
Better Contextual Suggestions in ClueWeb12 Using
Domain Knowledge Inferred from The Open Web

Thaer Samar1, Alejandro Bellogı́n2, and Arjen P. de Vries1

1 Centrum Wiskunde & Informatica, {samar,arjen}@cwi.nl
2 Universidad Autónoma de Madrid, alejandro.bellogin@uam.es

Abstract. This paper provides an overview of our participation in the Contextual
Suggestion Track. The TREC 2014 Contextual Suggestion Track allowed partic-
ipants to submit personalized rankings using documents either from the Open
Web or from an archived, static Web collection (ClueWeb12) collection. One
of the main steps in recommending attractions for a particular user in a given
context is the selection of the candidate documents. This task is more challeng-
ing when relying on ClueWeb12 collection rather than public tourist APIs for
finding suggestions. In this paper, we present our approach for selecting candi-
date suggestions from the entire ClueWeb12 collection using the tourist domain
knowledge available in the Open Web. We show that the generated recommenda-
tions to the provided user profiles and contexts improve significantly using this
inferred domain knowledge.

1 Introduction and Motivation

The Contextual Suggestion TREC Track investigates search techniques for complex in-
formation needs that are highly dependent on context and user interests. Input to the
task are a set of profiles (users), a set of example suggestions (attractions), and a set of
contexts (locations). Each attraction has a title, a description, and a URL. Each
profile corresponds to a single user, and indicates the user’s preference with respect to
each attraction. Two ratings are used: one for the attraction’s description and another
one for its website. Finally, each context corresponds to a particular geographical lo-
cation (a city and its corresponding state in the United States). With this information,
the task is to provide a personalized ranked list of up to 50 suggestions for every (user,
context) pair. Each suggestion should be appropriate to both the user’s profile and the
context. The description and title of the suggestion may be tailored to reflect the prefer-
ences of that user.

In our second year participating in the Contextual Suggestion track, our main goal
has been to analyze the impact of applying the same retrieval model on two collec-
tions designed differently. We submitted two runs: one based on a collection which has
high geographical precision (GeoFiltered) and another based on a collection created
with high recall after projecting Open Web tourist domain knowledge on ClueWeb12
collection (TouristFiltered).

In the rest of this paper, we present how we generated these sub-collections, their
statistics (Section 2), and, results obtained in each case (Section 3). Finally, we conclude
the paper with future work lines and general conclusions (Section 4).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301645173?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Methodology

In this section, we describe our approach for generating a personalized rank list of
suggestions for each (user, context) topic. First, we present our approach for selecting
candidate documents from ClueWeb12 collection. Then, we describe how we generated
user’s profiles based on the descriptions of the attractions rated by her. For each user,
we generate a positive and a negative profile. Then we represent the set of candidate
documents and the profiles in the |V |-dimensional vector space (|V | is the size of the
vocabulary), where each element in the vector is a pair of term id and the frequency of
that term in the document [3]. Finally, we rank the suggestions based on their similarity
with user’s profiles.

2.1 Generating the Set of Candidate Documents

In this section, we describe our approach for creating two sub-collections from ClueWeb12
collection. The first sub-collection named GeoFiltered was created by extracting all
documents from ClueWeb12 that pass a geographical filter. The second sub-collection
named TouristFiltered was created by exploiting the tourist domain knowledge in-
ferred from the Open Web.

Geographically Filtered Sub-collection For this sub-collection, we extracted all doc-
uments from ClueWeb12 that pass a geographical filter geo filter. This filter selects
documents that mention the contexts given by the organisers in the format (City,
ST), ignoring those mentioning the city with different states or match multiple con-
texts. After this process, our subcollection contained 8, 883, 068 documents that passed
the filter where each document mention only one context. Thereby, we want to make
sure that the filtered documents mention the specific target context (hence, being geo-
graphically relevant documents). Despite this, we might still miss other relevant docu-
ments due to misspellings or because they mention more than one city at the same time.
We name this subcollection GeoFiltered.

Tourist Filtered Sub-collection This sub-collection was created from ClueWeb12 col-
lection using three different filters using the tourist domain knowledge available on the
Open Web as described below:

1. Tourist sites: We manually selected a list of sites that are well-known of providing
tourist information. More precisely, the list consists of (yelp, tripadvisor,
wikitravel, zagat, xpedia, orbitz, and travel.yahoo). Then
we extracted any document from ClueWeb12 whose host is one of the tourist sites.
This part of the TouristFiltered sub-collection is called TouristListFiltered.

2. Tourist outlinks: To complement the collection, we extracted the outlinks from
all documents collected in step 1 and then we extracted those outlinks from the
ClueWeb12 collection. We name this part of the TouristFiltered sub-collection Tourist-
OutlinksFiltered.

3. Google and Foursquare APIs: This part was created in two steps. We first queried
Foursquare API [1] to get venues for the given contexts, the API returns 50 urls per
query. If the returned venue does not have a URL, then we use the Google Search
API to get the URL. The query is the venue name and the context. As a second step,
we extracted all the URLs found by Foursquare and Google API from ClueWeb12.
We only found 234 out of 2316 documents by exact URL matching after
normalizing the URL by removing the www, http://, or https://. The
number of documents is very low and actually for some contexts no document was
found. Therefore, to alleviate this coverage problem, we extracted the host infor-
mation from each of the URLs returned by Foursquare and Google APIs, and then
we used any document from ClueWeb12 matching these hosts. These documents
form what we called the AttractionFiltered sub-collection.

Table 1 shows the number of documents extracted for each sub-collection, whereas
Table 2 gives more details about the TouristFiltered collection parts. It shows the total
number found by each TouristFiltered part filters. The unique column represents the
total number of new documents found by the filter that are not already found by the pre-
vious filter starting with the TouristListFiltered filter, then TouristOutlinksFiltered, and
finally the AttractionFiltered filter. We observe that most of documents in the Tourist-
Filtered sub-collection came from the TouristListFiltered and the AttractionFiltered.
There is a big overlap between TouristListFiltered and TouristOutlinksFiltered (around
52%). This is because TouristOutlinksFiltered consists of outlinks of TouristListFiltered
documents, which contains both external links (link to a page from different host), and
internal links (link to a page from the same host) which means that these documents are
already in the TouristListFiltered part.

Table 1. Number of documents per collection.

sub-collection Number of documents

GeoFiltered 8,883,068
TouristFiltered 324,374

Table 2. Number of documents for each part of the TouristFiltered sub-collection.

Part Number of documents Unique (not already in)

TouristListFiltered 175,260 175,260
TouristOutlinksFiltered 97,678 46,801
AttractionFiltered 102,604 102,313

Total 375,542 324,374

45699

1

1190

1032

69

31

0

38

8775711

101123
152 937

49909

120180

4013

GeoFiltered
TouristListFiltered

TouristOutlinksFiltered AttractionFiltered

Fig. 1. Intersection between GeoFiltered collection and TouristFiltered collection parts.

Figure 1 shows the overlap between TouristFiltered parts and the GeoFiltered sub-
collection.

2.2 Generating User Profiles

We generated a textual user’s profile using the descriptions of the attractions rated by
the user. The ratings of the descriptions where used to split the user’s profiles into pos-
itive and negative profiles. The ratings are on a 5-point scale, each rating represents a
user’s level of interest in visiting the corresponding attraction, the levels ranging from
“0” for strongly uninterested to “4” for strongly interested. In this context, we consider
the “2.5” as threshold between negative and positive ratings. More precisely, the pos-
itive profile consists of all descriptions of the attractions that the user liked, whereas
the negative profile is the concatenation of descriptions of the attractions that the user
disliked.

2.3 Representation of Documents and User Profiles

To represent the candidate documents and user profiles in the Vector Space Model
(VSM), we first filtered out the HTML tags from the content of the documents. Then
we applied standard IR parsing techniques including stemming and stop-words removal
from the documents and the user profiles. Once the documents and profiles have been
parsed, we generate a dictionary containing a mapping between terms and their integer
ids. Finally, we use this dictionary to transform the documents into vectors of weighted
terms, where the weight of each dimension (term) is the standard term frequency tf.

2.4 Personalizing Rankings

To generate the final ranking (given a pair of context and user information), we compute
the similarity in the vector space representation between the document and both the pos-
itive and the negative user profiles. We used the cosine function to compute similarities
between candidate documents and both the positive and negative profiles as follows:

sim(u+, d) = cos(u+, d) =

∑
i ui

+ · di√
‖u+‖2

√
‖d‖2

(1)

sim(u-, d) = cos(u-, d) =

∑
i ui

- · di√
‖u-‖2

√
‖d‖2

(2)

The final score is based on these two similarity scores using the following equation:

score = a · sim(u+, d) + b · sim(u-, d) (3)

where a=2 and b=-1. The final score in Eq(3) was used to rank the suggestions per (user,
context) pairs.

2.5 Generating Descriptions and Titles

For each document suggested to a user in a context, we generate a description and title,
which would be tailored to the particular user and context if possible. We decided to
only provide personalized descriptions, since we consider the title as a global property
of the document, inherent to its content and, thus, should not be different for each user.
In this situation, we generate the titles by extracting the title or heading tags from the
HTML content of the document. On the other hand, we observe the task of generating
descriptions similar to snippet generation where the query is the combination of context
and user preferences [2]. Because of that, we aim at obtaining the most relevant sen-
tences for the user within the document in a particular context. To do this, we first split
the document into sentences by using the Java BreakIterator class3 which can detect
sentence boundaries in a text. We then followed similar steps to those of the document
ranking but at a sentence level, i.e., filter out those sentences not mentioning the con-
text; and, we extracted the text of the description tag from the HTML content. Then we
rank sentences according to their similarity with the user profile. Finally, we assumed
that larger descriptions were preferred, and hence, we concatenated sentences – in de-
creasing order of similarity – until the maximum number of bytes (512) was reached,
controlling to not combine two very similar sentences to decrease the redundancy.

3 http://docs.oracle.com/javase/6/docs/api/java/text/
BreakIterator.html

3 Results and Analysis

In this section we present the analysis of the performance of our runs compared to all
runs based on ClueWeb12 collection. We present a detailed comparison between our
two runs to show the effect of applying the domain knowledge on extracting touristic
related documents from ClueWeb12. Table 3 shows the performance of our runs (both
using the same scoring function presented in Eq 3 but with a different set of candidate
documents (either GeoFiltered or TouristFiltered) compared to the best and median
scores of all runs based on the ClueWeb12 dataset. From the Table we see that the
TouristFiltered run outperforms the GeoFiltered run in the three metrics.

Table 3. Effect of the GeoFiltered and TouristFiltered collections on the performance of our
retrieval model. The P@5, MRR and TBG of our runs and the median and best scores of the
same metrics for all runs based on ClueWeb12.

P@5 MRR TBG

GeoFiltered 0.0468 0.0767 0.1256
TouristFiltered 0.1438 0.2307 0.6013
Median 0.0542 0.0886 0.1382
Best 0.2328 0.4232 0.9615

Additionally, to get a more fine grained comparison about the effect of the two sub-
collections on the performance, in Table 4 we present the percentage of topics for which
the runs associated to the TouristFiltered and GeoFiltered subcollections give the best
and the worst results (we consider only topics having a best score different to its worst
score). We observe that, for instance, for the TBG metric, the TouristFiltered subcollec-
tion gives the best result for 28% of topics, whereas the GeoFiltered subcollection gives
the best result for only 9% of topics; at the same time, the TouristFiltered subcollection
gives the worst result for 23% of the topics, whereas the GeoFiltered subcollection gives
the worst result for 49% of the topics. Hence, it is clear that these two subcollections
produced very different results, where the TouristFiltered subcollection outperforms the
GeoFiltered one.

Table 4. Percentage of best and worst topics per run for P@5, MRR and TBG metrics. Bold
denotes best value per column.

P@5 MRR TBG

best worst best worst best worst

GeoFiltered 9.03 41.14 8.70 41.14 9.03 49.16
TouristFiltered 28.43 20.07 25.42 20.07 28.43 23.41

All the analyses presented so far confirm that the TouristFiltered run is significantly
better than the GeoFiltered run in general. The three metrics P@5, MRR and TBG
consider three dimensions of relevance, the geographical (geo) and profile relevance
(both in terms of document (doc) and description (desc) judgments). In Table 5 we
show how each run performed in the three relevance dimensions. The performance of
the GeoFiltered run is on par with TouristFiltered when considering the document and
the description relevance, this means that both are similar in terms of their appropriate-
ness to the users. However, we observe a significant difference between TouristFiltered
and GeoFiltered when considering the geographical aspect only. The TouristFiltered
sub-collection is more geographically appropriate, implying that applying our domain
knowledge on the sub-collection creation improves the performance with respect to the
geographical dimension of relevance.

Table 5. Contribution of description (desc), document (doc), and geographical (geo) relevance to
P@5 and MRR metrics for the GeoFiltered and TouristFiltered runs. We denote with (all) when
desc, doc, and geo relevance are considered. Bold highlights the best result for each run and
metric.

Metrics GeoFiltered TouristFiltered

P@5 all 0.0468 0.1438
P@5 desc-doc 0.2281 0.2348
P@5 desc 0.3064 0.2910
P@5 doc 0.2836 0.3124
P@5 geo 0.1605 0.4843
MRR all 0.0767 0.2307
MRR desc-doc 0.2987 0.3647
MRR desc 0.3942 0.4408
MRR doc 0.3701 0.4736
MRR geo 0.2231 0.6527

Finally, to provide a deeper insight into the question why the domain knowledge-
based sub-collection improves so much over the other sub-collection on the different
relevance dimensions, we present in Table 6 the contribution to the relevance dimen-
sions of each of the sub-collections that take part to build the TouristFiltered sub-
collection (recall that it consists of three parts: TouristListFiltered, TouristOutlinks-
Filtered, and AttractionFiltered). Note that the TouristFiltered sub-collection corresponds
to the third column, where the three parts are combined.

To obtain these results, we modified the submission file of the run based on the
TouristFiltered sub-collection. First, we compute the performance with keeping only
suggestion in the run file that are from TouristListFiltered. Then we added those coming
from the TouristOutlinksFiltered part, and finally those from AttractionFiltered. As we
observe in the table, there is a major improvement after adding the AttractionFiltered
part. As a final comparison, we also include the performance of the AttractionFiltered
part alone; we observe that its suggestions are almost comparable to the whole sub-

collection but not as good as those, in particular because of the description relevance
dimension.

Table 6. Effect of TouristFiltered sub-collection parts on P@5 and MRR metrics. We denote
TouristListFiltered, TouristOutlinksFiltered, and AttractionFiltered parts as TLF, TOF, and AF
respectively. In bold, the best result per column and metric; the best overall result is underlined.

Metrics TLF TLF + TOF TLF + TOF + AF AF

P@5 all 0.0314 0.0441 0.1438 0.1084
P@5 desc-doc 0.0609 0.0856 0.2348 0.1599
P@5 desc 0.0736 0.1023 0.2910 0.2007
P@5 doc 0.0809 0.1110 0.3124 0.2161
P@5 geo 0.1612 0.2181 0.4843 0.4468
MRR all 0.1101 0.1453 0.2307 0.1843
MRR desc-doc 0.1782 0.2339 0.3647 0.2823
MRR desc 0.2101 0.2671 0.4408 0.3644
MRR doc 0.2259 0.2947 0.4736 0.3759
MRR geo 0.4132 0.4841 0.6527 0.6047

4 Conclusions and Future Work

In our submission this year we focused on extracting a set of tourist documents from
the ClueWeb12 collection. We discussed our approach of selecting candidate docu-
ments from the ClueWeb12 collection, using tourist domain knowledge inferred from
the Open Web in order to get better suggestions from ClueWeb12 collection. We mea-
sured the impact of using the domain knowledge by applying the same retrieval model
on two sub-collections created differently; one using the domain knowledge, while the
other does not have this knowledge. Based on the analysis of the experimental results,
we have observed that the sub-collection that uses the domain knowledge significantly
improves the performance of the retrieval model.

We applied domain knowledge for creating a subcollection which consists of parts,
were each part was defined as a Boolean filter. For the future work we can extend our
filter model towards weighted variants based on the content and the domain knowledge.
Also in the future we want to study if there are properties of the sub-collection – or
the documents that shape it (length, vocabulary distribution, etc.) – that allow to infer
whether a subcollection will be useful for a particular task, even before running the
retrieval method.

Acknowledgments

This research was supported by the Netherlands Organization for Scientific Research
(NWO project #640.005.001)

5 References

[1] Foursquare api. https://developer.foursquare.com/docs/
venues/search.

[2] H. Luhn. The automatic creation of literature abstracts. IBM Journal of Research
and Development, pages 159–165, 1958.

[3] G. Salton, A. Wong, and C. S. Yang. A vector space model for automatic indexing.
Communications of the ACM, 18(11):613–620, 1975.

