction with this implementation remains an exercise
in pointer chasing, but now across much more memory-
efficient data structures. We refer to this as the STRUCT
implementation.

STRUCT+: An improvement over the STRUCT implementa-
tion is to physically manage the memory layout ourselves.

Fig. 1. Memory layout of the PRED implementation for a sample tree.

Instead of allocating memory for each node individually,
we allocate memory for all the nodes at once (i.e., an array
of structs) and linearize the order of the nodes via a
breadth-first traversal of the tree, with the root at index 0.

The STRUCT+ implementation occupies the same
amount of memory as STRUCT, except that the memory is
contiguous. The hope is that by manually controlling mem-
ory layout, we can achieve better reference locality, thereby
speeding up memory references. This is similar to the idea
behind CSS-Trees [11] used in the database community. For
convenience we call this the STRUCT+ implementation.

CODEGEN: Next, we consider statically-generated if-else
blocks. A code generator takes a tree model and directly
generates C code, which is then compiled and used to
make predictions. For convenience, we refer to this as the
CODEGEN implementation.

We expect this approach to be fast. The entire model
is statically specified; machines instructions are expected
to be relatively compact and will fit into the processor’s
instruction cache, thus exhibiting good reference locality.
Furthermore, we leverage decades of compiler optimiza-
tions that have been built into gcc. Note that this eliminates
data dependencies completely by converting them all into
control dependencies.

PRED: The STRUCT+ implementation tackles the reference
locality problem, but there remains the presence of branches
(resulting from the conditionals), which can be quite expen-
sive to execute. The CODEGEN implementation suffers from
this drawback as well. Branch mispredicts cause pipeline
stalls and wasted cycles (and of course, we would expect
many mispredicts with trees). Although it is true that spec-
ulative execution renders the situation far more complex,
removing branches may yield performance increases. A
well-known trick in the compiler community for overcom-
ing these issues is known as predication [17], [18]. The
underlying idea is to convert control dependencies (haz-
ards) into data dependencies (hazards), thus altogether
avoiding jumps in the underlying assembly code.

Here is how predication is adapted for our case: We
encode the tree as a struct array in C, nd, where
nd[i].fid is the feature id to examine and nd[i].theta
is the threshold. The nodes are laid out via breadth-first
traversal of the tree. Each node, regardless of being interme-
diate or terminal, additionally holds an array of two inte-
gers. The first integer field holds the index of the left child in
the array representation, and the second integer holds that
of the right child. We use self loops to connect every leaf to
itself (more below). A sample memory structure of nodes
in the proposed implementation is illustrated in Fig. 1.

To make the prediction, we probe the array in the
following manner:

i = nd[i].index[(v[nd[i].fid] >= nd[i].theta)];
i = nd[i].index[(v[nd[i].fid] >= nd[i].theta)];

...

ASADI ET AL.: RUNTIME OPTIMIZATIONS FOR TREE-BASED MACHINE LEARNING MODELS 2285

That is, if the condition holds, we visit the right node (index
1 of the index array); otherwise, we visit the left node (index
0 of the index array). In case we reach a leaf before the
d-th statement, we would be sent back to the same node
regardless of the condition by the self loops.

We completely unroll the tree traversal loop, so the
above statement is repeated d times for a tree of depth
d. At the end, i contains the index of the leaf node cor-
responding to the prediction (which we look up in another
array). Note that the self loops allow us to represent unbal-
anced trees without introducing additional complexity into
the tree traversal logic. Since there is no need to check if we
have reached the leaf, we can safely unroll the entire loop
without affecting the correctness of the algorithm. One final
implementation detail: we hard code a prediction function
for each tree depth, and then dispatch dynamically using
function pointers.

Although the basic idea of using predication to opti-
mize tree execution is not novel, there are a few minor
differences between our implementation and those from
previous work that may have substantial impact on per-
formance. For example, the GPU implementation of tree
models by Sharp [22] takes advantage of predication and
loop unrolling, but in order to handle unbalanced trees each
node must store a flag indicating whether or not it is a leaf
node. Tree traversal requires checking this flag at each node,
which translates into an additional conditional branch at
each level in the tree. We avoid this additional comparison
by the “self loop” trick described above: note that these self
loops have minimal impact on performance, since they are
accessing data structures that have already been loaded into
cache. In another example, the work of Essen et al. [23] also
take advantage of predication, but their implementation
also requires this additional leaf node check; furthermore,
they do not unroll their loops, which introduces additional
branch instructions (and branch mispredicts upon exiting
loops).

VPRED: Predication eliminates branches but at the cost of
introducing data hazards. Each statement in PRED requires
an indirect memory reference. Subsequent instructions can-
not execute until the contents of the memory location are
fetched—in other words, the processor will simply stall
waiting for memory references to resolve. Therefore, predi-
cation is entirely bottlenecked on memory access latencies.

A common technique adopted in the database literature
to mask these memory latencies is called vectorization [13],
[19]. Applied to our task, this translates into operating on
multiple instances (feature vectors) at once, in an inter-
leaved way. This takes advantage of multiple dispatch and
pipelining in modern processors (provided that there are
no dependencies between dispatched instructions, which is
true in our case). Thus, while the processor is waiting for
the memory access from the predication step on the first
instance, it can start working on the second instance. In
fact, we can work on v instances in parallel. For v = 4, this
looks like the following, processing instances i0, i1, i2,
i3 in parallel:

i0 = nd[i0].index[(v[nd[i0].fid] >= nd[i0].theta)];
i1 = nd[i1].index[(v[nd[i1].fid] >= nd[i1].theta)];
i2 = nd[i2].index[(v[nd[i2].fid] >= nd[i2].theta)];
i3 = nd[i3].index[(v[nd[i3].fid] >= nd[i3].theta)];

i0 = nd[i0].index[(v[nd[i0].fid] >= nd[i0].theta)];
i1 = nd[i1].index[(v[nd[i1].fid] >= nd[i1].theta)];
i2 = nd[i2].index[(v[nd[i2].fid] >= nd[i2].theta)];
i3 = nd[i3].index[(v[nd[i3].fid] >= nd[i3].theta)];

...

In other words, we traverse one layer in the tree
for four instances at once. While we’re waiting for
v[nd[i0].fid] to resolve, we dispatch instructions for
accessing v[nd[i1].fid], and so on. Hopefully, by the
time the final memory access has been dispatched, the con-
tents of the first memory access are available, and we can
continue without processor stalls. In this manner, we expect
vectorization to mask memory latencies.

Again, we completely unroll the tree traversal loop, so
each block of statements is repeated d times for a tree
of depth d. At the end, the i’s contain the indexes of
the leaf nodes corresponding to the prediction for the v
instances. Setting v to 1 reduces this model to pure predi-
cation (i.e., no vectorization). Note that the optimal value
of v is dependent on the relationship between the amount
of computation performed and memory latencies—we will
determine this relationship empirically. For convenience,
we refer to the vectorized version of the predication tech-
nique as VPRED.

Note that previous work on optimizing tree-based mod-
els using predication [22], [23] does not take advantage
of vectorization. However, in fairness, it is unclear to
what extent vectorization is applicable in the GPU execu-
tion environment explored in the cited work, since GPUs
support parallelism through a large number of physical
processing units.

4 EXPERIMENTAL SETUP

Given that the focus of our work is efficiency, our primary
evaluation metric is prediction speed, measured in terms
of latency. We define this as the elapsed time between the
moment a feature vector (i.e., a test instance) is presented
to the tree-based model to the moment that a prediction is
made for the instance (in our case, a regression value). To
increase the reliability of our results, we conducted multiple
trials, reporting the averages as well as the 95% confidence
intervals.

We conducted two sets of experiments: first, using syn-
thetically-generated data to quantify the performance of
individual trees in isolation, and second, on standard
learning-to-rank datasets to verify the end-to-end perfor-
mance of full ensembles.

All experiments were run on a Red Hat Linux server,
with Intel Xeon Westmere quad-core processors (E5620
2.4GHz). This architecture has a 64KB L1 cache per core,
split between data and instructions; a 256KB L2 cache
per core; and a 12MB L3 cache shared by all cores.
Code was compiled with GCC (version 4.1.2) using opti-
mization flags -O3 -fomit-frame-pointer -pipe. In
our main experiments, all code ran single-threaded, but
we report on multi-threaded experiments in Section 6. In
order to facilitate the reproducibility of these results and
so that others can build on our work, all code neces-
sary to replicate these experiments are made available at
github.com/nasadi/OptTrees.

2286 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. 9, SEPTEMBER 2014

4.1 Synthetic Data
The synthetic data consist of randomly generated trees
and randomly generated feature vectors. Each intermediate
node in a tree has two fields: a feature id and a thresh-
old on which the decision is made. Each leaf is associated
with a regression value. Construction of a random tree of
depth d begins with the root node. We pick a feature id at
random and generate a random threshold to split the tree
into left and right subtrees. This process is recursively per-
formed to build each subtree until we reach the desired tree
depth. When we reach a leaf node, we generate a regression
value at random. Note that our randomly-generated trees
are fully-balanced, i.e., a tree of depth d has 2d leaf nodes.

Once a tree has been constructed, the next step is to gen-
erate random feature vectors. Each random feature vector
is simply a floating-point array of length f (= number of
features), where each index position corresponds to a fea-
ture value. We assume that all paths in the decision tree are
equally likely; the feature vectors are generated in a way
that guarantees an equal likelihood of visiting each leaf. To
accomplish this, we take one leaf at a time and follow its
parents back to the root. At each node, we take the node’s
feature id and produce a feature value based on the position
of the child node. That is, if the child node we have just vis-
ited is on the left subtree we generate a feature value that
is smaller than the threshold stored at the current parent
node and vice versa. We randomize the order of instances
once we have generated all the feature vectors. To avoid
any cache effects, experiments were conducted on a large
number of instances (512K).

Given a random tree and a set of random feature vectors,
we ran experiments to assess the various implementations
of tree-based models described in Section 3. To get a bet-
ter sense of the variance, we performed five trials; in each
trial we constructed a new random binary tree and a differ-
ent randomly-generated set of feature vectors. To explore
the design space, we conducted experiments with vary-
ing tree depths d ∈ {3, 5, 7, 9, 11} and varying feature sizes
f ∈ {32, 128, 512}. These feature values were selected based
on actual learning-to-rank experiments (see below).

4.2 Learning-to-Rank Experiments
In addition to randomly-generated trees, we conducted
experiments using standard learning-to-rank datasets. In
these experiments, we are given training, validation, and
test data as well as a tree-based learning-to-rank model.
Using the training and validation sets we learn a com-
plete tree ensemble. Evaluation is then carried out on
test instances to determine the speed of the various algo-
rithms. These end-to-end experiments give us insight on
how different implementations compare in a real-world
application.

We used three standard learning-to-rank datasets:
LETOR-MQ2007,3 MSLR-WEB10K,4 and the Yahoo!
Webscope Learning-to-Rank Challenge [35] dataset (C14
Set 1).5 All three datasets are pre-folded, providing training,

3. http://research.microsoft.com/en-us/um/beijing/projects/
letor/letor4dataset.aspx

4. http://research.microsoft.com/en-us/projects/mslr/
5. http://learningtorankchallenge.yahoo.com/datasets.php

TABLE 1
Average Number of Training, Validation, and Test Instances in

Our Learning-to-Rank Datasets, along with the Number of
Features

validation, and test instances. Table 1 shows the dataset
size and the number of features. To measure variance, we
repeated experiments on all folds. Note that MQ2007 is
much smaller and contains a more impoverished feature
set, considered by many in the community to be outdated.
Further note that the C14 dataset only contains a single fold.

The values of f (number of features) in our synthetic
experiments are guided by these learning-to-rank datasets.
We selected feature sizes that are multiples of 16 so that
the feature vectors are integer multiples of cache line sizes
(64 bytes): f = 32 roughly corresponds to LETOR features
and is representative of a small feature space; f = 128 cor-
responds to MSLR and is representative of a medium-sized
feature space. Finally, the third condition f = 512 corre-
sponds to the C14 dataset and captures a large feature space
condition.

Our experiments used the open-source jforests imple-
mentation6 of LambdaMART to optimize NDCG [24].
Although there is no way to precisely control the depth
of each tree, we can adjust the size distribution of the
trees by setting a cap on the number of leaves. To train
an ensemble, we initialize the randomized LambdaMART
algorithm with a random seed S. In order to capture the
variance, we repeat this E = 100 times for the LETOR and
MSLR-WEB10K datasets and E = 20 times for the C14
dataset. We then repeat this procedure independently for
each cross-validation fold. For LETOR and MSLR, we used
the parameters of LambdaMART suggested by Ganjisaffar
et al. [2]: feature and data sub-sampling parameters (0.3),
minimum observations per leaf (0.5), and the learning rate
(0.05). We varied the max leaves parameter as part of our
experimental runs. Note that Ganjisaffar et al. did not exper-
iment with the C14 dataset, but we retained the same
parameter settings (as above) for all except for the max
leaves parameter.

5 RESULTS

In this section we present experimental results, first on
synthetic data and then on learning-to-rank datasets.

5.1 Synthetic Data: Base Results
We begin by focusing on the first five implementations
described in Section 3 (leaving aside VPRED for now),
using the procedure described in Section 4.1. The predic-
tion time per randomly-generated test instance is shown in
Fig. 2, measured in nanoseconds. The balanced randomly-
generated trees vary in terms of tree depth d, and each
bar chart shows a separate value of f (number of features).
Time is averaged across five trials and error bars denote

6. http://code.google.com/p/jforests/

ASADI ET AL.: RUNTIME OPTIMIZATIONS FOR TREE-BASED MACHINE LEARNING MODELS 2287

(a) (b) (c)

Fig. 2. Prediction time per instance (in nanoseconds) on synthetic data using various implementations. Error bars denote 95% confidence intervals.
(a) f = 32. (b) f = 128. (c) f = 512.

95% confidence intervals. It is clear that as trees become
deeper, prediction speeds decrease overall. This is obvious
since deeper trees require more feature accesses and pred-
icate checks, more pointer chasing, and more branching
(depending on the implementation).

First, consider the naïve and code-generation baselines.
As expected, the OBJECT implementation is the slowest
in most cases: this is no surprise due to object overhead.
We can quantify this overhead by comparing the OBJECT
implementation with the STRUCT implementation, which
replaces objects with lighter-weight structs. As expected,
the CODEGEN implementation is very fast: with the excep-
tion of f = 32, hard-coded if-else blocks outperform all
other implementations regardless of tree depth.

Comparing STRUCT+ with STRUCT, we observe no sig-
nificant improvements for shallow trees, but significant
speedups for deeper trees. Recall that in the first imple-
mentation, we allocate memory for the entire tree so that it
resides in a contiguous memory block, whereas in the sec-
ond we let malloc allocate memory however it chooses.
This shows that reference locality is important for deeper
trees.

Finally, turning to the PRED condition, we observe very
interesting behavior. For small feature vectors f = 32,
the technique is actually faster than even CODEGEN. This
shows that for small feature sizes, predication helps to over-
come branch mispredicts, i.e., converting control depen-
dencies into data dependencies increases performance. For
f = 128, the performance of PRED is worse than that of
CODEGEN (except for trees of depth 11). With the excep-
tion of the deepest trees, PRED is about the same speed
as STRUCT and STRUCT+. For f = 512 (large feature vec-
tors), the performance of PRED is terrible, even worse than
the OBJECT implementation. We explain this result as fol-
lows: PRED performance is entirely dependent on memory
access latency. When traversing the tree, it needs to wait
for the contents of memory before proceeding. Until the
memory references are resolved, the processor simply stalls.
With small feature vectors, we get excellent locality: 32 fea-
tures take up two 64-byte cache lines, which means that
evaluation incurs at most two cache misses. Since mem-
ory is fetched by cache lines, once a feature is accessed,
accesses to all other features on the same cache line are
essentially “free”. Locality decreases as the feature vector
size increases: the probability that the predicate at a tree
node accesses a feature close to one that has already been
accessed goes down. Thus, as the feature vector size grows,

the PRED prediction time becomes increasingly dominated
by stalls waiting for memory fetches.

The effect of this “memory wall” is evident in the
other implementations as well. The performance differ-
ences between CODEGEN, STRUCT, and STRUCT+ shrink
as the feature size increases (whereas they are much more
pronounced for smaller feature vectors). This is because
as feature vector size increases, more and more of the
prediction time is dominated by memory latencies.

How can we overcome these memory latencies? Instead
of simply stalling while we wait for memory references to
resolve, we can try to do other useful computation—this is
exactly what vectorization is designed to accomplish.

5.2 Tuning the Vectorization Parameter
In Section 3, we proposed vectorization of the predication
technique in order to mask memory latencies. The idea is
to work on v instances (feature vectors) at the same time, so
that while the processor is waiting for memory access for
one instance, useful computation can happen on another.
This takes advantage of pipelining and multiple dispatch
in modern superscalar processors.

The effectiveness of vectorization depends on the rela-
tionship between time spent in actual computation and
memory latencies. For example, if memory fetches take
only one clock cycle, then vectorization cannot possibly
help. The longer the memory latencies, the more we would
expect vectorization (larger batch sizes) to help. However,
beyond a certain point, once memory latencies are effec-
tively masked by vectorization, we would expect larger
values of v to have little impact. In fact, values that are too
large start to become a bottleneck on memory bandwidth
and cache size.

In Fig. 3, we show the impact of various batch sizes,
v ∈ {1, 4, 8, 16, 32, 64}, for the different feature sizes. As a
special case, when v is set to 1, we evaluate one instance at a
time using predication. This reduces to the PRED implemen-
tation. Latency is measured in nanoseconds and normalized
by batch size (i.e., divided by v), so we report per-instance
prediction time. For f = 32, v = 8 yields the best perfor-
mance; for f = 128, v = 16 yields the best performance;
for f = 512, v = {16, 32, 64} all provide approximately the
same level of performance. These results are exactly what
we would expect: since memory latencies increase with
larger feature sizes, a larger batch size is needed to mask
the latencies.

2288 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. 9, SEPTEMBER 2014

(a) (b) (c)

Fig. 3. Prediction time per instance (in nanoseconds) on synthetic data using vectorized predication, for varying values of the batch size v . v = 1
represents the PRED implementation. (a) f = 32. (b) f = 128. (c) f = 512.

Interestingly, the gains from vectorization for f = 128 in
Fig. 2(b) are not consistent with the gains shown in Fig. 2(a)
for f = 32 and Fig. 2(c) for f = 512. We suspect this is an
artifact of set associativity in caches. The notion of set asso-
ciativity concerns how chunks in memory can be stored in
(i.e., mapped to) cache slots and is one key element in cache
design. In a direct-mapped cache, each memory chunk can
only be stored in one cache slot; at the other end of the
spectrum, in a fully-associative cache, each memory chunk
can be stored in any cache slot (the tradeoff lies in the
complexity of the transistor logic necessary to perform the
mapping). As a middle point, in an n-way set associative
cache, each memory chunk can be stored in any of n par-
ticular slots in the cache (in our architecture, the L1 data
cache is 4-way set associative). The mapping from memory
addresses to cache slots is usually performed by consult-
ing the low order bits, which means that chunks that share
the same low order bits may contend for the same cache
slots—this can happen for data structures that are particu-
lar powers of two (depending on the exact cache design);
for more details, consider Chapter 1 in [16]. We believe that
the inconsistencies observed in our results stem from these
idiosyncrasies, but we are not concerned for two reasons:
First, the sizes of feature vectors are rarely perfect powers
of two (and if coincidentally they are, we can always add a
dummy feature to break the symmetry). Second, these arti-
facts do not appear in our experiments on real-world data
(see below).

To summarize our findings thus far: Through the com-
bination of vectorization and predication, VPRED becomes
the fastest of all our implementations on synthetic data.
Comparing Figs. 2 and 3, we see that VPRED (with opti-
mal vectorization parameter) is even faster than CODEGEN.
Table 2 summarizes this comparison. Vectorization is up to
70% faster than the non-vectorized implementation; VPRED
can be up to twice as fast as CODEGEN. In other words,
we retain the best of both worlds: speed and flexibility,
since the VPRED implementation does not require code
recompilation for each new tree model.

5.3 Learning-to-Rank Results
Having evaluated our different implementations on syn-
thetic data and demonstrated the superior performance
of the VPRED implementation, we move on to learning-
to-rank datasets using tree ensembles. As previously
described, we trained rankers using LambdaMART. Once a

model has been trained and validated, we performed eval-
uation on the test set to measure prediction speed. With
multiple trials (see Section 4.2) we are able to compute
mean and variance across the runs.

One important difference between the synthetic and
learning-to-rank experiments is that LambdaMART pro-
duces an ensemble of trees, whereas the synthetic experi-
ments focused on a single tree. To handle this, we simply
added an outer loop to the algorithm that iterates over the
individual trees in the ensemble.

In terms of performance, shallower trees are naturally
preferred. But what is the relationship of tree depth to
ranking effectiveness? Tree depth with our particular train-
ing algorithm cannot be precisely controlled, but can be
indirectly influenced by constraining the maximum num-
ber of leaves for each individual tree (which is an input to
the boosting algorithm). Table 3 shows the average NDCG
values (at different ranks) measured across all folds on
the LETOR and MSLR datasets, and on the C14 dataset.

TABLE 2
Prediction Time per Instance (in Nanoseconds) for the VPRED

Implementation with Optimal Vectorization Parameter,
Compared to PRED and CODEGEN, along with Relative

Improvements

ASADI ET AL.: RUNTIME OPTIMIZATIONS FOR TREE-BASED MACHINE LEARNING MODELS 2289

(a) (b) (c)

Fig. 4. Per-instance prediction times (in microseconds), averaged across cross-validation folds (100 ensembles per fold for LETOR and MSLR, and
20 ensembles for C14) using LambdaMART on different datasets. (a) LETOR-MQ2007. (b) MSLR-WEB10K. (c) C14.

We used the range of values suggested by Ganjisaffar
et al. [2] for maximum number of leaves. For each condi-
tion, we report the average depth of the trees that were
actually learned, along with the number of trees in the
ensemble (i.e., number of boosting stages). Statistical sig-
nificance was determined using the Wilcoxon test (p-value
0.05); none of the differences on the LETOR dataset were
significant.

Results show that on LETOR, tree depth makes no signif-
icant difference, whereas deeper trees yield better quality
results on MSLR and C14. However, there appears to be
little difference between 50 and 70 max leaves on MSLR.
These results make sense: to exploit larger feature spaces
we need deeper trees.

Turning to performance results, Fig. 4 illustrates per-
instance prediction speed for various implementations on
the learning-to-rank datasets. Note that this is on the entire

TABLE 3
Average NDCG Values, Average Number of Trees, and

Average Tree Depth (95% Confidence Intervals in
Parentheses) Measured Across the Folds Using Various

Settings for Max Number of Leaves (L)

For MSLR, + and ∗ show statistically significant improvements over models
obtained by setting max leaves to 10 and 30 respectively. For C14, + and ∗ show
improvements over 70 and 110 respectively.

ensemble, with latencies now measured in microseconds
instead of nanoseconds. As described above, the trees were
trained with different settings of max leaves; the x-axis plots
the tree depths from Table 3. In this set of experiments, we
used the VPRED approach with the vectorization parameter
set to 8 for LETOR and 16 for MSLR and C14.

The results from the synthetic datasets mostly carry
over to these learning-to-rank datasets. OBJECT is the
slowest implementation and STRUCT is slightly faster. On
the LETOR dataset, STRUCT is only slightly slower than
STRUCT+, but on MSLR and C14, STRUCT+ is much faster
than STRUCT in most cases. While on LETOR it is clear that
there is a large performance gap between CODEGEN and
the other approaches, the relative advantages of CODEGEN
decrease with deeper trees and larger feature vectors (which
is consistent with the synthetic results). VPRED outperforms
all other techniques, including CODEGEN on MSLR and
C14 but is slower than CODEGEN on LETOR. Since many
in the community consider the LETOR dataset to be out
of date with an impoverished feature set, more credence
should be given to the MSLR and C14 results.

To conclude: for end-to-end tree-based ensembles on
real-world learning-to-rank datasets, we can achieve both
speed and flexibility. With a combination of predication and
vectorization, we can make predictions faster than using
statically-generated if-else blocks, yet retain the flexibility in
being able to specify the model dynamically, which enables
rapid experimentation.

6 DISCUSSION AND FUTURE WORK

Our experiments show that predication and vectorization
are effective techniques for substantially increasing the per-
formance of tree-based models, but one potential objection
might be: are we measuring the right thing? In our experi-
ments, prediction time is measured from when the feature
vector is presented to the model to when the prediction is
made. Critically, we assume that features have already been
computed. What about an alternative architecture where
features are computed lazily, i.e., when the predicate at a
tree node needs to access a particular feature?

This alternative architecture where features are com-
puted on demand is very difficult to study, since
results would be highly dependent on the implementa-
tion of the feature extraction algorithm—which in turn
depends on the underlying data structures (e.g., layout
of the inverted indexes), compression techniques, how
computation-intensive the features are, etc. However, there

2290 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. 9, SEPTEMBER 2014

TABLE 4
Average Percentage of Examined Features (Variance in

Parentheses) Across Cross-Validation Folds Using
Various Max Leaves Settings

is a much easier way to study this issue—we can trace the
execution of the full tree ensemble and keep track of the
fraction of features that are accessed. If during the course of
making a prediction, most of the features are accessed, then
there is little waste in computing all the features first and
then presenting the complete feature vector to the model.

Table 4 shows the average fraction of features accessed
in the final ensembles for all three learning-to-rank datasets,
with different max leaves configurations. It is clear that
for all datasets most of the features are accessed during
the course of making a prediction, and in the case of
the MSLR and C14 datasets, nearly all the features are
accessed all the time (especially with deeper trees, which
yield higher effectiveness). Therefore, it makes sense to sep-
arate feature extraction from prediction. In fact, there are
independently compelling reasons to do so: a dedicated
feature extraction stage can benefit from better reference
locality (when it comes to document vectors, postings, or
whatever underlying data structures are necessary for com-
puting features). Interleaving feature extraction with tree
traversal may lead to “cache churn”, when a particular data
structure is repeatedly loaded and then displaced by other
data.

Returning to the point brought up in the introduction,
another natural question is: do these differences actually
matter, in the broader context of real-world search engines?
This is of course a difficult question to answer and highly
dependent on the actual search architecture, which is a com-
plex distributed system spanning hundreds of machines or
more. Here, however, we venture some rough estimates.
From Fig. 4(c), on the C14 dataset, we see that compared
to CODEGEN, VPRED reduces per-instance prediction time
from around 110μs to around 70μs (for max leaves set-
ting of 150); this translates into a 36% reduction in latency
per instance. In a web search engine, the learning to rank
algorithm is applied to a candidate list of documents that
is usually generated by other means (e.g., scoring with
BM25 and a static prior). The exact details are propri-
etary, but the published literature does provide some clues.
For example, Cambazoglu et al. [34] (authors from Yahoo!)
experimented with reranking 200 candidate documents to

produce the final ranked list of 20 results (the first two
pages of search results). From these numbers, we can com-
pute the per-query reranking time to be 22ms using the
CODEGEN approach and 14ms with VPRED. This trans-
lates into an increase from 45 queries per second to 71
queries per second on a single thread for this phase of the
search pipeline. Alternatively, gains from faster prediction
can be leveraged to rerank more results or compute more
features—however, how to best take advantage of addi-
tional processor cycles is beyond the scope of this work.
This simple estimate suggests that our optimizations can
make a noticeable difference in web search, and given that
our techniques are relatively simple—the predication and
vectorization optimizations seem worthwhile to implement.

Thus far, all of our experiments have been performed on
a single thread, despite the fact that multi-core processors
are ubiquitous today. We leave careful consideration of this
issue for future work, but present some preliminary results
here. There are two primary ways we can take advantage of
multi-threaded execution: the first is to reduce latency by
exploiting intra-query parallelism, while the second is to
increase throughput by exploiting inter-query parallelism.
We consider each in turn.

Since each tree model is comprised of an ensemble of
trees, parallelism at an ensemble level can be obtained by
assigning each thread to work on a subset of trees. This has
the effect of reducing prediction latency. Fig. 5(a) shows the
impact of this approach on prediction time using the C14
dataset with max leaves set to 150. By using 16 threads,
latency decreases by 70% compared with a single-threaded
implementation for VPRED. Note that since our machine
has only eight physical cores, the extra boost obtained in
going from 8 to 16 threads comes from hyper-threading.
The small performance difference between the two differ-
ent conditions suggests that our VPRED implementation
is effectively utilizing available processor resources (hence,
the gains obtained from hyper-threading are limited). For
CODEGEN, we observe a 30% improvement in latency by
going from 1 to 4 threads. However, adding more threads
actually increases prediction time.

The alternative multi-threaded design is to use each
thread to independently evaluate instances using the
entire ensemble. This exploits inter-query parallelism and
increases throughput. More precisely, each thread evaluates
one test instance using CODEGEN or v test instances (the
batch size) in the case of VPRED. Fig. 5(b) shows the gain
in throughput (number of test instances per second) for
different number of threads on the C14 dataset with max
leaves set to 150. Comparing implementations with a single
thread and 16 threads, throughput increases by 320% (from
9K to 38K instances/second) for CODEGEN and 400% (from
14K to 70K instances/second) for VPRED. This shows that
VPRED benefits more from multi-core processors.

We note that these represent preliminary experiments on
straightforward extensions of our optimizations to multi-
threaded implementations. As part of future work, we will
further explore how multi-core architectures impact the
techniques discussed in this paper.

During the course of our experiments, we noticed that
one assumption of our implementations did not appear to
be fully valid: we assumed that all paths are equally likely

ASADI ET AL.: RUNTIME OPTIMIZATIONS FOR TREE-BASED MACHINE LEARNING MODELS 2291

(a) (b)

Fig. 5. Impact of number of threads on latency and throughput, using C14 with max leaves of 150. (a) Each thread evaluates instances using a
subset of trees in the ensemble, thus exploiting intra-query parallelism to reduce latency. (b) Each thread operates independently on instances,
thus exploiting inter-query parallelism to increase throughput.

in a tree, i.e., that at each node, the left and right branches
are taken with roughly-equal frequency. However, this is
often not the case in reality, as the feature thresholds fre-
quently divide the feature space unevenly. To the extent that
one branch is favored over another, branch prediction pro-
vides non-predicated implementations (i.e., if-else blocks)
an advantage, since branch prediction will guess correctly
more often, thus avoiding processor pipeline stalls.

One promising future direction to address the above
issue is to adapt the model learning process to prefer bal-
anced trees and predicates that divide up the feature space
evenly. We believe this can be incorporated into the learn-
ing algorithm as a penalty on certain tree topologies, much
in the same way that regularization is performed on the
objective in standard machine learning. Thus, it is perhaps
possible to jointly learn models that are both fast and good,
as in the “learning to efficiently rank” framework [31]–[33]
(see discussion in Section 2.2). Some preliminary results
are reported in Asadi and Lin [36] with the CODEGEN

implementation of trees, but there is much more to be done.
Finally, for specific tasks such as top k retrieval in

learning to rank, we believe that there are many optimiza-
tion opportunities that take advantage of the fact that we
need to evaluate multiple test instances in order to gen-
erate a document ranking. Our current approach assumes
document-at-a-time evaluation, where the entire tree-based
ensemble is applied to a single test instance before mov-
ing to the next. Another possibility, and perhaps more
promising, is tree-at-a-time evaluation, where we inter-
leave operations on multiple test instances. Cambazoglu
et al. [34] considered both approaches in their early exits,
but we believe that their techniques need to be revisited
in the context of our work and from the perspective of
architectural-conscious optimizations.

7 CONCLUSION

Modern processor architectures are incredibly complex
because technological improvements have been uneven.
This paper examined three different issues: optimizing
memory layout for cache locality, eliminating the cost
of branch mispredicts, and masking memory latencies.

Although there are well-known techniques for tackling
these challenges, researchers must be aware of them and
explicitly apply them. The database community has been
exploring these issues for quite some time now, and in
this respect the information retrieval, machine learning, and
data mining communities are behind.

In this paper, we demonstrate that two relatively simple
techniques, predication and vectorization, coupled with a
more compact memory layout, can significantly accelerate
the runtime performance for tree-based models, both on
synthetic data and on real-world learning-to-rank datasets.
Our work enriches the literature on architecture-conscious
optimizations for machine learning algorithms and presents
a number of future directions worth pursuing.

8 ACKNOWLEDGMENTS

This work was supported in part by the U.S. NSF under
awards IIS-0916043, IIS-1144034, and IIS-1218043, and in
part by the Dutch National Program COMMIT. Any opin-
ions, findings, or conclusions are the authors’ and do not
necessarily reflect those of the sponsors. The authors would
like to thank the anonymous reviewers for their helpful
suggestions in improving this work. N. Asadi’s deepest
gratitude goes to Katherine, for her invaluable encourage-
ment and wholehearted support. J. Lin is grateful to Esther
and Kiri for their loving support and dedicates this work
to Joshua and Jacob.

REFERENCES

[1] C. J. C. Burges, “From ranknet to lambdarank to lambdamart:
An overview,” Microsoft Res., Redmond, WA, USA, Tech. Rep.
MSR-TR-2010-82, 2010.

[2] Y. Ganjisaffar, R. Caruana, and C. V. Lopes, “Bagging gradient-
boosted trees for high precision, low variance ranking models,”
in Proc. 34th SIGIR, Beijing, China, 2011, pp. 85–94.

[3] S. Tyree, K. Q. Weinberger, and K. Agrawal, “Parallel boosted
regression trees for web search ranking,” in Proc. 20th Int. Conf.
WWW, Hyderabad, India, 2011, pp. 387–396.

[4] H. Li, Learning to Rank for Information Retrieval and Natural
Language Processing. San Rafael, CA, USA: Morgan & Claypool,
2011.

[5] B. Panda, J. S. Herbach, S. Basu, and R. J. Bayardo, “PLANET:
Massively parallel learning of tree ensembles with mapreduce,”
in Proc. 35th Int. Conf. VLDB, Lyon, France, 2009, pp. 1426–1437.

2292 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. 9, SEPTEMBER 2014

[6] G. Ge and G. W. Wong, “Classification of premalignant pancreatic
cancer mass-spectrometry data using decision tree ensembles,”
BMC Bioinform., vol. 9, Article 275, Jun. 2008.

[7] L. Schietgat et al., “Predicting gene function using hierarchical
multi-label decision tree ensembles,” BMC Bioinform., vol. 11,
Article 2, Jan. 2010.

[8] A. Criminisi, J. Shotton, and E. Konukoglu, “Decision forests:
A unified framework for classification, regression, density
estimation, manifold learning and semi-supervised learn-
ing,” Found. Trends Comput. Graph. Vis., vol. 7, no. 2–3,
pp. 81–227, 2011.

[9] N. Johnson et al., “Financial black swans driven by ultrafast
machine ecology,” arXiv:1202.1448v1, 2012.

[10] A. Ailamaki, D. J. DeWitt, M. D. Hill, and D. A. Wood, “DBMSs
on a modern processor: Where does time go?” in Proc. 25th Int.
Conf. VLDB , Edinburgh, U.K., 1999, pp. 266–277.

[11] J. Rao and K. A. Ross, “Cache conscious indexing for decision-
support in main memory,” in Proc. 25th Int. Conf. VLDB,
Edinburgh, U.K., 1999, pp. 78–89.

[12] K. A. Ross, J. Cieslewicz, J. Rao, and J. Zhou, “Architecture sensi-
tive database design: Examples from the columbia group,” IEEE
Data Eng. Bull., vol. 28, no. 2, pp. 5–10, Jun. 2005.

[13] M. Zukowski, P. Boncz, N. Nes, and S. Héman,
“MonetDB/X100—A DBMS in the CPU cache,” IEEE Data
Eng. Bull., vol. 28, no. 2, pp. 17–22, Jun. 2005.

[14] P. A. Boncz, M. L. Kersten, and S. Manegold, “Breaking the mem-
ory wall in MonetDB,” Commun. ACM, vol. 51, no. 12, pp. 77–85,
2008.

[15] K. Olukotun and L. Hammond, “The future of microprocessors,”
ACM Queue, vol. 3, no. 7, pp. 27–34, 2005.

[16] B. Jacob, The Memory System: You Can’t Avoid It, You Can’t Ignore
It, You Can’t Fake It. San Rafael, CA, USA: Morgan & Claypool,
2009.

[17] D. I. August, W. W. Hwu, and S. A. Mahlke, “A framework for
balancing control flow and predication,” in Proc. 30th MICRO,
North Carolina, NC, USA, 1997, pp. 92–103.

[18] H. Kim, O. Mutlu, Y. N. Patt, and J. Stark, “Wish branches:
Enabling adaptive and aggressive predicated execution,” IEEE
Micro, vol. 26, no. 1, pp. 48–58, Jan./Feb. 2006.

[19] P. A. Boncz, M. Zukowski, and N. Nes, “MonetDB/X100: Hyper-
pipelining query execution,” in Proc. 2nd Biennial CIDR, Pacific
Grove, CA, USA, 2005.

[20] K. M. Svore and C. J. C. Burges, “Large-scale learning to rank
using boosted decision trees,” in Scaling Up Machine Learning.
Cambridge, U.K.: Cambridge Univ. Press, 2011.

[21] C. Ulmer, M. Gokhale, B. Gallagher, P. Top, and T. Eliassi-Rad,
“Massively parallel acceleration of a document-similarity classi-
fier to detect web attacks,” J. Parallel Distrib. Comput., vol. 71,
no. 2, pp. 225–235, 2011.

[22] T. Sharp, “Implementing decision trees and forests on a GPU,” in
Proc. 10th ECCV, Marseille, France, 2008, pp. 595–608.

[23] B. V. Essen, C. Macaraeg, M. Gokhale, and R. Prenger,
“Accelerating a random forest classifier: Multi-core, GP-GPU, or
FPGA?” in Proc. IEEE 20th Annu. Int. Symp. FCCM, Toronto, ON,
Canada, 2012, pp. 232–239.

[24] K. Järvelin and J. Kekäläinen, “Cumulative gain-based evalua-
tion of IR techniques,” ACM Trans. Inform. Syst., vol. 20, no. 4,
pp. 422–446, 2002.

[25] J. Ye, J.-H. Chow, J. Chen, and Z. Zheng, “Stochastic gradient
boosted distributed decision trees,” in Proc. 18th Int. CIKM , Hong
Kong, China, 2009, pp. 2061–2064.

[26] C. Burges, R. Ragno, and Q. Le, “Learning to rank with nons-
mooth cost functions,” in Proc. Adv. NIPS, Vancouver, BC, Canada,
2006, pp. 193–200.

[27] J. Friedman, “Greedy function approximation: A gradient boost-
ing machine,” Ann. Statist., vol. 29, no. 5, pp. 1189–1232, 2001.

[28] L. Breiman, J. Friedman, C. Stone, and R. Olshen, New York, NY,
USA: Classification and Regression Trees. Chapman and Hall, 1984.

[29] L. Breiman, “Bagging predictors,” Mach. Learn., vol. 24, no. 2,
pp. 123–140, 1996.

[30] L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1,
pp. 5–32, 2001.

[31] O. Chapelle, Y. Chang, and T.-Y. Liu, “Future directions in
learning to rank,” in Proc. JMLR: Workshop Conf., 2011, pp. 91–100.

[32] L. Wang, J. Lin, and D. Metzler, “A cascade ranking model for effi-
cient ranked retrieval,” in Proc. 34th SIGIR, Beijing, China, 2011,
pp. 105–114.

[33] Z. E. Xu, K. Q. Weinberger, and O. Chapelle, “The greedy
miser: Learning under test-time budgets,” in Proc. 29th ICML,
Edinburgh, U.K., 2012.

[34] B. B. Cambazoglu et al., “Early exit optimizations for additive
machine learned ranking systems,” in Proc. 3rd ACM Int. Conf.
WSDM, New York, NY, USA, 2010, pp. 411–420.

[35] O. Chapelle and Y. Chang, “Yahoo! learning to rank challenge
overview,” J. Mach. Learn. Res. – Proc. Track, vol. 14, pp. 1–24,
Jun. 2010.

[36] N. Asadi and J. Lin, “Training efficient tree-based models for
document ranking,” in Proc. 34th ECIR , Moscow, Russia, 2013.

Nima Asadi is a Ph.D. candidate in computer science at the University
of Maryland, College Park, MD, USA. His current research interests
include scalability and efficiency in information retrieval, learning to rank,
and large-scale data processing.

Jimmy Lin is an Associate Professor at the iSchool, University of
Maryland, College Park, MD, USA, affiliated with the Department of
Computer Science and the Institute for Advanced Computer Studies. His
current research interests include intersection of information retrieval
and natural language processing, with a focus on massively distributed
data analytics in cluster-based environments.

Arjen P. de Vries is a Tenured Researcher at Centrum Wiskunde and
Informatica (CWI), leading the Information Access Research Group, and
is a Full Professor (0.2 fte) in the area of Multimedia Data Management
at the Technical University of Delft, Delft, Netherlands. He studies the
intersection of information retrieval and databases. He has held General
and Programme Chair positions at SIGIR 2007, CIKM 2011, and ECIR
2012 and 2014. He is a member of the TREC PC and a steering
committee member of the Initiative for the Evaluation of XML Retrieval
(INEX). In November 2009, he co-founded Spinque: a CWI spin-off that
provides integrated access to any type of data, customized for informa-
tion specialist or end user, to produce effective and transparent search
results.

� For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

